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Abstract

Inference from complex distributions is a com-
mon problem in machine learning needed for
many Bayesian methods. We propose an efficient,
gradient-free method for learning general GMM
approximations of multimodal distributions based
on recent insights from stochastic search methods.
Our method establishes information-geometric
trust regions to ensure efficient exploration of the
sampling space and stability of the GMM updates,
allowing for efficient estimation of multi-variate
Gaussian variational distributions. For GMMs,
we apply a variational lower bound to decompose
the learning objective into sub-problems given
by learning the individual mixture components
and the coefficients. The number of mixture com-
ponents is adapted online in order to allow for
arbitrary exact approximations. We demonstrate
on several domains that we can learn significantly
better approximations than competing variational
inference methods and that the quality of sam-
ples drawn from our approximations is on par
with samples created by state-of-the-art MCMC
samplers that require significantly more computa-
tional resources.

1. Introduction
We consider the problem of sampling or inference using
a complex probability distribution p∗(x) = p̃∗(x)/Z for
which we can evaluate p̃∗(x) but not the normalization
constant Z =

∫
x
p̃∗(x)dx. This problem is ubiquitous in

machine leaning. For example, in Bayesian Inference, p̃∗(x)
corresponds to the product of prior and likelihood.

As we can not sample directly from distribution p∗(x) or
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use it for inference, a common approach is to use Varia-
tional Inference (VI) to approximate the target distribution
p∗(x) with a tractable distribution p such as multi-variate
Gaussians (Blei et al., 2017; Regier et al., 2017) or Gaussian
Mixture Models (GMM) (Miller et al., 2017; Guo et al.,
2016; Zobay, 2014). The optimization problem to obtain
this approximation is commonly framed as minimizing the
reverse Kullback-Leibler divergence (KL)

KL(p||p∗) =
∫
x

p(x;θ) log

(
p(x;θ)

p∗(x)

)
dx (1)

with respect to the parameters θ of the approximation. This
objective is typically evaluated on samples drawn from
p(x;θ) and optimized by stochastic optimization algorithms
(Fan et al., 2015; Gershman et al., 2012). However, in order
to perform the KL minimization efficiently, p(x) is often re-
stricted to belong to a simple family of models or is assumed
to have non-correlating degrees of freedom (Blei et al., 2017;
Peterson & Hartman, 1989), which is known as the mean
field approximation. Unfortunately, such restrictions can
introduce significant approximation errors.

Our approach focuses on learning multivariate Gaussian
Mixture Models (GMMs) with full covariance matrices for
approximating the target distribution. GMMs are desirable
for VI, because they are capable of representing any continu-
ous probability density function arbitrarily well, while infer-
ence with GMMs is relatively cheap. Naturally, variational
inference with GMM approximations has been considered
in the past. However, in order to make the minimization
of objective (1) feasible, previous work either assumed fac-
torized (Jaakkola & Jordan, 1998; Bishop et al., 1998) or
isotropic (Gershman et al., 2012) mixture components or
applied boosting by successively adding and optimizing new
components while keeping previously added components
fixed (Miller et al., 2017; Guo et al., 2016).

As areas of high density p̃∗(x) are initially unknown, Varia-
tional Inference can essentially be seen as a search problem
that is inflicted by the exploration-exploitation dilemma
which is typical for reinforcement learning or policy search
problems. The algorithms need to explore the sample
space in order to ensure that all relevant areas are covered
while they also need to exploit the current approximation
p(x;θ) in order to fine tune p(x;θ) in areas of high density.
This exploration-exploitation based view is so far under-
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developed in the Variational Inference community but es-
sential to achieve good approximations with a small number
of function evaluations.

Our method transfers information-geometric insights used
in Policy Search (Deisenroth et al., 2013) and Reinforce-
ment Learning (Sutton & Barto, 1998) on solving such
exploration-exploitation dilemma efficiently. We therefore
call our algorithm Variational Inference by Policy Search
(VIPS). We extend the stochastic search method MORE (Ab-
dolmaleki et al., 2016) to the variational inference setup and
show that this version of MORE can efficiently learn single
multivariate Gaussian variational distributions. We further
extend the algorithm for training GMM distributions using a
variational lower bound that enables us to train the mixture
components and the coefficients individually. Our optimiza-
tion starts from an initial mixture model (e.g. a Gaussian
prior) and the number of components is adapted online by
adding components in promising regions and by deleting
components with negligible weight.

We compare our method to other state-of-the-art VI methods
(Miller et al., 2017; Gershman et al., 2012) and show that our
algorithm can find approximations of much higher quality
with significantly less evaluations of p̃∗(x). We further
compare to existing sampling methods (Murray et al., 2010;
Neal, 2003; Calderhead, 2014; Liu & Wang, 2016) and show
that we can achieve similar sample quality with order of
magnitudes less function evaluations.

2. Preliminaries
We will now formalize the problem statement and introduce
relevant concepts from information-geometric policy search.

2.1. Problem formulation

As stated above, we want to minimize the KL divergence
between the approximation p and the target distribution p∗.
This direct minimization is infeasible as the normalization
constant of p∗ is unknown, however, it can be easily shown
that the objective can be rewritten as

KL(p||p∗) =
∫
x

p(x;θ) log
p(x;θ)

p̃∗(x)
dx︸ ︷︷ ︸

−ELBO

+ logZ, (2)

where the term logZ can be ignored as it does not depend
on θ. This objective is known as the negative value of the
evidence lower bound (ELBO) used in many variational
inference methods (Blei et al., 2017). As we want to use
insights from policy search, we rewrite the ELBO as reward
maximization problem with an additional entropy objective,

L(θ) =

∫
x

p(x;θ)R(x)dx+H(p), (3)

where the reward is given by R(x) = log p̃∗(x) and
H(p) = −

∫
x
p(x;θ) log p(x;θ)dx is the entropy of p.

Please note the swap in the sign due to the change from
a minimization to a maximization problem. Hence, policy
search algorithms can directly be applied to VI if they can
incorporate an additional entropy objective. The ELBO
objective can typically not be evaluated in closed form but
is estimated by samples drawn from p(x;θ). Stochastic
optimization can be used to optimize this sample-based
objective (Blei et al., 2017).

2.2. Information Geometric Distribution Updates

Policy search algorithms must solve the exploration-
exploitation dilemma when updating the policy, i.e., they
must control how much information from the current sam-
ple set is integrated in the policy versus how much we
rely on keeping the current exploration strategy to generate
more information. Information-geometric trust regions can
be used to effectively control this exploration-exploitation
trade-off (Peters et al., 2010; Schulman et al., 2015; Ab-
dolmaleki et al., 2017; 2016). We will heavily rely on a
recent stochastic search algorithm called MORE (Abdol-
maleki et al., 2016), that for the first time allows for a closed
form solution of information geometric trust regions for
Gaussian distributions. Stochastic search is a special case of
policy search where the policy can be interpreted as search
distribution p(x) in the parameter space x of a low-level
policy.

The MORE algorithm solves a constraint optimization prob-
lem where the objective is given by maximizing the average
reward. The information-geometric trust region is imple-
mented by limiting the KL-divergence between the old and
new search distribution which is equivalent to limiting the
information gain of the policy update. Moreover, a second
constraint limits the entropy loss of the distribution update
to avoid a collapse of the search distribution. The resulting
optimization program has the following form:

maximize
p(x)

∫
x

p(x)R(x)dx,

s. t. KL
(
p||q
)
≤ ε, H

(
q
)
−H

(
p
)
≤ γ. (4)

Here, q(x) is the old search distribution, R(x) is the reward
and H the entropy of the distribution. The optimization
problem can be solved using Lagrangian multipliers. The
solution for p(x) is given by

p(x) ∝ q(x)
η

η+ω exp (R(x))
1

η+ω , (5)

where η and ω are Lagrangian multipliers, which can be
found by solving the convex dual optimization problem
(Abdolmaleki et al., 2016).
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2.3. Fitting a Reward Surrogate

In order to use Equation 5, Gaussianity needs to be en-
forced. This can be either performed by fitting a Gaussian
(Daniel et al., 2012; Kupcsik et al., 2017) on samples that
are weighted by Equation 5, which is prone to overfitting
(as we need to fit a full covariance matrix) or by fitting a
surrogate R̃(x) ≈ R(x) that is compatible to the Gaussian
distribution (Abdolmaleki et al., 2016). As the Gaussian
distribution is log linear in quadratic features of x, the sur-
rogate needs to be a quadratic approximation of R(x), i.e.,

R̃(x) = −0.5xTAx+ aTx+ a0.

The parameters A, a and a0 are learned from the current
sample set using linear regression. The surrogate therefore
only needs to be a local approximation of the reward func-
tion. Using R̃(x) for R(x) in Equation 5 yields a Gaussian
distribution for p(x) where the mean µ and the full covari-
ance matrix Σ can be evaluated in closed form. For the
exact equations we refer to Abdolmaleki et al. (2016).

3. Variational Inference by Policy Search
As VI uses samples to evaluate the ELBO, VI is essentially
a search problem where we need to find samples in areas
of high density of p∗ but also make sure that these sam-
ples are distributed with the correct entropy. Interpreting
VI as search problem, the current approximation p(x;θ) is
used to search in the space of x. We can obtain samples
from our current search distribution p(x;θ) and use them
to update p(x;θ) such that it becomes a better approxima-
tion of p∗(x). Hence, VI is inflicted by the exploration-
exploitation dilemma in a similar way as reinforcement
learning and policy search algorithms. In this paper, we want
to use information-geometric trust regions for controlling
the exploration-exploitation trade-off in the VI objective.

Information-geometric trust regions have been shown to
yield efficient closed form updates for Gaussian distributions
(Abdolmaleki et al., 2016). However, in order to cope with
more complex, multimodal distributions, we will extend the
information-geometric updates to Gaussian Mixture Models.
Hence, our variational distribution is given by a GMM

p(x) =
∑
o

p(o)p(x|o),

where o is the index of the mixture component, p(o) are the
mixture weights and p(x|o) = N (µo,Σo) is a multivariate
normal distribution with meanµo and full covariance matrix
Σo. To improve readability, we will omit the parameter
vector θ when writing the distribution p(x) in most cases.
However, as we are dealing with mixture models, it should
be noted that θ consists of the mean vectors, covariance
matrices and mixture weights of all components.

We will first introduce our objective including the trust re-
gions and subsequently introduce a variational lower bound
to decompose the objective into tractable optimization prob-
lems for the individual mixture components and the mixture
coefficients. The number of components is automatically
adapted by deleting components that have low weight and
by creating new components in promising regions.

3.1. Objective

We approximate the target distribution p∗(x) by minimiz-
ing L(θ) given in Equation 3 on the current set of samples.
As we will use local approximations of the reward func-
tion around each component, we introduce individual trust
regions for each component and for the coefficients. The
resulting optimization problem has the form

maximize
p(x|o),p(o)

∫
x

p(x)
(
R(x)− log p(x)

)
dx,

subject to ∀o :

∫
x

p(x|o) log p(x|o)
q(x|o)

≤ ε(o),∑
o

p(o) log
p(o)

q(o)
≤ εw,

where q(o) and q(x|o) are the old mixture weights and
components, respectively, and εw and ε(o) upper-bound the
corresponding KL-divergences. However, the occurrence
of the log-density of the GMM, log p(x), prevents us from
updating each component independently.

3.2. Variational Lower Bound

By introducing an auxiliary distribution p̃(o|x), the objec-
tive of the optimization problem can be decomposed into a
lower bound U(θ, p̃) and an expected KL-term, namely

J(θ) = U(θ, p̃) + Ep(x)

[
KL
(
p(o|x)||p̃(o|x)

)]
, (6)

with

U(θ, p̃) =

∫
x

∑
o

p(x, o)
(
R(x)− log p(x, o)

+ log p̃(o|x)
)
dx

and

KL
(
p(o|x)||p̃(o|x)

)
=
∑
o

p(o|x) log p(o|x)
p̃(o|x)

.

We also used the identity p(x, o) = p(x|o)p(o) to keep
the notation uncluttered. Eq. 6 can be easily verified
by using Bayes theorem, i.e., by setting log p(o|x) =
log p(x, o)− log p(x), all introduced terms will vanish and
only the original objective remains, see supplement. The
second term in Eq. 6 is always greater or equal zero. Hence,
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U(θ, p̃) is a lower bound on the objective. This decompo-
sition is closely related to the decomposition used in the
expectation maximization (EM) algorithm (Bishop, 2006).
However, as we want to minimize the reverse KL instead of
the maximum likelihood (which corresponds to the forward
KL) that is the objective in standard EM, the KL used for
p̃(o|x) also needs to be reversed to obtain the lower bound.

Following the standard EM procedure, we can maxi-
mize the objective function by iteratively maximizing the
lower bound (M-step) and tightening the lower bound (E-
step). The E-step can be computed by setting p̃(o|x) =
p(x|o)p(o)/p(x) using the current GMM. Hence, after the
E-step, the lower bound is tight as the KL is set to 0. Con-
sequently, improving the lower bound also improves the
original objective J(θ) at each EM iteration. It can be eas-
ily seen that the lower bound does not contain the term
log p(x) anymore and decomposes into individual terms
for the weight distribution and the single components such
that the updates can be performed independently. More-
over, an interesting observation is the term log p̃(o|x) acts
as additional reward. After each sampling process from
p(x), we perform 10 EM-iterations to fine tune the mixture
components with the newly obtained samples.

3.3. M-step for Component Updates

When updating a single component p(x|o), maximizing U
is equivalent to maximizing

Uo(µo,Σo) =

∫
x

p(x|o)
(
R(x) + log p̃(o|x)

)
dx

+H
(
p(x|o)

)
+ η(o)

(
ε(o)−

∫
x

p(x|o) log p(x|o)
q(x|o)

dx

)
,

where we already added the Lagrangian multiplier η(o) of
the KL constraint for component o. This optimization prob-
lem is very similar to the optimization problem that is solved
in MORE (Eq.4), which becomes evident when defining

ro(x) = R(x) + log p̃(o|x) (7)

as reward function. In fact, the only difference compared
to MORE is that the entropy of the component enters the
optimization via a constant factor 1 rather than a Lagrangian
multiplier. Hence, we only need to optimize the Lagrangian
multiplier of the KL constraint, η(o) as ω is set to 1 in the
MORE equations, see Eq. 5.

We refer to the supplement and to the original MORE paper
(Abdolmaleki et al., 2016) for the closed form updates of this
optimization problem based on quadratic reward surrogates
r̃o(x) ≈ ro(x). Note that in difference to the original
MORE paper, we use a standard linear regression to obtain
the quadratic models. The used dimensionality reduction

technique reported by Abdolmaleki et al. (2016) was not
needed to achieve satisfactory results.

3.4. M-step for Weight Updates

Maximizing U with respect to p(o) is equivalent to maxi-
mizing

Uw (p(o)) =
∑
o

p(o)rw(o) +H
(
p(o)

)
+ ηw

(
εw −

∑
o

p(o) log
p(o)

q(o)

)
,

where we already added the Lagrangian multiplier for the
KL constraint on the weights and

rw(o) =

∫
x

p(x|o)ro(x)dx+H(p(x|o)).

This optimization problem corresponds to optimizing a dis-
crete distribution with an additional entropy objective. The
solution for p(o) is obtained by

p(o) ∝ q(o)
ηw
ηw+1 exp (rw(o))

1
ηw+1 . (8)

Please refer to the supplement for the dual function and
gradient of this optimization problem.

3.5. Sample Reuse

Samples are used for approximating ro(x) for the compo-
nent updates as well as rw(o) for the weight updates.

We fit a quadratic surrogate to approximate ro(x) using
linear regression, where the samples relate to the indepen-
dent variables. The surrogate should be most accurate in
the vicinity of p(x|o) which can be achieved by using inde-
pendent variables that are distributed according to p(x|o).
However, we also want to make use of samples from pre-
vious iterations or different components. We therefore per-
form weighted least squares, where the weight of sample i
is given by the self-normalizing importance weight

wi(o) =
1

Z

p(xi|o)
z(xi)

, Z =
∑
i

p(xi|o)
z(xi)

.

The sampling distribution z(x) for the current set of Ns

samples is a Gaussian Mixture Model given by

z(x) =

Ns∑
i=1

1

Ns
Ni(x),

whereNi(x) corresponds to the normal distribution that was
used to obtain sample i. For better efficiency, we include
several samples from each sampling componentNi(x) such
that z(x) comprises less than Ns different component.
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We approximate rw(o) for the weight updates by using an
importance-weighted Monte Carlo estimate based on the
same importance weights that are used for the component
updates. Hence, we replace rw(o) in Eq. 8 by

r̃w(o) =

Ns∑
i=1

wi(o)ro(xi) +H(p(x|o)).

The set of active samples is replaced directly after new
samples have been drawn and is held constant during the
EM iterations. For all our experiments we selected the
3 · Nnew most recent samples, where Nnew corresponds
to the number of samples that have been drawn during the
last round of sampling. Each round of sampling consists
of drawing 10 ·D samples from each mixture component,
where D corresponds to the number of dimensions of x.

3.6. Adding and Deleting Mixture Components

In order to adapt the complexity of the GMM to the com-
plexity of the target distribution, we initialize our algorithm
with only one mixture component with high variance and
gradually increase the number of mixture components. We
consider the locations of all previous samples as candidates
for new components. Every nadd iterations, we heuristically
choose the most promising candidate and use its location
as mean for a newly added component. The covariance
matrix is initialized by interpolating the covariance matrices
of neighboring components using the responsibilities.

As we want the new component to eventually achieve high
weight, we want to add it at an area where its component-
specific reward ro(x) will become large. We therefore try
to find an area that has high likelihood under the target
distribution but also yields high log-responsibilities for the
newly added component, see Equation 7. However, the
responsibilities of a newly initialized component hardly
relate to the responsibilities it will eventually achieve. In-
stead, we choose the candidate that maximizes the score
ei = log p̃∗(xi) − max(log p(xi),maxj log p(xj) − γ).
The second term prefers locations that are little covered
by the current approximation and behaves similar to the
log-responsibilities which also saturate for far away areas.
Without such saturation, the second term might dominate
the score when the target distribution has heavy tails.

In order to add components without impairing the stability
of the optimization, we initialize them with very low weight
such that their effect on the approximation is negligible. As
we draw the same number of samples from each component
irrespective of their weight, such low weight components
can still improve and eventually contribute to the approxima-
tion. However, keeping unnecessary components is costly
in terms of computational cost and sample efficiency. We
therefore delete components that did not have mentionable

effect on the approximation during the last ndel iterations.

The full algorithm is outlined in Algorithm 1. An open-
source implementation is available online1.

Algorithm 1 Variational Inference by Policy Search

1: Input: initial parameters θ0
2: for j = 1 to maxIter do
3: Add and delete components according to heuristics.

Store new parameters in θj
4: Draw samples si from each component and store

them along with ri = log p̃∗(si) and the parameters
of the responsible component.

5: (s⊂, r⊂, z⊂(x))← select active samples()
6: compute zj = z⊂(s⊂)
7: for k = 1 to maxIterEM do
8: recompute p = p(s⊂;θj), p̃ = p(o|s⊂;θj)
9: θj ← update weights(p, zj , p̃, s⊂, r⊂,θj)

10: recompute p = p(s⊂;θj), p̃ = p(o|s⊂;θj)
11: for each component do
12: θj ← update component(p, zj , p̃, s⊂, r⊂,θj)
13: end for
14: end for
15: end for

4. Related Work
Although MCMC samplers can not directly be used for ap-
proximating distributions, they are for many applications
the main alternative to VI. Prominent examples of gradient-
free MCMC methods include (random walk) Metropolis
Hasting (Hastings, 1970), Gibbs sampling (Geman & Ge-
man, 1984), slice sampling (Neal, 2003) and elliptical slice
sampling (Murray et al., 2010; Nishihara et al., 2014). If the
gradient of the target distribution is available, Hamiltonian
MCMC (Duane et al., 1987) and the Metropolis-adjusted
Langevin algorithm (Roberts & Stramer, 2002) are also
popular choices. The No-U-Turn sampler (NUTS) (Hoff-
man & Gelman, 2014) is a notable variant of Hamiltonian
MCMC that is appealing for not requiring hyper-parameter
tuning. While many of these MCMC methods have prob-
lems with multimodal distributions in terms of mixing time,
other methods use multiple chains and can therefore better
explore multimodal sample spaces (Neal, 1996; Nishihara
et al., 2014; Calderhead, 2014).

Many VI methods are only applicable to Gaussian varia-
tional distributions (Fan et al., 2015; Regier et al., 2017).
The approach by Fan et al. (2015) can learn Gaussians with
full covariance matrices using fast second order optimiza-
tion. This idea has been extended by Regier et al. (2017) to
trust region optimization. However, in difference to our ap-
proach, an euclidean trust region is used in parameter space

1https://github.com/OlegArenz/VIPS
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Figure 1: We start with an initial isotropic Gaussian distribution (left) and iteratively improve the approximation and add
additional components in order to approximate the desired distribution (right). The three plots in the middle visualize the
approximation directly after adding the fifth, tenth and twentieth component.

of the variational distribution. Such approach requires the
computation of the Hessian of the objective which is only
tractable for mean-field approximations of single Gaussian
distributions. In contrast, we use the trust regions directly
on the change of the distributions instead of the change of
the parameters of the distribution. The information geomet-
ric trust regions in this paper allow for efficient estimation
of GMMs with full covariance matrices without requiring
gradient information from p∗.

Black-box Variational Inference methods do not make
strong assumptions on the model family (Salimans &
Knowles, 2013; Ranganath et al., 2014) and can therefore
also be used for learning GMM approximations. Salimans
& Knowles (2013) derive a fixed point update of the natural
parameters of a distribution from the exponential family
that corresponds to a Monte-Carlo estimate of the gradient
of Eq. (1) preconditioned by the inverse of their empirical
covariance. By making structural assumptions on the target
distribution, they extend their method to mixture models and
show its applicability to bivariate GMMs. Ranganath et al.
(2014) also use Monte-Carlo gradient estimates of Eq. (1)
and apply Rao-Blackwellization and control variates to re-
duce its variance. The work of Weber et al. (2015) already
explored the use of Reinforcement Learning for VI but for-
malizing VI as sequential decision problem. However, only
simple policy gradient methods have been proposed in this
context which are unsuitable for learning GMMs.

Closely related to our work are two recent approaches for
Variational Inference that concurrently explored the idea of
applying boosting to make the training of GMM approx-
imations tractable (Miller et al., 2017; Guo et al., 2016).
These methods start by minimizing the ELBO objective for
a single component and then successively add and optimize
new components and learn an optimal weighting between
the previous mixture and the newly added component. How-
ever, they do not use information-geometric trust region
to efficiently explore the sample space and therefore have
problems finding all the modes as well as accurate estimates
of the covariance matrices. Non-parametric variational in-
ference (NPVI) (Gershman et al., 2012) learns GMMs with
uniform weights using a second-order approximation of the

ELBO for efficient gradient updates. However, this method
only allows for mean field approximations for the mixture
components which is a severe limitation as shown in our
comparisons. GMMs are also used by Zobay (2014) where
an approximation of the GMM entropy is used to make the
optimization tractable. The optimization is gradient-based
and does not consider exploration of the sample space. It is
therefore limited to rather low dimensional problems.

5. Experiments
We evaluate VIPS with respect to efficiency of the opti-
mization as well as quality of the learned approximations.
For assessing efficiency, we focus on the number of func-
tion evaluations, but also include a comparison with respect
to the wall-clock time. As the ELBO objective is hard to
use for comparisons as it depends on the current sample
set, we assess the quality of the approximation by compar-
ing samples drawn from the learned model with ground-
truth samples based on their Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012). Please refer to the supple-
ment how the MMD and the ground-truth samples are com-
puted. Please note that the computation of the ground-truth
samples is based on generalized elliptical slice sampling
(GESS) (Nishihara et al., 2014) which is in most cases com-
putationally very expensive. Due to the huge computational
demands, we do not consider GESS as competitor.

We compare our method to a variety of state-of-the-art
MCMC and VI approaches on unimodal and multimodal
problems, namely we compare to Variational Boosting
(Miller et al., 2017), Non-Parametric Variational Inference
(Gershman et al., 2012), Stein Variational Gradient Descent
(Liu & Wang, 2016), Hamiltonian Monte Carlo (Duane
et al., 1987), Slice Sampling (Neal, 2003), Elliptical Slice
Sampling (Murray et al., 2010), Parallel Tempering MCMC
(Calderhead, 2014) and—indirectly, since it is used for ini-
tializing variational boosting—black box variational infer-
ence (Salimans & Knowles, 2013). However, due to the
high computational demands, we do not compare to every
method on each experiment but rather select promising can-
didates based on the sampling problem or on the preliminary
experiments that we had to conduct for hyper-parameter tun-
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Figure 2: Comparison of VIPS to other VI and MCMC
methods for two logistic regression tasks. VIPS consider-
ably outperformed all other methods already when using
only one mixture component (VIPS1) and could only be
slightly improved by the GMM on the breast cancer domain.

ing. For VIPS, we use the same hyper-parameters for all
experiments. However, we do not add new components if it
would increase the number of components above a certain
threshold and evaluate different values for this threshold.

We perform three experiments on (essentially) unimodal
sampling problems taken from related work. We per-
form Bayesian logistic regression on the German Credit
and Breast Cancer datasets (Lichman, 2013) as described
in (Nishihara et al., 2014) and approximate the posterior of
the hierarchical Poisson GLM described in (Miller et al.,
2017). We designed two challenging toy tasks for evaluat-
ing our approach on multimodal problems: sampling from
an unknown twenty-dimensional GMM with full covari-
ance matrices and distant modes, and sampling the joint
configurations of a ten-dimensional planar robot.

We start the experimental evaluation of VIPS by visualizing
the iterative improvements of the GMM approximation for
the task of approximating an unknown two-dimensional
GMM. Figure 1 shows the log-probability densities of the
learned approximation during the optimization and the target
distribution (right). We can see that VIPS gradually adds
more components and improves the GMM. The final fit with
20 components closely approximates the target distribution.

5.1. Bayesian Logistic Regression

We perform two experiments for binary classification on
the German credit and breast cancer datasets (Lichman,
2013). For the German credit dataset twenty-five parameters
are learned whereas the breast cancer dataset is thirty-one
dimensional. We standardize both datasets and perform
linear logistic regression where we put zero-mean Gaussian
priors with variance 100 on all parameters.

On the German credit dataset we compare against NPVI,
ESS, SVGD, HMC and variational boosting. For variational
boosting we examine rank-0, rank-5 and rank-10 approx-
imations of the covariance matrices. We also performed
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Figure 3: (a) On the stop-and-frisk dataset, VIPS1 closely
approximates the posterior with roughly 33000 function
evaluations. (b) On the 10-link robot experiment VIPS
learns a significantly better approximation than competing
VI methods and achieves similar sample quality to MCMC.

experiments with full rank approximation but the optimiza-
tion always failed after few iterations. For our approach
we examine two variants, VIPS1 which learns only a single
component and VIPS40 which stops adding new compo-
nents after forty components. Figure 2a shows that the
sample quality achieved by VIPS is unmatched by any vari-
ational inference method and ESS needs more than two
orders of magnitude more function evaluation to achieve a
similar MMD to VIPS1. However, we could not measure an
advantage of using a GMM instead of single Gaussian dis-
tribution on this dataset. As VIPS1 is only learning a single
Gaussian, it is also more data-efficient than VIPS40. This
result also illustrates the importance of using Gaussian dis-
tributions with an accurate estimation of the full covariance
as VIPS1 could already outperform competing methods.

Figure 2b depicts the achieved MMDs on the breast cancer
dataset. We only compared to the most promising methods
from the German credit dataset. Although the posterior dis-
tribution is unimodal, the GMM variant of our method learns
a slightly better approximation than VIPS1, presumably by
matching higher order moments of the posterior.

5.2. Multi-level Poisson GLM

We evaluate our method on the problem of learning the pos-
terior of a hierarchical Poisson GLM on the 37-dimensional
stop-and-frisk dataset, where we refer to (Miller et al., 2017)
for the description of the hierarchical model. We compared
VIPS1 and VIPS5 to HMC, SVGD, variational boosting
and non-parametric variational inference. The MMD with
respect to the baseline samples is shown in Figure 3a.

5.3. Planar Robot

We evaluate our approach on a planar robot with ten de-
grees of freedom. We want to sample joint configurations
such that the end-effector of the robot is close to a desired
position at x = 7 and y = 0. The likelihood of a configu-
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Figure 4: The first three plots visualize typical component means and weights learned by NPVI, VBOOST and VIPS.
Components with higher weight are drawn darker. The two rightmost plots show the samples drawn from the VIPS
approximation and ground-truth samples, that have been collected during two days on 120 cores using GESS.
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Figure 5: On the GMM experiment, VIPS was able to
closely approximate the true mixture model and reliably
discovers all ten components. When the number of comput-
ing cores is small compared to the components, VIPS can
scale almost linearly with the number of cores.

ration is a Gaussian distribution in Cartesian end-effector
space with a variance of 1e−4 in both dimensions. We as-
sume a zero mean Gaussian prior in configuration space,
where the first joint has variance 1 and the remaining joints
have variance 0.04. We compare VIPS40 with ESS, paral-
lel tempering MCMC, SVGD, slice sampling, NPVI and
VBOOST. The MMD is shown in Figure 3b. Figure 4 vi-
sualizes the learned models of NPVI, VBOOST and VIPS
and compares the ground-truth samples with the samples
obtained by VIPS. All other VI methods can not represent
the complex structure of the modes and get attracted by sin-
gle modes resulting in bad approximations. We believe the
reason for this behavior is a missing principled treatment of
the exploration-exploitation trade-off. VIPS achieves a high
sample quality that is comparable to MCMC methods in
order of magnitude less function evaluations than MCMC.

5.4. Gaussian Mixture Model

We evaluate our method on the task of approximating un-
known, randomly generated 20-dimensional GMMs com-
prising ten components. Each dimensions of the component
means is drawn uniformly in the interval [−50, 50]. The
covariance matrices are given by Σ = A>A + I20 where
each entry of the 20 × 20-dimensional matrix A is sam-
pled from a normal distribution with mean 0 and variance
20. Note that each component of the target distribution can

have a highly correlated covariance matrix, which is even
a problem for the tested MCMC methods. Figure 5 shows
the MMD of VIPS40, SVGD, ESS and parallel tempering
MCMC plotted over the number of iterations as well as wall-
clock time. VIPS was the only method that could reliable
be applied to this task. We also briefly evaluated the scaling
of the performance with the number of cores. Although
parallel computing is not the focus of this paper, the pos-
sibility of performing independent updates of the mixture
components suggests that the method can make good use of
multi-threading. Figure 5b shows that VIPS scales almost
linearly with the number of cores at least if their number is
small, showing the potential of parallelizing our algorithm.

6. Conclusion
VIPS is motivated by the insight from stochastic search that
information-geometric trust regions allow for controlled ex-
ploration and stable optimization. We transfered the stochas-
tic search method MORE to the field of variational inference
and demonstrated that it is significantly more efficient than
state-of-the-art approaches of VI for learning mean and full
covariance of a multi-variate normal distribution. Based
on our variant of MORE, we derived a novel method for
learning GMM approximations and demonstrated that it is
capable of learning high quality approximations of complex,
multimodal distributions with a limited amount of function
evaluations. Our method makes little assumptions on the
unnormalized density function of the desired distribution
and is thereby applicable to non-differentiable problems.

However, for higher-dimensional problems (e.g. more than
100 dimensions) fitting quadratic surrogates may require
too many samples which could be alleviated by using gradi-
ent information for constraining the surrogate. Furthermore,
learning diagonal surrogates can be preferable for such prob-
lems due to better sample- and computational efficiency.
For exploration, we start with an approximation with high
entropy and decrease it slowly during optimization which
can miss modes that are not discovered in the beginning.
Actively sampling unexplored regions would result in an
anytime algorithm, capable of further improving the approx-
imation in the later stages of optimization.
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A. Derivation of the Lower Bound
As stated in the paper, the ELBO objective can be decom-
posed into a lower bound and an expected KL term, i.e.,

J(θ) =

∫
x

∑
o

p(x, o)
(
R(x)− log p(x, o) (9)

+ log p̃(o|x)
)
dx+

∫
x

p(x)
∑
o

p(o|x) log p(o|x)
p̃(o|x)

.

We can verify that this decomposition is valid by using the
identity log p(o|x) = log p(x, o)− log p(x), i.e.,

J(θ) =

∫
x

∑
o

p(x, o)
(
R(x)− log p(x, o)

+ log p̃(o|x)
)
dx

+

∫
x

∑
o

p(x)p(o|x)
(
log p(x, o)− log p(x)

− log p̃(o|x)
)
dx.

=

∫
x

∑
o

p(x, o)
(
R(x)− log p(x)

)
dx

=

∫
x

p(x)
(
R(x)− log p(x)

)
dx. (10)

We can see that Eq. 10 corresponds to the original definition
of L(θ) in the paper.

B. Computation of the MMD
The Maximum Mean Discrepancy (Gretton et al., 2012) is
a nonparametric divergence between mean embeddings in
a Reproducible Kernel Hilbert Space. We approximate the
MMD between two sample sets X and Y as

MMD(X,Y) =
1

m2

m∑
i,j

k(xi, xj) +
1

n2

n∑
i,j

k(yi, yj)

− 2

mn

m∑
i

n∑
j

k(xi, yi).

We use a squared exponential kernel given by

k(x,y) = exp

(
− 1

α
(x− y)>Σ(x− y)

)
,

where Σ is a diagonal matrix where each entry is set to
the median of squared distances within the ground-truth set
and the bandwidth α is chosen depending on the problem.
When ground-truth samples are not available, we apply
GESS (Nishihara et al., 2014) with large values for burn-
in, thinning and chain lengths to produce baseline samples

that are regarded as ground-truth. Note that obtaining these
ground-truth samples is computationally very expensive,
taking up to 2 days of computation time on 120 CPU cores.
We estimate the MMD based on ten thousand ground-truth
samples and two thousand samples from the given sampling
method. For MCMC methods, we choose the two thousand
most promising samples by applying a sufficient amount of
burn-in and using the largest thinning that keeps at least two
thousand samples in the set.

C. Component Optimization
As the Lagrangian of the optimization problem for the com-
ponent update corresponds to the Lagrangian of MORE (Ab-
dolmaleki et al., 2016) with ω = 1, the solution has the form

p(x|o) ∝ q(x|o)
η
η+1 exp (r̃o(x))

1
η+1 , (11)

where we substituted ω = 1 in Equation 5.

When the quadratic reward surrogate is given as

r̃o(x) = −
1

2
x>Rx+ x>r,

the parametersR and r (which are learned with weighted
least squares) correspond to the natural parameters of a
multivariate normal distribution

pr(x) = N (x|µr = R−1r,Σr = R−1) ∝ exp (r̃o(x)) .

Hence, the log-densities of p(x|o) are given by a linear
interpolation of the log-densities of q(x|o) and pr(x), i.e.

log p(x|o) = η

η + 1
log q(x|o) + 1

η + 1
log pr(x) + const.

The natural parameters of p(x|o) are therefore given by

P =
1

η + 1
(ηQ+R) , p =

1

η + 1
(ηq + r) ,

where Q = Σ−1q and q = Σ−1q µq are the natural parame-
ters of q(x|o).

As a function of the Lagrangian multiplier η,

p(x|o, η) = N
(
x|µp = P (η)−1p(η),Σp = P (η)−1

)
defines an e-geodesic, i.e. a straight line connecting q(x|o)
and pr(x) in logarithmic scale. During optimization we
want to find the largest step-size η such that p(x|o, η) stays
within the trust region. As we are minimizing a scalar on
a convex function, a simple line-search would be feasible.
However, the dual objective

Go(η) =ηε(o) + η logZ(Q, q)− (η + 1) logZ(P ,p),
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where logZ(X,x) = − 1
2 (x
>X−1x + log |2πX−1|) is

the log partition function of a Gaussian with natural param-
etersX and x, as well as the gradient

dGo(η)

dη
= ε(o)− KL(p(x|o, η)||q(x|o))

can be computed with little overhead and hence we use
L-BFGS for dual descent.

D. Weight Optimization
The optimization of the distribution over weights is similar
to the optimization of the components but we are optimiz-
ing over a discrete distribution rather than a multivariate
normal. Similar to the component optimization, the optimal
distribution has the form

p(o) ∝ q(o)
ηw
ηw+1 exp (r̃w(o))

1
ηw+1 , (12)

and corresponds to a log-linear interpolation between the
last distribution q(o) and a distribution pr(o) ∝ exp(r̃w(o))
that is specified by the reward function. The optimal step-
size ηw can be found by minimizing the dual

Gw(ηw) = ηwεw + (1 + ηw) log
∑
o

p(o|ηw)

based on the gradient

dGw(ηw)

dηw
= ε− KL(p(o|η)||q(o)).

E. Hyper-parameters
Table 1 lists the hyper-parameters as well as their values for
the experiments. We will now briefly discuss some of these
hyper-parameters.

E.1. KL bounds

The trust regions are necessary for the component updates
in order to ensure that the components stay within regions
where their local reward surrogate r̃o(x) remains valid. As
the reward surrogate is updated in each EM iteration, we
also update the reference distribution q(x|o) after each EM
iteration. However, this may allow the component to en-
ter regions that are insufficiently covered by samples after
several EM iterations which would result in bad local sur-
rogates. We therefore compute the KL bound based on the
effective number of samples within the active set, namely
the KL bound is given by

ε(o) = min(1e−3, 1e−5 · neff(o)),

where the effective sample size is computed based on the
importance weights

neff(o) =

(∑Ns
i=1 wi(o)

)2
∑Ns

i=1 wi(o)2
.

Table 1: A list of the hyper-parameters of VIPS as well their
values used during the experiments.

DESCRIPTION VALUE

MAXIMUM NUMBER OF COMPONENTS 1, 5, 40
NUMBER OF EM ITERATIONS 10
KL BOUND FOR WEIGHTS 1e−2
MAXIMUM KL BOUND FOR COMPONENTS 1e−3
KL BOUND FACTOR FOR COMPONENTS 1e−5
NUMBER OF SAMPLES PER COMPONENT 10 ·D
NUMBER OF INITIAL SAMPLES 20, 20000
SAMPLE REUSE FACTOR 3
ADDING RATE FOR COMPONENTS 30
DELETION RATE FOR COMPONENTS 300
MINIMUM WEIGHT 1e−7
INITIAL WEIGHT 1e−7
γ FOR ADDING-HEURISTIC 500
`2-REGULARIZATION FOR WLS 1e−10

As we ignore the weights for sampling during training, the
KL bound for the weights is not critical and could even
be dropped. However, for the experiments we chose a KL
bound of εw = 1e−2, because it seems sensible to prevent
large jumps in the log responsibilities.

E.2. Samples

As stated in the paper, we draw 10D samples per component
and roughly reuse the samples from the last 3 most recent
iterations. For the experiments, we drew 20000 additional
samples from the initial mixture at the beginning of the
optimization for better initial exploration. However, we
lowered this value to 20 for VIPS1 which often already
converged after 20000 iterations.

E.3. Adding and Deleting Components

We added a single new component every third sampling
iteration and initialized its weight to 1e−7. For computing
the score ei for deciding where to add the component, we
use γ = 500. This hyper-parameter is probably the least
intuitive to be chosen. When γ is too small, new modes
may only be discovered when we have sampled close to
their peak. However, when γ is too large we might add
components at irrelevant regions, especially when the target
distribution has heavy tails. However, we found γ = 500 to
produce good results among all our experiments.

We delete a component when its weight was below 1e−7 for
the last 300 EM-Iterations (i.e. 30 sampling iterations). We
do not want to keep components with lower weight, because
their effect on the approximation would be marginal.
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