
Journal of Machine Learning Research 21 (2020) 1-60 Submitted 6/19; Revised 8/20; Published 9/20

Trust-Region Variational Inference with Gaussian Mixture
Models

Oleg Arenz oleg@robot-learning.de
Intelligent Autonomous Systems
Technische Universität Darmstadt
Hochschulstraße 10
64289 Darmstadt, Germany

Mingjun Zhong mingjun.zhong@abdn.ac.uk
Department of Computing Science
University of Aberdeen
King’s College
Aberdeen, AB24 3FX, Scotland

Gerhard Neumann Geri@robot-learning.de

Autonomous Learning Robots

Karlsruhe Institute of Technology

Adenauerring 4

76131 Karlsruhe, Germany

and

Bosch Center for Artificial Intelligence

Robert-Bosch-Campus 1

71272 Renningen, Germany

Editor: Qiang Liu

Abstract

Many methods for machine learning rely on approximate inference from intractable prob-
ability distributions. Variational inference approximates such distributions by tractable
models that can be subsequently used for approximate inference. Learning sufficiently ac-
curate approximations requires a rich model family and careful exploration of the relevant
modes of the target distribution. We propose a method for learning accurate GMM ap-
proximations of intractable probability distributions based on insights from policy search
by using information-geometric trust regions for principled exploration. For efficient im-
provement of the GMM approximation, we derive a lower bound on the corresponding
optimization objective enabling us to update the components independently. Our use of
the lower bound ensures convergence to a stationary point of the original objective. The
number of components is adapted online by adding new components in promising regions
and by deleting components with negligible weight. We demonstrate on several domains
that we can learn approximations of complex, multimodal distributions with a quality that
is unmet by previous variational inference methods, and that the GMM approximation
can be used for drawing samples that are on par with samples created by state-of-the-
art MCMC samplers while requiring up to three orders of magnitude less computational
resources.

c©2020 Oleg Arenz, Mingjun Zhong and Gerhard Neumann.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-524.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-524.html

Arenz, Zhong and Neumann

Keywords: approximate inference, variational inference, sampling, policy search, mcmc,
markov chain monte carlo

1. Introduction

Inference from a complex distribution p(x) is a huge problem in machine learning that is
needed in many applications. Typically, we can evaluate the distribution except for the
normalization factor Z, that is, we can only evaluate the unnormalized distribution p̃(x),
where

p(x) = p̃(x)/Z,

with Z =
∫
x p̃(x)dx. For example, in Bayesian inference p̃(x) would correspond to the

product of prior and likelihood. As exact inference is often intractable, we have to rely on
approximate inference.

Markov chain Monte Carlo (MCMC) is arguably the most commonly applied technique
for approximate inference. Samples are drawn from the desired distribution by building
Markov chains for which the equilibrium distribution matches the desired distribution p(x).
Monte Carlo estimates based on these samples are then used for inference. However, MCMC
can be very inefficient, because it is difficult to make full use of function evaluations of p̃(x)
without violating the Markov assumption.

Instead, we propose a method based on variational inference, which is another commonly
applied technique for approximate inference. In variational inference, the desired distribu-
tion p(x) is approximated by a tractable distribution q(x;θ) which can be used for exact
inference instead of p(x), or as a more direct alternative to MCMC for drawing samples
for (possibly importance weighted) Monte Carlo estimates. The approximation q(x;θ) is
typically found by minimizing the reverse Kullback-Leibler (KL) divergence

KL (q(x;θ)||p(x)) =

∫
x
q(x;θ) log

(
q(x;θ)

p(x)

)
dx, (1)

with respect to the parameters θ of the approximation.

By framing inference as an optimization problem, variational inference can make better
use of previous function evaluations of p̃(x) than MCMC and is therefore computationally
more efficient. However, in order to perform the KL minimization efficiently, q(x;θ) is
often restricted to belonging to a simple family of models or is assumed to have non-
correlating degrees of freedom (Blei et al., 2017; Peterson and Hartman, 1989), which is
known as the mean field approximation. Unfortunately, such restrictions can introduce
significant approximation error especially for multimodal target distributions. Comparing
MCMC with variational inference, we can conclude that we should use MCMC when we
require accuracy (due to its asymptotic guarantee of exactness), whereas we should prefer
variational inference when we need computationally efficient solutions (Blei et al., 2017).

Hence, there is a huge interest in finding computationally efficient solutions with high
sample quality. Our work aims at learning highly accurate approximations for computa-
tionally efficient variational inference methods. We use Gaussian mixture models (GMMs)
as model family, because they can be sampled efficiently and are capable of representing
any target distribution arbitrarily well if the number of components is sufficiently large. As

2

Variational Inference by Policy Search

the required number of components is typically not known a priori, we dynamically add or
delete components during optimization.

A major challenge of learning highly accurate approximations of multimodal distribu-
tions is to achieve stable and efficient optimization of an intractable objective function. We
derive a lower bound on the KL divergence (Equation 1) based on a decomposition that is
related to the one used by the expectation-maximization procedure for fitting GMMs for
density estimation. We can thus optimize the original objective by iteratively maximizing
and tightening this lower bound. Maximizing the lower bound decomposes into indepen-
dent sub-problems for each Gaussian component that are solved, analogously to the policy
search method MORE (Abdolmaleki et al., 2015), based on local quadratic approximations.
Due to its strong ties to policy search, we call our method Variational Inference by Policy
Search (VIPS).

Another major challenge when striving for high quality approximations is to discover the
relevant modes of the target distribution. The areas of high density are initially unknown
and have to be discovered during learning based on function evaluations of p̃(x). The
unnormalized target distribution, however, is typically evaluated at locations that have been
sampled from the current approximation q(x;θ), because these samples are well suited for
the optimization, for example for approximating the objective (Equation 1) or its gradient.
The current approximation thus serves as search distribution and needs to be adapted
carefully in order to avoid erroneously discarding important regions. The conflicting goals of
moving the approximation towards high density regions and evaluating p̃(x) at unexplored
regions can be seen as an instance of the exploration-exploitation dilemma that is well-
known in reinforcement learning (Sutton and Barto, 1998) but currently hardly addressed
by the variational inference community.

Our proposed method leverages insights from policy search (Deisenroth et al., 2013), a
sub-field of reinforcement learning, by bounding the KL divergence between the updated
approximation and the current approximation at each learning step. This information-
geometric trust region serves the dual-purpose of staying in the validity of the local quadratic
models as well as ensuring careful exploration of the search space. By finding the best
approximation within such information-geometric trust region, we limit the change in
search space while making sufficient progress during each iteration. However, information-
geometric trust regions only address local exploration in the vicinity of the components of
the current approximation and may in practice still discard regions of the search space pre-
maturely. In order to discover modes that are not covered by the current approximation,
we dynamically create new mixture components at interesting regions. Namely, we add
additional components at regions where the current approximation has little probability
mass although we suspect a mode of the target distribution based on previous function
evaluations.

We evaluate VIPS on several domains and compare it to state-of-the-art methods for
variational inference and Markov-chain Monte Carlo. We demonstrate that we can learn
high quality approximations of several challenging multimodal target distributions that
are significantly better than those learned by competing methods for variational inference.
Compared to sampling methods, we show that we can achieve similar sample quality while
using several orders of magnitude less function evaluations. Samples from the learned ap-
proximation can therefore often be used directly for approximate inference without needing

3

Arenz, Zhong and Neumann

importance weighting. Still, knowing the actual generative model can be a further advantage
compared to model-free samplers.

This work extends previously published work about VIPS (Arenz et al., 2018) by using
more efficient sample reuse, by showcasing and fixing a failure case of the previous initial-
ization of covariance matrices, and by several other improvements such as adaptation of
regularization coefficients and KL bounds. These modifications lead to a further reduc-
tion of sample complexity by approximately one order of magnitude. We will refer to the
improved version as VIPS++. We evaluate VIPS++ on additional, more challenging do-
mains, namely Bayesian Gaussian process regression and Bayesian parameter estimation of
ordinary differential equations applied to the Goodwin oscillator (Goodwin, 1965) as well as
more challenging variations of the previously published planar robot and Gaussian mixture
model experiments (Arenz et al., 2018). Furthermore, we now also compare to normalizing
flows (Kingma et al., 2016) and black-box variational inference (Ranganath et al., 2014).

2. Preliminaries

In this section we formalize the optimization problem and show its connection to policy
search. We further discuss the policy search method MORE (Abdolmaleki et al., 2015)
and show that a slight variation of it can be used for learning Gaussian variational approx-
imations (GVAs) for variational inference. This variant of MORE is used by VIPS for
independent component updates, which will be discussed in Section 3.

2.1 Problem formulation

Variational inference is typically framed as an information projection (I-projection) problem,
that is, we want to find the parameters θ of a model q(x;θ) that minimize the KL divergence
between q(x;θ) and the target distribution p(x),

KL (q(x;θ)||p(x)) =

∫
x
q(x;θ) log

(
q(x;θ)

p(x)

)
dx

=

∫
x
q(x;θ) log

(
q(x;θ)

p̃(x)

)
dx + logZ

= −L(θ) + logZ.

The normalizer Z does not affect the optimal solution for the parameters θ as it enters the
objective function as constant offset and can thus be ignored. Hence, the KL divergence
can be minimized by maximizing L(θ), which is a lower bound on the log normalizer due to
the non-negativity of the KL divergence. In Bayesian inference, the target distribution p(x)
corresponds to the posterior, the unnormalized distribution p̃(x) corresponds to the product
of prior and likelihood, and the normalizer corresponds to the evidence. Minimizing the
KL divergence thus corresponds to maximizing a lower bound on the (log) evidence, L(θ),
which is therefore commonly referred to as the evidence lower bound objective (ELBO,
e.g., Blei et al. 2017).

Although VIPS is not restricted to the Bayesian setting but aims to approximate in-
tractable distributions in general, we also frame our objective as ELBO maximization be-
cause this formulation highlights an interesting connection to policy search. We treat infor-

4

Variational Inference by Policy Search

mation projection as the problem of finding a search distribution, q(x;θ), over a parameter
space x, that maximizes an expected return R(x) = log p̃(x) with an additional objective
of maximizing its entropy H

(
q(x;θ)

)
= −

∫
x q(x;θ) log q(x;θ)dx, that is, we aim to solve

arg max
θ

[
L(θ) =

∫
x
q(x;θ)

(
log p̃(x)− log q(x;θ)

)
dx =

∫
x
q(x;θ)R(x)dx + H(q(x;θ))

]
.

Entropy objectives are also commonly used in policy search for better exploration (Neu
et al., 2017; Abdolmaleki et al., 2015). Policy search methods that support such entropy
objectives can thus be applied straightforwardly for variational inference. However, many
policy search methods are restricted to unimodal distributions (typically Gaussians) and
are therefore not suited for learning accurate approximations of multimodal target distri-
butions. We will now review one such policy search method, MORE (Abdolmaleki et al.,
2015), and show that it can be adapted straightforwardly for learning Gaussian variational
approximations.

2.2 Model-Based Relative Entropy Stochastic Search

Policy search methods start with an initial search distribution q(0)(x) and iteratively update
it in order to increase its expected reward.1 Areas of high reward are initially not known
and have to be discovered based on evaluations of the reward function R(x) during learning.
Policy search methods, therefore, typically evaluate the reward function on samples from
the current search distribution in order to identify regions of high reward, and update the
search distribution to increase the likelihood of the search distribution in these areas.

In order to avoid premature convergence to poor local optima, it is crucial to start with
an initial search distribution q(0) with sufficiently high entropy and to ensure that high
reward regions are not erroneously discarded due to too greedy updates. This trade-off
between further exploring the search space and focusing on high reward areas is an instance
of the exploration-exploitation dilemma that several policy search methods address using
information-geometric trust regions (Peters et al., 2010; Levine and Koltun, 2013; Schulman
et al., 2015; Abdolmaleki et al., 2015, 2017). These methods compute each policy update
by solving a constrained optimization problem that bounds the KL divergence between the
next policy and the current policy.

MORE (Abdolmaleki et al., 2015) additionally limits the entropy loss between subse-
quent iterations by computing the update as

q(i+1) = arg max
q

∫
x
q(x)R(x)dx,

s.t. KL
(
q(x)||q(i)(x)

)
≤ ε, H

(
q(x)

)
≥ β(i),

∫
x
q(x)dx = 1,

(2)

where the lower bound on the entropy, β(i) = H
(
q(i)(x)

)
− γ, is computed at each iteration

based on a hyper-parameter γ, and ε specifies the maximum allowable KL divergence.

1. Here and in the following, we indicate variables and functions at a given iteration by using superscripts
that are set in parentheses.

5

Arenz, Zhong and Neumann

Hence, at each iteration, the entropy of the search distribution may not decrease by more
than γ.

Introducing Lagrangian multipliers η, ω and λ, the Lagrangian function corresponding
to Optimization Problem 2 is given by

L(q, η, β, ω) =

∫
x
q(x)R(x)dx + η

(
ε−KL

(
q(x)||q(i)(x)

))
+ ω

(
H
(
q(x)

)
− β(i)

)
+ λ

(
1−

∫
x
q(x)dx

)
.

Maximizing the Lagrangian with respect to the search distribution q allows us to express
the optimal search distribution q(i+1) as a function of the Lagrangian multipliers,

q(i+1)(x) ∝ q(i)(x)
η

η+ω exp (R(x))
1

η+ω . (3)

The update according to Equation 3 can not be computed analytically for general choices
of policies q and reward functions R(x). MORE is therefore restricted to Gaussian search
distributions q(x;θ(i)) = N

(
x;µ(i),Σ(i)

)
and optimizes a local, quadratic reward surrogate

R̃(x) = −1

2
x>R(i)x + x>r(i) + const. (4)

The parameters of the reward surrogate, R(i) and r(i), are learned using linear regression
based on samples from the current approximation. For this choice of search distribution
and reward surrogate, the updated distribution according to Equation 3 is also Gaussian
with natural parameters

Q(η, ω) =
η

η + ω
Q(i) +

1

η + ω
R(i), (5) q(η, ω) =

η

η + ω
q(i) +

1

η + ω
r(i), (6)

which directly relate to mean µ = Q−1q and covariance matrix Σ = Q−1. It can be seen
from Equation 5 and 6 that η controls the step size, whereas ω affects the entropy by scaling
the covariance matrix without affecting the mean. The optimal parameters η? and ω? can
be learned by minimizing the convex dual objective

G(η, ω) =ηε− ωβ(i) + η logZ(Q(i),q(i))− (η + ω) logZ(Q(η, ω),q(η, ω)),

where logZ(X,x) = −1
2(x>X−1x + log |2πX−1|) is the log partition function of a Gaussian

with natural parameters X and x. This optimization can be performed very efficiently using
the partial derivatives

∂G(η, ω)

∂η
= ε−KL(qη,ω(x)||q(x;θ(i))),

∂G(η, ω)

∂ω
= H(qη,ω(x))− β,

where qη,ω(x) refers to the Gaussian distribution with natural parameters computed ac-
cording to Equation 5 and Equation 6. In the next section we introduce a slight variant
of MORE that can be used for variational inference. The derivations of that variant are
shown in Appendix A and can be straightforwardly extended to derive the equations shown
in this section.

6

Variational Inference by Policy Search

2.3 Adapting MORE to Variational Inference

Inspired by policy search methods, we want to use information-geometric trust regions for
variational inference in order to achieve efficient optimization while avoiding premature
convergence. Hence, we want to compute each update of the approximation by solving the
constrained optimization problem

θ(i+1) = arg max
θ

∫
x
q(x;θ)R(x)dx + H(q(x;θ)),

subject to KL
(
q(x;θ)||q(x;θ(i))

)
≤ ε,∫

x
q(x;θ)dx = 1.

(7)

Optimization Problem 7 is very similar to Optimization Problem 2 solved by MORE and
only differs due to the fact that the entropy of the search distribution does not enter the
optimization problem as constraint, but as additional term in the objective. It can be
solved analogously to MORE by introducing Lagrangian multipliers and minimizing the
dual problem

G(η) =ηε+ η logZ(Q(i),q(i))− (η + 1) logZ(Q(η, 1),q(η, 1)), (8)

using the gradient

dG(η)

dη
= ε−KL(qη,1(x)||q(x;θ(i))). (9)

Here, the natural parameters Q(η, 1) and q(η, 1) for a given step size η are obtained by
substituting ω = 1 in Equation 5 and 6. Please refer to Appendix A for the full derivations.

Hence, a Gaussian variational approximation can be learned analogously to MORE by
iteratively (1) fitting a local, quadratic surrogate R̃(x) ≈ log p̃(x), (2) finding the optimal
step size η by convex optimization and (3) updating the approximation based on Equation
5 and 6. The update of a Gaussian variational approximation given a quadratic reward
surrogate is shown in Algorithm 1.

3. Variational Inference by Policy Search

We showed in Section 2.3 that we can learn Gaussian variational approximations using our
variant of MORE (Abdolmaleki et al., 2015). However, Gaussian approximations can lead
to high modeling errors, especially for multimodal target distributions. We will now derive
VIPS++, a general-purpose method for learning GMM approximations of an unnormalized
target distribution p̃(x). In Section 3.1 we will show that an I-projection to a GMM can
be decomposed into independent I-projections for its Gaussian components using a simi-
lar decomposition as used by expectation-maximization. In combination with our variant
of MORE, this result enables us to learn GMM approximations with a fixed number of
components. Sections 3.2, 3.3 and 3.4 discuss several extensions to this procedure that
are critical for efficiently learning high quality approximations in practice. Namely, we will
discuss reusing function evaluations from previous iterations, selecting relevant samples and
dynamically adapting the number of components.

7

Arenz, Zhong and Neumann

Algorithm 1 Updating a Gaussian variational approximation based on surrogate

Require: coefficients of quadratic surrogate R, r (equation 4)
Require: current mean and covariance matrix µ,Σ
Require: KL bound ε
1: function GVA update(µ,Σ,R, r, ε)
2: Compute natural parameters
3: Q← Σ−1, q← Σ−1µ
4: η ← minimize dual (Equation 8) using the gradient (Equation 9)
5: Compute new natural parameters
6: Q′ ← η

η+1Q + 1
η+1R, q′ ← η

η+1q + 1
η+1r

7: Compute new search distribution
8: Σ′ ← Q′−1, µ′ ← Q′−1q′

9: return Σ′,µ′

10: end function

3.1 Learning a GMM Approximation

In order to represent high quality approximations of multimodal distributions, we want to
learn a GMM approximation,

q(x;θ) =
∑
o

q(o;θ)q(x|o;θ),

where o is the index of the mixture component, q(o;θ) are the weights of the components
and q(x|o;θ) = N (x|µo,Σo) is a multivariate normal distribution with mean µo and full
covariance matrix Σo. The parameters θ of our variational approximation are thus given by
the mixture weights, means and covariance matrices. To improve readability we will often
omit the parameter θ when referring to the distribution q.

The approximation is learned by maximizing the ELBO

L(θ) =
∑
o

q(o)

∫
x
q(x|o)

(
R(x)− log q(x)

)
dx

=
∑
o

q(o)

∫
x
q(x|o)

(
R(x)− log q(o)− log q(x|o) + log q(o|x)

)
dx

=
∑
o

q(o)
[∫

x
q(x|o)

(
R(x) + log q(o|x)

)
dx + H

(
q(x|o)

)]
+ H

(
q(o)

)
, (10)

where we used the identity

log q(x) = log q(o) + log q(x|o)− log q(o|x)

which can be derived from Bayes’ rule.

3.1.1 Variational Lower Bound

Unfortunately, the occurrence of the log responsibilities, log q(o|x), in Equation 10 prevents
us from optimizing each component independently. However, we can derive a lower bound

8

Variational Inference by Policy Search

L̃(θ, q̃(o|x)) on the objective by adding and subtracting an auxiliary distribution q̃(o|x),

L(θ) =
∑
o

q(o)
[∫

x
q(x|o)

(
R(x) + log q(o|x)

)
dx + H

(
q(x|o)

)]
+ H

(
q(o)

)
=
∑
o

q(o)
[∫

x
q(x|o)

(
R(x) + log q̃(o|x) + log q(o|x)− log q̃(o|x)

)
dx + H

(
q(x|o)

)]
+ H

(
q(o)

)
=
∑
o

q(o)
[∫

x
q(x|o)

(
R(x) + log q̃(o|x)

)
dx + H

(
q(x|o)

)]
+ H

(
q(o)

)
︸ ︷︷ ︸

L̃(θ,q̃(o|x))

+

∫
x
q(x)KL (q(o|x)||q̃(o|x)) dx.

(11)

Please note, that the last term in Equation 11 corresponds to an expected KL divergence
and is therefore non-negative which implies that

L̃(θ, q̃(o|x)) ≤ L(θ).

The decomposition in Equation 11 has already been previously applied in the broad con-
text of variational inference (Agakov and Barber, 2004; Tran et al., 2016; Ranganath et al.,
2016; Maaløe et al., 2016). However, these approaches parameterize the auxiliary distri-
bution and are not well-suited for learning accurate GMM approximations. In contrast,
we exploit that the responsibilities q(o|x) can be computed in closed form for Gaussian
mixture models, which allows us to exactly tighten the lower bound similar to expectation-
maximization (Bishop, 2006). However, whereas EM minimizes the forward KL divergence,
KL(p(x)||q(x;θ)), for density estimation, our approach can be used for minimizing the re-
verse KL divergence, KL(q(x;θ)||p(x)), in a variational inference setting. The forward KL
divergence can be easier optimized when samples from the target distribution are available
while the (unnormalized) target density function p̃(x) is unavailable and is therefore well
suited for density estimation. In contrast, the reverse KL divergence can be more easily op-
timized based on samples from the model only, when assuming access to the (unnormalized)
target density function and is therefore well suited for variational inference.

Following the same reasoning as EM, we can show convergence to a stationary point
of the ELBO L(θ) by iteratively setting q̃(o|x) = q(o|x) (analogously to an E-step) and
increasing the lower bound L̃(θ, q̃(o|x)) (M-step) while keeping the auxiliary distribution
fixed. Tightening the lower bound by setting q̃(o|x) = q(o|x) does not affect the ELBO
since the parameters θ are not changed. Increasing the lower bound increases both the
lower bound and the expected KL divergence and thus also increases the ELBO. Such
procedure strictly increases the ELBO until we reach a fixed point of the (hierarchical)
lower bound optimization, that is,

θ(i) = arg max
θ

L̃
(
θ, q(x,θ(i))

)
.

At such fixed point, the gradients of both terms of Equation 11 are zero (since they are
both at an extremum) and thus the gradient of the ELBO is also zero.

9

Arenz, Zhong and Neumann

In order to ensure monotonous improvement of the approximation, we need to ensure
that the lower bound indeed increases during the M-Step. The lower bound L̃(θ, q̃(o|x)),
however, contains intractable integrals that need to be approximated based on samples. In
order to keep the resulting approximation errors low, we need to stay close to the current set
of samples. We therefore combine the iterative procedure with trust region optimization by
bounding the change of each component during the M-step. For sufficiently small step sizes,
such trust region updates ensure monotonous improvement (Akrour et al., 2018; Schulman
et al., 2015). Furthermore, such constrained maximization does not affect the theoretical
guarantees of the iterative procedure as any increase of the lower bound ensures an increase
of the ELBO.

3.1.2 M-Step for Component Updates

Maximizing the lower bound L̃(θ, q̃(o|x)) with respect to the mean and covariance matrix
θo = [µo,Σo] of an individual component is not affected by the mixture coefficients q(o) or
the parameters of the remaining components and can be performed independently and in
parallel by maximizing the term inside the square brackets of Equation 11, that is,

arg max
θo

∫
x
q(x|o;θo)

(
R(x) + log q̃(o|x)

)
dx + H

(
q(x|o)

)
,

subject to KL
(
q(x|o;θo)||q(x|o;θ(i))

)
≤ ε(o),

(12)

where we already added the trust region constraint for better exploration and stability. The
upper bound on the Kullback-Leibler divergence, ε(o), is adapted during learning. If the
Monte-Carlo estimate of the component-specific objective after the component update is
smaller than the Monte-Carlo estimate before the update, we decrease ε(o) by multiplying it
by 0.8; otherwise we increase it slightly by multiplying it by 1.1. The optimization problem
can be solved using our variant of MORE (Equation 7) with a component specific reward
function Ro(x) = R(x) + log q̃(o|x). As the auxiliary distribution q̃(o|x) was fixed to the
responsibilities q(o|x;θ(i)) according to the previous mixture model, the component specific
part of Ro(x) penalizes each component for putting probability mass on areas that are
already covered by other components.

For applying our variant of MORE, we need to fit a quadratic reward surrogate
R̃o(x) ≈ Ro(x) that approximates the component specific reward Ro(x) in the vicinity
of the respective component q(x|o). The surrogate can be fit using ordinary least squares,
where the independent variables are samples from the respective component and the de-
pendent variables are the corresponding function evaluations of Ro(x). However, because
we want to use the same set of samples for all component updates as well as the weight
update, we use weighted least squares based on importance weights which will be discussed
in greater detail in Section 3.2. After fitting the surrogate, the optimization problem in
Equation 12 can be solved efficiently using L-BFGS-B (Byrd et al., 1995) to minimize the
dual problem (Equation 8) and using the learned step size η to compute the update in
closed form as outlined in Section 2.3.

Drawing the connection to reinforcement learning and investigating the reward function
Ro(x) for a given component reveals that the proposed algorithm treats every component
update as a reinforcement learning problem, where the reward is computed based on the

10

Variational Inference by Policy Search

achieved log-densities log p̃(x) with a penalty for sampling in regions that are already covered
by other components due to low log responsibilities. Moreover, the components strive for
high entropy which prevents them from always choosing the same sample.

3.1.3 M-Step for Weight Updates

After updating the individual components, we can keep the learned means and covari-
ance matrices fixed while updating the mixture coefficients q(o). As shown in previous
work (Arenz et al., 2018), we can also enforce an information-geometric trust region for the
weight update. However, in subsequent experiments we could not show a significant effect
of such constraint and will therefore only consider the unconstrained optimization. The
M-step with respect to the mixture coefficients is thus framed as

arg max
q(o)

∑
o

q(o)R(o) + H
(
q(o)

)
, (13)

where the objective for the component update,

R(o) =

∫
x
q(x|o)

(
R(x) + log q̃(o|x)

)
dx + H

(
q(x|o)

)
, (14)

serves as reward for choosing component o. The reward R(o) contains an intractable inte-
gral, and thus it needs to be approximated from samples. It is to note that R(o) corresponds
to a discrete function, which can be represented by a vector, whereas the reward function
Ro(x) used for the component update is a continuous function. It is not beneficial to ap-
proximate R(o) based on a quadratic surrogate of Ro(x), since we can estimate each element
of the vector more efficiently and more accurately using a Monte-Carlo estimate

R̃(o) =
1

No

No∑
n=1

[
R(xo,n) + log q̃(o|xo,n)

]
+ H(q(x|o)), (15)

where xo,n refers to the nth of No samples from component q(x|o). We will discuss in
Section 3.2 how we use importance weighting to estimate the reward of each component
based on the same set of samples that is used for the component update.

Based on the approximated rewards R̃(o), the optimal solution of optimization problem
in Equation 13 is given in closed form as

q(o) =
exp

(
R̃(o)

)
∑

o exp
(
R̃(o)

) . (16)

The weight optimization can also be treated as a reinforcement-learning problem, where
actions correspond to choosing components and the agent gets rewarded for choosing com-
ponents that sample in important regions, that do not interfere with other components and
that have high entropy. The agent itself also strives for high entropy and will thus make
use of every component.

The complete optimization can be treated as a method for hierarchical reinforcement
learning where we learn both, a higher level policy q(o) over options and Gaussian lower level

11

Arenz, Zhong and Neumann

policies q(x|o). However, since our approach does not consider time series data, it mainly
relates to black-box approaches to reinforcement learning that use stochastic optimizers
such as ARS, NES or MORE (Mania et al., 2018; Salimans et al., 2017; Abdolmaleki
et al., 2015). HiREPS (Daniel et al., 2012) already applied black-box optimization for
learning GMM policies based on episodic REPS (Peters et al., 2010).

The basic variant of our method is shown in Algorithm 2. The individual component
updates (line 3-8) are performed by sampling from the respective components (line 3),
evaluating the samples on the target distribution (line 4), computing the log responsibilities
log q̃(o|x) according to the previous approximation (line 5), fitting the reward surrogate (line
6-7) and performing the trust region update (line 8). The components can be updated in
parallel since the responsibilities are computed based on the same mixture parameters θ.
The weight update (line 11-17) is computed based on Equation 16 (line 17) using the Monte-
Carlo estimates of the component rewards (line 15). Updating the parameters of the GMM
in between the component updates and the weight update (line 10) is optional and relates
to an additional E-Step in EM, which does not affect the theoretical guarantees (Neal and
Hinton, 1998).

Algorithm 2 Variational Inference by Policy Search (Basic Variant)

Require: number of components No

Require: initial mixture parameters θ = {q(o),µo,...,No ,Σo,...,No}
Require: number of iterations Ni

Require: number of samples per component Ns

1: for i = 1 . . . Ni do
2: for o = 1 . . . No do
3: Xo ←sample Gaussian(µo,Σo, Ns)
4: p̃o ← log p̃(Xo) . evaluate target log likelihood for each sample
5: q̃o|x ← log q(Xo, o;θ)− log q(Xo;θ) . evaluate log responsibilities
6: yo ← p̃o + q̃o|x . Compute targets for ordinary least squares (OLS)
7: Ro,ro ←OLS(Xo,yo) . learn quadratic surrogate
8: µ′o,Σ

′
o ←GVA update(µo,Σo,Ro, ro, εo) . Algorithm 1

9: end for
10: θ ← update components(θ,µ′o,...,No ,Σ

′
o,...,No)

11: for o = 1 . . . No do
12: Xo ←sample Gaussian(µo,Σo, Ns)
13: p̃o ← log p̃(Xo) . evaluate target log likelihood for each sample
14: q̃o|x ← log q(Xo, o;θ)− log q(Xo;θ) . evaluate log responsibilities

15: R̃o ← Ns
−1 sum(p̃o + q̃o|x) + H(Σo) . Estimate reward (Equation 15)

16: end for
17: q′(o)← exp(R̃o)∑

o exp(R̃o)

18: θ ← update weights(θ, q′(o))
19: end for

12

Variational Inference by Policy Search

3.2 Sample Reuse by Importance Weighting

VIPS relies on samples for approximating the reward for choosing a given component, R(o),
and for computing the quadratic surrogates for the component update. These samples need
to be evaluated on the unnormalized target distribution p̃(x) which may be costly. In
order to reduce the number of function evaluations we want to also make use of samples
from previous iterations, which can be achieved by using importance weighting. We will
now show how importance weights can be used to approximate the rewards for the weight
updates and how to learn the quadratic surrogates for the component update based on the
same subset X⊂ of samples.

3.2.1 Importance Weighting for Updating the Mixture Weights

Importance sampling is a technique for estimating the expected value Eq[f(x)] of a given
function f(x) with respect to a distribution q(x) while using samples from a different dis-
tribution z(x) 6= q(x). Assuming that the support of z(x) covers the support of q(x), we
can express the desired expectation as

Eq[f(x)] =

∫
x
q(x)f(x)dx =

∫
x
z(x)

q(x)

z(x)
f(x)dx = Ez[w(x)f(x)],

using importance weights w(x) = q(x)
z(x) . Hence, the desired expectation can be approximated

by using a Monte-Carlo estimate based on Nz samples from the sampling distribution z(x),

Eq[f(x)] ≈
Nz∑
i=1

1

Nz
w(xi)f(xi). (17)

Instead of using the estimator given by Equation 17, it is also common to use self-normalized
importance sampling

Eq[f(x)] ≈
Nz∑
i=1

w̄(xi)f(xi), w̄(xi) =

(
Nz∑
i=1

q(xi)

z(xi)

)−1
q(xi)

z(xi)
.

Self-normalized importance sampling introduces a bias that is asymptotically zero since
lim

Nz→∞

∑Nz
i=1

q(xi)
z(xi)

= Nz, but it has the advantages that it is consistent for different constant

offsets on the function f(x) and that it is also applicable if the target distribution is not
normalized.

An important consideration for choosing the sampling distribution is the variance of
the estimator. In general, the estimator’s variance can be significantly worse than standard
Monte-Carlo (Hesterberg, 1988). When using samples from the desired distribution, that is,
z(x) = q(x), the importance weighted estimate and the self-normalized estimate are both
equivalent to standard Monte-Carlo. However, it is also possible to obtain lower variance
than standard Monte-Carlo, for example, when using the optimal sampling distribution

z(x) =
1

C
q(x)|f(x)− c|, (18)

13

Arenz, Zhong and Neumann

where C is a normalizing constant and c = 0 for importance sampling and c = Eq[f(x)]
for self-normalized importance sampling (Hesterberg, 1988). If the function f(x) is positive
everywhere, the former estimate has even zero variance since

w(xi)f(xi) =
q(xi)

z(xi)
f(xi) = C

q(xi)

q(xi)f(xi)
f(xi) = C =

∫
x
q(x)f(x)dx = Eq[f(x)].

Although the optimal sampling distributions according to Equation 18 are intractable as
they depend on the expectation Eq[f(x)], which is the value of interest, they can be useful
for designing appropriate sampling distributions.

In order to estimate the expected reward R(o) using a subset X⊂ of the samples from
previous iterations X we need to evaluate the respective sampling distribution z⊂(x) for
computing the importance weights. For that purpose, we store all samples together with
the respective unnormalized target densities and the parameters of the component from
which it was sampled in a database

S = {(x0, log p̃(x0),Nx0), . . . , (xN , log p̃(xN),NxN)},

where Nx refers to the Gaussian distribution that was used for obtaining the sample x. By
also storing its respective Gaussian distributions, we can represent the sampling distribution
as a Gaussian mixture model z⊂(x) that contains for each sample xs ∈ X⊂ the respective
Gaussian distribution Nxs(x), that is,

z⊂(x) =
∑

xs∈X⊂

1

|X⊂|
Nxs(x).

Please note, that in practice, we represent the GMM z⊂(x) more concisely by exploiting
that usually several samples were drawn from the same Gaussian distribution. We estimate
the reward Ro(x) for each component using self-normalized importance sampling, that is,

R̃(o) =
∑

xs∈X⊂

w̄o(xs)
[
R(xs) + log q̃(o|xs)

]
+ H(q(x|o)).

where the self-normalized importance weights for component o are given by

w̄o(xs) =
1

Z

q(xs|o)
z⊂(xs)

, Z =
∑

xs∈X⊂

q(xs|o)
z⊂(xs)

.

We could choose different subsets, depending on the component for which we want to
estimate the reward R(o). However, because we need to evaluate each sample on any
component anyway in order to compute the responsibilities q(o|x), we use the same subset
X⊂ for estimating all component rewards as well as the surrogate models.

3.2.2 Importance Weighting for Fitting the Quadratic Surrogates

For updating the individual components we need to learn local quadratic surrogates R̃o(x)
in the vicinity of the respective components. MORE achieves locality by using samples
from the respective component q(x|o) as independent variables for ordinary least-squares.

14

Variational Inference by Policy Search

Learning the surrogate based on samples from a different distribution z⊂(x) introduces
covariate shift, that is, the distribution of the training data z⊂(x) does not match the
distribution of the test data q(x|o). The covariate shift can be accommodated by minimizing
a weighted least-squares problem (Chen et al., 2016),

arg min
βo

Ez⊂

[
w̄o(xs)

(
Ro(x)− R̃o(x;βo)

)2
]
,

where the quadratic surrogate R̃o(x;βo) is linear in the parameters βo. In practice, we also
perform `2-regularization with ridge coefficient κo. The optimal parameters are thus given
by

βo = (X>WoX + κoI)−1X>Woy,

where X is the design matrix where each row contains the linear and quadratic features
for the respective sample xs ∈ X⊂ as well as a constant feature, Wo is a diagonal matrix
where each element relates to the respective self-normalized importance weight wo(xs), y
is a vector containing the targets ys = R(xs) + log q(o|xs) and βo is a vector containing
the elements of ro and Ro as well as a constant offset that can be discarded. Specifying
an appropriate ridge coefficient κo can be difficult as different components may require
different amounts of regularization. We therefore adapt the coefficient during optimization
by multiplying it by 10 if the matrix inversion failed and by dividing it by 2 if it succeeded.

Although we use importance weights for learning the surrogates, we do not aim to
estimate an expected value. The minimum-variance sampling distributions given by Equa-
tion 18 are in general not useful for learning accurate surrogate models as they focus on
bringing the weighted function evaluation w(x)f(x) close to the expected value, rather
than aiming to accurately represent the function’s landscape. Instead, we aim to construct
a sampling distribution z⊂(x) that covers all components of the current approximation well.
Such sampling distribution ensures that the importance weighted estimates are not much
worse than Monte-Carlo estimations, both, for estimating the expected rewards R̃(o) and
for learning locally valid surrogate models R̃o(x). In the next section, we will discuss a
heuristic for constructing such sampling distribution.

3.3 Sample Selection

Using all previous samples in each iteration would be computationally costly. Instead,
we want to select a small set of samples such that we can get good approximations of
all surrogate models and component rewards while requiring only a small number of new
samples from each component. A common technique that was used in CMA-ES (Shirakawa
et al., 2015), MORE (Abdolmaleki et al., 2015) and VIPS (Arenz et al., 2018) is to reuse
all samples from the k latest iterations, where k is a hyper-parameter to balance between
sample efficiency and computational efficiency. As the components that were used for the
most recent iterations were similar to the current components, the reused samples can
usually provide meaningful information about the target distribution in the vicinity of the
respective components. However, we noticed that such procedure can be wasteful when
optimizing large GMMs if some component have already converged and others still need to
improve. For example, we typically have enough samples in the database to estimate the

15

Arenz, Zhong and Neumann

reward and local surrogate for components that did not significantly change during several
iterations even without requiring any new samples; yet, when only using the latest k samples
we need to continuously sample from each component during the whole optimization in order
to maintain stability.

In order to avoid discarding old samples, we could sub-sample uniformly among the
sample database. However, such procedure can result in a large number of irrelevant samples
and, furthermore, does not ensure that the relevant samples are evenly distributed among
the components of the current approximation. A more sophisticated method was presented
by Uchibe (2018) in the context of policy search. Instead of sub-sampling uniformly, they
treat all components in the database as components of a mixture model, qαsampling(x), and
optimize the corresponding mixture coefficients α such that the model is close to the optimal
sampling distribution given by Equation 18. However, the resulting sampling distribution
might not be suited for learning the surrogate models, and, furthermore, such approach
would be computational intractable because, by optimizing a GMM, VIPS may add up to
several hundreds of components to the database in each iteration and would also need to
identify an optimal sampling distribution for each of the respective components.

Furthermore, it is hard to make use of function evaluations such as p̃(xi) or q(xi|o)
for deciding whether to reuse a given sample xi without introducing additional bias in the
importance sampling estimate. When such function evaluations influence our decision to use
a given sample xi for importance weighting, we can no longer consider it as an unbiased draw
from Nxi(x) and computing the importance weights based on the background distribution
z⊂(x) would, thus, not be admissible.

Instead, we propose to identify for each component q(x|o) of the current approximation
those components in the database Nxi(x) that are close according to a given dissimilarity
measure d

(
q(x|o),Nxi(x)

)
that is independent of the actual samples drawn from Nxi(x).

In order to reduce the risk of selecting the same samples in each iteration, which may result
in overfitting, we iteratively sample (without replacement) components from our database
according to

h(i, o) ∝ exp
(
−d
(
q(x|o),Nxi(x)

)
− ni

)
, (19)

where ni keeps track of the number of times the samples of distribution Nxi(x) have been
reused. We add all samples from the chosen component to the active set of samples X⊂
and stop sampling distributions when a desired number of reused samples nreused is reached.
This process is performed for each component q(x|o) of the current approximation.

A natural choice for the dissimilarity is to use the Kullback-Leibler divergence,

dKL

(
q(x|o),Nxi(x)

)
= KL

(
q(x|o)||Nxi(x)

)
,

which favors sampling distributions Nxi(x) that cover the respective mixture component
q(x|o) well. However, even though the KL divergence between two Gaussian distribu-
tions can be computed in closed form, computing it for every component in the current
approximation with respect to every component in the database can quickly become the
computational bottleneck of the whole optimization.

Instead, VIPS++ computes the dissimilarity as the negative Mahalanobis distance of
the mean µi of the sampling distribution Nxi(x) with respect to the given component q(x|o),

16

Variational Inference by Policy Search

that is,

dMahalanobis

(
q(x|o),Nxi(x)

)
= − log p(µi|o).

While neglecting the covariance matrix of the sampling distribution may appear too crude,
we argue that it is necessary to stay within a reasonable computational budget for selecting
relevant samples. We demonstrate in Section 5.2 that the proposed selection strategy is able
to identify relevant samples for each component q(x|o) among all previous samples without
adding significant computational overhead. We also compare the Mahalanobis distance to
different dissimilarity measures, namely, forward and reverse KL, as well as uniform selection
in Appendix B. Pseudo-code for identifying relevant samples is shown in Appendix C.

3.3.1 Drawing new samples

After selecting the set X⊂ of samples to be reused during the current iteration, we need
to draw new samples from those components that are not sufficiently covered. A useful
diagnostic for monitoring the quality of the chosen sampling distribution is the effective
sample size

neff(o) =
(∑

xs∈X⊂

w̄o(xs)
2
)−1

,

which approximates the number of samples that standard Monte-Carlo would require to
achieve the same variance as the importance sampling estimate (Kong et al., 1994; Djuric
et al., 2003).

Hence, we compute for each component the number of effective samples, and draw
nnew(o) = ndes − bneff(o)c new samples, such that its effective sample size should approxi-
mately match a specified desired number of effective samples ndes. These samples are added
to the database and to the set of active samples X⊂ as illustrated in Algorithm 3.

3.4 Adapting the Number of Components

The component optimization (Algorithm 1) is a local optimization, and the component
will typically converge to a nearby mode (although the trust region constraint may help
to traverse several poor optima). The quality of the learned approximation thus depends
crucially on the initialization of the mixture model. However, the modes of the target
distribution are often not known a priori and have to be discovered during optimization.
We therefore adapt the number of components dynamically by adding new components
in promising regions and by deleting components with very low weight. The number of
components is adapted at the beginning of each learning iteration before obtaining new
samples. By always assigning low weight to newly added components and by only deleting
components that have low weight, the effect on the approximation is negligible and the
stability of the optimization is thus not affected.

3.4.1 Deleting Bad Components

Components that have been initialized at poor locations may converge to irrelevant modes
of the target distribution and get very low weights such that they do not affect the approx-
imation in practice. As keeping such components would add unnecessary computational

17

Arenz, Zhong and Neumann

Algorithm 3 Ensure that every component has sufficiently many effective samples.

Require: database S = {(x0, log p̃(x0),Nx0), . . . , (xN , log p̃(xN),NxN)}
Require: Set of chosen samples X⊂, respective self-normalized importance weights wo(x)
Require: desired number of effective samples per component ndes

1: function sample where needed
2: for o = 1 . . . No do

3: neff(o)←
(∑

xs∈X⊂
wo(xs)

2
)−1

4: nnew(o)← ndes − bneff(o)c
5: X new,o ← sample Gaussian(µo,Σo, nnew(o))
6: for xs in X new,o do
7: S ← S ∪ {(xs, log p̃(xs),Nxs)}
8: end for
9: X⊂ ← X⊂ ∪X new,o

10: end for
11: return X⊂
12: end function

overhead, we delete any component that had low weight for a given number of iterations,
ndel, and that further did not increase its expected reward R̃(o) during that period.

3.4.2 Initializing the Mean of New Components

By adding components to the mixture model, we can increase the representational power
and thus improve the quality of the approximation. Furthermore, adding components affects
the search distribution and can thus be used for exploration. In either case, we want the new
components to eventually contribute to the approximation and hence achieve high weight
q(o) ∝ exp (R(o)) and thus high reward R(o). We treat every sample xs in the database as
candidate for the initial mean of the new component and then select the most promising
candidate according to an estimate of its initial reward. As we will discuss in Section 3.4.3,
we will decide on the initial entropy irrespective of the initial mean, but we will choose the
exact initial covariance only after deciding for an initial mean. Hence, in the following we
will derive an estimate of the initial reward that depends on the initial mean and initial
entropy Hinit, but not on the covariance matrix.

Let qxs(x|on) denote the new component on assuming that its mean was initialized
at location µn = xs and let qxs(x) = (1 − q(on))q(x) + q(on)qxs(x|on) denote the GMM
approximation after adding the new component with initial weight q(on). According to

18

Variational Inference by Policy Search

Equation 14 the initial reward of the new component Rxs(on) would be given by

Rxs(on) =

∫
x
qxs(x|on)

(
R(x) + log qxs(on|x)

)
dx + H

(
qxs(x|on)

)
(20)

=

∫
x
qxs(x|on)

(
R(x) + log q(on) + log qxs(x|on)− log qxs(x)

)
dx + H

(
qxs(x|on)

)
dx

= log q(on) +

∫
x
qxs(x|on)

(
R(x)− log qxs(x)

)
dx

= log q(on) +

∫
x
qxs(x|on)

(
R(x)− log

(
(1− q(on))q(x) + q(on)qxs(x|on)

))
dx. (21)

Based on Equation 21 we can estimate the initial reward depending on the initial weight
of the new component q(on), the current mixture model q(x), the target distribution R(x),
and the new component qxs(x|on). The first term can be ignored because we choose the
initial weight of the new component irrespective of its mean and a constant offset does not
affect which initial mean achieves the maximum initial reward. The integral is intractable
but can be approximated based on the sample xs = µn as

R̃xs(on) = R(xs)− log

(
(1− q(on))q(xs) + q(on) exp

(1

2
D −Hinit

))
(22)

where we exploit that the Gaussian density at its mean can be computed based on its
entropy Hinit and the number of dimensions D, that is, log qxs(xs|on) = 1

2D−Hinit. As the
function evaluations R(xs) of the target distribution are stored in the database, we only
need to evaluate the current mixture model q(x) on all candidate samples xs to estimate
the initial reward for these locations.

To investigate the approximated reward in Equation 22 we note that the second term
corresponds to a log-sum-exp (LSE), that is,

R̃xs(on) = R(xs)− log
(
(1− q(on))q(xs) + q(on)qxs(xs|on)

)
= R(xs)− LSE

(
log(1− q(on)) + log q(xs), log q(on) + log qxs(xs|on)

)
≈ R(xs)−max (log q(xs), log q(on) + log qxs(xs|on)) , (23)

where we exploit that LSE(a1, a2, . . . , an) = log
∑n

i=1 exp(ai) behaves similar to a maximum
and that (1 − q(on))q(x) ≈ q(x), since we initialize the new component with negligible
weight, q(on) ≈ 0. Although the effect of the initial weight on the first operand of the
log-sum-exp is negligible, it may have considerable effect on the second operand because
the logarithm of small values is a large negative value. Hence, the initial weight that we
choose for a new component may affect its approximated reward, which can be explained
by its effect on the responsibilities qxs(on|xs) in Eq. 20.

If we would add the new components with an initial weight of zero, the maximum-
operator would always return the first operand and the proposed estimate (which ignores
the constant offset log q(on) = −∞ in Eq. 22) of the initial reward would return the amount
of missing log probability-density, R̃xs(on|q(on) = 0) = R(xs) − log q(xs). Adding a new
component at the location where our current approximation misses most log probability
density seems sensible. However, the problem of such heuristic becomes evident when

19

Arenz, Zhong and Neumann

considering target distributions with heavy tails. In such cases, the amount of missing log
probability density increases the farther we move away from the current approximation.
The new component might, thus, be added in a region where the target distribution has
low probability density, since the current approximation might have even lower probability
density.

This failure case is a direct consequence of ignoring the effect of the new component
on the mixture model. When considering non-zero weights, the log-responsibilities of the
new component are finite and tend to increase the farther we move away from the current
approximation. Yet, they saturate at log qxs(on|xs) ≈ 0 for every candidate location xs that
is sufficiently far from the current approximation, that is, where q(xs) ≈ 0. This behavior is
reflected by the log-sum-exp in Equation 22, which provides additional reward based on the
negative log probability density − log q(xs) of the current approximation but never much
more than −(log q(on) + log qxs(xs|on)).

The proposed heuristic has different effects depending on the choice of the initial weight,
which upper-bounds the benefit of adding a component far from the current approximation
to −(log q(on) + log qxs(xs|on)) (Eq. 23). Small initial weights increase this threshold and,
thus, the proposed heuristic becomes more explorative by tending to initialize new compo-
nents far from the current approximation. However, a benefit of the proposed heuristic is
that it often does not rely on a specific threshold to propose useful candidate locations. For
example, when a candidate is very close to a mode of the target distribution that is currently
not covered by the approximation, the heuristic will often choose it for a large range of dif-
ferent thresholds that might vary across several orders or magnitude. If there is no clear
winner, the choice of log q(on) typically affects the proposed location. For relatively large
initial weights, we will create the component at a location where R(xs) is close to the best
values that we have discovered and therefore often close to an existing component. Such
component will improve our approximation with high probability by allowing the mixture
model to approximate the mode more accurately, but is not likely to discover a new mode.
Estimating the initial reward based on a small initial weight, in contrary, is more likely
to place the component far from the current mixture model at locations where R(xs) may
be significantly worse than the best discovered values. Such component might converge to
an irrelevant mode, that is, a local maximum of the target distribution that is still signif-
icantly worse than the best mode. The component will then get a very low weight, such
that its effect on the approximation is negligible and the computational time (e.g., function
evaluations) that was spent for improving this component was mainly wasted. If, however,
such component discovers a new relevant mode, it will turn out much more valuable than
a component that was added close to an existing mode.

In our experiments, we always add component with an initial weight of 1e−29 which
results in log q(on) ≈ −66.77. However, this value is quite arbitrary because adding a
new component with initial weight of 1e−300 would result in essentially the same mixture
model and log q(on) ≈ −690.78. Hence, we do not estimate the initial reward based on
the actual initial weight, but instead choose a value in place of log q(on) and vary it in the
range of [−1000,−50]. By varying the (assumed) initial weight we can maintain exploration
and avoid only adding components at irrelevant locations. Please refer to Appendix D for a
sensitivity analysis and for details on how the initial reward in Equation 22 is approximated.

20

Variational Inference by Policy Search

3.4.3 Initializing the Covariance Matrix of New Components

The initialization of the covariance matrix of the new component is performed in two steps.
In the first step, we decide on the initial entropy; in the second step, we decide on the initial
correlations.

A possible option for choosing the initial entropy is to use the same entropy that was
used when initializing the mixture at the beginning of the optimization, which would typ-
ically be relatively large in accordance with an uninformed prior. Such an initialization
has the benefit of maintaining broad exploration during the whole optimization, and is not
very sensitive to the initialization of the mean. However, initializing new components with
high entropy can also be very wasteful as it will typically take a long time until they can
contribute to the approximation. Furthermore, smaller initial entropies in combination with
our heuristic for initializing the mean will result in a more directed exploration of promising
regions. Hence, we initialize the new component with an entropy that is similar to those of
the best components in the current model, namely we choose Hinit =

∑
o q(o)H(q(x|o)) as

initial entropy. The entropy of the best components will typically decrease during optimiza-
tion until it reaches a problem specific level. Hence, the exploration of new components will
also become more local, without falling below a reasonable level.

For deciding on the correlations among the different dimensions, we can consider restart-
ing the local search from scratch by choosing an isotropic covariance matrix Σiso = cisoI,
and making use of the existing components by averaging their covariance matrices, that is,
Σavg = cavg

∑
o p(o|µnew)Σo, where ciso and cavg are appropriately chosen to obtain the

desired entropy Hinit as shown in Appendix E. In VIPS we always averaged the covariance
matrices, which can be sensible when adding components close to existing ones, or when
similar correlations occur at different locations. However, we noticed that such initialization
can impair exploration and, thus, degrade performance in one of our new experiments as
shown in Section 5.2.1. As it is often difficult to predict, whether the curvature at the most
responsible components is similar to the curvature at the new component, we perform a
line search over a step size α ∈ [0, 1] to find the best interpolation

Σα = αΣiso + (1− α)Σavg

between both candidate covariance matrices with respect to the expected reward

Rnew(α) =

∫
x
N (x|µnew,Σα) log p̃(x)dx.

The expected reward can be approximated using an importance weighted Monte Carlo
estimate based on samples from the mixture

z(x) = 0.5N (x|µnew,Σiso) + 0.5N (x|µnew,Σavg).

These samples and the respective function evaluations are also stored in the database S
and can thus be reused during subsequent learning iterations.

Flow charts for the basic variant and the modified version are shown in Figure 1. An
open-source implementation is available online.2 In comparison to VIPS, VIPS++ makes

2. The implementation can be found at https://github.com/OlegArenz/VIPS.

21

https://github.com/OlegArenz/VIPS

Arenz, Zhong and Neumann

better use of previous function evaluations and initializes new components based on a line
search. Furthermore, VIPS++ uses fewer hyper-parameters by automatically adapting the
bounds on the KL-divergences for the individual component updates and the regularization
coefficients for fitting the reward surrogates. The number of hyper-parameters was further
reduced by simplifications of the algorithms; namely, by performing an unconstrained op-
timization for the weight updates and by performing a single EM-like iteration on a given
set of samples.

4. Related Work

We will now discuss related work in the fields of variational inference, sampling and policy
search.

4.1 Variational Inference

Traditionally, variational inference was applied for learning coarse approximations of high
dimensional distributions, typically by assuming that the individual dimensions of the ran-
dom variable are uncorrelated—the so-called mean-field assumption—and by choosing the
variational distribution based on the target distribution. For example, Saul et al. (1996)
approximated the hidden nodes of sigmoid belief networks with Bernoulli distributions,
enabling them to maximize a lower bound on the ELBO in closed form. An iterative proce-
dure was used for improving this lower bound. As such approach can only model unimodal
distributions, it was later extended to mixtures of mean field distributions (Jaakkola and
Jordan, 1998; Bishop et al., 1998).

However, relying on a variational distribution that can be fitted in closed form can be
restrictive and the necessary derivations can be a major burden when applying such varia-
tional inference approaches to different models. Hence, Gershman et al. (2012) introduced
non-parametric variational inference (NPVI), a black-box approach to variational inference
that can be applied to any twice-differentiable target distribution. NPVI is restricted to
GMMs with uniform weights and isotropic components that are iteratively optimized using
first-order and second-order Taylor approximations. Although such variational approxi-
mation can in principle approximate any target distribution arbitrarily well, NPVI is in
general not suited for learning highly accurate approximations with a reasonable number
of components as shown in our comparisons.

Similar to VIPS, several black box approaches to variational inference rely on function
evaluations of the target distributions that are chosen by sampling the variational approx-
imation. Ranganath et al. (2014) apply the log-derivative trick, which is well-known in
reinforcement learning (Williams, 1992), to variational inference in order to estimate the
gradient of the ELBO with respect to the policy parameters. The gradient estimation does
not require the gradient of the reward log p̃(x) but typically suffers from high variance.
Ranganath et al. (2014), thus, suggest control-variates and Rao-Blackwellization (for which
they assume a mean-field approximation) for variance reduction. If the target distribu-
tion is differentiable and the variational approximation is reparameterizable, it is usually
preferable to estimate the gradient with the reparameterization trick (Kingma and Welling,
2014; Rezende et al., 2014) which typically has much lower variance. Such approach can,
for example, be used to train normalizing flows (Dinh et al., 2014). Normalizing flows are

22

Variational Inference by Policy Search

Initialize
Mixture

Draw Samples

Compute
Responsibilities

update
Component

(OLS)

For each component o

Draw Samples

Compute
Responsibilities

compute
R̃(o) (MC)

For each component o

Update
Weights

Max
Iterations
Reached?

Done

yes

no

Initialize
Mixture

Add / Delete
Components

Reuse
Samples

Draw
Samples

Compute
Responsibilities

compute
R̃(o) (IS)

For each component o

Update
Weights

Compute
Responsibilities

Update
Component

(WLS)

DatabaseActive Samples

For each component o

Max
Iterations
Reached?

Done

yes

no

set

add

Figure 1: We show flow charts for the basic variant (left) and VIPS++ (right). The basic
variant updates the individual components by learning surrogates using ordinary
least-squares (OLS) and uses Monte-Carlo (MC) for estimating the component’s
reward R̃(o). VIPS++ adapts the number of component and uses the same set
of samples for computing the components’ reward using importance sampling (IS)
and for updating the individual components using weighted least squares. The
order of the weight and component updates has been swapped on the right flow
chart to match the actual implementation.

23

Arenz, Zhong and Neumann

likelihood-based models that transform a simple distribution through one or several non-
linear mappings. The probability density of the transformed distribution can be evaluated
using the change-of-variables formula, which requires that the transformations are invertible
and that the (log-)determinants of their Jacobians can be efficiently computed. Rezende
and Mohamed (2015) proposed transformations that contract the density with respect to
a learned hyperplane or to a point. The expressiveness of these planar and radial flows
is rather limited and thus many flows has to be stacked to obtain rich approximations.
However, several more expressive flows have been recently proposed (Kingma et al., 2016;
Kingma and Dhariwal, 2018; Dinh et al., 2016; Papamakarios et al., 2017; Huang et al.,
2018; Grathwohl et al., 2019). Most of these flows make use of autoregressive transforma-
tions. For example, inverse autoregressive flows (IAF, Kingma et al., 2016) shift and scale
each dimension of an input, xi, by quantities that are computed based on the previous
input dimensions xj<i. As the resulting Jacobian matrices are triangular, the log deter-
minants can be efficiently computed based on the diagonal elements. Rich approximations
can be learned by stacking several such flows and shuffling the dimensions in-between based
on fixed random or learned (Kingma and Dhariwal, 2018) permutations, which can also
be seen as normalizing flows. In order to ensure the autoregressive property, IAFs use a
technique that was previously used for autoregressive auto-encoders (Germain et al., 2015).
Namely, a mask is applied to a fully connected neural network in order to cut weights
such that each output yi is only connected to inputs xj if j < i. Although such flows are
invertible by construction, computing the inverse can be expensive because the different
dimensions have to be inverted sequentially. Hence, evaluating the probability density of a
sample that was produced by different distribution can be inefficient. Masked autoregressive
flows (Papamakarios et al., 2017), thus, parameterize the inverse transformation (compared
to IAFs) which makes them more efficient for density estimation at the cost of less efficient
sampling. In general, normalizing flows are very popular nowadays, because they scale to
high dimensions, allow for rich representations and are reparameterizable whenever the ini-
tial distribution is reparameterizable. However, we argue that such purely gradient-based
optimization is not suited for learning accurate approximations of multimodal target dis-
tributions due to insufficient exploration. In our experiments, we compare against IAFs,
which are well-suited for variational inference because we only need to evaluate the density
of samples that were drawn from the normalizing flow.

Hessian-free stochastic Gaussian variational inference (HFSGVI, Fan et al. 2015) and
TrustVI (Regier et al., 2017) can be used for learning Gaussian variational approximations.
HFSGVI (Fan et al., 2015) learns GVAs with full covariance matrices using fast second
order optimization. This idea has been extended by Regier et al. (2017) to trust region
optimization. However, in difference to our approach, a euclidean trust region is used in
parameter space of the variational distribution. Such approach requires the computation
of the Hessian of the objective which is only tractable for mean-field approximations of
single Gaussian distributions. In contrast, we use the trust regions directly on the change
of the distributions instead of the change of the parameters of the distribution. The infor-
mation geometric trust regions in this paper allow for efficient estimation of GMMs with
full covariance matrices without requiring gradient information from p̃(x).

Information geometric trust regions and related methods such as certain proximal point
methods as well as methods based on natural gradient descent have already been applied

24

Variational Inference by Policy Search

to variational inference. Salimans and Knowles (2013) derive a fixed point update of the
natural parameters of a distribution from the exponential family that corresponds to a
Monte-Carlo estimate of the gradient of Equation 1 preconditioned by the inverse of their
empirical covariance. By making structural assumptions on the target distribution, they
extend their method to mixture models and show its applicability to bivariate GMMs. Hoff-
man et al. (2013) consider mean-field variational inference and assume a certain structure
on the target distribution. Namely, they consider models that consist of a product of con-
ditionally independent distributions parameterized by local parameters that are correlated
through global parameters. Furthermore, all distributions are assumed to belong to the
exponential family and the distribution of the global parameters is assumed to be conju-
gate for computational reasons. They show that the natural gradient of the corresponding
mean-field approximation can be efficiently computed, and approximated from mini-batches.
Theis and Hoffman (2015) extended their approach by enforcing a trust-region based on
the KL-divergence for better exploration. Khan et al. (2015) consider slightly more general
models where optimizing the ELBO can be computationally expensive. They propose to
apply the proximal point method by adding a penalty to the ELBO based on the reverse
Kullback-Leibler divergence to the current iterate. They decompose the ELBO into easy
and difficult parts and linearize the difficult parts. The derivations where extended by Khan
et al. (2016) to other divergences and to stochastic gradients making the approach appli-
cable to posterior approximations based on mini-batches. Altosaar et al. (2018) propose
a slightly more general framework that can penalize derivations from a moving average
instead of derivations from the last iterate, which can further help in avoiding bad local
optima.

Several methods use the same hierarchical bound as VIPS in the broad context of vari-
ational inference. The first usage seems to date back to 2004, where Agakov and Barber
(2004) proposed the bound for learning an optimal weighting between several mean-field ap-
proximations. Ranganath et al. (2016) proposed Hierarchical variational methods (HVM)
where the lower-level distributions q(x|o) where again mean-field distributions. In their
setting, the latent variable o corresponds to a parameter vector that fully specifies the
mean-field distribution. They learned complex priors q(o) over these parameters, namely
GMMs and normalizing flows, in order to allow for rich variational approximations. How-
ever, in contrast to the responsibilities in VIPS the conditional q(o|x) is not tractable
and thus has to be approximated and learned along the variational distribution. Our EM-
inspired approach based on exact tightening of the hierarchical lower bound would thus not
be applicable in their setting. Although Ranganath et al. (2016) learned Gaussian mixture
models to model the upper-level distribution q(o), they did not apply the hierarchical bound
for this, but optimized the parameters directly using stochastic gradient descent. As we
will show in our experiments, such black-box approach is not suited for learning variational
GMM approximations. Tran et al. (2016) consider a similar setup for their variational
Gaussian process. For the mean-field factors p(xn|on) of their lower-level components they
consider degenerated point masses specified by their scalar parameter value on. As Ran-
ganath et al. (2016), they optimize the hierarchical lower bound with respect to the prior
distribution q(o) and the conditional q(o|x). Their main contribution is the representation
of the prior distribution. Each parameter value on is sampled by evaluating a Gaussian
process (GP, Rasmussen and Williams, 2006) on an input that was sampled from a fixed

25

Arenz, Zhong and Neumann

distribution. The parameters of the prior are given by the kernel hyper-parameters of the
GP as well as the variational data that is interpolated by the GP. Whereas all these methods
only consider mean-field distributions for the lower-level components that are fully specified
by the latent variable, Maaløe et al. (2016) represent them using inference networks, that
is, neural networks that take a data point as input and output the parameters of a (typ-
ically diagonal) Gaussian distribution. They consider variational autoencoders VAE and
aim to learn more expressive approximations of the latent code z. They also introduce an
additional latent variable representing class labels in order to train a classifier end-to-end
while optimizing the variational autoencoder in semi-supervised fashion. In contrast to
these previous applications of the hierarchical lower bound, VIPS shows that it can also
be used to learn accurate variational approximations without having to approximate the
inverse model p(o|x). This enables us to optimize the ELBO by alternately maximizing and
(exactly) tightening the hierarchical lower bound.

Closely related to our work are two recent approaches for variational inference that
concurrently explored the idea of applying boosting to make the training of GMM approxi-
mations tractable (Miller et al., 2017; Guo et al., 2016). These methods start by minimizing
the ELBO objective for a single component and then successively add and optimize new com-
ponents and learn an optimal weighting between the previous mixture and the newly added
component. However, because these methods can not adapt previously added components
or their relative weighting, they can require an unnecessary large number of components to
learn accurate approximations. Furthermore, they do not use information-geometric trust
regions to efficiently explore the sample space and therefore have problems finding all the
modes as well as accurate estimates of the covariance matrices. GMMs are also used by
Zobay (2014) where an approximation of the GMM entropy is used to make the optimiza-
tion tractable. The optimization is gradient-based and does not consider exploration of the
sample space. It is therefore limited to rather low dimensional problems.

The work of Weber et al. (2015) already explored the use of reinforcement learning for
VI by formalizing VI as sequential decision problem. However, only simple policy gradient
methods have been proposed in this context which are unsuitable for learning GMMs.

4.2 Sampling

Although MCMC samplers can not directly be used for approximating distributions, they
are for many applications the main alternative to VI. Especially, when applying VIPS
as a model-based sampler, that is, if we do not have direct interest in learning a GMM
approximation, it should be compared to other zero-order sampling methods that do not
need gradient information from the target density. The most prominent methods to use here
are MCMC methods such as slice sampling (Neal, 2003), elliptical slice sampling (Murray
et al., 2010) or generalized elliptical slice sampling (Nishihara et al., 2014). MCMC methods
define a Markov chain for the sampling process, that is, the current sample defines the state
of the chain, and we define a conditional distribution how to generate new samples from
the current state.

Slice sampling introduces an auxiliary variable y to define this conditional distribution.
The variable y is always sampled between 0 and the unnormalized target density of the
current sample. The random variable x is only accepted if the new target density is larger

26

Variational Inference by Policy Search

than y. In case of rejection, the area where a new x sample is generated is reduced to limit
the number of rejections. However, the sampling process is still very inefficient for higher
dimensional random variables. Elliptical slice sampling (Murray et al., 2010) is a special
case of slice sampling and defines the slice by an ellipse defined by the current state x and a
random sample from a Gaussian prior (with origin 0). Such ellipse allows for more efficient
sampling and rejection in high dimensional spaces but relies on a strong Gaussian prior.

If the gradient of the target distribution is available, Hamiltonian MCMC (Duane et al.,
1987) and the Metropolis-adjusted Langevin algorithm (Roberts and Stramer, 2002) are
also popular choices. The No-U-Turn sampler (NUTS) (Hoffman and Gelman, 2014) is a
notable variant of Hamiltonian MCMC that is appealing for not requiring hyper-parameter
tuning.

While many of these MCMC methods have problems with multimodal distributions in
terms of mixing time, other methods use multiple chains and can therefore better explore
multimodal sample spaces (Earl and Deem, 2005; Neal, 1996; Nishihara et al., 2014; Calder-
head, 2014). Parallel tempering MCMC (Earl and Deem, 2005) runs multiple chains, where
each chain samples the target distribution at a different temperature. Each step consists
either of updating each chain independently, or swapping the state between two neighboring
chains which allows for more efficient mixing between isolated modes. However, because
only one chain samples the target distribution at the correct temperature, PTMCMC can
be inefficient if the number of chains and their respective temperatures are not adequately
tuned for the sampling problem. Generalized elliptical slice sampling (Nishihara et al.,
2014) uses multiple Markov chains simultaneously using massive parallel computing. The
current state of the Markov chains is used to learn a more efficient proposal distribution,
where either Student-t distributions or Gaussian mixture models can be used. Yet, learning
such distributions in high dimensional spaces using maximum likelihood is prone to over-
fitting and the GMM approach has not been evaluated on practical examples. Moreover,
the approach requires a massive amount of sample evaluations. In this paper, we want to
minimize the amount of sample evaluations.

Rainforth et al. (2018) explicitly consider the exploration-exploitation trade-off. They
use a method similar to Monte-Carlo tree search (Coulom, 2006) to build a tree for par-
titioning the search space. By covering regions where the target distribution has high
density more finely, the resulting inference trees (IT) are well-suited for inference on mul-
timodal distributions, for example, in combination with sequential Monte-Carlo (Doucet
et al., 2001).

Stein variational gradient descent (SVGD) (Liu and Wang, 2016) is a sampling method
that closely relates to variational inference. However, instead of optimizing the parameters
of a model, SVGD directly optimizes an initial set of particles. By framing sampling as
optimization problem, SVGD inherits the computational advantages of variational inference
and because it is non-parametric, it is capable of approximating multimodal distributions.
However, this method requires to construct the Gram matrix of the particles and is thus not
suitable for drawing large number of samples. Furthermore, defining appropriate kernels
can be challenging for high-dimensional problems.

27

Arenz, Zhong and Neumann

4.3 Reinforcement Learning

Our algorithm shares a lot of ideas with information-geometric policy search algorithms
such as REPS (Peters et al., 2010), HiREPS (Daniel et al., 2016) and MORE (Abdol-
maleki et al., 2015). In difference to policy search, where we want to maximize an average
reward objective, we want to minimize the KL-divergence to a target distribution. REPS
introduces the first time information-geometric policy updates, while the MORE algorithm
introduces closed form updates for single Gaussians using compatible function approxima-
tion and additional entropy regularization terms that yields an optimization problem similar
to KL minimization.

The HiREPS (Daniel et al., 2016) and LaDiPS (End et al., 2017) algorithms extended
the REPS and MORE ideas to mixture distributions such that multiple modes can be
represented. However, the used updates were based on approximations or heuristics and
can not optimize the entropy of the complete mixture model.

Storing all samples and the corresponding rewards in a database in order to reuse them
during later iterations is known in reinforcement learning as experience replay (Lin, 1993;
Mnih et al., 2013). Rather than uniformly sub-sampling from such replay buffer, we prior-
itize those samples that are more useful for the current updates, which can be seen as an
instance of prioritized experience replay (Schaul et al., 2016). However, whereas Schaul et al.
(2016) prioritize samples with large temporal-difference errors, which assumes time-series
data, we prioritize samples that are close to the current components.

5. Experiments

In this section we will evaluate VIPS++ with respect to the quality of the learned approx-
imation and relate it to a variety of state-of-the-art methods in variational inference and
Markov chain Monte Carlo. We start with a description of the considered sampling prob-
lems in Section 5.1. The effects of the most important hyper-parameters and algorithmic
choices are examined in Section 5.2. Section 5.3 contains an illustrative experiment to show
how VIPS++ approximates a two-dimensional, multimodal target distribution by starting
with a single component and iteratively adding more components according to our heuristic.
The selected methods for our comparisons, and the selection of their hyper-parameters are
discussed in Section 5.4 and Section 5.5. The results of the quantitative experiments are
presented and discussed in Section 5.6.

5.1 Sampling Problems

We will evaluate VIPS++ on typical sampling problems such as Bayesian logistic regres-
sion, Bayesian Gaussian process regression and posterior sampling of a multi-level Poisson
generalized linear model. We further approximate the posterior distribution over the pa-
rameters of a system of ordinary differential equations known as the Goodwin model, which
can be used for modeling oscillating gene-protein interaction. As these problems tend to
have concentrated modes, we devised several more challenging problems that require careful
exploration of the sampling space. Namely, we consider sampling from unknown GMMs
with distant modes and sampling the joint configurations of a planar robot such that it
reaches given goal positions.

28

Variational Inference by Policy Search

5.1.1 Bayesian Logistic Regression

We perform two experiments for binary classification that have been taken from Nishihara
et al. (2014) using the German credit and breast cancer data sets (Lichman, 2013). The
German credit data set has twenty-five parameters and 1000 data points, whereas the breast
cancer data set is thirty-one dimensional and contains 569 data points. We standardize both
data sets and perform linear logistic regression where we put zero-mean Gaussian priors with
variance 100 on all parameters.

5.1.2 Multi-Level Poisson GLM

We also took an experiment from the related work VBOOST (Miller et al., 2017). For
this experiment we want to sample the posterior of a hierarchical Poisson GLM on the 37-
dimensional stop-and-frisk data set, where we refer to Miller et al. (2017) for the description
of the hierarchical model.

5.1.3 GP Regression

We perform Bayesian Gaussian process regression on the ionosphere data set (Lichman,
2013) as described by Nishihara et al. (2014). Namely, we use 100 data points and want to
sample the hyper-parameters of a squared exponential kernel where we put a gamma prior
with shape 1 and rate 0.1 on the 34 length-scale hyper-parameters. We initialize VIPS with
a single Gaussian component, N (x|0, I) and sample in log-space to ensure positive values
for the hyper-parameters.

5.1.4 Goodwin Model

Similar to Calderhead and Girolami (2009), we want to sample the posterior over the param-
eters of a Goodwin oscillator (Goodwin, 1965) based on noisy observations. The Goodwin
oscillator is a system of nonlinear ordinary differential equations (ODE) that models the
oscillatory behavior between protein expression and mRNA transcription in enzymatic con-
trol processes. We consider a Goodwin oscillator with ten unknown parameters and put a
Gamma prior with shape 2 and rate 1 on each of these. The likelihood of 41 observations
is computed by numerically integrating the ODE and assuming Gaussian observation noise
with zero mean and variance σ2 = 0.2. Please refer to Appendix F for more details on the
ODE and the experimental setup.

5.1.5 Gaussian Mixture Model

In order to evaluate how VIPS++ can explore and approximate multimodal probability
distributions with distant modes, we consider the problem of approximating an unknown
GMM comprising 10 components. We consider different number of dimensions, namely
D = 20, D = 40 and D = 60. For each component, we draw each dimension of the mean
uniformly in the interval [−50, 50]. The covariance matrices are given by Σ = A>A + ID
where each entry of the D ×D-dimensional matrix A is sampled from a normal distribu-
tion with mean 0 and standard deviation 0.1D. Note that each component of the target
distribution can have a highly correlated covariance matrix, which is even a problem for the
tested MCMC methods.

29

Arenz, Zhong and Neumann

0 1 2 3 4 5 6 7
4

3

2

1

0

1

2

3

4

6 4 2 0 2 4 6

6

4

2

0

2

4

6

Figure 2: The plots show 200 ground-truth samples for both planar robot experiments that
have been generated using generalized elliptical slice sampling. The base of the
planar robot is shown as a gray box and the end-effector positions are shown as
circles.

5.1.6 Planar Robot

In order to test VIPS++ on a multimodal problem with non-Gaussian modes we devised a
challenging toy task where we want to sample the joint configurations of a planar robot with
10 links of length 1 such that it reaches desired goal positions. The robot base is at position
(0, 0) and the joint configuration describes the angles of the links in radian. In order to
induce smooth configurations, we put a zero mean Gaussian prior on the joint configurations
where we use a variance of 1 for the first joint and a variance of 4e−2 for the remaining
joints. Deviations from the nearest goal position are penalized based on a likelihood that
is given by a Gaussian distribution in the Cartesian end-effector space, with a variance of
1e−4 in both directions. We consider two experiments that differ in the number of goal
positions. For the first experiment, we want to reach a single goal-position at position x = 7
and y = 0. For the second experiment we want to reach four goal positions at positions
(7, 0), (0, 7), (−7, 0) and (0,−7). Please refer to Appendix G for details on how the target
distribution is computed.

Ground-truth samples for both experiments are shown in Figure 2. Each goal position
can be reached from two different sides, either up and down, or left and right. Other
configurations that would reach the goal position, for example some zig-zag configurations,
are not relevant due to the smoothness prior and can create poor local optima. Although
there are only two relevant ways for reaching each goal position, closely approximating these
modes can require many mixture components, because the small variance of the Cartesian
likelihood term enforces components with small variance. We therefore also evaluate slightly
different hyper-parameters for VIPS++, where we add a new component at every iteration.

30

Variational Inference by Policy Search

5.2 Ablations

In this subsection we will evaluate the effects of some algorithmic choices. Namely, we
will show that adapting the number of components can be crucial for discovering relevant
modes of multimodal target distributions, that the previously proposed initializing of co-
variance matrices can have detrimental effects, and that the sample reusage of VIPS++
can significantly increase sample efficiency.

5.2.1 Adapting the number of components

As discussed in Section 3.4, VIPS automatically adapts the number of components during
learning for better exploration, which enables it to improve on local optimal solutions. We
evaluate the effect of this adaptation by comparing VIPS++ with a variant that keeps
the number of components fixed on the breast cancer experiment and the 20-dimensional
GMM experiment. We initialize the non-adaptive variant with different numbers of initial
components, where each mean is drawn from an isotropic Gaussian N (0, αI). We use
α = 100 for the breast cancer experiment and α = 1000 for the GMM experiments. For
VIPS++ we start with a single component with mean 0. All covariance matrices are
initialized as Σ = αI. The achieved MMDs are shown in Figure 3. The non-adaptive
variant converges to better approximations when increasing the number of components
on the breast cancer experiment. However, the required number of function evaluations
until convergence scales approximately linearly with the number of components. VIPS++
can learn good approximations with few function evaluations and further improves while
increasing the size of the mixture model. On the GMM experiment, all tested variants
would in principle be able to model the target distribution exactly. However, depending
on the initialization, several components may converge to the same mode which results
in bad local optima. We therefore needed at least 25 initial components for occasionally
learning good approximations during this experiment and even when initializing with 100
components the non-adaptive variant would sometimes fail to discover all true modes. In
contrast, by adaptively adding new components at interesting regions VIPS++ reliably
discovers all ten modes. Please refer to Appendix H for a plot of the average number of
components that are learned by VIPS++ for all experiments in the test bed.

5.2.2 Initializing the covariance matrices

We also evaluate the different strategies for initializing the covariance matrix of a newly
added component, which were discussed in Section 3.4. We compare the proposed line
search used by VIPS++ with the interpolation used by VIPS as well as an isotropic
initialization. Figure 4 compares the different strategies on the Goodwin experiment and
the planar robot experiment (with four goal positions). The planar robot experiment shows,
that interpolating based on the responsibilities can seriously impair the performance on
multimodal problems. We believe that interpolating based on the responsibilities can lead to
highly anisotropic initial covariance matrices that do not sufficiently explore along relevant
directions which would explain the detrimental effects. Although we could not show a benefit
of the line search compared to the isotropic initialization, we opted for the line search for
the quantitative experiments, because it seems sensible and did not perform significantly
worse in our experiments.

31

Arenz, Zhong and Neumann

104 105 106 107

function evaluations

10 3

10 2

M
M

D

vips++
init1
init2
init5
init10

(a) breast cancer

104 105 106 107

function evaluations

10 3

10 2

10 1

M
M

D

vips++
init10
init25
init50
init75
init100

(b) GMM

Figure 3: We compare VIPS++ with a variant that does not add or delete components. On
the breast cancer experiment, VIPS++ converges to a good approximation as
fast as the variant that learns a single component, but it refines the approximation
by adding more components. When not adapting the number of components on
the GMM experiment, the quality of the approximation strongly depends on the
initialization and even 100 initial components would sometimes fail to detect all
modes.

104 105 106 107

function evaluations

10-4

10-3

10-2

M
M

D

linesearch
interpolated
isotropic

(a) Goodwin model

104 105 106 107

function evaluations

10-2

10-1

100

M
M

D

linesearch
interpolated
isotropic

(b) planar robot

Figure 4: We compare different strategies for initializing the covariance matrices of newly
added components. Interpolating the covariance matrices of the current model
based on the responsibilities can have detrimental effects as shown in the planar
robot experiment.

32

Variational Inference by Policy Search

104 105 106 107

function evaluations

10 3

10 2

10 1

M
M

D
vips++
old sample reusage

(a) Goodwin model

104 105 106

function evaluations

10 3

10 2

10 1

M
M

D

vips++
old sample reusage

(b) 20-dimensional GMM

Figure 5: The sample reusage of VIPS++ is approximately one order of magnitude more
efficient than the sample reusage of VIPS.

5.2.3 Sample Reusage

Compared to VIPS, VIPS++ uses a more sophisticated method for reusing samples from
previous iteration—as detailed in Section 3.2 and 3.3—by identifying relevant samples
among all previous function evaluations and by controlling the number of new samples
from each component based on its number of effective samples. We compare the new sam-
ple strategy with the previously employed method of always using the samples of the three
most recent iterations. Figure 5 evaluates the different strategies on the Goodwin experiment
and the 20-dimensional GMM experiment. The proposed strategy of VIPS++ significantly
outperforms the previous method by reducing the sample complexity by approximately one
order of magnitude.

5.3 Illustrative Experiment

We start with a qualitative two-dimensional experiment to illustrate the sample reusage and
the adaptation of the number of components. The target distribution is given by a Gaussian
mixture model with ten components similar to the higher-dimensional GMM experiments.
We use the same hyper-parameters as in the remaining experiments and start with a single
component. Figure 6 shows the target distribution as well as the learned approximation
directly after adding each new component. The new components are often added close to
missing modes and components are typically not sampled after they have converged. The
learned model closely approximates the target distribution.

5.4 Considered Competitors

We compare VIPS++ to the closely related methods variational boosting (VBOOST,
Miller et al., 2017) and non-parametric variational inference (NPVI, Gershman et al., 2012)
as well as state-of-the-art methods in variational inference and MCMC, namely inverse
autoregressive flows (IAF, Kingma et al., 2016), Stein variational gradient descent (SVGD,

33

Arenz, Zhong and Neumann

Iteration 0 Iteration 30 Iteration 60

Iteration 90 Iteration 120 Iteration 150

Iteration 180 Iteration 210 Iteration 240

Iteration 270 Iteration 300 Iteration 330

Iteration 330 Ground-truth

Figure 6: The first 12 plots show the learned approximation for the illustrative experiment
every 30 iterations, directly after adding a new component. The means of the
Gaussian mixture model are indicated with a white plus except for the newest
component which is marked by a star. Black dots indicate all samples that have
been drawn except for those that have already been shown at previous plots. The
last two plots compare the learned approximation and the target distribution.

34

Variational Inference by Policy Search

Liu and Wang, 2016), Hamiltonian Monte Carlo (HMC, Duane et al., 1987), elliptical slice
sampling (ESS, Murray et al., 2010), parallel tempering MCMC (PTMCMC, Earl and
Deem, 2005) and slice sampling (Neal, 2003). We also compare to naive gradient based
optimization of a Gaussian mixture model (with fixed but tuned number of components).
As GMMs are not exactly reparameterizable, we compute their stochastic gradients using
black-box variational inference (BBVI). Please refer to Appendix I for details on the specific
implementations. Due to the high computational demands, we do not compare to every
method on each experiment but rather select promising candidates based on the sampling
problem or on the preliminary experiments that we had to conduct for hyper-parameter
tuning. We present our justification for each omitted experiment in Appendix J, where we
also present a table that shows the competitors we compared against on each test problem.

Instead of using a variant of MORE (which we denote as VIPS1), it would also be
possible to update the individual components using the reparameterization trick (Kingma
and Welling, 2014; Rezende et al., 2014)—which assumes that the target distribution is
differentiable—or black-box variational inference (Ranganath et al., 2014). We evaluated
these options by comparing VIPS1, black-box variational inference and the reparameteriza-
tion trick for learning Gaussian variational approximations on the breast cancer experiment
and the planar robot experiment. The results are presented in Appendix K and show that
VIPS1 is not only more efficient than black-box variational inference, but also one to two
orders of magnitude more efficient than the reparameterization trick.

5.5 Hyper-Parameters

For the competing methods, we tuned the hyper-parameters independently for each test
problem. We typically tuned the hyper-parameters based on our test metric, the maximum
mean discrepancy (MMD). However, in all our experiments black-box variational inference
and inverse autoregressive flows collapsed to single modes on multimodal test problems
which increased the MMD. In these cases, we tuned the hyper-parameters with respect to
the ELBO, rather than setting the learning rate to zero which would perform better on our
test metric. For VIPS++, we use the same set of hyper-parameters on all experiments.
However, for the planar robot experiment which can profit from large GMMs with several
hundred components, we add a new component at every iteration. Learning such large
mixture models for simpler, unimodal problems would be wasteful, and we thus use a slower
adding rate nadd = 30 for the remaining experiments. The remaining hyper-parameters are
shown in Appendix L.

5.6 Results

We compare the different methods in terms of efficiency, regarding both, the number of
function evaluations and wall clock time, and in terms of sample quality which we assess by
computing the maximum mean discrepancy (MMD, Gretton et al., 2012) with respect to
ground-truth samples. The MMD is a nonparametric divergence between mean embeddings
in a reproducible kernel Hilbert space. Please refer to Appendix M on how the MMD and
the ground-truth samples are computed.

Figure 7 shows plots of the MMD over the number of function evaluations for the
different sampling problems in the test bed. We perform five runs for each method and

35

Arenz, Zhong and Neumann

104 105 106 107 108

function evaluations

10 3

10 2

10 1

M
M

D

bbvi1
bbvi3
ess
hmc
iaf
npvi
slice
svgd
vboost0
vboost5
vboost10
vips++
vips1
vips40

German credit (Log. Reg.)

104 105 106 107 108

function evaluations

10 3

10 2

10 1

100

M
M

D

bbvi1
bbvi3
ess
hmc
iaf
npvi
slice
svgd
vips++
vips1
vips40

breast cancer (Log. Reg.)

104 105 106 107 108

function evaluations

10 3

10 2

10 1

100

M
M

D

ess
hmc
npvi
slice
svgd
vboost
vips++
vips1
vips40

stop-and-frisk (Poisson GLM)

103 104 105 106

function evaluations

10 3

10 2

10 1

100

M
M

D

ess
hmc
slice
svgd
vips++

ionosphere (GP Regression)

103 104 105 106 107

function evaluations

10 3

10 2

10 1

100

M
M

D

ess
hmc
ptmcmc
slice
svgd
vips++

Goodwin model (ODE)

104 105 106 107 108

function evaluations

10 3

10 2

10 1

100

M
M

D

bbvi100
ess
iaf
ptmcmc
slice
svgd
vips++
vips

GMM (20 dimensions)

104 105

function evaluations

10 3

10 2

10 1

M
M

D

vips++ (20D)
vips++ (40D)
vips++ (60D)

GMM (different dimensions)

104 105 106 107 108 109

function evaluations

10 2

10 1

100

M
M

D

bbvi100
ess
iaf
npvi
ptmcmc
slice
svgd
vboost10
vips++
vips++ (nadd = 1)
vips

planar robot (1 goal)

104 105 106 107 108

function evaluations

10 2

10 1

100

M
M

D

bbvi10
ess
iaf
ptmcmc
slice
svgd
vips++ (nadd = 1)

planar robot (4 goals)

Figure 7: The maximum mean discrepancy with respect to ground-truth samples is plotted
over the number of function evaluations on log-log plots for the different sampling
problems in the test bed. VIPS++ achieves in most cases a sample quality that
is on par with the best MCMC sampler while requiring up to three orders of
magnitude fewer function evaluations.

36

Variational Inference by Policy Search

102 103 104 105

time [s]

10 3

10 2

10 1

100
M

M
D

ess
hmc
svgd
vips++

ionosphere (GP Regression)

101 102 103 104 105

time [s]

10 3

10 2

10 1

100

M
M

D

ess
hmc
ptmcmc
slice
svgd
vips++

Goodwin model (ODE)

101 102 103 104 105 106 107

time [s]

10 2

10 1

100

M
M

D

bbvi100
ess
iaf
npvi
ptmcmc
slice
svgd
vboost10
vips++
vips++ (nadd = 1)
vips

planar robot (1 goal)

Figure 8: Evaluating the methods with respect to computational time yields comparable
results as evaluating with respect to the number of function evaluations. These
results show that VIPS++ can also be competitive to MCMC in terms of com-
putational time.

linearly interpolate the MMD values to produce continuous curves. The plots show the mean
of these curves, as well as the smallest and largest value as shaded area. The tested methods
are apparent from the legends. VBOOST can make use of low-rank approximations for
learning the covariance matrices and we indicate the chosen ranks in the legends. The
German credit, breast cancer, stop-and-frisk and the 20-dimensional GMM experiment, as
well as the planar robot experiment with a single goal position were also used in our previous
work (Arenz et al., 2018) and we use some of the previous results. For example, we directly
compare VIPS++ with the previously published results of VIPS. Unlike VIPS++, VIPS
bounds the maximum number of components by stopping to add new components if the
current number of components matches a given threshold. This threshold is indicated in
the respective legends. Figure 8 presents the results with respect to computational time for
the ionosphere and Goodwin model experiment as well as the planar robot experiment with
a single goal position. As the results are similar compared to the evaluations with respect
to the number of function evaluations, we show the remaining plots in Appendix N.

Furthermore, for our comparisons with the variational inference methods BBVI and
IAF we also present learning curves regarding the ELBO in Appendix O.

5.6.1 Discussion

The sample quality achieved by VIPS is unmatched by any variational inference method on
all considered experiments and in most cases on par with the best MCMC sampler. VIPS
requires significantly fewer function evaluations and computational resources for producing
such high quality samples. VIPS++ is approximately one order of magnitude more effi-
cient than VIPS and two to three orders of magnitude more efficient than the remaining
methods. Among the considered methods, VIPS and VIPS++ were the only methods
that could produce good results on the 20-dimensional GMM experiment, where they were
able to reliably discover and approximate all ten modes of the target distribution. We
therefore only evaluated VIPS++ on the higher-dimensional GMM experiments where it
also approximated the target distribution with high accuracy. However, on the planar robot

37

Arenz, Zhong and Neumann

0 1 2 3 4 5 6 7
4

3

2

1

0

1

2

3

4

6 4 2 0 2 4 6

6

4

2

0

2

4

6

Figure 9: The plots visualize the weights and means of the mixture models learned by
VIPS++ for each of the planar robot experiments when adding new components
with adding rate nadd = 1. The gray box indicates the base of the robot; the
red crosses indicate the goal positions. Components with larger weight are drawn
darker. The visualized mixture models comprise of 333 and 360 components
for the experiments with one goal position (left) and four goal positions (right),
respectively.

experiment with four goal positions ESS and PTMCMC could produce significantly better
samples than VIPS++. We believe that learning highly accurate GMM approximations
would require a very large number of components for this experiment. Already on the
planar robot experiment with a single goal position, we could slightly improve the learned
approximations by adding new components more frequently. Compared to the default
adding rate, which learned GMMs with approximately 150 components, the faster adding
rate resulted in GMMs with approximately 350 components. We believe that VIPS++
would require significantly more components to achieve comparable sample quality to the
MCMC samplers on the more challenging planar robot experiment. However, learning very
large mixture models can become infeasible, because computing the (log-)responsibilities
log q(o|x) exactly can become prohibitive. Figure 9 visualizes the weights and means of the
learned approximation of the first run for both planar robot experiments when adding new
components at every iteration. We can see that the learned components are still of very
good quality. Samples from the learned models are shown in Appendix P and compared to
those obtained by BBVI, IAF, PTMCMC.

6. Conclusion and Future Work

We proposed VIPS++, a method for learning GMM approximations of intractable prob-
ability distributions that exploits the connection between variational inference and policy
search. We introduced a variant of MORE (Abdolmaleki et al., 2015) that can be effi-
ciently used for learning Gaussian variational approximations. We further derived a lower
bound on the I-projection to latent variable models that can be used for learning a local

38

Variational Inference by Policy Search

optimum of the true objective, similar to expectation-maximization. By applying this de-
composition to Gaussian mixture models, the I-projection can be performed independently
for each component, allowing us to improve the GMM approximation by independently
updating the components using our variant of MORE. We argue that a good trade-off be-
tween exploration and exploitation is essential for efficiently learning accurate multimodal
approximations. We tackle the exploration-exploitation dilemma locally for each compo-
nent by updating them using information-geometric trust regions. For global exploration,
we dynamically add new components at interesting regions.

For target distributions that can be well approximated with a small number of com-
ponents, VIPS does not only outperform existing methods for variational inference, but is
also several orders of magnitude more efficient than Markov chain Monte Carlo at drawing
samples. We also showed that VIPS can learn large mixture models comprising several
hundred components. However, learning very large GMMs is computationally expensive
and MCMC methods can be more efficient at drawing samples.

Learning Gaussian components with full covariance matrices can become intractable for
high dimensional problems, and we thus applied VIPS only for medium-scaled problems
with up to 60 dimensions. For significantly higher-dimensional problems, learning low-rank
approximations and using gradient information for the component updates are interesting
routes of future work. It is also interesting to further investigate the strong ties between
variational inference and policy search. Using our decomposition we can learn GMMs of
policy parameters for the black-box reinforcement learning setting where time-series data is
not assumed and exploited. In order to apply VIPS for multimodal reinforcement learning
with time-series data, we aim to contextualize the GMM parameterization on the state of an
MDP to directly learn GMM policies. Furthermore, it is interesting to investigate how our
decomposition can be applied to different problems such as clustering or density estimation,
or to other latent variable models.

39

Arenz, Zhong and Neumann

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 645582 (RoMaNS). Calculations for this
research were conducted on the Lichtenberg high performance computer of the TU Darm-
stadt.

Appendix A. VIPS1 Derivations

For each update we wish to solve the optimization problem

max
q(x)

∫
x
q(x)R̃(x)dx + H(q(x)),

subject to KL
(
q(x)||q(i)(x)

)
≤ ε,∫

x
q(x)dx = 1,

where we recall that the the reward surrogate R̃(x) is a quadratic function and the vari-
ational approximation of the previous iteration, q(i)(x), is Gaussian. We formulate the
optimization for general distributions q(x), but we will see that the optimal solution is also
Gaussian. Using the definition of the Shannon entropy and Kullback-Leibler divergence and
introducing the Lagrangian multipliers η and λ, the Lagrangian function is given by

L(q, η, λ) =

∫
x
q(x)

(
R̃(x)− log q(x)

)
dx + η

(
ε−

∫
x
q(x)

(
log q(x)− log q(i)(x)

)
dx

)
+ λ
(
1−

∫
x
q(x)dx

)
=

∫
x
q(x)

(
R̃(x)− (1 + η) log q(x) + η log q(i)(x)− λ

)
dx + ηε+ λ.

The optimum q?(x) occurs where the partial derivative ∂L(q,η,λ)
∂q(x) is equal to zero, that is,

∂L(q?, η, λ)

∂q(x)
= R̃(x)− (1 + η) log q?(x; η, λ)− (1 + η) + η log q(i)(x)− λ !

= 0

⇒ q?(x; η, λ) = exp
(
− λ+ 1 + η

1 + η

)
exp

(R̃(x) + η log q(i)(x)

1 + η

)
. (24)

The Lagrange dual function is, thus, given by

G(η, λ) =L(q?, η, λ)

=

∫
x
q?(x; η, λ)

(
R̃(x)−

(
− λ− 1− η + R̃(x) + η log q(i)

)
+ η log q(i)(x)− λ

)
dx

+ ηε+ λ

=(1 + η)

∫
x
q?(x; η, λ)dx + ηε+ λ.

40

Variational Inference by Policy Search

As strong duality holds due to Slater’s condition (Boyd and Vandenberghe, 2004), we can
find the optimal distribution q?(x; η, λ) by minimizing the dual function with respect to η
and λ and then using the optimal step size η? and Lagrangian multiplier λ? to compute
q?(x; η?, λ?) according to Equation 24. The partial derivatives are given by

∂G(η, λ)

∂η
= ε+

∫
x
q?(x; η, λ)dx + (1 + η)

∫
x
q?(x; η, λ)

(log q(i)(x)− 1

1 + η
− log q?(x; η, λ)

(1 + η)

)
dx

= ε−
∫
x
q?(x; η, λ)

(
log q?(x; η, λ)− log q(i)

)
dx

and

∂G(η, λ)

∂λ
= −

∫
x
q?(x; η, λ)dx + 1,

where the optimal Lagrangian multiplier λ?(η) for a given η normalizes q?(x; η, λ?), that is,

∂G(η, λ?)

∂λ
= 0⇔

∫
x
q?(x; η, λ?)dx = 1.

Hence, we can perform coordinate descent by alternately updating η along its partial deriva-
tive and computing the optimal λ. Such procedure corresponds to optimizing the dual

G(η) = (1 + η)

∫
x
q?(x; η, λ?)dx + ηε+ λ?(η) = 1 + η + ηε+ λ?(η) (25)

based on the gradient

∂G(η)

∂η
= ε−KL(q?(x; η, λ?)||q(i)(x)).

We will now express the approximation of the previous iteration q(i)(x) in terms of its
natural parameters Q(i) and q(i) and the reward surrogate as

R̃(x) = −1

2
x>R(i)x + x>r(i).

Then, according to Equation 24, the optimal distribution

q?(x; η) = exp
(η logZ(Q(i),q(i))− λ?(η)− 1− η

1 + η

)
· exp

(
− 1

2
x>

R(i) + ηQ(i))

1 + η
x + x>

r(i) + ηq(i))

1 + η

) (26)

is Gaussian with natural parameters

Q(η) =
η

η + 1
Q(i) +

1

η + 1
R(i), q(η) =

η

η + 1
q(i) +

1

η + 1
r(i).

41

Arenz, Zhong and Neumann

103 104 105 106 107

function evaluations

10 3

10 2

10 1

M
M

D
uniform
Mahalanobis
forward
reverse

(a) GMM (20D)

101 102 103 104

time [s]

10 3

10 2

10 1

M
M

D

uniform
Mahalanobis
forward
reverse

(b) GMM (20D)

103 104 105 106

function evaluations

10 3

10 2

10 1

M
M

D

uniform
Mahalanobis
forward
reverse

(c) Goodwin

101 102 103 104

time [s]

10 3

10 2

10 1

M
M

D

uniform
Mahalanobis
forward
reverse

(d) Goodwin

Figure 10: Using the Mahalanobis distance as dissimilarity measure results in similar sample
efficiency compared to using the KL divergence while adding less computational
overhead.

Further, we can see from Equation 26 and the optimality condition
∫
x q(x; η, λ?) = 1, that

λ?(η) =− (1 + η) log

∫
x

exp
(
− 1

2
x>

R(i) + ηQ(i))

1 + η
x + x>

r(i) + ηq(i))

1 + η

)
dx− 1− η

+ η logZ(Q(i),q(i))

=η logZ(Q(i),q(i))− (1 + η) logZ(Q(η),q(η))− 1− η. (27)

Using Equation 27 and Equation 25, the dual function can be expressed as

G(η) = ηε+ η logZ(Q(i),q(i))− (1 + η) logZ(Q(η),q(η)). (28)

Appendix B. Effects of Different Dissimilarity Measures for Sample
Selection

VIPS++ uses the Mahalanobis distance to the mean of the distributions in the sample
database as dissimilarity measure for sample selection according to Equation 19. We com-
pared this choice to different dissimilarity measures, namely KL (q(x|o)||Nxi(x)) (denoted
as reverse KL) and KL (Nxi(x||q(x|o))) (denoted as forward) and against using a uniform
distribution instead of Equation 19. The results are shown in Figure 10.

Appendix C. Pseudo-Code for Sample Selection

The procedure for selecting relevant samples from the database is shown in Algorithm 4.

Appendix D. Approximating the Initial Reward and Sensitivity
Regarding its Hyper-parameter

We approximate the initial reward of a new component based on the approximation given
by Equation 23 because it is simpler and more efficient and unlikely to affect the selected
candidate. Please note that the difference between the log-sum-exp and the maximum is
numerically zero unless for candidates where the density of the current mixture model is
close to the threshold. In such case the log-sum-exp can be larger by at most log(2).

42

Variational Inference by Policy Search

Algorithm 4 Identifying relevant samples in the database

Require: database S = {(x0, log p̃(x0),Nx0), . . . , (xN , log p̃(xN),NxN)}
Require: number of components in the approximation, No

Require: desired number of samples that should be reused per component, nreuse

1: function select samples
2: X⊂ ← {}
3: for o = 1 . . . No do
4: nadded ← 0
5: h(·, o)← compute for each distinct component in the database according to (19)
6: while nadded < nreuse do
7: i ∼ h(·, o) . choose a distribution by sampling h(i, o)
8: h(·, o)← remove element i and normalize
9: for each sample xj of component Ni do

10: if xj 6∈ X⊂ then
11: X⊂ ← X⊂ ∪ xj
12: end if
13: nadded ← nadded + 1 . also count xj if it was already added
14: if nadded == nreuse then
15: break
16: end if
17: end for
18: end while
19: end for
20: return X⊂
21: end function

43

Arenz, Zhong and Neumann

Furthermore, during our experiments we did not exploit that the initial entropy of
the new component can already be computed before deciding on the mean of the new
component. Hence, we estimated the density at its mean as

qxs(xs|on) ≈ max
xi∈Xtotal

log q(xi), (29)

since the current approximation needs to be evaluated anyway on each candidate for the first
operand of the maximum operator in Equation 23. In the main document we presented the
more principled, exact computation of qxs(xs|on) to improve clarity. However, in practice
the difference between the described heuristic and the implemented heuristic is negligible
because the errors that are introduced by the approximation are small compared to the
variations of the assumed log weight log q(on).

For varying the (negated) assumed initial weights we specify several different values in
an array ∆ = [1000, 500, 200, 100, 50] and pick one of these values ∆j by cycling through
this array. The adding heuristic is thus computed as

R̃xs(on) = R(xs)−max
(

log q(xs), max
xi∈Xtotal

log q(xi)−∆j

)
. (30)

Instead of pre-specifying the possible values for the assumed initial weights, it would also
be possible to sample continuous values from a given distribution. However, for small
changes in the assumed initial weight the heuristic would typically select qualitatively similar
candidates and, thus, it is simpler to specify a few values that relate to different levels of
exploration than to specify a distribution. It would also be possible to specify a single
value ∆, however, this would add a hyper-parameter that has to be tuned depending on
the experiment. Furthermore, switching between different levels of exploration can be more
efficient because we do not only want to add components close to missing modes, but also
close to modes that are already covered in order to approximate them better. Figure 11
shows learning curves for different values of ∆ on the planar robot experiment with four
goals, which features several disconnected non-Gaussian modes. Here, varying the values
performed better than any fixed assumed value for the initial weight. Figure 12 shows
the different initial means that would have been chosen depending on the assumed initial
weight. The selected candidates are sensible for a large range of ∆.

Appendix E. Scaling a Gaussian to Obtain a Desired Entropy

We want to find the scaling factor c to obtain a desired entropy Hinit for a Gaussian distri-
bution with given covariance matrix Σ of order n× n.

H(Σ; c) =
1

2
log |2πecΣ|

=
1

2
n log(c) +

1

2
log |2πeΣ| !

= Hinit ⇒ c = exp
(1

n
(2Hinit − log |2eπΣ|)

)
44

Variational Inference by Policy Search

105 106

function evaluations

10 1M
M

D

50
100
200
500
1000
10000
1e14
[1000,500,200,100,50]

Figure 11: We evaluated the MMD for the planar robot experiment with four goals for
different fixed values ∆ of the assumed initial log-weight (negated) as well as for
varying values. Varying the value (VIPS++) performed better than any fixed
value that we tested. However, the experiment with ∆ = 500 indicates that
tuning a fixed value may also perform well.

Appendix F. Goodwin Model

The Goodwin model is defined as

dx1

dt
=

a1

1 + a2x
ρ
g
− αx1

dx2

dt
= k1x1 − αx2

...

dxg
dt

= kg−1xg−1 − αxg,

(31)

where x1 represents the concentration of mRNA for a target gene, x2 represents the corre-
sponding protein product of the gene, and x3 to xg are intermediate protein species that
ultimately lead to a negative feedback, via xg, on the rate at which mRNA is transcribed.
We consider g = 9 intermediate species and assume that the parameters ρ = 10 and α = 0.53
are known. We put a Gamma prior with shape 2 and rate 1 on the remaining 10 parameters
a1, a2 and κ1 . . . κ8 that need to be inferred. We use the prior also to randomly choose their
true values. For an initial condition x0 = 0, we create 81 noisy observations o1...81 of x1

and x2 using steps of dt = 1. We assume Gaussian observation noise with zero mean and
variance σ2 = 0.2 and discard the first 40 observations. The posterior distribution is given
by

p(a1, a2, κ1, . . . , κ8|o40...81) =
1

Z
p(a1)p(a2)

8∏
i=1

p(κi)

81∏
t=40

pt(ot|a1, a2, κ1, . . . , κ8), (32)

45

Arenz, Zhong and Neumann

Iteration 0, = 1000 >=0 Iteration 1, = 500 >=0
>=10
>=50

Iteration 2, = 200 >=0
>=70

Iteration 3, = 100 >=0
>=20
>=80

Iteration 4, = 50 >=0
>=20

Iteration 5, = 1000 >=0
>=10
>=30
>=90

Iteration 6, = 500 >=0
>=80

Iteration 7, = 200 >=0
>=20
>=80

Iteration 8, = 100 >=0
>=20
>=40
>=70

Iteration 9, = 50 >=0
>=40
>=50
>=80

Iteration 10, = 1000 >=0
>=20
>=30
>=40
>=80

Iteration 11, = 500>=0
>=10
>=20
>=30
>=50
>=80
>=90

Iteration 12, = 200 >=0
>=10
>=20
>=70
>=80

Iteration 13, = 100 >=0
>=10
>=30
>=40
>=50
>=70
>=80

Iteration 14, = 50 >=0
>=10
>=30
>=70
>=80
>=90

Iteration 15, = 1000 >=0
>=10
>=20
>=30
>=70
>=90
>=100
>=110

Iteration 16, = 500 >=0
>=10
>=20
>=30
>=70
>=80
>=100
>=110

Iteration 17, = 200>=0
>=10
>=20
>=30
>=50
>=70
>=100
>=120

Iteration 18, = 100 >=0
>=10
>=20
>=30
>=40
>=60
>=70
>=110

Iteration 19, = 50 >=0
>=10
>=20
>=30
>=40
>=60
>=80
>=90
>=100
>=110
>=150

Iteration 20, = 1000 >=0
>=10
>=20
>=30
>=40
>=60
>=70
>=90
>=120
>=150
>=160
>=170
>=190
>=480

Iteration 21, = 500 >=0
>=10
>=20
>=40
>=70
>=90
>=110
>=120
>=130
>=170
>=180
>=210
>=240
>=370
>=550
>=660

Iteration 22, = 200 >=0
>=10
>=20
>=30
>=60
>=90
>=100
>=140
>=250
>=260
>=310
>=380
>=530
>=620
>=790

Iteration 23, = 100 >=0
>=10
>=20
>=30
>=40
>=50
>=90
>=110
>=120
>=170
>=180
>=230
>=240
>=250
>=280
>=320
>=360
>=650
>=750

Iteration 24, = 50>=0
>=10
>=20
>=30
>=40
>=90
>=100
>=120
>=130
>=170
>=230
>=260
>=970

Iteration 25, = 1000>=0
>=10
>=20
>=30
>=40
>=50
>=60
>=80
>=100
>=140
>=170
>=260
>=280
>=900

Iteration 26, = 500>=0
>=10
>=20
>=30
>=40
>=50
>=70
>=80
>=90
>=110
>=160
>=170
>=280
>=320
>=930

Iteration 27, = 200>=0
>=10
>=20
>=30
>=40
>=60
>=80
>=140
>=210
>=230
>=360
>=420
>=440
>=470
>=520

Iteration 28, = 100 >=0
>=10
>=20
>=30
>=40
>=80
>=90
>=100
>=110
>=130
>=200
>=210
>=250
>=330
>=460

Iteration 29, = 50 >=0
>=10
>=20
>=30
>=40
>=60
>=70
>=100
>=120
>=170
>=220
>=250
>=320
>=450

Figure 12: The plots show the candidates selected by the heuristic (Equation 30) for val-
ues of ∆ from 0 to 1000 in steps of 10 on the planar robot experiment with 4
goal positions for the first 30 iterations. At each iteration a new component is
added based on the value shown in the title. These components are colored in
black. Often the same candidate is selected for large ranges of ∆. All selected
candidates seem reasonable. However, although all candidates reach one of the
desired goal positions, the configurations can be less smooth (resulting in low
likelihood due to the prior) for large values of ∆, which can be seen especially at
iterations 20-23. While optimizing such components may require more iterations
and samples, they are also more likely to discover a new mode. For example,
the component added at iteration 20 is the first component that reaches the top
goal position from the left side.

46

Variational Inference by Policy Search

where pt(ot|a1, a2, κ1, . . . , κ8) is a Gaussian distribution with variance σ2 = 0.2 and a mean
which is computed by numerically integrating the ODE (Equation 31).

Appendix G. Planar Robot Experiment

The x and y coordinate of the end-effector are given by

x(θ) =

10∑
i=1

cos

 i∑
j=1

θj

 , y(θ) =

10∑
i=1

sin

 i∑
j=1

θj

 .

The target distribution is given as the product of two distributions,

p(θ) =
1

Z
pconf(θ)pcart(θ),

where pconf(θ) enforces smooth configurations and pcart(θ) penalizes deviations from the goal
position. We model pconf(θ) as zero mean Gaussian distribution with diagonal covariance
matrix, where the angle of the first joint has a variance of 1 and the remaining joints have
a variance of 4e−2. We consider two experiments that differ in the choice of goal positions.
For the first experiment we specify a single goal position at position (7, 0) modeled by a
Gaussian distribution in Cartesian space with variance 1e−4 in both directions, namely

pcart,1(θ) = N
([
x(θ)
y(θ)

]
|
[
7
0

]
,

[
1e−4 0

0 1e−4

])
.

For the second experiment we specify four goal positions at positions (7, 0), (0, 7), (−7, 0)
and (0,−7). The likelihood pcart,2 is given by the maximum over the four respective Gaussian
distributions.

Appendix H. Number of Components

The average number of components learned by VIPS++ is shown in Figure 13.

Appendix I. Implementations

For our comparisons we relied on open-source implementations, preferably by the original
authors.

• For PTMCMC, we use an implementation by Ellis and van Haasteren (2017) that
uses adaptive proposal distributions for the individual chains. We roughly tuned the
number of chains for each experiment. As we could not run this implementation
on our cluster, we ran the experiments on a fast quad-core laptop and made use of
multi-threading. We therefore report four times the actual wall-clock time.

• For ESS, we use a Python implementation by Bovy (2013) that is based on the Matlab
implementation by Iain Murray. If the target distribution decomposes into a product
of a Gaussian prior and an arbitrary likelihood term, we directly provide this decom-
position to the algorithm. If the target distribution does not use a Gaussian prior,

47

Arenz, Zhong and Neumann

104 105 106 107 108

function evaluations

100

101

102

103

n
u
m

b
e
r

o
f

co
m

p
o
n
e
n
ts GMM (20D)

GMM (40D)
GMM (60D)
breast cancer
German credit
ionosphere
stop-and-frisk
Goodwin
planar robot (1 goal)
planar robot
 (1 goal, nadd = 1)

planar robot
 (4 goals, nadd = 1)

Figure 13: The average number of components learned by VIPS++ is plotted over function
evaluations for all experiments in the test bed. When using the faster adding
rate, nadd = 1, VIPS++ learns GMMs with approximately 350 components.

we choose an appropriate Gaussian distribution pprior(x) = N (x|0, αI) as prior and
provide it along with the resulting likelihood log plikelihood(x) = log p̃(x)− log pprior(x),
as described by Nishihara et al. (2014).

• Our comparisons with HMC are based on pyhmc (Nabney et al., 2018). We tuned
the step size and trajectory length for each experiment based on preliminary exper-
iments. We also performed some experiments with NUTS (Hoffman and Gelman,
2014), however, HMC with tuned parameters always outperformed the automatically
tuned parameters of NUTS.

• For slice sampling, we use a Python adaptation (Slavitt, 2013) of a Matlab implemen-
tation by Iain Murray and tuned the step size based on preliminary experiments.

• For SVGD, we use the implementation of the original authors (Liu and Wang, 2016)
and tune the step size based on preliminary experiments.

• For Variational Boosting, we use the implementation of the original authors (Miller
et al., 2017). However, this implementation is not optimized with respect to the
number of function evaluations and often uses an unnecessary large number of samples.
We therefore modified the implementation slightly. We also use their implementation
of NPVI for our experiments.

• For black-box variational inference and inverse autoregressive flows we used our own
implementation based on tensorflow (Abadi et al., 2015). The code for conducting
these experiments is available online.3 For black-box variational inference, we tuned
the learning rate as well as the number of samples per iteration (batch size). For

3. The implementation can be found at https://github.com/OlegArenz/tensorflow_VI.

48

https://github.com/OlegArenz/tensorflow_VI

Variational Inference by Policy Search

inverse autoregressive flows, we tuned the learning rate, the batch size, the number of
flows and the (common) width of the two hidden layers of the autoregressive networks
for each flow.

Appendix J. Considered Algorithms and Experiments

Table 1 provides an overview about which algorithms have been evaluated on which exper-
iments.

• Our implementations of IAF and BBVI use a different code base (based on Tensorflow
(Abadi et al., 2015)) for which we only implemented a subset of the experiments. How-
ever, we ensured that the test bed includes simple, unimodal experiments (German
credit and breast cancer) as well as the most challenging, multimodal experiments
that we considered (planar robot and GMM).

• We did not evaluate PTMCMC on the simple test problems where parallel Markov
chains would be wasteful.

• We did not evaluate HMC on the experiments with disconnected modes because we
do not expect it to mix efficiently on such problems.

• We tried to evaluate VBOOST and NPVI on all test problems. However, we could
not always obtain reliable results due to numerical problems that we could not fix
without major changes to the implementation.

• We only evaluated VIPS++ on the higher-dimensional GMM experiments because
it was the only method to solve the twenty-dimensional variant.

Appendix K. Alternatives for Learning Gaussian Variational
Approximations

VIPS++ uses a variant of MORE (which we denote as VIPS1) for learning Gaussian
variational approximations. However, it would also be possible to update the individual
components using black-box variational inference (Ranganath et al., 2014) or the reparam-
eterization trick, which assumes that the target distribution is differentiable. We compared
against these alternatives on breast cancer experiment as well as on the planar robot exper-
iment with a single goal position. The learning curves of the ELBO are shown in Figure 14.
For each experiment, we subtracted a constant offset from the ELBO such that the highest
(approximated) ELBO on each plot equals zero. Such relative ELBO ensures high resolu-
tion in the vicinity of the best ELBO on each of the plots. Please note that we use the
symmetric logarithm to scale the y-Axis. Remarkably, VIPS1 is significantly more efficient
than the reparameterization trick even though we do not require the gradient of the target
distribution. We also compared against a variant of VIPS1 that does not constrain the
KL divergence between updates. Such optimization is unstable as it exploits model errors
caused by the local surrogate.

49

Arenz, Zhong and Neumann

V P
B T S

V S N O M L B
I V E H P O C I I B
P G S M V S M C A V
S D S C I T C E F I

German Credit X X X X X X - X X X
Breast Cancer X X X X X - - X X X
Frisk X X X X X X - X - -
GMM X X X - - - X X X X
Planar (1 goal) X X X - X X X X X X
Ionosphere X X X X - - - X - -
Goodwin X X X X - - X X - -
Planar (4 goal) X X X - - - X X X X
GMM (Higher Dim.) X - - - - - - - - -

Table 1: The table shows which algorithms were applied to each test problem. New exper-
iment compared to our previous work (Arenz et al., 2018) are marked in bold.

103 104 105 106 107

function evaluations

104

103

102

101

100

0

re
la

tiv
e

EL
BO

bbvi
reparameterization
vips
vips (no trust region)

(a) breast cancer

103 104 105 106 107

function evaluations

105

104

103

102

101

100

0

re
la

tiv
e

EL
BO

bbvi
reparameterization
vips
vips (no trust region)

(b) planar robot (1 goal)

Figure 14: The proposed variant of MORE is significantly more efficient at optimizing
Gaussian variational approximations compared to stochastic gradients using the
reparameterization trick or black-box variational inference. By using locale sur-
rogate objectives, we require trust regions to ensure stable optimization.

50

Variational Inference by Policy Search

description value

KL bound for components 1e−2 ≤ ε(o) ≤ 5
number of desired samples (per dimension and component) 20
number of reused samples (per dimension and component) 40
adding rate for components 30 or 1
deletion rate for components 10
minimum weight 1e−6
initial weight 1e−29
∆ for adding-heuristic [1000, 500, 200, 100, 50]
`2-regularization for WLS 1e−14 ≤ κ ≤ 1e−6

Table 2: The table shows the hyper-parameters of VIPS++ as well as their values used
during the experiments. The bound on the KL-divergence and the coefficient for
`2-regularization when fitting the surrogates are automatically adapted within in
the provided ranges.

Appendix L. VIPS++ Hyper-Parameters

The hyper-parameters used for all experiments are given in Table 2.

Appendix M. Computing the Maximum Mean Discrepancy

We approximate the MMD between two sample sets X and Y as

MMD(X,Y) =
1

m2

m∑
i,j

k(xi,xj) +
1

n2

n∑
i,j

k(yi,yj)

− 2

mn

m∑
i

n∑
j

k(xi,yi).

We use a squared exponential kernel given by

k(x,y) = exp

(
− 1

α
(x− y)>Σ(x− y)

)
,

where Σ is a diagonal matrix where each entry is set to the median of squared distances
within the ground-truth set and the bandwidth α is chosen depending on the problem. As
true ground-truth samples are only available for the GMM experiment, we apply generalized
elliptical slice sampling (Nishihara et al., 2014) with large values for burn-in, thinning
and chain lengths to produce baseline samples that are regarded as ground-truth for the
remaining experiments. Note that obtaining these ground-truth samples is computationally
very expensive, taking up to two days of computation time on 128 CPU cores. We estimate
the MMD based on ten thousand ground-truth samples and two thousand samples from the
given sampling method. For MCMC methods, we choose the two thousand most promising
samples by applying a sufficient amount of burn-in and using the largest thinning that keeps
at least two thousand samples in the set.

51

Arenz, Zhong and Neumann

101 102 103 104 105

time [s]

10 3

10 2

10 1

M
M

D

bbvi1
bbvi3
ess
hmc
iaf
slice
svgd
vips++

German credit (Log. Reg.)

101 102 103 104

time [s]

10 3

10 2

10 1

100

M
M

D

bbvi1
bbvi3
ess
hmc
iaf
slice
svgd
vips++

breast cancer (Log. Reg.)

101 102 103 104

time [s]

10 3

10 2

10 1

100

M
M

D

ess
hmc
npvi
slice
svgd
vboost
vips++

stop-and-frisk (Poisson GLM)

101 102 103 104

time [s]

10 3

10 2

10 1

100

M
M

D

bbvi100
ess
iaf
ptmcmc(core time)
slice
svgd
vips++

GMM (20 dimensions)

101 102 103

time [s]

10 3

10 2

10 1

M
M

D

vips++ (20D)
vips++ (40D)
vips++ (60D)

GMM (different dimensions)

101 102 103 104 105

time [s]

10 2

10 1

100

M
M

D

bbvi10
ess
iaf
ptmcmc
slice
svgd
vips++ (nadd = 1)

planar robot (4 goals)

Figure 15: The maximum mean discrepancy with respect to baseline samples is plotted over
computational time on log-log plots for the different sampling problems in the
test bed.

Appendix N. Evaluations with Respect to Computational Time

Figure 15 shows the achieved MMDs with respect to time for the experiments that have
been omitted in the main document.

Appendix O. Evaluations with respect to ELBO

We also compared the achieved ELBO L(θ) between VIPS++, inverse autoregressive flows
(IAF) and black-box variational inference (BBVI). We approximate the ELBO based on
2000 samples from the learned approximation. The respective learning curves are shown in
Figure 16 where we subtracted a constant offset as described in Appendix K.

Appendix P. Visualization of Samples for planar robot experiments

Samples obtained by BBVI, IAF, PTMCMC and VIPS++ for the planar robot experiment
with one goal and four goals are shown in Figure 17 and Figure 18, respectively.

52

Variational Inference by Policy Search

104 105 106 107 108

function evaluations
106

105

104

103

102

101

100

0

re
la

tiv
e

EL
BO

bbvi100
iaf
vips++
vips++ (nadd = 1)

planar robot (1 goal)

103 104 105 106 107

function evaluations

103

102

101

100

0

re
la

tiv
e

EL
BO

bbvi100
iaf
vips++

GMM (20 dimensions)

104 105 106 107 108

function evaluations

105

104

103

102

101

100

0

re
la

tiv
e

EL
BO

bbvi100
iaf
vips++ (nadd = 1)

planar robot (4 goals))

104 105 106 107

function evaluations

105

104

103

102

101

100

0

re
la

tiv
e

EL
BO

bbvi1
bbvi3
iaf
vips++

breast cancer

104 105 106 107

function evaluations

105

104

103

102

101

100

0

re
la

tiv
e

EL
BO

bbvi1
bbvi3
iaf
vips++

German credit

Figure 16: In contrast to the evaluation with respect to the MMD, all methods improve
on the ELBO during learning, which is expected as the respective optimiza-
tion problems aim to maximize the ELBO. Interestingly, IAF achieves a similar
ELBO on the simpler planar robot experiment as VIPS++, although it per-
formed significantly worse on the MMD. We verified that IAF achieves a similar
approximated entropy as VIPS++, which is surprising since the learned approx-
imation only sampled from one of the two main configurations (see Figure 17).
We hypothesize that even the large GMMs learned by VIPS++ are not able to
cover the modes as well as the normalizing flows.

0 1 2 3 4 5 6 7
4

3

2

1

0

1

2

3

4

BBVI

0 1 2 3 4 5 6 7
4

3

2

1

0

1

2

3

4

IAF

0 1 2 3 4 5 6 7
4

3

2

1

0

1

2

3

4

PTMCMC

0 1 2 3 4 5 6 7
4

3

2

1

0

1

2

3

4

VIPS++

Figure 17: 200 sampled configurations are shown for the first training run for the planar
robot experiment with a single goal. For the variational inference methods
BBVI, IAF and VIPS++, the plots show samples of the final learned model. For
PTMCMC, the plots show the 200 most promising samples, which are obtained
by applying a sufficient amount of burn-in and using the largest thinning that
keeps at least 200 samples in the set.

53

Arenz, Zhong and Neumann

6 4 2 0 2 4 6

6

4

2

0

2

4

6

BBVI

6 4 2 0 2 4 6

6

4

2

0

2

4

6

IAF

6 4 2 0 2 4 6

6

4

2

0

2

4

6

PTMCMC

6 4 2 0 2 4 6

6

4

2

0

2

4

6

VIPS++

Figure 18: A thousand sampled configurations are shown for the first training run for the
planar robot experiment with four goals. For the variational inference methods
BBVI, IAF and VIPS++, the plots show samples of the final learned model.
For PTMCMC, the plots show the thousand most promising samples, which
are obtained by applying a sufficient amount of burn-in and using the largest
thinning that keeps at least thousand samples in the set.

54

Variational Inference by Policy Search

References

M. Abadi, M. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

A. Abdolmaleki, R. Lioutikov, N. Lua, L. Paulo Reis, J. Peters, and G. Neumann. Model-
based relative entropy stochastic search. In Advances in Neural Information Processing
Systems (NeurIPS), pages 153–154, 2015.

A. Abdolmaleki, B. Price, N. Lau, L. P. Reis, and G. Neumann. Deriving and improv-
ing cma-es with information geometric trust regions. In The Genetic and Evolutionary
Computation Conference (GECCO 2017), July 2017.

F. V. Agakov and D. Barber. An auxiliary variational method. In International Conference
on Neural Information Processing, pages 561–566. Springer, 2004.

R. Akrour, A. Abdolmaleki, H. Abdulsamad, J. Peters, and G. Neumann. Model-free
trajectory-based policy optimization with monotonic improvement. Journal of Machine
Learning Research (JMLR), 19(14), 2018.

J. Altosaar, R. Ranganath, and D. M. Blei. Proximity variational inference. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

O. Arenz, M. Zhong, and G. Neumann. Efficient gradient-free variational inference using
policy search. In International Conference on Machine Learning (ICML), 2018.

C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer-Verlag New York, 2006.

C. M. Bishop, N. D. Lawrence, T. Jaakkola, and M. I. Jordan. Approximating poste-
rior distributions in belief networks using mixtures. In Advances in Neural Information
Processing Systems (NeurIPS), pages 416–422, 1998.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statis-
ticians. Journal of the American Statistical Association, 2017.

J. Bovy. Python implementation of elliptical slice sampling, 2013. URL https://github.

com/jobovy/bovy_mcmc.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound con-
strained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.

55

https://www.tensorflow.org/
https://github.com/jobovy/bovy_mcmc
https://github.com/jobovy/bovy_mcmc

Arenz, Zhong and Neumann

B. Calderhead. A general construction for parallelizing Metropolis-Hastings algorithms.
Proceedings of the National Academy of Sciences of the United States of America (PNAS),
Nov 2014.

B. Calderhead and M. Girolami. Estimating Bayes factors via thermodynamic integration
and population mcmc. Computational Statistics & Data Analysis, 53(12):4028–4045,
2009.

X. Chen, M. Monfort, A. Liu, and B. D. Ziebart. Robust covariate shift regression. In
International Conference on Artificial Intelligence and Statistics, pages 1270–1279, 2016.

R. Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In Inter-
national conference on computers and games, pages 72–83. Springer, 2006.

C. Daniel, G. Neumann, and J. Peters. Hierarchical relative entropy policy search. In
International Conference on Artificial Intelligence and Statistics (AISTATS), 2012.

C. Daniel, G. Neumann, O. Kroemer, and J. Peters. Hierarchical relative entropy policy
search. Journal of Machine Learning Research (JMLR), 17:1–50, June 2016. URL http:

//eprints.lincoln.ac.uk/25743/.

M. P. Deisenroth, G. Neumann, and J. Peters. A survey on policy search for robotics.
Foundations and Trends in Robotics, pages 388–403, 2013.

L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components estimation.
arXiv preprint arXiv:1410.8516, 2014.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. arXiv
preprint arXiv:1605.08803, 2016.

P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo, and J. Miguez.
Particle filtering. IEEE signal processing magazine, 20(5):19–38, 2003.

A. Doucet, N. De Freitas, and N. Gordon. An introduction to sequential monte carlo
methods. In Sequential Monte Carlo methods in practice, pages 3–14. Springer, 2001.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics
Letters B, 195(2):216–222, 1987.

D. J. Earl and M. W. Deem. Parallel tempering: Theory, applications, and new perspectives.
Physical Chemistry Chemical Physics, 7(23):3910–3916, 2005.

J. Ellis and R. van Haasteren. jellis18/ptmcmcsampler: Official release, 2017. URL https:

//doi.org/10.5281/zenodo.1037579.

F. End, R. Akrour, J. Peters, and G. Neumann. Layered direct policy search for learning
hierarchical skills. In International Conference on Robotics and Automation (ICRA),
2017.

56

http://eprints.lincoln.ac.uk/25743/
http://eprints.lincoln.ac.uk/25743/
https://doi.org/10.5281/zenodo.1037579
https://doi.org/10.5281/zenodo.1037579

Variational Inference by Policy Search

K. Fan, Z. Wang, J. Beck, J. T. Kwok, and K. Heller. Fast second-order stochastic backprop-
agation for variational inference. In Advances in Neural Information Processing Systems
(NeurIPS), pages 1387–1395, 2015.

M. Germain, K. Gregor, I. Murray, and H. Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning (ICML), pages
881–889, 2015.

S. J. Gershman, M. D. Hoffman, and D. M. Blei. Nonparametric variational inference. In
International Conference on Machine Learning (ICML), 235–242, 2012.

B.C. Goodwin. Oscillatory behavior in enzymatic control processes. Advances in Enzyme
Regulation, 3:425–437, 1965.

W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud. FFJORD:
free-form continuous dynamics for scalable reversible generative models. In International
Conference on Learning Representations (ICLR), 2019.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-
sample test. Journal of Machine Learning Research (JMLR), 13:723–773, March 2012.
ISSN 1532-4435.

F. Guo, X. Wang, K. Fan, T. Broderick, and D. B. Dunson. Boosting variational inference.
arXiv:1611.05559v2 [stat.ML], 2016.

T. C. Hesterberg. Advances in Importance Sampling. PhD thesis, Stanford University, 1988.

M. D. Hoffman and A. Gelman. The no-u-turn sampler: Adaptively setting path lengths
in Hamiltonian Monte Carlo. Journal of Machine Learning Research (JMLR), 15(1):
1593–1623, 2014.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference.
Journal of Machine Learning Research (JMLR), 14(4):1303–1347, 2013.

C. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural autoregressive flows. In
International Conference on Machine Learning (ICML), pages 2078–2087, 2018.

T. S. Jaakkola and M. I. Jordan. Improving the mean field approximation via the use of
mixture distributions. Learning in Graphical Models, 89:163–174, 1998.

M. E. Khan, R. Babanezhad, W. Lin, M. Schmidt, and M. Sugiyama. Faster stochastic
variational inference using proximal-gradient methods with general divergence functions.
In Conference on Uncertainty in Artificial Intelligence (UAI), pages 319–328, 2016.

M. E. E. Khan, P. Baqué, F. Fleuret, and P. Fua. Kullback-leibler proximal variational
inference. In Advances in Neural Information Processing Systems (NeurIPS), pages 3402–
3410, 2015.

D. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014.

57

Arenz, Zhong and Neumann

D. P. Kingma and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in Neural Information Processing Systems (NeurIPS), pages 10215–10224,
2018.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improved
variational inference with inverse autoregressive flow. In Advances in Neural Information
Processing Systems (NeurIPS), pages 4743–4751, 2016.

A. Kong, J. S. Liu, and W. H. Wong. Sequential imputations and bayesian missing data
problems. Journal of the American Statistical Association, 89(425):278–288, 1994.

S. Levine and V. Koltun. Guided policy search. In International Conference on Machine
Learning (ICML), pages 1–9, 2013.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/

ml.

L. Lin. Reinforcement learning for robots using neural networks. Technical report, Carnegie-
Mellon Univ Pittsburgh PA School of Computer Science, 1993.

Q. Liu and D. Wang. Stein variational gradient descent: A general purpose Bayesian
inference algorithm. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems (NeurIPS), pages 2378–2386.
Curran Associates, Inc., 2016.

L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary deep generative
models. In International Conference on Machine Learning (ICML), pages 1445–1454,
2016.

H. Mania, A. Guy, and B. Recht. Simple random search of static linear policies is competitive
for reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
(NeurIPS), pages 1803–1812. Curran Associates, Inc., 2018.

A. C. Miller, N. J. Foti, A. D’Amour, and R. P. Adams. Variational boosting: Iteratively
refining posterior approximations. In International Conference on Machine Learning
(ICML), 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

I. Murray, R. Adams, and D. MacKay. Elliptical slice sampling. In International Conference
on Artificial Intelligence and Statistics, pages 541–548, 2010.

I. T. Nabney, A. Vehtari, Koepsell K., and McGibbon R. T. pyhmc: Hamiltonian Monte
Carlo in python, 2018. URL https://github.com/rmcgibbo/pyhmc.

R. Neal and G. E. Hinton. A view of the em algorithm that justifies incremental, sparse,
and other variants. In Learning in Graphical Models, pages 355–368. Kluwer Academic
Publishers, 1998.

58

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://github.com/rmcgibbo/pyhmc

Variational Inference by Policy Search

R. M. Neal. Sampling from multimodal distributions using tempered transitions. Statistics
and Computing, 6(4):353–366, Dec 1996.

R. M. Neal. Slice sampling. The Annals of Statistics, 31(3):705–767, 06 2003. doi: 10.1214/
aos/1056562461.

G. Neu, A. Jonsson, and V. Gómez. A unified view of entropy-regularized Markov decision
processes. arXiv preprint arXiv: 1705.07798, 2017. URL http://arxiv.org/abs/1705.

07798.

R. Nishihara, I. Murray, and R. P. Adams. Parallel mcmc with generalized elliptical slice
sampling. Journal of Machine Learning Research (JMLR), 15(1):2087–2112, January
2014.

G. Papamakarios, T. Pavlakou, and I. Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems (NeurIPS), pages
2338–2347, 2017.

J. Peters, K. Muelling, and Y. Altun. Relative entropy policy search. In AAAI Conference
on Artificial Intelligence, 2010.

C. Peterson and E. Hartman. Explorations of the mean field theory learning algorithm.
Neural Networks, 2(6):457–494, 1989.

T. Rainforth, Y. Zhou, X. Lu, Y. W. Teh, F. Wood, H. Yang, and J. van de Meent. Inference
trees: Adaptive inference with exploration. arXiv preprint arXiv:1806.09550, 2018.

R. Ranganath, S. Gerrish, and D. Blei. Black box variational inference. Artificial Intelligence
and Statistics, pages 814–822, 2014.

R. Ranganath, D. Tran, and D. Blei. Hierarchical variational models. In International
Conference on Machine Learning (ICML), pages 324–333, 2016.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The
MIT Press, 2006.

J. Regier, M. I. Jordan, and J. McAuliffe. Fast black-box variational inference through
stochastic trust-region optimization. In Advances in Neural Information Processing Sys-
tems (NeurIPS), pages 2399–2408, 2017.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In International
Conference on Machine Learning (ICML), pages 1530–1538, 2015.

D. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International Conference on Machine Learning
(ICML), pages 1278–1286, 2014.

G. O. Roberts and O. Stramer. Langevin diffusions and Metropolis-Hastings algorithms.
Methodology and Computing in Applied Probability, 4(4):337–357, 2002.

59

http://arxiv.org/abs/1705.07798
http://arxiv.org/abs/1705.07798

Arenz, Zhong and Neumann

T. Salimans and D. A. Knowles. Fixed-form variational posterior approximation through
stochastic linear regression. Bayesian Analysis, 8(4):837–882, 2013.

T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

L. K. Saul, T. Jaakkola, and M. I. Jordan. Mean field theory for sigmoid belief networks.
Journal of Artificial Intelligence Research, 4:61–76, 1996.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. International
Conference on Learning Representations (ICLR), 2016.

J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz. Trust region policy opti-
mization. In International Conference on Machine Learning (ICML), 2015.

S. Shirakawa, Y. Akimoto, K. Ouchi, and K. Ohara. Sample reuse in the covariance matrix
adaptation evolution strategy based on importance sampling. In Annual Conference on
Genetic and Evolutionary Computation, pages 305–312, 2015.

I. Slavitt. Python implementation of slice sampling, 2013. URL https://isaacslavitt.

com/2013/12/30/metropolis-hastings-and-slice-sampling/.

R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, Boston, MA, 1998.

L. Theis and M. Hoffman. A trust-region method for stochastic variational inference with ap-
plications to streaming data. In International Conference on Machine Learning (ICML),
pages 2503–2511. PMLR, 2015.

D. Tran, R. Ranganath, and D. M. Blei. The variational gaussian process. In International
Conference on Learning Representations (ICLR), 2016.

E. Uchibe. Efficient sample reuse in policy search by multiple importance sampling. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages 545–552,
2018.

T. Weber, N. Heess, A. Eslami, J. Schulman, D. Wingate, and D. Silver. Reinforced vari-
ational inference. In Advances in Neural Information Processing Systems (NeurIPS)
Workshops, 2015.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256, 1992.

O. Zobay. Variational Bayesian inference with Gaussian-mixture approximations. Electronic
Journal of Statistics, 8(1):355–389, 2014. doi: 10.1214/14-EJS887.

60

https://isaacslavitt.com/2013/12/30/metropolis-hastings-and-slice-sampling/
https://isaacslavitt.com/2013/12/30/metropolis-hastings-and-slice-sampling/

	Introduction
	Preliminaries
	Problem formulation
	Model-Based Relative Entropy Stochastic Search
	Adapting MORE to Variational Inference

	Variational Inference by Policy Search
	Learning a GMM Approximation
	Variational Lower Bound
	M-Step for Component Updates
	M-Step for Weight Updates

	Sample Reuse by Importance Weighting
	Importance Weighting for Updating the Mixture Weights
	Importance Weighting for Fitting the Quadratic Surrogates

	Sample Selection
	Drawing new samples

	Adapting the Number of Components
	Deleting Bad Components
	Initializing the Mean of New Components
	Initializing the Covariance Matrix of New Components

	Related Work
	Variational Inference
	Sampling
	Reinforcement Learning

	Experiments
	Sampling Problems
	Bayesian Logistic Regression
	Multi-Level Poisson GLM
	GP Regression
	Goodwin Model
	Gaussian Mixture Model
	Planar Robot

	Ablations
	Adapting the number of components
	Initializing the covariance matrices
	Sample Reusage

	Illustrative Experiment
	Considered Competitors
	Hyper-Parameters
	Results
	Discussion

	Conclusion and Future Work
	VIPS1 Derivations
	Effects of Different Dissimilarity Measures for Sample Selection
	Pseudo-Code for Sample Selection
	Approximating the Initial Reward and Sensitivity Regarding its Hyper-parameter
	Scaling a Gaussian to Obtain a Desired Entropy
	Goodwin Model
	Planar Robot Experiment
	Number of Components
	Implementations
	Considered Algorithms and Experiments
	Alternatives for Learning Gaussian Variational Approximations
	VIPS++ Hyper-Parameters
	Computing the Maximum Mean Discrepancy
	Evaluations with Respect to Computational Time
	Evaluations with respect to ELBO
	Visualization of Samples for planar robot experiments

