
Integrating Contrastive Learning with Dynamic Models
for Reinforcement Learning from Images

Bang Youa,b,∗, Oleg Arenzb, Youping Chena, Jan Petersb

aSchool of Mechanical Science and Engineering, Huazhong University of Science and
Technology, Wuhan 430074, China

bIntelligent Autonomous Systems Lab, Technische Universität Darmstadt, Darmstadt
64289, Germany

Abstract

Recent methods for reinforcement learning from images use auxiliary tasks to
learn image features that are used by the agent’s policy or Q-function. In
particular, methods based on contrastive learning that induce linearity of the
latent dynamics or invariance to data augmentation have been shown to greatly
improve the sample efficiency of the reinforcement learning algorithm and the
generalizability of the learned embedding. We further argue, that explicitly im-
proving Markovianity of the learned embedding is desirable and propose a self-
supervised representation learning method which integrates contrastive learning
with dynamic models to synergistically combine these three objectives: (1) We
maximize the InfoNCE bound on the mutual information between the state- and
action-embedding and the embedding of the next state to induce a linearly pre-
dictive embedding without explicitly learning a linear transition model, (2) we
further improve Markovianity of the learned embedding by explicitly learning a
non-linear transition model using regression, and (3) we maximize the mutual
information between the two nonlinear predictions of the next embeddings based
on the current action and two independent augmentations of the current state,
which naturally induces transformation invariance not only for the state em-
bedding, but also for the nonlinear transition model. Experimental evaluation
on the Deepmind control suite shows that our proposed method achieves higher
sample efficiency and better generalization than state-of-art methods based on
contrastive learning or reconstruction.
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1. Introduction

Deep reinforcement learning (RL) is a promising framework for enabling
robots to perform complex control tasks from high-dimensional sensory inputs
in unstructured environments, including household chores [1], manufacturing [2],
and transportation [3]. Specifically, end-to-end reinforcement learning from im-
ages enables robots to learn new skills without relying on object-specific detec-
tion and tracking systems. However, by operating on high-dimensional obser-
vation spaces that are typically governed by complex dynamics, reinforcement
learning from images often requires many environment interactions to learn suc-
cessful policies, which is not possible for a wide range of real robotic tasks.

Hafner et al. [4, 5] substantially improved the sample efficiency of image-
based reinforcement learning, by learning a predictive model on a learned latent
embedding of the state. They alternately optimize a policy based on the learned
models of the latent reward and transition distributions, and improve their
models based on newly collected samples from the learned policy. However, they
still need many samples to learn a model of the environment. Furthermore, the
learned world model is usually inaccurate, and the resulting prediction errors
lead to suboptimal policies.

Another solution to improve sample efficiency for reinforcement learning
from images is to use auxiliary tasks to learn compact state representations,
which can be used by the reinforcement learning agent. One common auxiliary
task is to reconstruct raw images with autoencoders and its variations [6, 7,
8]. However, since such approaches learn a representation by minimizing the
reconstruction error in the pixel space, they try to capture pixel-level details
even when they are task-irrelevant, which can degrade sample efficiency [9].

Recently, contrastive learning objectives, which rely on mutual information
estimation, have been shown to improve sample efficiency of reinforcement learn-
ing algorithms. In particular, two different types of contrastive learning have
been shown to be effective for reinforcement learning from images. The first
line of research [10] maximizes the mutual information between two indepen-
dent transformations of the same image, which increases the robustness of rep-
resentations similar to data augmentation. The second line of research [11, 12],
maximizes mutual information between consecutive states, aiming to learn rep-
resentations that have approximately linear latent dynamics.

We further argue that improving latent Markovianity—that is, maximizing
the predictability of the next embedded state based on the current embedded
state and action—is important, since reinforcement learning assumes Markovian
states and actions and an agent using non-Markovian representations is, thus,
not able to exploit non-Markovian effects. Although mutual information based
approaches that maximize predictive information [13] already improve Marko-
vianity, we argue that it is more effective to explicitly minimize the prediction
errors of a learned model of the latent dynamics.

Based on the three desired properties that we identified, we propose a self-
supervised representation learning method that integrates contrastive learning
with dynamic models, CoDy, for reinforcement learning from images. Our
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method consists of three auxiliary tasks on the learned embedding. Namely,
(1) we minimize the prediction error between the current state- and action-
embeddings and the true embedding of the next state to increase Markovianity,
(2) we maximize the InfoNCE [12] bound on the temporal mutual information
between the current state- and action-embeddings and the true embedding of
the next state to increase linearity of the latent dynamics, and (3) we maximize
the multi-view mutual information between the predicted embeddings at the
next time step for two independent data augmentations to improve invariance
to data augmentations.

Compared to aforementioned contrastive learning methods, our proposed
method offers three appealing properties. Firstly, our method effectively im-
proves Markovianity of the latent embedding by explicitly learning a nonlinear
transition models. Secondly, instead of directly maximizing the mutual informa-
tion of the augmented images, we maximize the multi-view mutual information
between the predicted embeddings of next states, which additionally encourages
the latent transition model to be invariant to data augmentations. Thirdly, our
mutual information objectives take into account the actions such that the state
representation does not implicitly depend on the actions in the replay buffer.

We train our auxiliary tasks with a standard soft actor-critic [14] reinforce-
ment learning agent for learning continuous policies from images. The main
contributions of our work are as follows.

• To improve the Markovianity of state embeddings, we propose a self-
supervised representation learning method that combines contrastive
learning with a nonlinear prediction task. Our method learns state em-
beddings while inducing Markovianity, transformation invariance, and lin-
earity of latent dynamics.

• We propose a novel multi-view mutual information objective that maxi-
mizes the agreement between the predicted embeddings of the next states
for different transformations of the current state, which induces trans-
formation invariance not only for the state embeddings, but also for the
latent dynamics.

• We evaluate our method on a set of challenging image-based benchmark
tasks and show that it achieves better sample efficiency and general-
ization than state-of-art reconstruction-based, contrastive-learning-based
and model-based methods.

The remainder of the paper is organized as follows. We present the problem
statement and preliminaries in Section 1.1. In Section 2 we discuss previous work
related to state representation learning. We present the proposed framework and
the auxiliary tasks in Section 3. Section 4 contains details on our implementation
of the proposed algorithm and the results of the experimental evaluation. In
Section 5 we draw a conclusion and discuss limitations and future work.
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1.1. Problem Statement and Preliminaries

We describe the problem of learning continuous control policies from high-
dimensional observations. Our algorithm is built on top of soft actor critic
(SAC) [14], which is a model-free off-policy reinforcement learning algorithm
with entropy regularization. We also introduce contrastive predictive coding [12]
used for mutual information estimation.

1.1.1. Problem Statement and Notation

We formulate the problem of learning continuous control policies from im-
ages as an infinite-horizon Markov decision process (MDP). An MDP can be
formulated by the tupleM = (S,A, P, r, γ), where S is the state space, and A
is the action space, P (st+1|st, at) is a stochastic dynamic model, r(s, a) is the
reward function and γ the discount factor. The state and action space fulfill the
(first-order) Markov property, that is, the distribution of the next state st+1 is
conditionally independent of all prior states and actions, st′<t and at′<t, given
the current state st and action at. At every time step t, the agent observes the
current state and chooses its action based on its stochastic policy π(at|st) and
obtains a reward r(st, at). Our goal is to optimize the policy to maximize the
agent’s expected cumulative reward.

We specifically focus on image-based reinforcement learning, that is, the
state space is provided in terms of images. A single image is usually not Marko-
vian, since it contains little information about object velocities (which could
be estimated using previous images). Following common practice [15] in rein-
forcement learning from images, we stack the k most recent images together
and define the state as st = (ot, ot−1, ot−2, · · · , ot−k+1), where ot is the image
observed at time t. While this problem could also be framed as a partially ob-
servable MDP (POMDP), please note that we assume that the agent observes
st, which is assumed to be a Markovian state. Hence, in contrast to POMDP
methods, we neither need to use previous observations st′<t to better estimate
an unobserved hidden state, nor do we need to learn a policy that actively
chooses informative actions. Instead, we focus on representation learning, that
is, we want to learn an embedding ϕα : S → Rd, parameterized by α, that maps
the high-dimensional state s to a lower-dimensional representation z = ϕα(s)
to increase sample efficiency. Along with the embedding ϕα, we want to learn
a policy π(a|s) = π(a|ϕα(s)) that maximizes the expected cumulative rewards

J(π) = Eπ

[ ∞∑
t=0

γtrt

∣∣∣∣at ∼ π(·|zt), st+1 ∼ P (·|st, at), s0 ∼ p0(s0)

]
, (1)

where p0(s0) is the distribution of the initial state and γ ∈ (0, 1) is a discount
factor to ensure finite returns.

1.1.2. Maximum Entropy Reinforcement Learning

Maximum entropy reinforcement learning optimizes a policy to maximize
the sum of the expected cumulative rewards and the expected entropy of the
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policy [16]. Unlike standard reinforcement learning, in the maximum entropy
reinforcement learning framework the agent gets an additional reward that is
proportional to the entropy, H(π(·|st) = −

∫
A π(·|st) log(π(·|st))) da, of the pol-

icy at every time step to encourage stochasticity. Soft actor-critic [14] is an
off-policy maximum entropy reinforcement learning algorithm that learns an
entropy-regularized stochastic policy πω parameterized by ω, and two Q func-
tions Qσ1 and Qσ2 with parameters σ1 and σ2 respectively, to find an optimal
control policy. The soft Q function can be learned by minimizing the Bellman
error,

LQ(σi) = E(s,a,r,s′,d)∼D [(Qσi
(s, a)− T(r, s′, d)))] , (2)

where state s, action a, reward r, next state s′ and a termination flag d are
sampled from the replay buffer D. The target value T(r, s′, d) is computed from
the Q function

T(r, s′, d) = r + γ(1− d)
(
min
i=1,2

Qσ
targ,i

(s′, a′)− α log πω(a
′|s′)

)
, (3)

where a′ ∼ πω(·|s′), and Qσ
targ,i

denotes the target Q function, which uses an

exponential moving average of the parameters σi for i = 1, 2. This particular
parameter update has been shown to stabilize training.

The policy can be optimized by minimizing

Lπ(ω) = Es,a∼D,π[α log πω(a|s)−Q(s, a)], (4)

where the states s and actions a are sampled from the replay buffer and the
stochastic policy, respectively. Q(s, a) = min

i=1,2
Qσi

is the minimum of both Q

function approximators.

1.1.3. Contrastive Predictive Coding

For two random variables x1 and x2, the mutual information I(x1, x2) is de-
fined as the Kullback-Leibler divergence between the joint distribution p(x1, x2)
and the product of the marginal distributions p(x1)p(x2),

I(x1, x2) =

∫
x1,x2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
dx1dx2,

which is typically intractable to compute.
Contrastive predictive coding [12] introduced the InfoNCE loss for maximiz-

ing a lower bound on the mutual information between the current embedding
and a future embedding. Specifically, given an anchor x1,i, a positive sample
x2,i ∼ p(x2|x1,i) and K negative samples x2,j ∼ p(x2), the InfoNCE loss corre-
sponds to a binary cross-entropy loss for discriminating samples from the joint
distribution p(x1,i)p(x2|x1,i) from samples from the marginals, that is,

L
NCE

= − E
p(x1,x2)

[
log

exp(f(x1,i, x2,i))∑K
j=1 exp(f(x1,i, x2,j))

]
, (5)
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where the learnable function f(·, ·) measures the similarity between the anchor
and samples.

Minimizing the InfoNCE loss is equivalent to maximizing a lower bound on
the mutual information between x1 and x2,

I(x1, x2) ≥ log(K)− L
NCE

. (6)

Contrastive predictive coding uses a recurrent neural network to extract a
context mt from the embeddings of previous observation, and maximizes the
InfoNCE bound of the mutual information between the current context and the
k-step future state embedding zt+k. Oord et al. [12] propose a simple log-bilinear
model for the classifier, that is,

f(mt, xt+k) = exp
(
m⊤

t Wϕ(xt+k)
)
,

where ϕ is the encoder. The embedding can thus be learned by minimizing
the InfoNCE loss both with respect to the parameters of the encoder ϕ, and
with respect to the matrix W which parameterizes f . By maximizing the inner
product between the context mt and a linear transformation of the future em-
bedding Wϕ(xt+k), the InfoNCE loss with log-bilinear classifier favors linearly
predictive embeddings [11], although the mutual information objective does not
impose linearity perse.

2. Related Prior Work

Learning expressive state representations is an active area of research in
robot control and reinforcement learning. We will now briefly discuss robotic-
prior based and reconstruction based approaches, but will focus on methods
based on mutual information, which are most related to our work.

2.1. Robotic Prior-based Methods

Prior work in this area has explored using prior knowledge about the world
or dynamics, called robotic priors, for learning state representations [17, 18].
These robotic priors can be defined as loss functions to be minimized without
additional semantic labels. Jonschkowski and Brock [17] use prior knowledge,
such as temporal continuity or causality, to learn representations that improve
the performance of reinforcement learning. Lesort et al. [19] propose to stabilize
the learned representation by forcing two states corresponding to the same refer-
ence point to be close to each other. For example, the fixed starting position of
the arm can be used as a reference point, which acts as a reference or calibration
coordinate. Morik et al. [20] combine the idea of robotic priors with LSTMs to
learn task relevant state representations, which have been shown to be robust
to states that are incorrectly classified as being close to each other. However,
these robotic prior based approaches often rely on significant expert knowledge
and hence limit the generalizability of the learned representations across tasks.
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2.2. Reconstruction-based Approaches

Many existing approaches use a reconstruction loss to learn a mapping from
observations to state representations [6, 21]. Reconstruction-based methods aim
to reconstruct their input under constraints on their latent representations, e.g.
their dimensionality. Autoencoders can be used to encode high-dimensional in-
puts into a low-dimensional latent state space [6]. In order to improve training
stability, Yarats et al. [8] incorporate variational autoencoders into an off-policy
learning algorithm. However, there is no guarantee that the learned repre-
sentation will encode useful information for the task at hand. To alleviate this
problem, constraints on the latent dynamics have been proved effective in learn-
ing useful task-oriented representations [7, 22, 23]. These methods encourage
the encoder to capture information necessary to predict the next state. How-
ever, since they extract representations by minimizing the reconstruction error
in pixel space, these reconstruction-based methods aim to capture the full di-
versity of the environment, even if it is irrelevant to the task.

2.3. Mutual Information Based Approaches

Recent literature on unsupervised representation learning focuses on ex-
tracting latent embeddings by maximizing different lower bounds on the mu-
tual information between the representations and the inputs. Commonly used
bounds include MINE [24], which estimates mutual information based on the
Donsker-Varadhan representation [25] of the Kullback-Leibler divergence, and
InfoNCE [12], which uses a multi-sample version of noise-contrastive estima-
tion [26].

Hjelm et al. [27] maximize mutual information between the input and its
representations. They propose to maximize both, this global mutual informa-
tion and local mutual information that considers small patches of the input.
The local mutual information objective should encourage the encoder to cap-
ture features shared by different patches, and thus put less focus on pixel-level
noise. Bengio et al. [28] considered simple reinforcement learning problems,
and propose to learn independently controllable features, by learning a separate
policy for every dimension of the embedding that only affects variation of that
respective dimension. Anand et al. [11] proposed to learn state representations
by maximizing the mutual information of observations across spatial and tem-
poral axes. Their key idea is to improve temporal coherence of observations.
However, they do not take into account the action for their temporal mutual
information objective and hence the predictive information is specific to actions
that were used in the training set.

More recently, several works apply mutual information objectives for rep-
resentation learning in a deep reinforcement learning setting. Oord et al. [12]
introduced the InfoNCE bound on the mutual information and already evalu-
ated it in a reinforcement learning setting. They maximize the mutual infor-
mation between the current context, which is computed from all previous state
embeddings, and the embedding several time steps in the future. Laskin et al.
[10] learn useful state representations by maximizing the mutual information
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between the features of independent transformations of the same observations,
improving transformation invariance of the learned embedding. The impor-
tance of data augmentation for deep reinforcement learning from images has
also been stressed by Yarats et al. [29]. Laskin et al. [10] generate transformed
images for data augmentation, where a random patch is cropped from a stack
of temporally sequential frames sampled from the replay buffer. Moreover, they
use separate online and target encoders for the anchor, and positive/negative
samples, respectively, when computing the InfoNCE loss on the mutual infor-
mation, rather than using same encoder for the anchor, and positive/negative
samples, which was proposed by Oord et al. [12]. Our method shares several
aspects with their method, CURL, since we also apply the InfoNCE [12] bound
to maximize the mutual information between two embeddings that result from
different image crops in one of our auxiliary tasks. However, we do not consider
the embeddings directly, but the predicted embeddings at the next time step,
additionally targeting latent dynamics invariant to the transformation of the
current embedding. Lee et al. [13] apply the conditional entropy bottleneck [30]
to maximize the mutual information between the current embedding and the
future state and reward, while compressing away information that is not also
contained in the next state or reward. Their conditional entropy bottleneck
objective is conditioned on multiple future states and rewards for multi-step
prediction. Instead, we propose to compress away task-irrelevant information
by using data augmentation without compromising the ability to predict the
embedding of the next state.

Model-based reinforcement learning methods iteratively build a predictive
model of the environment from high-dimensional images along with a policy
based on that model [5, 31, 32, 33]. For example, Dreamer [4] learns models
of the latent dynamics and rewards and uses them for reinforcement learning
in the latent MDP. By iteratively applying the policy on the real system, new
data is collected to improve the models. Some recent model-free reinforcement
learning approaches learn latent dynamic models to compute intrinsic reward
for solving many reinforcement learning tasks with sparse rewards [34, 35]. For
instance, Li et al. [35] compute intrinsic rewards by estimating the novelty of the
next state based on the prediction error of a dynamic model that is smoothly
updated during training. Learning predictive dynamic models has also been
shown to be promising for many robotic control tasks. For example, Li et al.
[36] propose a neural fuzzy-based dynamic model for reliable trajectory tracking,
which effectively facilitates the control performance of the wheel-legged robot.
We also learn a model of the latent dynamics, but we use it only for learning
better representations. However, making better use of the learned models is a
natural extension for future work.

In this paper, we propose an approach for representation learning in the
context of deep reinforcement learning, that is based on mutual information,
without relying on robotic prior knowledge or pixel-reconstruction. Most afore-
mentioned mutual information based methods either improve temporal coher-
ence of observations or maximize the similarity of two independently augmented
images, which cannot effectively guarantee the Markovianity of state and action
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Figure 1: Our framework contains three auxiliary tasks and respective loss functions. The
temporal mutual information loss LTMI aims to maximize the InfoNCE bound of the mutual
information between the current state-action embedding and the next state-embedding, that
is, I([ct, z1t ], zt+1). The prediction loss LPred is given by the squared ℓ2 error between the
predicted next embedding and the actual embedding of next state. The multi-view mutual
information loss uses the InfoNCE bound to maximize the mutual information between the
predicted next embeddings based on two different state augmentation s2t and s1t , I(ẑ

1
t+1, ẑ

2
t+1).

The parameters of the target encoder and target transition function are an exponential moving
average of the parameters of the online models. The online encoder is used by the Q-functions
and the policy of the soft actor-critic agent, which is trained along with the auxiliary tasks.

embeddings. However, non-Markovian embeddings can make it harder to learn
an optimal policy or Q-function, since reinforcement learning agents assume
their states and actions to be Markovian. To alleviate this problem, our pro-
posed method imposes a nonlinear dynamic model on the latent state space.
Moreover, instead of directly maximizing the agreement of embedding of aug-
mented images, we propose to maximize the mutual information between the
predicted embedding at the next time step, additionally improving data augmen-
tation invariance of the latent dynamic models. The comparative experiments
presented in Section 4 have shown that the proposed method outperforms lead-
ing reconstruction-based and contrastive-based methods on typically challenging
image-based benchmark tasks.

3. Integrating Contrastive Learning with Dynamic Models

We will now present the architecture of the proposed framework and our
method, which consists of three auxiliary tasks, in detail. We will also show
how to train the representations together with the policy and the Q-function.

3.1. The Mechanism and Architecture for Mutual Information Maximization

Our mutual information maximization architecture is presented in Figure 1.
We apply stochastic data augmentation to raw states st in order to obtain
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two independent views (image crops) of the current states, s1t ∼ A(st) and
s2t ∼ A(st), where A(·) denotes the distribution of augmented images. In order
to extract compact representations from states, we use an online encoder ϕα :
S → Rd with parameters α and a target encoder ϕβ : S → Rd with parameters
β to transform augmented observations s1t and s

2
t into representations z1t and z2t ,

respectively. An action encoder ψγ : A → Rn with parameters γ maps actions
at into a feature vector ct. Finally, the representations of states and actions are
concatenated together. An online transition model gυ with parameters υ and a
target transition model gµ with parameters µ (e.g., neural networks) predict the
representation of the next state based on a given state- and action-embedding,

ẑ1t+1 = gυ(z
1
t , ct), (7)

ẑ2t+1 = gµ(z
2
t , ct). (8)

At the next timestep, the target encoder maps the state st+1 into the latent
representations zt+1. Motivated by He et al. [37], the parameters of the target
state encoder and the target transition model are computed as an exponen-
tial moving average (EMA) of the parameters of the online encoder and online
transition model, respectively,

β = τα+ (1− τ)β, (9)

µ = τυ + (1− τ)µ, (10)

where τ ∈ [0, 1) is the coefficient of the exponential moving average.

3.2. A Prediction Task for Improving Latent Markovianity

The Markov assumption is critical in reinforcement learning and states that
the distribution over the next state is conditionally independent of all previous
states and actions, given the current state and action. When the Markov as-
sumption is violated, the learned policy and value function in general cannot
make use of the environmental information that is contained in the previous
state but not in the current one. By providing the state embedding z instead of
the original state s as input to the agent’s policy and Q-function, we effectively
change the state space from the agent’s perspective.

Although the original state space is assumed Markovian, the learned state
representation is not Markovian in general. For example, consider a simple
linear system, where the state space is given by the position and velocity of a
point mass, and the action corresponds to a bounded change of acceleration.
While the state space is Markovian, a representation that discards the velocity
is no longer Markovian, since the position at time step t − 1 can improve our
estimate of the current velocity and thus the prediction of the next position.

However, we argue that a maximally compressed embedding of a Marko-
vian state, that keeps sufficient information for learning an optimal policy and
Q-function, should also be Markovian, which we can prove by contradiction:
Assume a non-Markovian embedding of a Markovian state that is maximally
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compressed while keeping all information that is useful for predicting the ex-
pected cumulative reward. As the current state—due to Markovianity of the
state space—contains all information for predicting the next state, and thus also
for predicting the next embedded state, a non-Markovian state representation
necessarily discards information that would be useful for predicting the next
embedded state. Hence, either we lost information that would be useful for
predicting the expected cumulative reward, or the state representation contains
information that is unnecessary for predicting the expected cumulative reward,
and, thus, not maximally compressed.

While latent Markovianity is a necessary condition for learning a concise
and sufficient representation of the state, it is clearly not sufficient, since even
a constant embedding, ϕ(s) = const, is Markovian. However, we hypothesize
that introducing an auxiliary objective to induce Markovianity improves the
effectiveness of the learned embedding by improving its consistency. Strict en-
forcement of latent Markovianity seems challenging, but we can improve latent
Markovianity in the sense that we reduce the predictive information about the
next embedding that was present in previous state embeddings but not in the
current one. We hypothesize that improving Markovianity by means of an auxil-
iary prediction tasks, improves the consistency and thereby the sample efficiency
and generalizability for the learned embedding. This hypothesis is consistent
with the experimental results of Lee et al. [13] and Anand et al. [11], where aux-
iliary prediction tasks were shown to improve the effectiveness of the learned
embedding. We improve Markovianity by introducing the auxiliary task of pre-
dicting the next state embedding zt+1 based on the embeddings of the current
state and action, z1t and ct and a learned non-linear transition model gυ. The
prediction error is defined as

L
pred

(α, γ, υ) =
∥∥z1t+1 − ẑ1t+1

∥∥2
2
, (11)

with the squared ℓ2 norm denoted by ∥·∥22 and the prediction ẑ1t+1. By minimiz-
ing this forward prediction error, the transition model forces the state encoder
to learn predictive features.

3.3. A Temporal Mutual Information Based Prediction Task

Although minimizing the prediction error as discussed in Section 3.2 should
be more effective in improving Markovianity compared to maximizing a bound
on the mutual information between embeddings of consecutive time steps, the
latter approach has been shown to be very effective [13, 11]. The better per-
formance of methods that maximize predictive information using the InfoNCE
bound with log-bilinear classifiers, may be caused by implicitly inducing lin-
early predictive representations [11], or by the fact that these approaches only
rely on a discriminative model [38]. Hence, we propose to use both auxiliary
tasks, the prediction task discussed in Section 3.2 for inducing Markovianity
more strongly, and a task based on mutual information, which induces linearly
predictive representations without relying on a generative model. Namely, we
optimize the state encoder ϕα and action encoder ψγ to maximize the temporal
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mutual information, between the current state- and action-embeddings and the
next state-embedding, that is,

max
α,γ

I([z1t , ct], zt+1) = max
α,γ

E
[
log

p(z1t , ct, zt+1)

p(z1t , ct)p(zt+1)

]
, (12)

where p denotes the joint distribution of these variables, as well as their associ-
ated marginal distributions.

We maximize the temporal mutual information by minimizing the InfoNCE
loss (Eq. 5), and use a log-bilinear classifier to induce linearity. More specifically,
let (z1t , ct, zt+1) denote samples drawn from the joint distribution p(z1t , ct, zt+1)
which we refer to as positive sample pairs, and N1 denotes a set of negative
samples sampled from the marginal distribution p(zt+1). The InfoNCE loss for
maximizing the lower bound of this temporal mutual information is given by

L
TMI

(α, γ) = − E
p(z1

t ,ct,zt+1)

[
E
N1

[
log

h1(z
1
t , ct, zt+1)∑

z∗
t+1∈N1∪zt+1

h1(z1t , ct, z
∗
t+1)

]]
, (13)

where h1(z
1
t , ct, zt+1) is a log-bilinear score function given by

h1(z
1
t , ct, zt+1) = exp

(
m(z1t , ct)

⊤W1zt+1

)
. (14)

Here, the function m(·, ·) concatenates the representations of states and actions
and W1 is a learned matrix. The term m(z1t , ct)W1 in Equation 14 performs a
linear transformation to predict the next state representations zt+1, which forces
the encoders of states and actions to capture linearly predictive representations.

In practice, we randomly draw a minibatch of state-action pairs and corre-
sponding next states (st, at, st+1) from the replay buffer. We obtain a minibatch
of positive sample pairs (z1t , ct, zt+1) by feeding st, at and st+1 into their cor-
responding encoder, respectively. For a given positive sample pair (z1t , ct, zt+1),
we construct N1 by replacing zt+1 with all features z∗t+1 from other sample pairs

(z1
∗

t , c∗t , z
∗
t+1) in the same minibatch.

3.4. A Mutual Information Based Task for Improving Transformation Invari-
ance

The temporal mutual information objective presented in Section 3.3 can
encourage the encoder of states and actions to capture task-irrelevant informa-
tion which may help in discriminating the positive and negative samples in the
InfoNCE loss (Eq. 13). Lee et al. [13] propose to learn a more compressed rep-
resentation by applying the conditional entropy bottleneck, which additionally
punishes the conditional mutual information between the past states and the
embedding, conditioned on the future. However, in general, information that is
no longer available at the next time step might still be relevant for the agent at
the current step. Instead, we use data augmentation to add an inductive bias on
which information is not relevant for the agent, which has been shown crucial
by Yarats et al. [29].
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For example, some lower-level factors presented in the observed states and
actions, including noise or external perturbations, are typically not useful for the
agent. For our experiments, we consider a multi-view setting, inspired by Laskin
et al. [10], where we assume each view of the same scene shares the same task-
relevant information while the information not shared by them is task-irrelevant.
Intuitively, this assumption represents an inductive bias that the way we see the
same scene should not affect the internal state of the environment. Instead, the
representations should extract task-relevant information that is shared by dif-
ferent views for predicting the next embedding. Hence, we propose to maximize
the multi-view mutual information I(ẑ1t+1, ẑ

2
t+1) between the predicted repre-

sentation of next states ẑ1t+1 and ẑ2t+1, based on independent views s1t and s2t of
the same scene with respect to the state embedding ϕα, the action embedding
ψγ and the nonlinear transition model gυ,

max
α,γ,υ

I(ẑ1t+1, ẑ
2
t+1) = max

α,γ,υ
E
[
log

p(ẑ1t+1, ẑ
2
t+1)

p(ẑ1t+1)p(ẑ
2
t+1)

]
. (15)

Since mutual information measures the amount of information shared be-
tween random variables, this objective forces the encoder of states to capture
transformation invariant information about higher-level factors (e.g. presence
of certain objects) from multiple views of the same scene. Notably, instead
of modelling the mutual information between the representations of two aug-
mented states I(z1t , z

2
t ) [10], the mutual information objective that we consider

imposes transformation invariance not only on the state embedding, but also on
the transition model.

We employ InfoNCE to maximize a lower bound of the above multi-view
mutual information objective. By (ẑ1t+1, ẑ

2
t+1) we denote samples drawn from the

joint distribution p(ẑ1t+1, ẑ
2
t+1) which we refer to positive sample pairs, and by

N2 we denote a set of negative samples sampled from the marginal distribution
p(ẑ2t+1). The multi-view mutual information objective is thus given by

L
MVMI

(α, γ, υ) = − E
p(ẑ1

t+1,ẑ
2
t+1)

[
E
N2

[
log

h2(ẑ
1
t+1, ẑ

2
t+1)∑

ẑ2∗
t+1∈N2∪ẑ2

t+1
h2(ẑ1t+1, ẑ

2∗
t+1)

]]
, (16)

with score function h2(·, ·) which maps feature pairs onto scalar-valued scores.
We employ a log-bilinear model,

h2(ẑ
1
t+1, ẑ

2
t+1) = exp

(
ẑ1t+1W2ẑ

2
t+1

)
, (17)

with weight transformation matrix W2. Minimizing L
MVMI

with respect to ϕα,
ψγ , gυ and W2 maximizes the mutual information between the predicted rep-
resentations of next states. In practice, we randomly sample a minibatch of
state-action pairs and corresponding next states (st, at, st+1) from the replay
buffer. We obtain positive sample pairs (ẑ1t+1, ẑ

2
t+1) by feeding the above mini-

batch into our mutual information framework. For a given positive sample pair
(ẑ1t+1, ẑ

2
t+1), we construct N2 by replacing ẑ2t+1 with all features ẑ2

∗

t+1 from other

sample pairs (ẑ1
∗

t+1, ẑ
2∗

t+1) in the same minibatch.
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Finally, the total loss function L
CoDy

for the auxiliary tasks consists of the

prediction loss L
pred

, the temporal mutual information loss L
TMI

and multi-

view mutual information loss L
MVMI

weighted by hyperparameters λ and η

L
CoDy

(α, γ, υ) = L
MVMI

(α, γ, υ) + λL
TMI

(α, γ) + ηL
pred

(α, γ, υ). (18)

The online encoder ϕα, the action encoder ψγ and online transition model gυ is
optimized simultaneously by minimizing this total loss function.

Algorithm 1: Training Algorithm for CoDy

Require: parameters α, υ, β, µ, γ, ω, σ, σ̂, batch size B, replay buffer
D, learning rates ρe, ρa and ρc

initialize replay buffer D
for each training step do

collect experience (st, at, rt, st+1) and add it to the replay buffer D
for each gradient step do

Sample a minibatch of tuple: {st, at, rt, st+1}B1 ∼ D
Update soft Q-function:
{σi, α} ← {σi, α} − ρc∇̂σiLQ(σi) for i ∈ {1, 2}
Update policy:
ω ← ω − ρa∇̂ωLπ(ω)
Update online encoder, online transition model and
action encoder:
{α, υ, γ} ← {α, υ, γ} − ρe∇̂{α,υ,γ}LCoDy

(α, υ, γ)

Update target Q-function:
σ̂i ← τσi + (1− τQ)σ̂i for i ∈ {1, 2}
Update target encoder and transition model:
β = τα+ (1− τe)β
µ = τυ + (1− τe)µ

end

end

3.5. Joint Policy and Auxiliary Task Optimization

We train our auxiliary tasks jointly with SAC, a model-free off-policy re-
inforcement learning agent, by adding Eq. 18 as an auxiliary objective during
policy training. The policy takes the representations computed with the online
encoder to choose what action to take, and to approximate Q-values. Since
the reward function can provide some task-relevant information, we allow the
gradient of the Q-function to back-propagate through the online encoder in
order to further capture task-relevant representations of observations. We do
not backpropagate the actor loss through the embedding because this degrades
performance by implicitly changing the Q-function during the actor update, as
noted by Yarats et al. [8].
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Figure 2: Continuous control tasks from the Deepmind control suite used in our experiments.
(a) The Ball-in-cup Catch task only provides the agent with a sparse reward when the ball is
caught. (b) The Cartpole Swingup task attains images from a fixed camera and, hence, the
cart can move out of sight. (c) The Finger Spin task requires contacts between the finger and
the object. (d) The Reacher Easy task has a sparse reward that is only given when the target
location is reached. (e) The Walker Walk task has complex dynamics. (f) The Cheetah Run
task has both high action dimensions and contacts with the ground.

The training procedure is presented in Algorithm 1 in detail. α and υ are the
parameters of the online encoder ϕα and transition model gυ, respectively. β and
µ are the parameters of the target encoder ϕβ and transition model gµ, while γ
are the parameters of the action encoder ψγ . The parameters of policy π, the Q-
function and target Q-function are denoted as ω, σ and σ̂, respectively. ρa and
ρc are the learning rates for the policy and Q-function. ρe is the learning rate for
the online encoder, online transition model and action encoder. The experience
is stored in a replay buffer D, which is initialized with tuples {st, at, rt, st+1}
by using a random policy. The algorithm proceeds by alternating between
collecting new experience from the environment, and updating the parameters
of the soft Q-function, policy and auxiliary prediction model. The parameters
of the policy network and Q-function network are optimized by minimizing the
SAC policy loss (Eq.4) and actor loss (Eq.2), respectively. The parameters of
the online encoder, online transition model and action encoder are optimized
by minimizing Eq. 18 jointly. The parameters of the target Q-function network
are given by an exponential moving average of the parameters of the online
Q-function.

4. Experimental Evaluation

We evaluate the data efficiency and performance of our method and compare
it against state-of-the-art methods—both a model-based reinforcement learning
method and model-free reinforcement learning methods with auxiliary tasks—on
various benchmark tasks. We test the generalization of our method to unseen
tasks and compare it with other methods. We will now describe the exper-
imental setup and present the results. We will also show the results of an
ablation study to show the effects of the different auxiliary tasks and a visual-
ization of the learned representations. Our code is open-sourced and available
at https://github.com/BangYou01/Pytorch-CoDy.
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4.1. Experimental Setup
We implement the proposed algorithm on the commonly used PlaNet [5]

test bed, which consist of a range of challenging imaged-based continuous con-
trol tasks (see Figure 2) from the Deepmind control suite [39]. Specifically,
six tasks are considered: Ball-in-cup Catch, Cartpole Swingup, Reacher Easy,
Finger Spin, Walker Walk and Cheetah Run. Every task offers a unique set of
challenges, including sparse rewards, complex dynamics as well as contacts. We
refer to Tassa et al. [39] for more detailed descriptions.

We parameterize the online encoder of states, the action encoder and the
transition model using feed forward neural networks. The online encoder of
observations consists of four convolution layers following a single fully-connected
layer. We use a kernel of size 3 × 3 with 32 channels and set stride to 1 for
all convolutional layers. We employ ReLU activations after each convolutional
layer. The output of the convolutional neural network is fed into a single fully-
connected layer with 50-dimensional output. The action encoder consists of two
fully-connected layers with ReLU activation functions. The hidden dimension
is set to 512 and the output dimension is set to 16 for the action encoder.
The transition model uses three fully-connected layers with ReLU activation
functions. Its hidden dimension is set to 1024 and the output dimension is
set to 50. The target encoder and transition model share the same network
architecture with the online encoder and transition model, respectively. We
stack 3 consecutive frames as an observation input, where each frame is an RGB
rendering image with size 3× 84× 84. We follow Lee et al. [13] by augmenting
states by randomly shifting the image by [−4, 4]. We set λ = 100 and η = 1000
for all tasks.

We use the publicly released implementation of SAC by Yarats et al. [8].
The Q-function consists of three fully-connected layers with ReLU activation
functions. The policy network is also parameterized as a 3-layer fully-connected
network that outputs the mean and covariance for a Gaussian policy. The
hidden dimension is set to 1024 for both the Q-function and policy network.
Table 1 presents the remaining hyperparameters in detail. Following common
practice [27, 8, 10], we treat action repeat as a hyperparameter to the agent.
The number of repeated actions and the batch size for each task are listed in
Table 2.

We compare our algorithm with the following leading baselines for contin-
uous control from images: CURL [10], which combines a model-free RL agent
with a contrastive learning objective that captures mutual information between
two augmented images, PISAC [13], which maximizes the predictive information
between the past and the future to learn latent representations which are used
by a model-free RL agent, SAC+AE [8], which uses a regularized autoencoder
for learning a mapping from high-dimensional states to compact embeddings,
Dreamer [4], a model-based reinforcement learning method which learns a pre-
dictive dynamic model for planning, and Pixel SAC which uses a vanilla SAC
operating purely from pixels.

We evaluate the performance of every agent after every 10K environment
steps by computing an average return over 10 episodes. For each method, the
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Table 1: Shared hyperparameters used for the
comparative experiments

Parameter Value
Replay buffer capacity 100000

Initial steps 1000
Optimizer Adam

Q-function EMA τQ 0.01
Critic target update freq 2
Learning rate (ρa, ρc) 10−3

Learning rate (ρe) 10−5

Encoder EMA τe 0.05
Discount 0.99

Initial temperature 0.1

Table 2: Per-task hyperparameters

Task Action
Repeat

Batch
size

Ball-in-cup Catch 4 256
Finger Spin 2 256
Reacher Easy 4 256

Cartpole Swingup 8 256
Walker Walk 2 256
Cheetah Run 4 512

SAC agent performs one gradient update per environment step to ensure a fair
comparison. For a more reliable comparison, we run each algorithm with five
different random seeds for each task. All figures show the average reward and
95% confidence interval unless specified otherwise.

4.2. Sample Efficiency

Figure 3 compares our algorithm with PISAC [13], CURL [10], SAC-AE [8],
Dreamer [4] and Pixel SAC [14]. We use the version of PISAC that uses the same
implementation of the SAC algorithm [8] to ensure a fair comparison to other
model-free approaches. The evaluation data of Dreamer was provided to us by
the author. The proposed algorithm achieves state-of-the-art performance on
all the tasks against all the leading baselines, both model-based and model-free.

Table 3: Scores achieved by our method (mean and standard error for 5 seeds) and baselines at
100k and 500k environment steps. ∗ indicates the best average return among these methods.
The bold font indicates that the upper-bound on the reward (based on the given standard
error intervals) for the given method, is larger or equal than the respective lower bound for
every other image-based method.

500K step scores CoDy(Ours) PISAC CURL SAC-AE Dreamer Pixel SAC State SAC
Finger Spin 937± 41∗ 916 ± 58 854± 48 839± 68 320±35 530±24 927 ± 43

Cartpole Swingup 869± 4∗ 857 ± 12 837± 15 748±47 711± 94 436±94 870 ± 7
Reacher Easy 957± 16∗ 922 ± 32 891± 30 678±61 581± 160 191±40 975 ± 5
Cheetah Run 656± 43∗ 510 ± 27 492±22 476± 22 571± 109 250±26 772 ± 60
Walker Walk 943± 17∗ 822 ± 98 897± 26 836±24 924± 35 97±62 964 ± 8

Ball-in-cup Catch 970± 4∗ 961 ± 3 957± 6 831±25 966± 8 355±77 979 ± 6
100K step scores

Finger Spin 887 ± 39∗ 789 ± 34 750 ± 37 751± 57 33 ± 19 315 ± 78 672 ± 76
Cartpole Swingup 784 ± 18∗ 591 ± 70 547 ± 73 305± 17 235± 73 263 ± 27 812 ± 45
Reacher Easy 624 ± 42∗ 482 ± 91 460 ± 65 321 ± 26 148 ± 53 160 ± 48 919 ± 123
Cheetah Run 323 ± 29∗ 310 ± 28 266 ± 27 264± 12 159± 60 160 ± 13 228 ± 95
Walker Walk 673 ± 94∗ 518 ± 70 482 ± 28 362 ± 22 216 ± 56 105 ± 20 604 ± 317

Ball-in-cup Catch 948 ± 6∗ 847 ± 21 741 ± 102 222 ± 21 172 ± 96 244 ± 55 957 ± 26
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Figure 3: We compared the performance of CoDy with existing methods on six tasks from
the Deepmind control suite. On all tasks, CoDy performs best in terms of sample efficiency.

Following CURL [10], in Table 3 we also compare performance at a fixed
number of environment interactions (100k and 500K). Dreamer’s results pro-
vided by the author didn’t show the performance of the agent at exactly 100k
and 500K environment interactions, and hence we interpolated between nearby
values. We compare our algorithm with above baselines and an upper bound
performance achieved by SAC [14] that operates directly from internal states
instead of images. Averaged over 5 seeds, our algorithm achieves better sample-
efficiency at 100K environment interactions and asymptotic performance at
500K environment interactions against existing baselines on all tasks. Fur-
thermore, our algorithm matches the upper bound performance of SAC that
is trained directly from internal states on several tasks at 500K environment
interactions.

4.3. Generalization to Unseen Tasks

We test the generalization of our method by transferring the learned repre-
sentations without additional fine-tuning to unseen tasks that share the same
environment dynamics. Specifically, we learn representations and a SAC agent
on a source task, fix the representations and then train a new SAC agent for
a target task using the fixed representations. We use Cartpole Balance and
Cartpole Swingup as the source task and the target task, respectively, which
share the same environment dynamics but differ in their initial pole positions.
We also use Walker Walk as the source task and Walker Stand and Walker Run
as the target task, which all have different reward functions. Figure 4 compares
the generalization of our method against PISAC, CURL, SAC-AE and a Pixel
SAC that was trained from scratch. Our algorithm achieves not only better gen-
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Figure 4: Generalization comparisons on the Deepmind control suite. Generalization of an
encoder trained on the Cartpole Balance task and evaluated on the unseen Cartpole Swingup
task (left). Generalization of an encoder trained on the Walker Walk task and evaluated on
the unseen Walker Run (centre) and Walker Stand (right) task, respectively.

eralization than baselines, but also much better performance than vanilla Pixel
SAC trained from scratch. We attribute the improved generalization compared
to other contrastive learning based methods to our additional focus on improv-
ing latent Markovianity. The source and target tasks differ only in their reward
function or the inital position, and share the same state-action dynamics. A
Markovian representation is consistent with the state-action dynamics, in the
sense that it does not discard information that would be useful for predicting
aspects of the state that it chose to encode. We conjecture that this consistency
improves the generalization of CoDy to unseen tasks.

4.4. Ablation Studies

We perform ablation studies to disentangle the individual contributions of
the multi-view objective and the temporal mutual information objective, as well
as the role of the prediction loss. We investigate three ablations of our CoDy
model: Non-Tem CoDy, which only optimizes multi-view mutual information
objective and the prediction error; Non-Pred CoDy, which only optimizes the
multi-view and temporal mutual information objective, and Non-MV CoDy,
which only optimizes the temporal mutual information objective and the pre-
diction error. We present the performance of these ablations in Figure 5. CoDy
achieves better or at least comparable performance and sample efficiency to all
its own ablations across all tasks. This indicates that all three auxiliary tasks
in CoDy play an important role in improving the performance on the bench-
mark tasks. Notably, CoDy outperforms Non-Pred CoDy across all tasks, which
indicates that improving the Markovianity of embedding by minimizing the pre-
diction error of dynamic models effectively achieves better sample efficiency. By
comparing the performance of CoDy and Non-MV CoDy, we observe that our
multi-view mutual information objective based on predicted embeddings helps
to achieve better performance.
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Figure 5: Performance on Deepmind control suite under consideration for ablated variants of
our method.

4.5. Representation Visualization

We visualize the representations learned by CoDy using t-SNE [40] to in-
spect the learned embedding. With t-SNE visualization, there tend to be many
overlapping points in the 2D space, which makes it difficult to view the over-
lapped representation examples. Therefore, we quantize t-SNE points into a 2D
grid with a 30× 20 interface by RasterFairy [41]. Figure 6 visualizes the repre-
sentations learned with CoDy after training has completed on the Walker Walk
task. Observations with similar robot configurations appear close to each other,
which indicates that the latent space learned with CoDy meaningfully organizes
the variation in robot configurations. Similar visualization for the remaining 5
tasks from the Deepmind control suite are shown in Appendix A.

5. Discussion and Conclusion

We presented CoDy, a self-supervised representation learning method which
integrates contrastive learning with dynamic models for improving the sample
efficiency of model-free reinforcement learning agents. Our method aims to
learn state representations that are Markovian, linearly predictive and trans-
formation invariant by minimizing three respective auxiliary losses during re-
inforcement learning from images. We compared our method with state-of-
the-art approaches on a set of challenging image-based benchmark tasks. The
results showed that our method can achieve better sample efficiency and perfor-
mance compared to all the leading baselines on the majority of tasks, including
reconstruction-based, contrastive-based as well as model-based methods. Fur-

20



Figure 6: We visualize the representations learned with CoDy after training has completed
on the Walker Walk task using t-SNE Visualization on a 30× 20 grid.

thermore, we found representations learned with our method can achieve better
generalization to unseen tasks than other model-free methods.

Although our method performed better than previous methods in our exper-
iments, it is also a bit more complex by using three auxiliary tasks. We propose
to learn a transition model in latent space and showed that it can be helpful
for learning compact state embeddings, however, we do not make direct use of
this model during reinforcement learning, which seems wasteful. Making use
of the learned transition model for planning is a natural extension for future
research. Moreover, we plan to extend our method to multimodal data, which
incorporates other modalities, such as tactile and sound, into our representation
learning model.
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Figure A.1: t-SNE Visualization of representations learned with CoDy after training has
completed on Cheetach Run task. The grid size is 20× 15.
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Appendix

A. Additional Visualizations of the Learned Representation

Additional results for the experiment in Section 4.5 that demonstrate that
the latent space learned by CoDy meaningfully organizes the variations in robot
configurations are shown in Figure A.1-A.5.

B. Computation Time

In order to evaluate whether our algorithm increases the time cost while
improving the sample efficiency, we test computation time of our method and
all baselines during policy learning. Specifically, we use a single NVIDIA RTX
2080 GPU and 16 CPU cores for each training run and record training time
per 1000 environment steps after initializing the replay buffer. Table B.1 com-
pares our method against PISAC, CURL, SAC-AE, Dreamer and Pixel SAC
with respect to wallclock time. Pixel SAC has minimum time cost on all tasks
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Figure A.2: t-SNE Visualization of representations learned with CoDy after training has
completed on Ball-in-cup Catch task. The grid size is 20× 15.
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Figure A.3: t-SNE Visualization of representations learned with CoDy after training has
completed on Finger Spin task. The grid size is 20× 15.
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Figure A.4: t-SNE Visualization of representations learned with CoDy after training has
completed on Reacher Easy task. The grid size is 20× 15.
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Figure A.5: t-SNE Visualization of representations learned with CoDy after training has
completed on Cartpole Swingup task. The grid size is 20× 15.
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Table B.1: Computation time in seconds per 1000 environment steps(mean and standard error
for 5 seeds) comparison to existing methods on six tasks from the Deepmind control suite.
Bolded font indicates minimum mean among these methods.

CoDy(Ours) PISAC CURL SAC-AE Dreamer Pixel SAC
Cartpole Swingup 14± 1 21 ± 1 25 ± 1 10± 0 18± 1 5± 0
Ball-in-cup Catch 28± 0 47 ± 1 50± 0 19 ± 0 18± 1 9± 0

Finger Spin 56± 1 80 ± 1 98± 0 37 ± 0 18± 0 18± 0
Walker Walk 56± 1 80 ± 1 98± 1 38 ± 0 19± 0 18± 0
Reacher Easy 28± 1 43 ± 1 50± 0 19 ± 0 19± 0 9± 0
Cheetah Run 51± 0 38 ± 1 49± 1 19 ± 1 19± 1 9± 0

among these methods, since Pixel SAC operates directly from pixels without
any auxiliary tasks or learned dynamic model. Besides, we observe that the
time cost of each method highly depends on the chosen hyperparameters, espe-
cially the batch size. This may explain why our method requires less training
time than CURL as well as more training time than Dreamer and SAC-AE, as
the batch size of CoDy is smaller than CURL’s and larger than Dreamer’s and
SAC-AE’s. Moreover, we notice that the computation time of each method is
highly related to the amount of action repeat across different tasks. Hence, we
assume that most of the training time is spent on gradient updates, rather than
image rendering of simulated environments. When PISAC has the same amount
of action repeat and batch size as our method, it has on the majority of tasks
a higher computation cost than CoDy, since a single sample of PISAC contains
more image frames.
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vised state representation learning with robotic priors: a robustness analy-
sis, in: 2019 International Joint Conference on Neural Networks (IJCNN),
IEEE, 2019, pp. 1–8.

[20] M. Morik, D. Rastogi, R. Jonschkowski, O. Brock, State representation
learning with robotic priors for partially observable environments, in: 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2019, pp. 6693–6699.

[21] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, P. Abbeel, Deep
spatial autoencoders for visuomotor learning, in: 2016 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2016, pp. 512–519.

[22] H. Van Hoof, N. Chen, M. Karl, P. van der Smagt, J. Peters, Stable
reinforcement learning with autoencoders for tactile and visual data, in:
2016 IEEE/RSJ international conference on intelligent robots and systems
(IROS), IEEE, 2016, pp. 3928–3934.

[23] C. Finn, I. Goodfellow, S. Levine, Unsupervised learning for physical inter-
action through video prediction, in: Proceedings of the 30th International
Conference on Neural Information Processing Systems, 2016, pp. 64–72.

[24] M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, A. Courville,
D. Hjelm, Mutual information neural estimation, in: Proceedings of the
35th International Conference on Machine Learning, PMLR, 2018, pp. 531–
540.

[25] M. D. Donsker, S. S. Varadhan, Asymptotic evaluation of certain markov
process expectations for large time, i, Communications on Pure and Ap-
plied Mathematics 28 (1975) 1–47.

[26] M. Gutmann, A. Hyvärinen, Noise-contrastive estimation: A new estima-
tion principle for unnormalized statistical models, in: Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statis-
tics, JMLR Workshop and Conference Proceedings, 2010, pp. 297–304.

[27] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman,
A. Trischler, Y. Bengio, Learning deep representations by mutual informa-
tion estimation and maximization, in: International Conference on Learn-
ing Representations, 2018.

[28] E. Bengio, V. Thomas, J. Pineau, D. Precup, Y. Bengio, Independently
controllable features, arXiv preprint arXiv:1703.07718 (2017).

29



[29] D. Yarats, I. Kostrikov, R. Fergus, Image augmentation is all you need:
Regularizing deep reinforcement learning from pixels, in: International
Conference on Learning Representations, 2021.

[30] I. Fischer, The conditional entropy bottleneck, Entropy (2020) 999.

[31] C. Finn, S. Levine, Deep visual foresight for planning robot motion, in:
2017 IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2017, pp. 2786–2793.

[32] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, S. Levine, Solar:
Deep structured representations for model-based reinforcement learning,
in: International Conference on Machine Learning, PMLR, 2019, pp. 7444–
7453.

[33] P. Agrawal, A. Nair, P. Abbeel, J. Malik, S. Levine, Learning to poke by
poking: experiential learning of intuitive physics, in: Proceedings of the
30th International Conference on Neural Information Processing Systems,
2016, pp. 5092–5100.

[34] D. Pathak, P. Agrawal, A. A. Efros, T. Darrell, Curiosity-driven explo-
ration by self-supervised prediction, in: International conference on ma-
chine learning, PMLR, 2017, pp. 2778–2787.

[35] J. Li, X. Shi, J. Li, X. Zhang, J. Wang, Random curiosity-driven exploration
in deep reinforcement learning, Neurocomputing 418 (2020) 139–147.

[36] J. Li, J. Wang, H. Peng, L. Zhang, Y. Hu, H. Su, Neural fuzzy approx-
imation enhanced autonomous tracking control of the wheel-legged robot
under uncertain physical interaction, Neurocomputing 410 (2020) 342–353.

[37] K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsu-
pervised visual representation learning, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 9729–
9738.

[38] H. Kim, J. Kim, Y. Jeong, S. Levine, H. O. Song, Emi: Exploration with
mutual information, in: International Conference on Machine Learning,
PMLR, 2019, pp. 3360–3369.

[39] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden,
A. Abdolmaleki, J. Merel, A. Lefrancq, et al., Deepmind control suite,
arXiv preprint arXiv:1801.00690 (2018).

[40] L. Van der Maaten, G. Hinton, Visualizing data using t-sne, Journal of
machine learning research (2008).

[41] M. Klingemann, Rasterfairy, https://github.com/Quasimondo/RasterFairy
(2015).

30



Bang You is the Ph.D candidate of the Huazhong Uni-
versity of Science and Technology and the co-training Ph.D
student of the Technical University of Darmstadt. He started
his Ph.D study on Mechatronics in 2019 in the Huazhong Uni-
versity of Science and Technology. He studies in the Techni-
cal University of Darmstadt from 2020. His research interests

include reinforcement learning, computer vision and robotics.

Oleg Arenz received his doctorate in 2020 from the Tech-
nical University of Darmstadt under the supervision of Prof.
Gerhard Neumann and was also affiliated as a research assis-
tant at the University of Lincoln for a time. He is currently
a staff scientist in the Intelligent Autonomous Systems group
at the Technical University of Darmstadt. His research fo-
cuses on imitation learning, inverse reinforcement learning,
variational inference, human-robot interactions and shared
control.

Youping Chen is a professor of the School of Mechani-
cal Science and Engineering, Huazhong University of Science
and Technology and the senior member of Chinese Mechan-
ical Engineering Society (CSME). He received his B.S. and
M.S. degrees on Mechanical Engineering from Shanghai Jiao
Tong University in 1982 and 1984 respectively. He received
his Ph.D degree on Mechanical Engineering in 1990 from the
Huazhong University of Science and Technology. He pub-
lished more than 160 literatures on Scopus including machine

vision, robotics and mechatronics.

Jan Peters is a full professor (W3) for Intelligent Au-
tonomous Systems at the Computer Science Department of
the Technische Universitaet Darmstadt. Jan Peters has re-
ceived the Dick Volz Best 2007 US PhD Thesis Runner-Up
Award, the Robotics: Science & Systems - Early Career Spot-
light, the INNS Young Investigator Award, and the IEEE
Robotics & Automation Society’s Early Career Award as well
as numerous best paper awards. In 2015, he received an ERC

Starting Grant and in 2019, he was appointed as an IEEE Fellow.

31


	Introduction
	Problem Statement and Preliminaries
	Problem Statement and Notation
	Maximum Entropy Reinforcement Learning
	Contrastive Predictive Coding


	Related Prior Work
	Robotic Prior-based Methods
	Reconstruction-based Approaches
	Mutual Information Based Approaches

	Integrating Contrastive Learning with Dynamic Models
	The Mechanism and Architecture for Mutual Information Maximization
	A Prediction Task for Improving Latent Markovianity
	A Temporal Mutual Information Based Prediction Task
	A Mutual Information Based Task for Improving Transformation Invariance
	Joint Policy and Auxiliary Task Optimization

	Experimental Evaluation
	Experimental Setup
	Sample Efficiency
	Generalization to Unseen Tasks
	Ablation Studies
	Representation Visualization

	Discussion and Conclusion
	Appendices
	Additional Visualizations of the Learned Representation
	Computation Time


