
Inverse Reinforcement Learning of Bird Flocking Behavior

Robert Pinsler1 and Max Maag2 and Oleg Arenz2 and Gerhard Neumann2,3

Abstract— Birds within a flock are commonly assumed to
be guided by simple rules, yet they show intelligent, collective
behavior that is not entirely understood. We address this
problem by modeling each bird as an agent of a separate
Markov decision process, assuming that a bird makes decisions
which maximize its own individual reward. By applying inverse
reinforcement learning techniques to recover the unknown
reward functions, we (1) were able to explain and reproduce
the behavior of a flock of pigeons, and (2) propose a method for
learning a leader-follower hierarchy. In the future, the learned
reward representation could for example be used to teach a
swarms of robots how to fly in a flock.

I. INTRODUCTION

Flocks of birds can perform various complex maneuvers
while maintaining highly synchronized motions. For ex-
ample, in face of predators the evasion movement of one
bird can be rapidly propagated through the flock, resulting
in a coordinated turning maneuver [1]. The study of such
collective behavior, as seen in bird flocks or school of fish,
has spawned several mathematical models that are often
inspired by biology [2], [3] or physics [4]. Various models
assume that each individual only follows the basic principles
of attraction, repulsion and alignment [5]–[7]. For example,
Reynolds [5] was able to generate swarm-like behavior
within computer simulation using these rules, suggesting that
each bird follows the very same policy. If this policy is
indecisive, conflicting actions are prioritized. Other models
resolve this conflict by introducing different zones, within
which each rule is effective [6], [8]. However, despite those
attempts it is still largely unclear how exactly different rules
interplay. Furthermore, the proposed mechanisms might not
suffice to model the behavior of real birds accurately. In fact,
Nagy et al. [9] were able to identify additional hierarchical
patterns within small flocks of homing pigeons. The findings
suggest that such dynamic leader-follower relationships play
an important role for explaining flocking behavior.

Understanding the way birds interact is not merely of bio-
logical interest, however. One important field of application
is swarm robotics, where self-organization between different
autonomous agents is needed. Such robotic swarms can be
used for environmental monitoring, rescue missions or for
building up communication networks [10]. Our goal is to
use insights from bird flocking to improve the coordination
of such multi-agent systems. We are therefore interested in
finding rules that explain the decisions of birds within a flock.
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Markov Decision Processes (MDPs) are a powerful math-
ematical framework for modeling such decision making
problems. We assume that each bird follows a (possibly
different) policy that maximizes its long-term reward under
the dynamics of the MDP. For instance, birds prefer to fly
in a flock because it increases their chances of survival
against predators. Assuming known dynamics, the problem
of explaining the behavior of the birds then reduces to finding
their reward function. By viewing each bird of a flock as an
agent of a separate MDP, this issue can be formulated as an
inverse reinforcement learning (IRL) problem [11], where the
goal is to infer the underlying reward function of an agent
from its observed actions.

Recently, there has been great interest [12]–[15] in devis-
ing IRL algorithms specifically tailored towards the multi-
agent setting, often by exploiting shared structure among
the agents. However, usually these methods make additional
assumptions (e.g. the availability of a central controller, the
possibility to collect more data using a learned policy, etc.)
that are not suited for our application.

In this paper, we apply maximum entropy IRL to recover
the reward functions of pigeons within a flock, where we
used GPS data [9] from multiple flights of flocks of up
to ten pigeons as expert trajectories. Furthermore, we show
how to learn a leader-follower hierarchy from the recovered
reward functions. The learned reward functions serve as
succinct, transferable representations of the task. This does
not only allow us to study the collective behavior of birds in a
flock more closely but could also be used for apprenticeship
learning [16] in swarms of robots.

II. BACKGROUND

This section fixes the notation and serves as an introduc-
tion for maximum entropy IRL in continuous MDPs.

A. Preliminaries

A finite MDP is a tuple (S,A, {Psa}, R), where S is the
state space, A is the action space, {Psa} are the transition
dynamics when taking action a in state s, and r(s,a) is
the reward function. In the IRL setting, the reward function
is unknown. We assume that the reward function is a linear
combination of features φ ∈ Rk, i.e. r(s,a) = θ>φ(s,a)
with weights θ. The actions of the agent are selected ac-
cording to policy π(a|s). An optimal policy π∗ maximizes
the expected return Jπ = Eπ[

∑T
t=0 r(st, at)], which denotes

the sum of the expected rewards when following policy π,
such that π∗ = arg maxπ J

π . By using the definition of
the reward function, the expected return can be rewritten as



Jπ = θ>φ̃π , where φ̃π = Eπ[
∑T
t=0 φ(st, at)] denotes the

expected feature counts.

B. Maximum Entropy Inverse Reinforcement Learning

Maximum entropy IRL [17] chooses the least committed
distribution over behaviors that still matches the expert fea-
ture counts. Under this model, the likelihood of a trajectory
ζi = {s1,a1, s2,a2, . . . , sT ,aT } is proportional to the
exponential of the rewards obtained along the way:

P (ζi|θ) =
1

Z
exp

(∑
t

r(st,at)
)
∝ expθ>φζi . (1)

However, evaluating the partition function Z is intractable
for continuous domains. Levine and Koltun [18] therefore
proposed to approximate the likelihood (1) using a Laplace
approximation, yielding:

P (ζi|θ) ≈ e 1
2g
>H−1g| −H| 12 (2π)−

da
2 ,

where g = ∂r
∂a and H = ∂2r

∂a2 are the gradient and Hessian of
the sum of rewards along trajectory ζi w.r.t. action sequence
a = [a0, . . . , aT ]1. The approximation is equivalent to
assuming that the expert trajectories are only locally optimal,
eliminating the requirement of global optimality usually
assumed in IRL. The approximate log likelihood objective
is given by

L =
1

2
g>H−1g +

1

2
log | −H| − da

2
log 2π, (2)

which is maximized using gradient-based optimization.

III. APPROACH

In this section, we present our approach towards learning
the reward function of pigeons. We use the pigeon flocking
dataset of Nagy et al. [9] as training data. The position data
was collected at a sampling rate of 0.2s during two different
setups: free flights around their lair and homing flights. The
provided data contains position, velocity and acceleration
information. The GPS positions have a reported precision
of 1-2m along the x- and y-coordinates and a substantially
larger error in the z-direction.

A. Data preprocessing

Prior to the learning process, we conduct several prepro-
cessing steps. First, time steps where data is missing for
one or more bird are discarded. In addition, all time steps
are filtered out where at least one bird is more than 200m
away from the flock mean or has a velocity smaller than
1.5m/s. The remaining trajectory parts are split into several
sub-trajectories of equal length. Velocity and acceleration
information is re-computed at each sampled time step using
forward differences, such that they are consistent with the
proposed system dynamics.

1Under deterministic system dynamics and a fixed state distribution s0 a
trajectory is completely determined by action sequence a.

B. Modeling

The decision making of the observed pigeons is modeled
by bird-specific MDPs that only differ in the reward function
of the respective bird. The problem of learning a reward
function for each pigeon is thus decomposed into separate
IRL problems. Because state and action spaces of birds are
continuous, we follow [18] to approximate the log likelihood
of the maximum entropy IRL objective. As system dynamics,
we assume a double integrator:

st+1 = Ast +Bat

where st =
[
x1 ẋ1 x2 ẋ2 x3 ẋ3

]>
and at =[

ẍ1 ẍ2 ẍ3

]>
with position x ∈ R3.A is a block-diagonal

6× 6 matrix with blocks[
1 dt
0 1

]
, and B =

0 dt 0 0 0 0
0 0 0 dt 0 0
0 0 0 0 0 dt

> ,
where dt = 0.2. The reward function is modeled as a
linear combination of k features as defined in Table I. The
Back Distance and Right Distance features are based on
observations from Nagy et al. [9], according to which leaders
in pigeon flocks often fly in the front and to the left of
the flock. Furthermore, the sum of each of the other birds’
repulsions will be denoted as φ∑ rep =

∑Np

i=1 φrep,i. Note
that using both φattr and φrep (or φ∑ rep) allows to punish the
agent when its distance to a flock member is either too small
or too large. Finally, we define another bird p̄ (in addition
to the existing pigeons in the data set), which represents the
flock mean. Its states are calculated as sp̄ = 1

N

∑N
i=1 spi .

C. Hierarchy Learning

After learning the reward function for every pigeon we
leverage the learned feature weights to infer a hierarchy that
encodes leader-follower relationships. In order to compare
the weights between pigeons, we apply the following nor-
malization to each feature φk of bird a:

φ̂k,a =
φk,a − µφk

σφk

,

where µφk
and σφk

are the weight mean and standard
deviation across the flock. We assume a pigeon a is following
another pigeon p if the feature weight of a w.r.t. p is higher
than some threshold τ = 1.0. Intuitively, a high weight
indicates that bird p has a high influence on the reward
of agent a, therefore signalizing a stronger follower-leader
relationship.

IV. EXPERIMENTS AND RESULTS

We conducted different experiments with a varying set
of reward features as summarized in Table II. A homing
flight dataset was used that contained data of nine pigeons.
The flight was split into consecutive training and test sets of
length T = 150 each. First, we learned the reward function
of one particular pigeon, A, on the training set. Since the
true reward function is not known, we compared the original
expert traces with the trajectories obtained from a policy that



Feature Expression Description

Attraction φattr = −||xa − xp||22 Stay close to others

Repulsion φrep = − exp

(
− (xa−xp)

2

2σ2

)
(σ = 3) Avoid crowding

Alignment φalign =
ẋ
>
a ẋp

‖ẋa‖‖ẋp‖
Head in the same direction

Back Distance φbdist = log
(

1 + exp
(

ẋm
‖ẋm‖

(xp − xa)
))

Avoid flying in the back of the flock (ẋm denotes the mean flock velocity)

Right Distance φrdist = log
(

1 + exp
(

ez×ẋm
‖ez×ẋm‖

(xp − xa)
))

Avoid flying on the right of the flock
Action Penalty φact = −‖a‖2 Avoid moving too much

TABLE I: Reward features of agent a with respect to another pigeon p.

Experiment Features Birds

φattr φrep φalign φrdist φbdist φact φ∑ rep All (except agent) p̄

AllAvg X X X X X X
All X X X X X
Base X X X X X
R/B X X X X X X

TABLE II: Summary of experiments. Each selected feature is created for every other pigeon of the flock (i.e. all birds except
the agent itself), and optionally the mean flock p̄. Note that φact is only relevant for the agent itself.

optimizes the learned reward function. The results are shown
in Table III. While AllAvg and R/B yielded slightly smaller
errors on the test data, the agent was in principle able to fly
in the flock across all experimental settings. Fig. 1a shows
some learned trajectories using the Base reward features.
This suggests that the Base features already suffice to learn
how to fly in a flock, although in reality it is unlikely that
birds use features with respect to the flock average p̄. Next,
an individual reward function was learned for each flock
member, one at a time. The resulting trajectories are depicted
in Figure 1b. As can be seen, the different agents flew closely
together during the complete time interval, suggesting they
have learned to fly in a flock.

Next, we looked at more challenging free flights. In
Fig. 2a, we successfully learned a reward function for each
bird that jointly led to flocking behavior. Moreover, Fig. 2b
shows that when the reward function was learned on a
homing flight, we can still learn a sensible policy when
transfered to a free flight.

Metric Experiment

AllAvg All Base R/B

RMSEtrain(xa, xp) 0.1449 0.1686 0.3946 0.2305
RMSEtest(xa, xp) 0.2949 0.3666 0.3947 0.2668

TABLE III: RMSE between learned trajectory for agent A

Based on the learned weights, we then created a hierarchy
as described in Section III-C. Since this requires features
for individual birds, no hierarchies can be formed with the
Base feature set. Furthermore, the All and AllAvg feature sets
often result in hierarchies with cycles. Overall, hierarchies
based on the φrdist and φbdist features led to more plausible
results. This conforms to the observation that leader quality
correlates with how far to the front and to the left a pigeon
flies in the flock [9]. Fig. 3 shows an example of a learned

(a) (b)

Fig. 1: (a): Learned trajectory of pigeon A along the original
trajectories of the birds for Base experiment. (b): Jointly
learned trajectories for all pigeons.
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Fig. 2: (a): Jointly learned trajectories for all pigeons on
free flight. (b): Reward function learned on homing flight
and transfered to free flight.

hierarchy. However, in contrast to the findings by Nagy et
al. [9] we were not able to produce a robust hierarchy that
is consistent over several flights.

V. CONCLUSION

We formalized a flock of birds as a set of agents of
separate MDPs, assuming each one of them attempts to
maximize an internal reward function. Based on this for-



Fig. 3: Leader-follower network inferred from learned
weights of φrdist features of every pigeon. A directed edge
points from the follower to the leading bird.

mulation, we applied maximum entropy IRL to recover
the reward functions of a set of pigeons. During multiple
experiments with different sets of reward features we were
able to produce flock-like behavior. We found that this works
particularly well when taking the behavior of the flock mean
as well as the repulsion to the other pigeons into account.
Furthermore, we inferred a hierarchy based on the learned
weights. However, we were not able to produce a consistent
hierarchy across different flights.

In the future one could attempt to learn hierarchies based
on the pigeons’ temporal reaction delay as in [9]. Further-
more, it would be interesting to extend this work to more
complex reward functions and unknown dynamics. However,
doing so in light of limited data is still an open problem.
Finally, an exciting future application of this work is to
transfer the learned reward functions to control robot swarms.
By choosing a leader, the agents would be able to follow
that leader while staying in a flock. The flock can then be
controlled by supplying a custom trajectory or goal position
for the leader.
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