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Abstract

Robots had a great impact on the manufacturing industry ever since the early seventies
when companies such as KUKA and ABB started deploying their first industrial robots.
These robots merely performed very specific tasks in specific ways within well-defined
environments. Still, they proved to be very useful as they could exceed human performance
at these tasks.1 However, in order to enable robots to enter our daily life, they need to
become more versatile and need to operate in much less structured environments. This
thesis is partly devoted to stretching these limitations by means of learning, namely
imitation learning (IL) and inverse reinforcement learning (IRL).

Reinforcement learning (RL) is a powerful approach to enable robots to solve a task in
an unknown environment. The practitioner describes a desired behavior by specifying a
reward function and the robot autonomously interacts with the environment in order to
find a control policy that generates high accumulated reward. However, RL is not suitable
for teaching new tasks by non-experts because specifying appropriate reward functions can
be difficult. Demonstrating the desired behavior is often easier for non-experts. Imitation
learning can be used in order to enable the robot to reproduce the demonstrations.
However, without explicitly inferring and modeling the intentions of the demonstrations,
it can become difficult to solve the task for unseen situations. Inverse reinforcement
learning (IRL) therefore aims to infer a reward function from the demonstrations, such that
optimizing this reward function yields the desired behavior even for different situations.

This thesis introduces a unifying approach to solve the inverse reinforcement learning
problem in the same way as the reinforcement learning problem. This is achieved by
framing both problems as information projection problems, i.e., we strive to minimize the
relative entropy between a probabilistic model of the robot behavior and a given desired
distribution. Furthermore, a trust region on the robot behavior is used to stabilize the
optimization. For inverse reinforcement learning, the desired distribution is implicitly
given by the expert demonstrations. The resulting optimization can be efficiently solved
using state-of-the-art reinforcement learning methods. For reinforcement learning, the
log-likelihood of the desired distribution is given by the reward function. The resulting

1Interestingly, the same could be said about current machine learning methods.
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optimization problem corresponds to a standard reinforcement learning formulation,
except for an additional objective of maximizing the entropy of the robot behavior. This
entropy objective adds little overhead to the optimization, but can lead to better exploration
and more diversified policies.

Trust-region I-projections are not only useful for training robots, but can also be applied
to other machine learning problems. I-projections are typically used for variational infer-
ence, in order to approximate an intractable distribution by a simpler model. However,
the resulting optimization problems are usually optimized based on stochastic gradient
descent which often suffers from high variance in the gradient estimates. As trust-region
I-projections where shown to be effective for reinforcement learning and inverse rein-
forcement learning, this thesis also explores their use for variational inference. More
specifically, trust-region I-projections are investigated for the problem of approximating an
intractable distribution by a Gaussian mixture model (GMM) with an adaptive number of
components. GMMs are highly desirable for variational inference because they can yield
arbitrary accurate approximations while inference from GMMs is still relatively cheap. In
order to make learning the GMM feasible, we derive a lower bound that enables us to
decompose the objective function. The optimization can then be performed by iteratively
updating individual components using a technique from reinforcement learning. The
resulting method is capable of learning approximations of significantly higher quality than
existing variational inference methods.
Due to the similarity of the underlying optimization problems, the insights gained

from our variational inference method are also useful for IL and IRL. Namely, a similar
lower bound can be applied also for the I-projection formulation of imitation learning.
However, whereas for variational inference the lower bound serves to decompose the
objective function, for imitation learning it allows us to provide a reward signal to the
robot that does not depend on its behavior. Compared to reward functions that are
relative to the current behavior of the robot—which are typical for popular adversarial
methods—behavior-independent reward functions have the advantages that we can
show convergence even for greedy optimization. Furthermore, behavior-independent
reward functions solve the inverse reinforcement learning problem, thereby closing the
gap between imitation learning and IRL. However, algorithms derived from our non-
adversarial formulation are actually very similar to existing AIL methods, and we can even
show that adversarial inverse reinforcement learning (AIRL) is indeed an instance of our
formulation. AIRL was derived from an adversarial formulation, and we point out several
problems of that derivation. In contrast, we show that AIRL can be straightforwardly
derived from out non-adversarial formulation. Furthermore, we demonstrate that the
non-adversarial formulation can be also used to derive novel algorithms by presenting a
non-adversarial method for offline imitation learning.
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Zusammenfassung

Roboter haben schon seit den frühen siebziger Jahren einen großen Einfluss auf die
Fertigungsindustrie, als Unternehmen wie KUKA und ABB ihre ersten Industrieroboter
auslieferten. Diese Roboter führten zwar in der Regel nur eng definierte Aufgaben auf ganz
bestimmte Weise und in genau definierten Umgebungen aus, doch erwiesen sie sich schon
damals als sehr nützlich, da sie bei diesen Aufgaben den Menschen überlegen waren.1

Um es Robotern jedoch zu ermöglichen, auch in unserem tąglichen Leben von Nutzen
zu sein, müssen sie vielseitiger werden und in viel weniger strukturierten Umgebungen
arbeiten können.

Verstąrkendes Lernen ist ein vielversprechender Ansatz, um es Robotern zu ermöglichen,
eine Aufgabe in einer unbekannten Umgebung zu lösen. Der Robotik-Experte beschreibt
ein gewünschtes Verhalten, indem er eine Belohnungsfunktion angibt, die das Verhalten
des Roboters kontinuierlich bewertet und diese skalaren Bewertungen an den Roboter
weitergibt. Der Roboter interagiert autonom mit der Umgebung, und verąndert sein
Verhalten mit dem Ziel, auf lange Sicht eine hohe Belohnung zu erhalten. Verstąrkendes
Lernen eignet sich jedoch nicht für das Lehren neuer Aufgaben durch Nicht-Experten, da
es sehr schwierig ist solche mathematischen Belohnungsfunktionen so zu definieren, dass
sie zum gewünschten Verhalten führen. Für Nicht-Experten ist es hąufig einfacher das
gewünschte Verhalten vorzumachen. Lernen durch Imitation kann verwendet werden,
um den Roboter in die Lage zu versetzen, solche Demonstrationen zu reproduzieren.
Ohne die Absichten der Demonstrationen explizit abzuleiten und zu modellieren, kann es
jedoch schwierig werden, die Aufgabe unter verąnderten Bedingungen zu lösen. Inverses
Verstąrkendes Lernen zielt daher darauf ab, aus den Demonstrationen eine Belohnungs-
funktion abzuleiten, sodass die Optimierung dieser Belohnungsfunktion auch für neue
Situationen zum gewünschten Verhalten führt.
Diese Arbeit stellt einen vereinheitlichenden Ansatz vor, um Inverses Verstąrkendes

Lernen auf die gleiche Weise zu lösen wie Verstąrkendes Lernen. Dies wird erreicht,
indem beide Probleme als Informations-Projektion (I-Projection) formuliert werden, das
heißt es wird versucht, die relative Entropie zwischen einem probabilistischen Modell des

1Interessanterweise könnte man dasselbe über die aktuellen Methoden des maschinellen Lernens sagen.
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Roboterverhaltens und einer gegebenen gewünschten Wahrscheinlichkeitsverteilung zu
minimieren. Um die Stabilitąt beim Lösen dieses Optimierungsproblems zu erhöhen wird
ein sogenanntes Trust-Region-Verfahren angewendet. Das Trust-Region-Verfahren ist ein
iteratives Verfahren, bei dem sich das Verhalten des Roboters zwischen jeder Iteration nur
leicht verąndern darf. Die resultierende Trust-Region I-Projection kann sowohl für Ver-
stąrkendes Lernen als auch für Inverses Verstąrkendes Lernen angewendet werden. Beim
inversen Verstąrkenden Lernen ist die gewünschte Verteilung durch die Demonstrationen
implizit gegeben. Die daraus resultierende Optimierung kann mit modernsten Methoden
des Verstąrkenden Lernens effizient gelöst werden. Beim Verstąrkenden Lernen ist die (un-
normalisierte) Wahrscheinlichkeitverteilung durch die exponentierte Belohnungsfunktion
gegeben. Das resultierende Optimierungsproblem entspricht einer Standardformulierung
des Verstąrkenden Lernens, doch wird zusątzlich noch versucht die Entropie des Roboter-
verhaltens zu maximieren. Dieses Entropie-Kriterium verleitet den Roboter dazu, die
Auswirkungen seines Verhaltens besser zu erkunden und führt zudem zu vielseitigem
Verhalten.

Trust-Region I-Projections sind nicht nur für das Trainieren von Robotern nützlich,
sondern können auch auf andere Problemstellungen des Maschinellen Lernens ange-
wandt werden. So werden I-Projections hąufig dazu verwendet komplexe Wahrschein-
lichkeitsverteilungen durch ein einfacheres Modell zu approximieren. Das entsprechende
Optimierungsproblem nennt sich Variational Inference und wird hąufig mit einem Ver-
fahren namens Stochastic Gradient Descent gelöst. Da sich die Trust-Region I-Projection
allerdings sowohl für Verstąrkendes Lernen als auch für Inverses Verstąrkendes Lernen
als effektiv erwiesen hat, untersuchen wir diesen Ansatz auch für Variational Inference.
Genauer gesagt wird die Trust-Region I-Projection auf das Problem der Approximation
einer komplexen Verteilung durch ein Gaußsches Mischmodell (GMM) untersucht. GMMs
eignen sich zur Variational Inference, da sie jede Verteilung beliebig genau approximieren
können, dabei allerdings relativ einfach zu handhaben sind. Um das Lernen des GMMs
zu vereinfachen, leiten wir eine untere Schranke ab, die es uns ermöglicht, das Opti-
mierungskriterium zu zerlegen. Die Optimierung kann dann durch iteratives Lernen
einzelner Komponenten mithilfe einer Technik aus dem Verstąrkendem Lernen durchge-
führt werden. Die resultierende Methode ist in der Lage, Approximationen von deutlich
höherer Qualitąt zu lernen als bestehenden Methoden der Variational Inference.
Aufgrund der Ąhnlichkeit der zugrundeliegenden Optimierungsprobleme sind die mit

unserer Variational-Inference-Methode gewonnenen Erkenntnisse auch für das Lernen
durch Imitation und für Inverses Verstąrkende Lernen relevant. Eine ąhnliche untere
Schranke kann nąmlich auch für die I-Projection-Formulierung des Lernens durch Im-
itation angewandt werden. Wąhrend jedoch bei der Variational Inference die untere
Schranke dazu dient, die Zielfunktion zu zerlegen, erlaubt sie uns beim Lernen durch
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Imitation, eine Belohnungsfunktion zu lernen, die nicht vom momentanen Verhalten
abhąngt. Verglichen mit Belohnungsfunktionen, die relativ zum aktuellen Verhalten des
Roboters sind – was typisch für die momentan beliebten adversarialen Methoden ist
–, haben verhaltensunabhąngige Belohnungsfunktionen den Vorteil, dass wir selbst bei
vollstąndiger Optimierung in jeder Iteration, Konvergenz zeigen können. Darüber hinaus
lösen verhaltensunabhąngige Belohnungsfunktionen das Problem des Inversen Verstąrk-
enden Lernens und schließen damit die Lücke zwischen dem Lernen durch Imitation und
Inversem Verstąrkenden Lernen. Allerdings sind die Algorithmen, die aus unserer nicht-
adversarialen Formulierung abgeleitet wurden, den bestehenden adversarialen Methoden
sehr ąhnlich, und wir können sogar zeigen, dass die Methode namens Adversarial Inverse
Reinforcement Learning (AIRL) tatsąchlich ein Beispiel für unsere Formulierung ist. AIRL
wurde allerdings aus einer adversarialen Formulierung abgeleitet, was zu mehreren Prob-
lemen führte, die wir in dieser Arbeit aufzeigen. Im Gegensatz dazu zeigen wir, dass AIRL
direkt aus unserer nicht-adversarialen Formulierung abgeleitet werden kann. Darüber
hinaus zeigen wir, dass die nicht-adversariale Formulierung auch zur Ableitung neuer
Algorithmen verwendet werden kann, indem wir eine nicht-adversariale Methode für das
interaktionslose Lernen durch Imitation vorstellen.
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1. Introduction

Optimization problems are mathematical formulations that are fundamental for robot
learning and machine learning in general. Optimization problems are typically written in
the form [Boyd and Vandenberghe, 2004]

maximize
θ

J(θ)

subject to fi(θ) ≤ bi, i = 1, . . . , Ni

gj(θ) = cj , j = 1, . . . , Nj ,

where θ is a vector of parameters, J is the objective function, fi and gj are inequality and
equality constraint functions and bi and cj are the corresponding bounds. Formulating
an appropriate optimization problem and deriving an approximate solution is often the
main step when developing new robot learning methods. Accordingly, when we say that
a robot is learning, it is often just solving such optimization problems.
Some optimization problems can be solved analytically, e.g., ordinary least-squares

OLS [Russell and Norvig, 2016]. However, such closed-form solutions rarely exist–
especially for robot learning applications, where the objective function often depends
on interactions with the real world. For example, let θ be the parameters of the robot
controller that chooses actions depending on perceptions of the environment and let J(θ)
be a performance function rating the resulting behavior of the robot. As the interactions
between the robot and its environment can usually not be modeled sufficiently accurate,
it is often not even possible to evaluate the objective function. Instead, the performance of
the robot for certain parameters has to be approximated by applying them and observing
the resulting behavior. Such samples can be used to either implicitly or explicitly model the
relation between parameters and the corresponding performance. These models, however,
are typically only valid in the vicinity of the samples they are based on.
Trust region methods [Yuan, 2015] employ an iterative procedure to converge to

locally optimal solutions for such intractable objective functions. At each iteration i, trust
region methods build a model to approximate the objective function around the current
iterate θ(i). Subsequently, a new subproblem is formed by using the model as surrogate
for the intractable objective function and by adding a constraint that ensures that the
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parameters remain in a region for which the model is sufficiently accurate. The solution
of this subproblem defines the next iterate. Traditionally, the trust region constraints
were defined by upper-bounding the euclidean distance to the current iterate [Sorensen,
1982]. However, in the field of robot learning, information-geometric trust regions are
becoming increasingly popular [Abdolmaleki et al., 2015; Levine and Abbeel, 2014;
Peters et al., 2010; Schulman et al., 2015]. For this subclass of trust region methods, the
parameters θ define a probability distribution and the trust regions are bounded based on
information-geometric divergences between the respective distributions.

In this thesis we will explore the use of information-geometric trust regions to optimize
a specific type of information-geometric objective functions. The resulting high-level
optimization procedure will be denoted as trust region I-projections. Wewill show that trust
region I-projections can be adopted to derive novel state-of-the-art algorithms for various
different applications. Namely, we show that the problems of variational inference (VI),
reinforcement learning (RL) and inverse reinforcement learning (IRL) can be framed as
trust-region I-projections and that the resulting optimization problems can be efficiently
solved. Before introducing these fields and motivating the use of trust region I-projections,
relevant concepts from information theory need to be discussed.

1.1. Background

The methods discussed in this thesis heavily build on information theoretic quantities
like entropies and Kullback-Leibler (KL) divergences. In this section we will introduce
these quantities and explore a specific type of optimization problems called I-projections.
Based on these preliminaries, the concept of trust region I-projections is defined which
will underlie the remainder of this thesis.

1.1.1. Information Theory

The study of information theory dates back to the groundbreaking work “A Mathematical
Theory of Communication” by Shannon [1948]. In this article, Shannon investigated the
minimum amount of bits needed to transmit a message via any communication system
like telegraphs or nowadays the internet. When assuming noiseless communication, this
quantity only depends on the probability distribution over the input messages.

2



Entropy

For a finite number N of possible messages, Shannon defined the entropy as

H(p) = −
N∑︂

i=1

pi log pi, (1.1)

where pi corresponds to the probability of generating the message i. Hence, the entropy is
zero when always the same message is sent. When all messages have equal likelihood, the
entropy obtains its maximum value at log(N). The entropy corresponds to the average
amount of information contained in a message measured in nats. When the logarithm to
base two is used, the information is measured in bits. Intuitively, the entropy defines the
randomness or unpredictability of a probability distribution.

Differential Entropy

The differential entropy is an extension of the notion of entropy to continuous probability
distributions p(x) and is defined as

H(p) = −
∫︂

x

p(x) log p(x)dx. (1.2)

The differential entropy shares many properties with the discrete case and can also be
regarded as a measure of randomness. However, because a change of the coordinate frame
will in general affect the differential entropy, it measures the randomness relative to an
assumed standard [Shannon, 1948] and not on an absolute scale as it is the case for the
discrete entropy. For this reason, the differential entropy may become negative, whereas
the discrete entropy is always non-negative. Throughout this thesis, we will use the term
entropy both to refer to the discrete entropy and to the differential entropy; whether
Equation 1.1 or Equation 1.2 needs to be applied can be decided based on the kind of
probability distribution.

Relative Entropy

The relative entropy or Kullback-Leibler divergence relates to the similarity of two proba-
bility distributions. The KL divergence between two distributions p(x) and q(x) is defined
as

DKL(p||q) =

∫︂

x

p(x) log
p(x)

q(x)
dx.
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For the discrete case, it can be analogously defined by replacing the integral by a sum-
mation. The KL divergence corresponds to the expected additional number of nats (or
bits if log2 is used instead of log) required to submit a message generated by q(x), when
using a code that was optimized for p(x). It can also be understood as the average
amount of information contained in a sample x ∼ p for discriminating between p(x) and
q(x) [Kullback and Leibler, 1951].

The KL divergence is always non-negative and is zero if and only if p(x) = q(x).
Furthermore, the KL divergence is not symmetric, i.e., DKL(p||q) ̸= DKL(q||p). In machine
learning, the KL divergence has an important application for comparing a learned model
p(x) to a target distribution q(x). For such cases DKL(q||p) is often denoted as forward KL
and DKL(p||q) as reverse KL.

1.1.2. Information-Geometric Optimization

The field of robot learning, and machine learning in general, heavily relies on probabilistic
models. For example, consider the very general robot learning problem sketched earlier,
where we want to find the parameters of a robot controller that maximizes some per-
formance measure of the emerging behavior. As the performance usually also depends
on interactions with the environment that we can not fully control (like interactions
with humans), we usually need to model it probabilistically and optimize the expected

performance. When tackling such optimization problems that involve probability distribu-
tions, information-theoretic quantities naturally lend themselves for formalizing objectives
or constraints. For example, we can try to imitate a human by minimizing the relative
entropy DKL(p||q) between the robot’s distribution of behaviors p(x) and the (modeled)
distribution q(x) of the human behavior. Similarly, information-geometric trust regions
can be defined by constraining the relative entropy between the updated behavior and
the current behavior. In this section we will explore different ways of using entropies and
relative entropies for framing objectives and constraints for optimization problems. The
resulting insights will be used for formulating trust region I-projections, which will be
used in the remainder of this thesis to derive novel algorithms for VI, RL and IRL.

M-Projection and I-Projection

In this section, we will examine two specific kinds of information-geometric optimization
problems called moment projection and information projection.
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Moment Projection Moment projection or M-projection refers to optimization problems
of the form

θ⋆ = argmin
θ

∫︂

x

q(x) log
q(x)

p(x;θ)
dx

= argmax
θ

H(q) +
∫︂

x

q(x) log p(x;θ)dx,

that is, optimization problems that aim to minimize the forward KL DKL(q||p) between a
target distribution q(x) and the optimized distribution p(x;θ). The entropy of the target
distribution H(q) is independent of θ and thus does not affect the optimal solution θ⋆

and can be ignored during the optimization. In general, the integral can not be solved
in closed form, and thus a Monte Carlo estimate based on a finite number of N samples
from the target distribution is often used to estimate its value, yielding the optimization
problem

θ⋆ = argmax
θ

N∑︂

i=1

log p(xi;θ),

which corresponds to maximum likelihood estimation (MLE).

Information Projection Information projection or I-projection refers to optimization
problems of the form

θ⋆ = argmin
θ

∫︂

x

p(x;θ) log
p(x;θ)

q(x)
dx

= argmax
θ

H(p) +
∫︂

x

p(x;θ) log q(x)dx

that is, optimization problems that aim to minimize the reverse KL DKL(p||q). Although,
now both terms affect the solution θ⋆, it can be noted that the target distribution q(x)
does not need to be normalized as a rescaling of q(x) only results in a constant offset
in the objective function. Similar to the M-projection, either one or both terms of the
objective function often need to be approximated from samples, which now need to be
drawn from the model p(x).

Comparison of M-Projections and I-Projections Interestingly, the M-projection and
the I-projection do not merely define different measures of dissimilarity, but also require
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Figure 1.1.: The plot shows the M-projection (orange) and the I-projection (green) of a
mixture of two Gaussian distributions (blue) onto the set of Gaussian distri-
butions. Note that the green curve shows only one of two local optima of the
I-projection.

different problem settings. The sample-based estimate of theM-projection requires samples
from the target distribution but does not require evaluating q(x). It is therefore suited for
density estimation or regression problems. The sample-based estimate of the I-projection
does not require samples from q(x) but from the model p(x) which are often easier to
obtain. However, we need to be able to evaluate log q(x) + c for an arbitrary constant c. It
can thus be used to approximate intractable distributions for variational inference.

Yet, for some simple problems it is possible to solve both projections and it is interesting
to compare the effect of the divergence on the learned solution. Figure 1.1 compares
optimal solutions of the I-projection and M-projection for approximating a mixture of
two Gaussian distributions with a single Gaussian distribution. The M-projection finds
a distribution that covers both components of the mixture model. M-projections tend
to match the moments of the target distribution and avoid putting low probability at
regions where the target distribution has non-negligible mass. They are therefore also
called moment-matching and zero-avoiding. I-projections on the other hand, avoid putting
high probability at regions where the density of the target distribution is low and thereby
focus on approximating individual modes of the target distribution. They are therefore
also called mode-seeking and zero-forcing and have typically lower entropy compared to
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M-projections. Intuitively, the different behavior can be explained based on the fact that
the expectation is computed based on the model for I-projections and based on the target
distribution for M-projections. Hence, regions where p(x) is low will hardly affect the
reverse KL of the I-projection, even if the approximation error in these regions is high. For
M-projections, putting very little mass on some region R where the target distribution has
non-negligible density would be heavily punished as

∫︁
R
−q(x) log p(x)dR would become

very large.
In this thesis we will use the I-projection to derive novel algorithms for variational

inference, reinforcement learning and inverse reinforcement learning because in these
fields missing some solutions is usually much less severe than including bad solutions.
Furthermore, the M-projection would be difficult to implement for variational inference
and reinforcement learning, because samples from the target distribution are usually not
available. However, for inverse reinforcement learning, the M-projection would be more
straightforward, because here we typically have samples from an expert but do not know
the generating distribution. Still, we will show that efficient algorithms for IRL can be
derived based on I-projections.

Sample-Based Optimization of I-Projections Stochastic gradient descent is a standard
approach to solve optimization problems where the objective function can only be ap-
proximated by samples. Stochastic gradient descent uses samples from the current model
p(x;θ(i)) to approximate the gradient of the objective function which is then used to update
the iterate. Such stochastic gradient-based optimization has been used for I-projections in
variational inference [Gershman et al., 2012; Miller et al., 2017; Ranganath et al., 2014]
as well as for similar problems in reinforcement learning [Kakade, 2001; Williams, 1992].
However, the Monte-Carlo estimates of the gradient often have high variance. Hence, the
step size has to be chosen very small in order to ensure convergence resulting in a large
number of iterations and thus demanding many samples. This problem has been identified
in both communities and was addressed using various variance reduction techniques such
as control variates (baselines) [Kimura and Kobayashi, 1997; Ranganath et al., 2014;
Williams, 1992], Rao-Blackwellization [Ranganath et al., 2014] and the reparametrization
trick [Heess et al., 2015; Kingma and Welling, 2013; Miller et al., 2017]. However, in
spite of sophisticated variance reduction techniques, gradient-based optimization often
still yields unstable and slow convergence for these optimization problems.
Due to the bad performance of vanilla gradient descent, information-geometric trust-

region method have become popular in the field of reinforcement learning. Instead
of updating the parameters θ along its approximated gradient, information-geometric
trust region methods aim to find the optimal parameters while changing the resulting
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distribution p(x;θ) only slightly at each iteration. By ensuring that the current distribution
p(x;θ)–which is used to obtain samples to approximate the objective function–changes
only slightly, the approximation is more likely to remain valid. Still, by learning the
optimal parameters within this region of trust, relatively large progress with respect to the
objective is made, leading to faster convergence and better sample efficiency in comparison
to vanilla gradient descent. In reinforcement learning, the trust-region constraint is often
implemented by bounding the reverse KL divergence between the learned controller and
the last (stochastic) controller [Abdolmaleki et al., 2015; Levine and Abbeel, 2014; Peters
et al., 2010; Schulman et al., 2015]. Technically, it would be more sound to bound the KL
divergence between the resulting behavior p(x) directly which, as shown by Abdulsamad
et al. [2017], can indeed result in more efficient updates. However, accomplishing a
trust-region on the resulting behavior is substantially more difficult than accomplishing
a trust-region on the controller, and thus the latter constraint is often preferred. Albeit
the great success of trust region optimization in the field of reinforcement learning, its
application to variational inference has been little explored.

Trust Region I-Projections

Motivated by the success of trust regions for reinforcement learning, this thesis explores
this technique in the context of I-projection problems. More specifically, the algorithms
proposed within this thesis center on a scheme of optimization problems that have the
form

θ(i+1) = argmin
θ

˜︁J(θ)

subject to DKL

(︂
p(x;θ)||p(x;θ(i))

)︂
≤ ϵ,

where ϵ specifies the size of the trust region and ˜︁J(θ) is a sample based approximation of
the reverse KL DKL (p(x;θ)||q(x)).
The reverse KL is also used for defining the trust region, because it is in general safer

by preventing updates that put probability mass at regions where the last distribution
had low density and the sample-based model ˜︁J(θ) can not be trusted. A drawback of the
reverse KL, however, is that it tends to decrease the entropy of p(x;θ) quickly, which can
lead to bad local optima. We typically alleviate this problem, by adding an objective for
maximizing the entropy, i.e.,

θ(i+1) = argmin
θ

˜︁J(θ)− βH(p(x;θ))

subject to DKL

(︂
p(x;θ)||p(x;θ(i))

)︂
≤ ϵ,
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where β is a coefficient for trading off the two terms in the objective and can be decreased
towards zero during optimization.

1.2. Trust Region I-Projections for Robot Learning and
Variational Inference

In this thesis we will discuss novel algorithms that have been derived by establishing
information-geometric trust-region optimization to the field of variational inference and
by unifying the robot learning problems of reinforcement learning (RL), imitation learn-
ing (IL) and inverse reinforcement learning (IRL) by framing them as a common I-
projection problem.
We will now briefly introduce these learning problems and sketch how they can be

framed as trust region I-projections. The specific problem formulations and the resulting
algorithms are described in their respective chapters.

1.2.1. Trust Region I-Projections for Variational Inference

Variational inference addresses the fundamental problem in machine learning of perform-
ing inference on intractable distributions. For example, in Bayesian inference the posterior
distribution is often intractable because its normalizer can not be computed in closed form.
For a very general formulation of VI, the desired distribution q(x) has the form

q(x) = q̃(x)/Z,

where the normalizing constant Z =
∫︁
x
q̃(x)dx can not be evaluated and only unbiased

estimates of q̃(x) can be obtained for any given x. Yet, it is often desirable to draw samples
from q(x), for example in order to estimate an expected value of interest. In order to
accomplish this goal, variational inference learns a tractable approximation p(x) of q(x)
and uses it to perform inference. The optimization problem is commonly framed as an
I-projection,

p⋆(x) = argmin
p(x)

Ep

[︃
log

p(x)

q̃(x)

]︃
, (1.3)

which exploits that Z enters the optimization problem as a constant offset and thus does
not affect the solution. However, in order to make the optimization given by Equation 1.3
feasible, p(x) is often restricted to belong to a simple family of models, for example
multivariate normal distributions [Regier et al., 2017] or is assumed to have non-correlating
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degrees of freedom [Blei et al., 2017; Peterson and Hartman, 1989], which is known as
the mean field approximation.

In order to allow for robust learning of more challenging, multimodal approximations,
variational inference can be framed as trust region I-projection by adding a trust-region
constraint to the optimization problem (Eq. 1.3), e.g.,

p⋆(x) = argmin
p(x)

Ep

[︃
log

p(x)

q̃(x)

]︃

subject to DKL(p||plast) ≤ ϵ,

(1.4)

where plast(x) is the approximation that has been learned during the last iteration and ϵ is
an appropriately chosen upper bound.

1.2.2. Trust Region I-Projections for Reinforcement Learning

Manually programming robots to perform complex tasks can be very cumbersome or even
infeasible. Reinforcement learning aims to reduce the burden on the human by letting the
robot learn the desired behavior by trial and error. In RL, the human only needs to specify
a reward function rt(s,a) for each time step t that computes a (scalar) score based on
the current state of the robot, s, and its chosen action a. If the reward function is chosen
appropriately, the robot can learn to perform the desired task by iteratively adapting its
policy πt(a|s) in order to increase the expected reward.
The reinforcement learning problem with finite time horizon T can be formulated as

maximize
π

T∑︂

t=0

Epπt
[rt(s,a)] , (1.5)

where the expectation is computed with respect to the distribution pπt (s,a) that results
from applying the policy π.
As the objective function typically can not be computed in closed-form, the policy

optimization has to be performed based on samples that are obtained by executing a
policy. In order to prevent overfitting to the samples, trust-region constraints have been
successfully applied both, for model-free [Abdolmaleki et al., 2015; Peters et al., 2010;
Schulman et al., 2015] and for model-based [Abdulsamad et al., 2017; Levine and Abbeel,
2014] RL methods.

Furthermore, the optimization can be prone to premature convergence, because reducing
the variance of the policy is often effective for preventing bad behavior and thus increasing
the expected reward. In order to address the problem of premature collapsing of the
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policy, Williams and Peng [1991] added an objective that rewards high entropy. This
technique is recently becoming increasingly popular [Abdolmaleki et al., 2015; Akrour
et al., 2016; Mnih et al., 2016; O’Donoghue et al., 2016]. While the aforementioned
work only considered the entropy of the policy, it is interesting to investigate the effect of
rewarding the entropy of the robot behavior. Let x be a vector that concatenates the states
and actions for all time steps and therefore has size T (Ds +Da), where Ds and Da refer
to the dimensionality of the states and actions respectively. We can rewrite the objective
given by Equation 1.5 in terms of the behavior x and add a trust-region constraint and
entropy objective, i.e.,

π⋆(a|s) = argmax
π(a|s)

βEpπ(x) [r(x)] + H (pπ(x))

subject to DKL(p
π(x)||plast(x)) ≤ ϵ,

(1.6)

where the reward function with respect to the behavior, r(x), can be chosen to coincide
with the sum over the time-dependent rewards rt(s,a), and

H (pπ(x)) = −

∫︂

x

pπ(x) log pπ(x)dx

refers to the entropy of the distribution over robot behavior. Note that the coefficient β
was introduced in order to trade off the two objectives. Maximizing the entropy of the
resulting behavior rather than the entropy of the controller outputs can lead to policies
that exhibit more versatile behavior. Furthermore, the optimization problem given by
Equation 1.6 may lead to more favorable exploration, because different solution strategies
are actively explored.
When rewriting the reward optimization problem as KL divergence minimization and

defining q̃(x) = exp (βr(x)), Optimization Problem 1.6 is very similar to a trust region
I-projection, namely

π⋆(a|s) = argmin
π(a|s)

Epπ(x)

[︃
log

pπ(x)

q̃(x)

]︃

subject to DKL(p
π(x)||plast(x)) ≤ ϵ.

(1.7)

However, an additional challenge of the reinforcement learning problem stems from
the fact that we can not directly specify the distribution of the emerging behavior pπ(x).
Instead, we can only control it indirectly by choosing the policy π⋆(a|s). The reformulation
(Eq. 1.7) reveals, that optimizing Equation 1.6 aims to match the desired distribution
q(x) = q̃(x)/Zq as closely as possible with respect to the KL divergence. Consequently, the
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human who is designing the reward function can better predict the resulting behavior.
This is an important benefit of maximizing the entropy with respect to the distribution
over behavior because reward function engineering can be very cumbersome for the
human. For example, consider the task of putting a peg into a hole in a wall. An obvious
reward function for this task produces a constant positive reward, if the behavior results
in placing the peg in the hole and zero reward otherwise. However, such sparse reward
function is very difficult to optimize by trial-and-error because it does not produce any
guidance unless the robot manages by chance to correctly place the peg. A more sensible
reward functions would penalize the euclidean distance between the peg and the hole,
for example by using a concave quadratic function. However, it can still become difficult
to appropriately set the coefficients of the reward function, especially when additional
objectives need to be considered, for example, energy efficiency. If the coefficients are
too low, it might not be worthwhile to correctly solve the task. On the other hand, other
objectives might be neglected if the coefficients are too high. Reinforcement learning,
therefore usually also involves trial-and-error by the human, who has to repeatedly adapt
the reward function and observe the resulting behavior. While not fully resolving this labor,
specifying a desired distribution over behaviors can ease the task of reward engineering.
For example, the human could specify a reward distribution that is Gaussian with respect
to the position of the peg. By setting the mean position to the center of the hole and the
covariance matrix appropriately with respect to the size of the hole, iteratively optimizing
Equation 1.6 will result in the desired behavior if possible or otherwise trade off conflicting
objectives in an information-geometrically optimal way.

1.2.3. Trust Region I-Projections for Imitation Learning

Imitation learning (IL) [Argall et al., 2009; Hussein et al., 2017; Osa et al., 2018; Schaal,
1999] is a different approach to facilitate the task of programming robots. Instead of
specifying a reward function, the human can demonstrate the desired behavior, either
by letting the robot passively observe the human demonstrator [Koert et al., 2016; Kulić
et al., 2012; Kuniyoshi et al., 1994; Maeda et al., 2016], or by physically moving the
robot directly using kinesthetic teaching [Ewerton et al., 2016; Kormushev et al., 2011]
or indirectly using teleoperation [Abbeel et al., 2010].

The trust region I-projection formulation (Eq. 1.7) for RL can also be applied to imitation
learning, however the desired distribution q̃(x) is only represented via samples of the
expert. A naive solution would be to use either a non-parametric model or to fit a para-
metric model via maximum likelihood estimation (MLE) (and hence an M-projection) and
subsequently perform the I-projection based on this model. However, MLE is prone to over-
fitting and also non-parametric approaches like kernel density estimation (KDE) [Parzen,
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1962; Rosenblatt, 1956] have difficulties in extrapolating the data—especially for high-
dimensional spaces. Estimating the distribution over expert behaviors is, however, not
necessary, since the objective function only depends on the density ratio pπ(x)/q̃(x). Den-
sity ratio estimation based on samples from the robot behavior and the expert behavior is
a simpler problem, because the density ratio can be computed from the densities, but the
densities can not be recovered from the density ratio [Sugiyama et al., 2012].

1.2.4. Trust Region I-Projections for Inverse Reinforcement Learning

Similar to imitation learning, inverse reinforcement learning uses expert demonstrations
for specifying the task. However, the goal of IRL is not primarily to learn a policy π(a|s),
but rather to learn a reward function r(s,a) that, when optimized using reinforcement
learning, leads to the desired policy. Intuitively, IL aims to learn how to exhibit the desired
behavior without explicitly modeling its intentions, whereas IRL aims to infer why the
demonstrators acted in the way they did. By explicitly modeling the intentions, reward
functionsmay remain valid across different environments that necessitate different solution
strategies. Furthermore, reward functions can be useful on its own, i.e., also when not used
in conjunction with RL. They enable the robot to detect when its performance decreases
or can be used for modeling and predicting the behavior of other agents [Shimosaka
et al., 2015; Ziebart et al., 2009]. However, reward functions do not capture intentions
per se, but may also reward specific solution strategies. Learning such shaped reward
functions has indeed little benefit over learning policies and ensuring generalizable reward
functions is arguable the biggest open problem in the field of IRL. Recently, Fu et al.
[2018] proposed to learn reward functions that disregard the robot actions in order to
increase the likelihood of making them generalizable. Still, independence of the applied
actions–while often necessary–is not sufficient to capture the expert intentions.

Early approaches for IRL [Ng and Russell, 2000; Ratliff et al., 2006; Ziebart et al., 2008]
required to solve the (forward) RL problem iteratively, and it appeared that the inverse
reinforcement learning problem was therefore significantly harder than RL. As noted by
Ho and Ermon [2016], such approaches correspond to using dual ascent for imitation
learning, where iteratively the policy (primal) is optimized for a given dual value (cost)
and the cost is updated based on the resulting violations of the constraint of matching the
expert’s behavior. However, state-of-the-art IRL methods apply more efficient optimization
techniques, that interleave policy and reward optimization [Finn et al., 2016b; Fu et al.,
2018]. By performing a single RL optimization with a varying reward function, these
methods can perform IRL as efficient as IL and comparably efficient to RL. This optimization
is reminiscent to the way generative adversarial nets (GANs) [Goodfellow et al., 2014]
are optimized [Finn et al., 2016a].
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The strong relationship between imitation learning and inverse reinforcement learning
can also be observed for the trust region I-projection formulation of imitation learning, by
examining its Lagrangian

L(π) = −Epπ(x) [log q̃(x)− (1 + η) log pπ(x) + η log plast(x)] + ηϵ,

where η ≥ 0 is the Lagrangian multiplier corresponding to the trust region constraint.
Trust region I-projection for imitation learning–and thereby also trust region I-projection
for RL–thus corresponds to (standard) reinforcement learning with a varying reward
function

rπ(x) = log q̃(x)− (1 + η) log pπ(x) + η log plast(x).

For imitation learning, this reward function converges towards a reward function that
matches the expert behavior and, hence, solves the IRL problem.

1.2.5. Challenges of the Applications

The aforementioned applications of VI, RL and IL/IRL have several challenges related to
multimodality, discontinuities, stability, local optima and time series. Figure 1.2 contains
a list of typical challenges for each application.

Multimodality When the target distributions has multiple modes that all need to be
found, the approximation needs to be appropriately complex, which typically makes the
optimization more difficult. Furthermore, careful exploration is required in order to
discover all relevant modes.

Local Optima When the optimization problem has several local optima, it can become
difficult to find good solutions. Hence, exploration in the parameter space can also become
challenging.

Discontinuities Discontinuities can lead to high modeling errors even in the vicinity
of the samples and thereby makes stable optimization more challenging. In order to
approximate such discontinuities, the approximation needs to be highly nonlinear.

Stability Especially, when varying samples are required to estimate the objective function,
it can become difficult to ensure stable converge to a solution.
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Multi-

Modality

Local

Optima Discontinuities Stability

Time

Series

variational
inference

✓ ✓ ✓ ✓

reinforcement
learning

✓ ✓ ✓ ✓

inverse
reinforcement

learning
✓ ✓ ✓ ✓ ✓

Figure 1.2.: The table shows typical challenges of variational inference, reinforcement
learning and inverse reinforcement learning. Note that for reinforcement
learning we often settle with a single good solution. However, when we want
to learn versatile behavior, multimodality can also become amajor challenge
for RL.

TimeSeries For reinforcement learning and inverse reinforcement learning, the objective
function depends on trajectories over time. The relation between the parameters of the
robot controller and the resulting time series can only be approximately modeled and
such models are typically highly nonlinear.

1.3. Summary of Contributions

This thesis presents new methods and theoretical insights related to information-geometric
trust region optimization of I-projection problems.

Namely, we will derive a method for trust region I-projections that unifies the problems
of IRL and RL and a trust-region based method for variational inference that is suitable for
fitting GMM approximations. We will further examine how a KL-proximal I-projection that
is similar to an information-geometric trust region can be used to derive non-adversarial
methods for imitation learning that are very similar to modern adversarial imitation
learning (AIL) methods.
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1.3.1. Model-based Trust Region I-Projections for Unifying RL and IRL

We unify RL and IRL by framing both problems as a common I-projection problem. For
IRL, the target distribution is computed by using the M-projection to fit a Gaussian
distribution over feature trajectories from expert demonstrations. For RL we assume a
reward function that is quadratic in features. By using iterative linearizations of the
features and the system dynamics, the trust-region I-projections can be efficiently solved
for learning time-dependent linear control policies and quadratic reward functions. We
show that the I-projection formulation is several orders of magnitude more efficient than
solving the same problem with the very common maximum causal entropy IRL approach
(MaxCausalEnt-IRL). We also show that this method can be used to intuitively specify
tasks by treating reward functions as desired trajectory distributions.

1.3.2. Trust Region I-Projections for Variational Inference

Many methods for approximating intractable distributions for variational inference are
restricted to simple model families, e.g., by using the mean-field approximation, in order
to make the optimization easier. Such methods are therefore not suited for approximating
complex, multimodal distributions. Instead, we will derive a method for learning GMM
approximations with an adaptive number of components. Such GMM models can be used
to approximate the target distribution arbitrary well. In order to make the optimization
feasible, a method similar to expectation-maximization (EM) is derived for decomposing
the trust-region I-projection into tractable subproblems that are optimized by treating
them as reinforcement learning problems. The resulting method is capable of learning
approximations of higher quality than any previous VI method and the quality of samples
from the approximation are on par with samples created by MCMC methods that have
been devoted two to three orders of magnitude more computational time.

1.3.3. Non-Adversarial Imitation Learning by KL-Proximal I-Projections

Although our model-based approach to unify RL and IRL has several appealing properties,
it is limited to learning linear policies and only learns quadratic reward functions. In
contrast, many modern methods for imitation learning scale to neural network policies
and reward functions. These methods are often based on an adversarial formulation that
was inspired by generative adversarial nets (GANs, Goodfellow et al. 2014). We show that
the I-projection formulation of our model-based approach can be efficiently solved also
for nonlinear function approximators when lower-bounding the Lagrangian multiplier
of the trust-region by one. The resulting algorithms, however,—albeit non-adversarial
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in nature—are very similar to existing adversarial approaches. While it is difficult to
claim algorithmic advantages compared to existing methods due to the strong similarities,
our non-adversarial formulation enjoys stronger theoretical guarantees and yields new
insights. For example, we show that adversarial inverse reinforcement learning (AIRL,
Fu et al. 2018), which previously was not theoretically well-understood, can indeed be
derived from our non-adversarial formulation. However, we also demonstrate that the
non-adversarial formulation can be used to derive novel algorithms by presenting offline
non-adversarial imitation learning (O-NAIL). O-NAIL considers the offline setting, that
is, we do not assume that the agent can interact with the environment for learning a
policy. O-NAIL was inspired by the recent (adversarial) offline imitation learning method
ValueDice [Kostrikov et al., 2020] and differs by using an actor-critic [Konda and Tsitsiklis,
2000] optimization instead of solving a saddle point problem, which results in stronger
convergence guarantees as we can show convergence also for large policy improvements.

1.4. Thesis Outline

Each of the aforementioned contributions is devoted an individual chapter that can be
read independently.

Chapter 2 describes our model-based unification of reinforcement learning and inverse
reinforcement learning. The chapter was published at the international conference on
intelligent robots and systems [Arenz et al., 2016]1.

In Chapter 3, we present our trust region based method for variational inference. Except
for Section 3.6, this chapter is based on an article that was published by the journal
of machine learning research [Arenz et al., 2020]. Preliminary work for this chapter
was published at the international conference on machine learning [Arenz et al., 2018].
Section 3.6 briefly discusses follow-ups by Ewerton, Arenz, and Peters [2020] and Becker,
Arenz, and Neumann [2020]. Although the research for these works was primarily
conducted by the corresponding first authors, these works are very relevant to the scope of
this thesis by presenting a robotic application of our variational inference method [Ewerton
et al., 2020], and by reducing the gap between variational inference and imitation learning
by applying ideas presented in Chapter 3 to density estimation [Becker et al., 2020].
Chapter 4 discusses our non-adversarial formulation for imitation learning and its

connection to adversarial methods. This chapter is based on a preprint [Arenz and
Neumann, 2020] that is currently under review by the journal of machine learning
research.

1©2016 IEEE. Reprinted, with permission, from Oleg Arenz, Hany Abdulsamad and Gerhard Neumann,
Optimal Control and Inverse Optimal Control by Distribution Matching, IROS, 2016.
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Text and images of the next chapter were taken from prior work [Arenz et al., 2016].©2016

IEEE. Reprinted, with permission, from Oleg Arenz, Hany Abdulsamad and Gerhard Neumann,

Optimal Control and Inverse Optimal Control by Distribution Matching, IROS, 2016.

2. Inverse Reinforcement Learning by
Matching Distributions

Optimal control [Kappen, 2007; Stengel, 1986] aims at finding optimal behavior given a
cost function and the dynamics of the system. Typically, the cost function consists of several
objectives that need to be traded off by the experimenter. Finding the correct trade-off
often requires fine-tuning until the optimal behavior matches the desired behavior of
the experimenter. Conversely, inverse reinforcement learning (IRL) algorithms [Ng and
Russell, 2000] aim at finding a reward function for a Markov decision problem (MDP)
that is consistent with observed expert demonstrations. It can be used for inferring the
expert’s goals as well as for apprenticeship learning. By learning a reward function from
demonstrations rather than learning a policy directly, a succinct and feature based task
representation is learned, that generalizes to different situations and is unaffected by
changes in the dynamics.

In this paper, we approach the problem of optimal control and inverse optimal control
in the same framework by matching the induced state distribution of the policy with the
desired state distribution or—for inverse optimal control—the observed state distribution
of the experimenter. We will focus on the stochastic trajectory optimization case where
the desired distributions are given by Gaussian distributions over trajectories. Instead of
defining a quadratic cost function as it is the case for optimal control, we specify a desired
mean state and a desired accuracy for reaching the mean state. In addition, we can specify
the importance of matching the desired distribution for each time step, i.e., we can specify
desired mean state and accuracy only for a subset of the time steps. For optimal control,
the desired mean state and accuracy is chosen by the experimenter for a subset of the
time steps, while in the inverse RL case, the desired distribution is typically estimated
from the experimenter. Our approach implicitly estimates a time-dependent quadratic
reward function such that the optimal control policy that is obtained from maximizing
this reward function matches the desired trajectory distribution.

In our approach, the trajectory distribution can be given either in joint or in operational
space. Our objective is now to estimate a controller that matches the desired trajectory
distribution. In order to realize this objective, we minimize the relative entropy or Kullback-
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Leibler (KL) divergence between the distribution induced by the policy and the desired
distribution. This KL minimization procedure has a strong resemblance to existing inverse
reinforcement learning algorithms such as maximum causal entropy IRL [Ziebart et al.,
2010] if we match the first and second order moments as features of the trajectory for
each time step, i.e., when matching mean and variance. Matching the variance in addition
to the mean is often sensible when inferring the expert’s goal, given that it is an important
indicator for the importance of accurate control. However, using existing IRL algorithms
is computationally very expensive as the number of parameters grow linearly with the
number of time steps and even quadratically with the dimensionality of the system. Using
our KL minimization objective, we develop a new update rule for obtaining the parameters
of the reward function and show that this update rule can be several orders of magnitudes
more efficient than the standard gradient descent update rule. Moreover, many IRL
algorithms [Levine and Koltun, 2012; Levine et al., 2011] need to observe the actions in
the demonstrations. This assumption is often unrealistic, for example when we get the
demonstrations by observing a human expert.
Similar to most trajectory optimization algorithms, we formulate our algorithm with

linear system dynamics to make the estimation of the policy feasible in closed form. For
non-linear systems, we introduce an incremental procedure based on linearizations similar
to the well-known incremental LQG algorithm [Li and Todorov, 2004]. In order to ensure
stability of the policy update, we follow the trajectory optimization approach from Levine
and Abbeel [2014] used for guided policy search. In addition to minimizing the KL to
the desired distribution over task space positions, we also limit the KL to the old policy,
which has been used for obtaining the linearization of the system. This KL-bound ensures
stability of the iterative optimization.

We evaluate our method on optimal control and inverse optimal control problems and
compare our algorithm to competing IRL approaches. We show that our novel update
direction outperforms the standard update direction from MaxCausalEnt-IRL. Moreover,
we compare our approach to an IRL approach by Yin et al. [2014] on a handwritten letter
trajectory data set and to an approach by Englert et al. [2013] on a pendulum swing-up.
Finally, we show the applicability of our approach on a non-linear four-link pendulum that
needs to achieve a peg-in-the-hole task with a given accuracy.

2.1. Related Work

The first IRL approaches [Ng and Russell, 2000] formulated the problem of obtaining the
reward function as linear optimization problem, where the reward, that is assumed to be
linear in some features, should be maximal for the demonstrated trajectories. As pointed
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out by Ng and Russell [2000], the inverse RL problem is ill-defined and many reward
functions exists that satisfy this criterion. Ziebart et al. [2008] introduced a max-entropy
formulation for inverse reinforcement learning that resolves the ill-posedness based on
the principle of maximum entropy for estimating distributions [Jaynes, 1957]. We will
discuss the MaxCausalEnt-IRL algorithm in more details in the preliminaries. While the
standard MaxCausalEnt-IRL algorithms all require a model of the system dynamics to
perform dynamic programming, Boularias et al. [2011] proposed a model-free variant
that uses reinforcement learning to obtain the optimal policies that are induced by a given
reward function.

Another IRL algorithm that is based on maximum entropy IRL and on local trajectory
optimization has been introduced by Levine et al. [2011]. The algorithm computes a
reward function that renders the demonstration locally optimal by using second order
Taylor approximations of the learned reward function and linearizations of the system
dynamics. Yet, this algorithm does not take stochastic system dynamics into account and
can not be directly used to estimate a time-dependent reward function for the trajectories.
Furthermore, the method has to observe the actions in the demonstrations, which is
not the case for our approach. Another IRL approach that tries to estimate a similar,
time-dependent reward function was presented by Yin et al. [2014]. The authors use
stochastic optimization to obtain the parameters of the reward function by optimizing the
max-entropy IRL objective. Subsequently, an LQR solution is used to obtain the optimal
controller. However, as the maximum entropy objective does not consider the stochasticity
of the system, the resulting controller does not match the desired features. Consequently,
the estimated reward function also does not fully explain the expert’s behavior. We will
compare our approach to the one by Yin et al. [2014] in the experiment section.

There are many stochastic trajectory optimization techniques that rely on linearizations,
including the incremental LQG algorithm [Li and Todorov, 2004], AICO [Toussaint, 2009],
Robust Policy Updates [Rueckert et al., 2014] and the algorithm used for guided policy
search [Levine and Abbeel, 2014]. To our experience, the approach presented by Levine
and Abbeel [2014] is the most stable one as it uses a KL bound to the old policy to stabilize
the policy update.

Englert et al. [2013] presented a model-based approach to imitation learning that shares
a similar objective to our approach. They modified the model-based policy search algorithm
PILCO [Deisenroth and Rasmussen, 2011] such that it minimizes the KL to the distribution
of the demonstrator instead of maximizing the reward. While our objective is similar,
we obtain a closed form solution for linear feedback controllers with our approach while
Englert et al. [2013] obtain a highly non-linear policy by performing a computationally
heavy, non-convex optimization.
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2.2. Preliminaries

This paper focuses on finite-horizon Markov decision processes (MDPs). A finite-horizon
MDP is a 5-Tuple

(︁
s,a, pt(s

′|s,a), rt(s,a), T
)︁
where s denotes a vector of states, a denotes

a vector of actions and T denotes the time horizon. The reward function at time step t is
denoted by rt(s,a) and the system dynamics by pt(s′|s,a).
We define yt = f(st,at) as the task space position at time t and f as the task space

transformation. We want to match the observed task space distribution of the demonstrator
with the task space distribution that is induced by the policy. The task space can for example
be defined by the forward kinematics of the end-effector. If we want to match the observed
states and actions, the task-space transformation is defined by the identity function.
We define the feature vector ψ(y) as the linear and quadratic expansion of the task

space vector y. This expansion is needed to match the first and second order moments
of the distribution p(y) over the task space. For time-dependent vectors or functions, a
subscript (usually t) is used to refer to a given time step while dropping the subscript
refers to every time step.
Our method is based on the Kullback-Leibler divergence, or relative entropy, between

two distributions pt(y) and qt(y), given by

DKL(pt(y)||qt(y)) =

∫︂

y

pt(y) log
pt(y)

qt(y)
dy

and the conditional, differential entropy of a policy πt(a|s), given by

H(πt(a|s)) = −

∫︂

s

pt(s)

∫︂

a

πt(a|s) log πt(a|s) da ds,

where pt(s) denotes the distribution over states at time step t.

2.2.1. Maximum Causal Entropy IRL

Maximum causal entropy IRL (MaxCausalEnt-IRL) [Ziebart et al., 2010] aims at finding
a reward function such that the resulting policy produces trajectories that are close to
the expert’s demonstrations. Following Abbeel and Ng [2004], closeness is measured
by comparing the expected feature counts when following the policy with the empirical
feature counts of the expert, given by

ψ̂t =
1

|D|

|D|∑︂

i=1

ψt(yi,t),
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where |D| denotes the number of demonstrated trajectories and yi,t denotes the task
position achieved by demonstration i at time step t. In the basic formulation, the feature
counts are matched exactly, however, a small error based on the ℓ1 or ℓ2 norm is often
allowed when regularization is needed.
Since the expert’s demonstrations are usually not fully optimal, and we have limited

data to estimate the average feature counts, an optimal policy for the given MDP is not the
right basis when comparing the feature counts. Indeed, the soundness of such approaches
depends on how good the expert is modeled when computing a policy for a given reward
function. MaxCausalEnt-IRL models the expert using the policy that has maximum entropy
among all policies that are able to match the feature expectations and thereby does not
make any ungrounded assumptions on the expert’s policy.

The corresponding optimization problem can be written as

max
πt(a|s)

T−1∑︂

t=1

H(πt(a|s)) s.t. ∀t>1 :

∫︂

y

pπt (y)ψt(y)dy = ψ̂t,

where additional constraints specify pπt (y) as the distribution over task space positions at
time step t that results from applying the given state transformation pt(y|s,a). Further-
more, we need to ensure that the state distribution pπt (s) is consistent with the previous
policy πt−1(a|s), system dynamics pt−1(s

′|s,a) as well as the previous state distribution
pπt−1(s), i.e.,

pπt (s
′) =

∫︂

s

pt−1(s)

∫︂

a

πt−1(a|s)p
π
t−1(s

′|s,a)dads.

This optimization problem is solved by minimizing the Lagrangian dual problem G, where
we refer to the thesis of Ziebart [2010] for further details on the derivation of the dual
problem. The maximum entropy policy is then found to be

πt(a|s) = exp
(︂
Qsoft(s,a)− V soft(s)

)︂
. (2.1)

where V soft
t (s) is the Lagrangian multiplier of the dynamics constraint and relates to the

value function of π. The optimality condition for V soft
t (s) is found by setting the partial

derivative ∂G
∂pπt (s)

to zero, yielding

V soft
t (s) = log

∫︂

a

exp
(︂
Qsoft

t (s,a)
)︂
da, (2.2)

which corresponds to the softmax of the softened state-action value function

Qsoft
t (s,a) = rt(s,a) +

∫︂

s′
pt(s

′|s,a)V soft
t+1 (s

′)ds′. (2.3)

23



The learned reward function is linear in the features, i.e.

rt(s,a) = θ⊤
∫︂

y

pt(y|s,a)ψ(y)dy, (2.4)

where the weights θt are the Lagrangian multipliers of the feature matching constraint
and learned by minimizing the dual function [Ziebart, 2010]

G = Ep1(s)

[︂
V soft
1 (s)

]︂
−
∑︂

t

θ⊤t ψ̂t

using gradient based optimization, where the gradient is given by the difference between
the empirical feature counts of the expert ψ̂t and the expected feature counts ψ̃t of the
policy π(a|s) given by (2.1), i.e.

∂G

∂θt
= ψ̃t − ψ̂t. (2.5)

MaxCausalEnt-IRL can be applied for matching expert distributions by matching their
moments. For example, a Gaussian distribution over the task space y can be matched
by matching its first and second moments. Hence, MaxCausalEnt-IRL can be applied
for matching the expert’s distribution by matching a vector ψ̂(yt), that includes the task
space positions yi and all second-degree monomials yiyj , with 1 ≤ i ≤ j ≤ Ny, where Ny

denotes the number of task space variables.
However, treating first-degree monomials and second-degree monomials as indepen-

dent features impairs regularization as well as optimization. For example, punishing
high weights on a given first-degree monomial using ℓ1 or ℓ2 regularization does not
take the variance of the respective feature into account and may hence introduce large
regularization errors on the mean even for crucial low-variance time steps. Similarly,
the optimization does not take into account that changing the expected feature count
of a first-degree monomial also affects the expected feature counts of its corresponding
second-degree monomials.

2.3. (I)OC by Matching Distributions

In order to address the issues of MaxCausalEnt-IRL when matching first and second order
moments, we propose a novel application of the principle of maximum entropy for inverse
reinforcement learning that aims at minimizing the relative entropy to the distribution
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qt(y) estimated from the expert rather than matching the expert’s feature counts. The
corresponding constrained optimization problem is given by

max
πt(a|s)

T−1∑︂

t=1

H(πt(a|s))−
T∑︂

t=2

βtDKL(p
π
t (y)||qt(y)), (2.6)

where the same constraints are used for modeling the relation between pπt (s), π(a|s)
and pπt (y) as in MaxCausalEnt-IRL. Regularization is controlled based on the coefficients
βt > 0, where high values emphasize the objective of matching the expert’s distribution,
and thus yield low regularization.
The optimization problem sketched by (2.6) is solved by minimizing the Lagrangian

dual problem

G =Ep1(s)
[︂
V soft
1 (s)

]︂

+
∑︂

t

βt log

∫︂

y

exp

(︃
log qt(y)−

1

βt
ηt(y)

)︃
dy, (2.7)

where the policies π(a|s) and the softened state and state-action value functions V soft(s)
and Qsoft(s,a) are the same as for MaxCausalEnt-IRL, i.e., they are given by (2.1), (2.2)
and (2.3). The reward functions, however, are directly given by the Lagrangian multipliers
ηt(yt) corresponding to the transformation constraints of the task space variable, i.e.,

rt(s,a) =

∫︂

y

pπt (y|s,a)ηt(y)dy.

Setting the partial derivative ∂G
∂pπt (y)

to zero yields an optimality condition between pπt (y)

and ηt(y), given by

ηt(y) = βt (log qt(y)− log pπt (y)) + const. (2.8)

Note that (2.8) defines the reward function recursively since the task space distribution
pπt (y) depends on the policy which in turn depends on the task space reward function
via (2.1), (2.2) and (2.3). Furthermore, (2.8) provides information about the structure of
the reward function. For example, if qt(y) and pπt (y) are normally distributed, the reward
function is quadratic in y.

Instead of using (2.8) for estimating the task space reward function ηt(y) based on an
estimate of pπt (y), (2.8) can also be reformulated for estimating the desired distribution
over task variables p̃t(y) based on the current estimate of ηt(y), i.e.

p̃t(y) ∝ exp

(︃
log qt(y)−

1

βt
ηt(y)

)︃
, (2.9)
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where a tilde is used to distinguish this estimate of the distribution over task space variables
from pπt (y), the distribution over task space variables that is produced by the policy π(a|s)
which is computed according to (2.1).

The dual function (2.7) can be minimized using gradient-based optimization. For
example, when assuming the reward function to be linear in a given feature vector ψt(y),
i.e. ηt(y) = θ

⊤
t ψt(y), the partial derivative of the dual with respect to the weight vector

θt is given by
∂G

∂θt
= Epπt (y) [ψt(y)]− Ep̃t(y) [ψt(y)] . (2.10)

However, while we use the gradient (2.10) for discussing the relative entropy based
regularization as well as the relation between our approach and MaxCausalEnt-IRL in Sec-
tion 2.3.1, we use a different procedure for optimizing the dual function (2.7) that is based
on the recursive definition of the reward function (2.8) and discussed in Section 2.3.2.

2.3.1. Relative Entropy Based Regularization

The gradient of the new formulation (2.10) only differs from the gradient of MaxCausalEnt-
IRL (2.5) in that the empirical feature average ψ̂t has been replaced by the expectation
of ψt(y) under p̃t(y). As the empirical feature average corresponds to the expectations
of ψt(y) under the empirical expert distribution qt(y), our gradient (2.10) corresponds
to the gradient of MaxCausalEnt-IRL (2.5), but with the target distribution replaced by
p̃t(y). However, this new target distribution, p̃t(y), is adapted during optimization as it
depends on the current estimate of the task space reward function.
More specifically, as it can be seen from (2.9), it is a modification of the actual target

distribution qt(y) where the log-likelihood of task space variables is increased if they are
assigned high reward and decreased if they are assigned low reward. Assigning high
rewards to a task space variable yi at time step t, indicates that its log-likelihood would
otherwise be too small, while assigning low rewards indicates that the log-likelihood
would otherwise be too high. Hence, the modified target distribution is—according to the
current estimate of the task space reward function—easier to match.
Although p̃t(y) might not be feasible in the beginning of the optimization, it will

converge to the same distribution as pπt (y) as the algorithm converges to the optimal
reward function η(y) and policy π(a|s). Note that pπt (y) is always feasible as it is defined
as the distribution over task space variables that is produced by the current policy.
If the target distribution qt(y) is feasible, the difference between the modified target

distribution p̃t(y) and qt(y) is caused solely by regularization and converges to zero
as β approaches infinity. Similar to ℓ1 or ℓ2 regularization in MaxCausalEnt-IRL, our
regularization scheme aims at increasing the controller entropy at the cost of not matching
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the expert demonstrations exactly. However, instead of measuring the distance to the
expert demonstrations based on the absolute or squared distances between the empirical
and the expected feature count, our approach employs the relative entropy between the
resulting distribution and the empirical expert’s distribution over task space positions.

2.3.2. Alternative Descent Direction

In contrast to MaxCausalEnt-IRL, the relative entropy formulation does not only provide
the gradient with respect to the reward function but additionally enables us to estimate
the optimal reward function based on (2.8). It is therefore appealing to exploit this

additional information to achieve faster optimization. Starting from an estimate θ(i)η,t of
the parameters of the reward function, the resulting distribution over task space positions
can be computed based on (2.1), (2.2) and (2.3), which can then be used for computing

a new estimate θ(i+1)
η,t based on (2.8). However, such greedy jumps based on estimates

pπ
(i)

t (y) of the optimal, regularized distribution over task space positions do not guarantee
convergence due to the recursive relation of the reward function and the task space
distribution pπt (y). Instead, we propose to interpolate the current estimate of the weights

θ
(i)
η,t with the estimate of the optimal weights θ̃

(i)
η,t according to (2.8), i.e.

θ
(i+1)
η,t = (1− α)θ

(i)
η,t + αθ̃

(i)
η,t

= θ
(i)
η,t − α

(︂
θ
(i)
η,t − θ̃

(i)
η,t

)︂
= θ

(i)
η,t − αδθη ,t,

with step size α.
The update direction δθη ,t is an ascent direction of the dual function (2.7) and the

proposed update scheme, thus, converges for reasonable step sizes. A proof is given in the
supplementary material, that also covers the special case of MaxCausalEnt-IRL, where
p̃t(y) = qt(y). Hence, our update direction can be also applied for other methods that are
based on MaxCausalEnt-IRL, assuming that the parameters of the expert distribution θqt
can be estimated.

2.3.3. LQR Solutions

Computing the policy for a given reward function, as well as the resulting distribution
over task space positions is in general hard and a major challenge when applying IRL to
real-world applications. Linear-quadratic regulators (LQRs) are an important exception
that allow to compute both, the policies and the resulting state distributions by means of
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(a) (b)

Figure 2.1.: (a) Comparison of both update directions on a toy task with only one task
variable and two features (linear and quadratic term). While gradient descent
needs many updates as it neglects the dependencies of the linear and the
quadratic parameters, our new update direction achieves fast convergence
within few updates. (b) Zoomed updates of the gradient descent. ©2016
IEEE.

dynamic programming. An LQR is a control problem with linear Gaussian state dynamics

pt(s
′|s,a) = N

(︁
s′|Ats+Bta+ ct,Σt

)︁

and concave quadratic state-action reward functions

rt(s,a) =

(︃
s
a

)︃⊤

Rt

(︃
s
a

)︃
+

(︃
s
a

)︃⊤

rt + rt.

The resulting softened state-action value functions

Qsoft
t (s,a) =

(︃
s
a

)︃⊤

Qt

(︃
s
a

)︃
+

(︃
s
a

)︃⊤

qt + qt

as well as the softened state value functions

V soft
t (s) = s⊤Vts+ s⊤vt + vt

are then also concave quadratic functions. Furthermore, the policies given by (2.1) are
given by stochastic linear controllers

πt(a|s) = N (a|Kts+ kt,Σπ,t) . (2.11)
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The parameters can be computed using dynamic programming starting with VT (s) =
rT (s,0). The resulting softened value function differs from the actual value function of
the controller given in (2.1), which would be computed as Vt(s) =

∫︁
a
πt(a|s)Qt(s,a)da,

only in the offset vt which is increased by the amount of entropy of the controller, i.e.

V soft
t (s) = Vt(s) +

T−1∑︂

i=t

H(πi).

Given a Gaussian initial state distribution p1(s) and linear transformation of the task space

pt(y|s,a) = N
(︂
y|Ft

[︁
s a

]︁⊤
+ ft,ΣF,t

)︂
,

the controller given by (2.11) produces Gaussian state and task space distributions. We
will use linearizations for obtaining the task space, e.g., if the task space corresponds to
the end-effector position, F is given by the Jacobian matrix. Further assuming Gaussian
expert distributions, the reward functions computed according to (2.8) are quadratic
in task space positions and the related rewards rt(s,a) =

∫︁
y
pt(y|s,a)ηt(y)dy are again

quadratic in states and actions.

Comparison of Descent Directions

The difference between the gradient and the ascent direction δθη ,t can be better understood
by comparing them in the LQR setting. The partial derivatives with respect to the weights
of the linear and quadratic terms are then given by

∂G

∂ry,t
= µpπ ,t − µp̃,

∂G

∂Ry,t
= µpπ ,tµ

⊤
pπ ,t +Σpπ ,t − µp̃,tµ

⊤
p̃,t −Σp̃,t,

whereas the proposed ascent directions update along

δry,t = Σ−1
pπ ,tµpπ ,t −Σ−1

p̃,tµp̃,t,

δRy,t = −
1

2
Σ−1

pπ ,t +
1

2
Σ−1

p̃,t .
(2.12)

The gradient does not take into account the correlations between the weights of the
linear terms and the weights of the quadratic terms for a given time step t. Hence, the
gradient would not change the linear term of the reward function, if both distributions
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matched in mean but differed in their covariances. The drawbacks of neglecting these
interdependencies are depicted in Fig. 2.1. For a better illustration, a simple IRL problem
was chosen with only two time steps, a single task variable and true knowledge of the
expert distribution. Fig. 2.1a shows three iterations of inverse reinforcement learning
when following the proposed search direction and a thousand iterations when following
the gradient. In both cases, the optimal step size was found using a line search. Following
the gradient quickly leads to a good goal position (relating to the ratio of quadratic and
linear coefficient), however, it converges very slowly to the correct quadratic coefficient.
The resulting distributions are quickly matching the expert distribution in mean but fail
in matching the variance accurately. Fig. 2.1b shows a zoomed in view on the gradient
updates. By changing the linear coefficients too slowly when the means are closely
matched, even small changes to the quadratic terms lead to wrong goal positions and
thus increase the value of the dual function. In contrast, the true reward function could
be recovered by following the proposed ascent direction after only three iterations.

Regularized Gaussian Distributions

The effect of regularization can also be better understood by an examination in the LQR
setting. The resulting covariance matrices and mean vectors of our approach are then
given by

Σp̃,t =
(︁
Σ−1

q,t + 2β−1
t Ry,t

)︁−1
,

µp̃,t = Σp̃,t

(︁
Σ−1

q,tµq,t − β
−1
t ry,t

)︁
.

Hence, the precision matrices of the expert distribution are interpolated with the reward
matrices Ry,t. When computing µp̃,t(y), the mean of the expert distribution is rescaled
based on the precision matrix before interpolation with the linear reward coefficient,
thereby putting more weight on the expert’s mean for low-variance time steps.

2.3.4. Linearized Dynamics

For many real-world applications, the system dynamics are non-linear and the LQR deriva-
tions can not be applied straightforwardly. In order to make the computation still feasible,
linearizations of the dynamics are commonly applied. Li and Todorov [2004] estimate a
locally optimal controller for a given reward function by iteratively using linear approx-
imations of the dynamics and quadratic approximations of the reward function based
on the state-action trajectory of the last iteration. However, since these approximations
are only valid in the proximity of the last trajectory distribution, optimization might
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Figure 2.2.: (left) Expected reward for different number of actions and T=100. (right)
Expected reward for different time horizons and eight actions. When using
the proposed search direction, the algorithm converges significantly faster.
©2016 IEEE.

become unstable if the trajectory distributions change too much. We follow Levine and
Abbeel [2014] by adding a constraint to our optimization problem that bounds the relative
entropy between the learned controller and the last controller, πlast(a|s), that was used to
obtain the linearization, i.e.

∀t : DKL

(︂
πt(a|s)||π

last
t (a|s)

)︂
≤ ϵt,

where ϵt is the desired bound. This constraint induces additional reward based on the
likelihood of the action under the last controller, namely

rt(s,a) =

∫︂

y

pt(y|s,a)ηt(y)dy + αt log π
last
t (a|s),

where αt are the corresponding Lagrangian multipliers. Furthermore, the dual function is
augmented by

∑︁
t αtϵt. The weights αt can be learned based on the partial derivative

∂G

∂αt
= DKL

(︂
πt(a|s)||π

last
t (a|s)

)︂
− ϵt.
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2.4. Experiments

We start our evaluation by comparing our method with MaxCausalEnt-IRL in terms of
convergence speed and quality of regularization on a simple linear system. In the second
part of our experiments we compare our method with related work [Yin et al., 2014]
where we want to learn a reward function for robotic handwriting and with the approach
by Englert et al. [2013] where we want to learn a pendulum swing-up by matching a
distribution over joint positions and velocities. In our main experiment, we demonstrate the
applicability of our differential dynamic programming based (I)OC method on a simulated
quad-link. For IOC, we learn a time-dependent reward function of a near-optimal swing
up and for optimal control we learn to produce a dynamic peg-in-hole movement based
on a specified target distribution over end-effector positions and orientations.

2.4.1. Linear System

We chose a stochastic linear system with one action and two states per dimension, such
that the actions corresponds to accelerations and the states to corresponding velocities
and positions. The single dimensions are not coupled. The underlying reward function is
a quadratic, time-dependent function that assigns high rewards to four via points at time
steps T/4, T/3, T/2 and T and very low rewards for the remaining time steps. Additionally,
we use time-independent, uncorrelated quadratic action costs. The expert policy of this
LQR is computed based on optimal control and the resulting distributions over positions
are to be matched.

Speed of Convergence

The convergence speed is compared for different number of dimensions as well as for
different time horizons T . When evaluating the gradient based MaxCausalEnt-IRL, we
use L-BFGS [Boyd and Vandenberghe, 2004] for optimization. For the proposed search
direction such gradient based optimizers are not applicable. Therefore, we chose a
simple step size adaption scheme that increases the step size by 1.2 if the dual function
decreased after the last step and decreases the step size by 0.5 if the dual function increased.
Furthermore, steps that led to an increase of the dual function are undone. Fig. 2.2 shows
the expected reward of the learned policy under the true reward function for different
horizons and action dimensions. Albeit the simplicity of the system, MaxCausalEnt-IRL
often failed to match the target distribution sufficiently well even after several hours of
optimization.
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Figure 2.3.: Mean of the expected reward when presented with three demonstrations.
Five different coefficients have been tested for each type of regularization.
KL-based regularization can achieve more expected reward than regulariza-
tion based on the ℓ1 or ℓ2 norm. ©2016 IEEE.

Regularization

Due to the difficulty of matching higher order moments based on the gradient, we were
restricted when choosing a system for comparing the KL based regularization with regu-
larization based on L1 or L2. Therefore, we had to opt for a one-dimensional system with
T=50. The distribution over positions was estimated based on three sample trajectories of
the optimal controller. Fig. 2.3 shows the estimated mean of the expected reward with
2σ-confidence for five different coefficients per regularization type. Mean and standard
error have been computed based on 96 trials. The results of our experiment indicate that,
for reasonably chosen coefficients, regularization based on the relative entropy performs
significantly better than regularization based on the ℓ1 or ℓ2 norm.

2.4.2. Robotic Handwriting

The problem of inferring a reward function for matching a target distribution was also
tackled by Yin et al. [2014] based on a variant [Ziebart et al., 2008] of MaxCausalEnt-IRL
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Figure 2.4.: Only when taking the system dynamics into account while learning the re-
ward function, the resulting distribution (blue) matches the target distribu-
tion (black) accurately. ©2016 IEEE.

that does not take causality into account. When learning the reward function for robotic
handwriting, they neglect the effect of the dynamics on the resulting distribution over
pen tip trajectories. However, when solving the optimal control problem for such reward
functions the resulting trajectory distribution of the optimal controller would no longer
match the expert distribution. Instead, we apply our method to match a distribution over
pen tip trajectories [Lichman, 2013; Williams et al., 2006] while taking into account the
system dynamics. We demonstrate the difference between these approaches based on the
linear model discussed in the last section, yielding two actions for accelerations in x and y
direction and four states for the corresponding positions and velocities. The demonstrated
trajectories have been aligned by curve-fitting and sub-sampling to a fixed horizon T=840.
The resulting distributions over task space positions after optimizing the different reward
functions are shown in Fig 2.4. By taking the system dynamics into account, we are still
able to produce the target distribution. In this case, neglecting the system dynamics led to
a reward function that assigns too much reward for staying close to the mean trajectory
and produces a stiff controller.
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Figure 2.5.: Forward KL and reverse KL of our approach (blue) compared with the ap-
proach by Englert et al. [2013] (red). The relative entropies have been esti-
mated based on 1000 samples on the actual system. While our approach is
less sample efficient, it converges to a better solution. ©2016 IEEE.

2.4.3. Pendulum Swing-Up

We compared our work to the approach by Englert et al. [2013] on a simulated pendulum
with a length of 0.6 meter that weighs 500 gram. A target distribution over joint positions
and joint velocities for a swing-upmovement was estimated from samples of their controller
and presented to both algorithms. The movement took 2.5 seconds and was discretized
into 25 time steps, yielding intervals of 100 ms.

For our approach, we iteratively used linear approximations of the dynamics as discussed
in Section 2.3.4. We learned the linear approximations using ridge regression based on
five sampled trajectories. However, we only generated three samples for each iteration
and reused two samples of the previous rollout. We did not address sample efficiency
in this work, but want to point out that Levine and Abbeel [2014] reuses samples from
previous iterations and different time steps by learning a Gaussian mixture model as prior.
Such modifications could be straightforwardly applied to our method as well.

The approach presented by Englert et al. [2013] is very sample efficient by learning a
Gaussian Process for approximating the system dynamics and, thus, uses only one sample
per rollout.
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Fig. 2.5 shows the relative entropy for both approaches plotted over the total number of
samples. Since Englert et al. [2013] minimize the forward KL, DKL(qt(y)||p

π
t (y)), whereas

our approach minimizes the reverse KL, DKL(p
π
t (y)||qt(y)), we show the results of both

objectives. Although the approach by Englert et al. [2013] provides good results already
after few executions on the actual system, our approach converges to a better solution.

2.4.4. Frictionless Quad-Link

While we were restricted to low-dimensional systems and small number of time steps for
our comparisons to related work, we also tested the applicability of our approach on a
more challenging simulation of a frictionless, planar kinematic chain of four links. Each
link has a length of 1 meter and weighs 1 kilogram. The simulation takes into account
gravity as well as coriolis and centrifugal forces. Time is discretized into intervals of 10
milliseconds.

Peg in Hole

For the optimal control task, the target distribution is specified directly in order to define
via points in task space. We use three task space variables for specifying the end-effector
position in x and y position as well the end-effector angle relative to the y axis. We use
independent coefficients βf,t to define the importance of meeting the objective for task
space f at time step t. Setting the corresponding coefficient to zero disables the objective
completely. We test our approach for inserting the last link horizontally into a small
hole in a wall. We choose T=200 and only specify target distributions for the last 50
time steps. For those time steps, the desired mean end-effector positions along the y axis
are set to 1 and the desired mean end-effector angles are set to π

2 inducing the desired
horizontal alignment of the last link. The inserting motion is induced by setting the target
mean x-coordinate of the end-effector. This target distribution is only set for time steps
175 and 200 with desired mean positions of 2 and 2.5. For all target distributions, we
set the variances to 1e−4. The resulting movement is shown in Fig. 2.6 (left). Fig. 2.7
compares the achieved distributions and the target distributions in the vicinity of the
specified time steps. Our approach achieves the desired distributions over task variables
with high accuracy.

Swing Up

We performed our nonlinear inverse optimal control method for inferring the reward
function for a swing-up movement based on locally optimal demonstrations. The demon-
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Figure 2.6.: (left) The peg-in-hole movement is performed with the specified accuracy.
(right) A time-dependent reward function as well as the corresponding con-
troller was learned from demonstrated swing-ups. ©2016 IEEE.

Figure 2.7.: The achieved distribution (red) was estimated based on 1000 samples and
compared to the target distribution (blue) in the vicinity of specified time
steps. Our approach accurately matches mean and variance for all three
task variables. ©2016 IEEE.
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strations were produced by a linear controller that was learned using MOTO [Akrour et al.,
2016]. Furthermore, only the joint positions were presented to our algorithm. Optimizing
the learned reward function produced the desired behavior as shown in Fig. 2.6 (right).

2.5. Conclusion

We presented a method that unifies optimal control and inverse optimal control in one
framework by learning the controller and the corresponding reward function for matching
a given distribution over trajectories. For optimal control, directly specifying the desired
accuracy for given goal positions is arguably less cumbersome than specifying a reward
function. For inverse optimal control, our approach is several orders of magnitudes
more efficient in matching target distributions than MaxCausalEnt-IRL and allows for
better regularization based on the relative entropy. Furthermore, based on incremental
linearizations of the dynamics, we can perform non-linear inverse optimal control even
when the states and actions are not observed directly.
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3. Trust-Region I-Projections for Variational
Inference

Inference from a complex distribution p(x) is a huge problem in machine learning that is
needed in many applications. Typically, we can evaluate the distribution except for the
normalization factor Z, that is, we can only evaluate the unnormalized distribution p̃(x),
where

p(x) = p̃(x)/Z,

with Z =
∫︁
x
p̃(x)dx. For example, in Bayesian inference p̃(x) would correspond to the

product of prior and likelihood. As exact inference is often intractable, we have to rely on
approximate inference.

Markov chain Monte Carlo (MCMC) is arguably the most commonly applied technique
for approximate inference. Samples are drawn from the desired distribution by building
Markov chains for which the equilibrium distribution matches the desired distribution
p(x). Monte Carlo estimates based on these samples are then used for inference. However,
MCMC can be very inefficient, because it is difficult to make full use of function evaluations
of p̃(x) without violating the Markov assumption.
Instead, we propose a method based on variational inference, which is another com-

monly applied technique for approximate inference. In variational inference, the desired
distribution p(x) is approximated by a tractable distribution q(x;θ) which can be used
for exact inference instead of p(x), or as a more direct alternative to MCMC for drawing
samples for (possibly importance weighted) Monte Carlo estimates. The approximation
q(x;θ) is typically found by minimizing the reverse Kullback-Leibler (KL) divergence

KL (q(x;θ)||p(x)) =
∫︂

x

q(x;θ) log

(︃
q(x;θ)

p(x)

)︃
dx, (3.1)

with respect to the parameters θ of the approximation.
By framing inference as an optimization problem, variational inference can make better

use of previous function evaluations of p̃(x) than MCMC and is therefore computationally
more efficient. However, in order to perform the KL minimization efficiently, q(x;θ) is
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often restricted to belonging to a simple family of models or is assumed to have non-
correlating degrees of freedom [Blei et al., 2017; Peterson and Hartman, 1989], which is
known as the mean field approximation. Unfortunately, such restrictions can introduce
significant approximation error especially for multimodal target distributions. Comparing
MCMC with variational inference, we can conclude that we should use MCMC when we
require accuracy (due to its asymptotic guarantee of exactness), whereas we should prefer
variational inference when we need computationally efficient solutions [Blei et al., 2017].

Hence, there is a huge interest in finding computationally efficient solutions with high
sample quality. Our work aims at learning highly accurate approximations for computa-
tionally efficient variational inference methods. We use Gaussian mixture models (GMMs)
as model family, because they can be sampled efficiently and are capable of representing
any target distribution arbitrarily well if the number of components is sufficiently large.
As the required number of components is typically not known a priori, we dynamically
add or delete components during optimization.
A major challenge of learning highly accurate approximations of multimodal distribu-

tions is to achieve stable and efficient optimization of an intractable objective function.
We derive a lower bound on the KL divergence (Equation 3.1) based on a decomposition
that is related to the one used by the expectation-maximization procedure for fitting
GMMs for density estimation. We can thus optimize the original objective by iteratively
maximizing and tightening this lower bound. Maximizing the lower bound decomposes
into independent sub-problems for each Gaussian component that are solved, analogously
to the policy search method MORE [Abdolmaleki et al., 2015], based on local quadratic
approximations. Due to its strong ties to policy search, we call our method Variational
Inference by Policy Search (VIPS).

Another major challenge when striving for high quality approximations is to discover the
relevant modes of the target distribution. The areas of high density are initially unknown
and have to be discovered during learning based on function evaluations of p̃(x). The
unnormalized target distribution, however, is typically evaluated at locations that have
been sampled from the current approximation q(x;θ), because these samples are well
suited for the optimization, for example for approximating the objective (Equation 3.1)
or its gradient. The current approximation thus serves as search distribution and needs
to be adapted carefully in order to avoid erroneously discarding important regions. The
conflicting goals of moving the approximation towards high density regions and evaluating
p̃(x) at unexplored regions can be seen as an instance of the exploration-exploitation
dilemma that is well-known in reinforcement learning [Sutton and Barto, 1998] but
currently hardly addressed by the variational inference community.

Our proposed method leverages insights from policy search [Deisenroth et al., 2013], a
sub-field of reinforcement learning, by bounding the KL divergence between the updated
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approximation and the current approximation at each learning step. This information-
geometric trust region serves the dual-purpose of staying in the validity of the local
quadratic models as well as ensuring careful exploration of the search space. By finding
the best approximation within such information-geometric trust region, we limit the
change in search space while making sufficient progress during each iteration. However,
information-geometric trust regions only address local exploration in the vicinity of the
components of the current approximation and may in practice still discard regions of the
search space prematurely. In order to discover modes that are not covered by the current
approximation, we dynamically create new mixture components at interesting regions.
Namely, we add additional components at regions where the current approximation has
little probability mass although we suspect a mode of the target distribution based on
previous function evaluations.

We evaluate VIPS on several domains and compare it to state-of-the-art methods for
variational inference and Markov-chain Monte Carlo. We demonstrate that we can learn
high quality approximations of several challenging multimodal target distributions that
are significantly better than those learned by competing methods for variational inference.
Compared to sampling methods, we show that we can achieve similar sample quality
while using several orders of magnitude less function evaluations. Samples from the
learned approximation can therefore often be used directly for approximate inference
without needing importance weighting. Still, knowing the actual generative model can be
a further advantage compared to model-free samplers.

This work extends previously published work about VIPS [Arenz et al., 2018] by using
more efficient sample reuse, by showcasing and fixing a failure case of the previous
initialization of covariance matrices, and by several other improvements such as adaptation
of regularization coefficients and KL bounds. These modifications lead to a further
reduction of sample complexity by approximately one order of magnitude. We will refer to
the improved version as VIPS++. We evaluate VIPS++ on additional, more challenging
domains, namely Bayesian Gaussian process regression and Bayesian parameter estimation
of ordinary differential equations applied to the Goodwin oscillator [Goodwin, 1965] as
well as more challenging variations of the previously published planar robot and Gaussian

mixture model experiments [Arenz et al., 2018]. Furthermore, we now also compare to
normalizing flows [Kingma et al., 2016] and black-box variational inference [Ranganath
et al., 2014].
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3.1. Preliminaries

In this section we formalize the optimization problem and show its connection to policy
search. We further discuss the policy search method MORE [Abdolmaleki et al., 2015]
and show that a slight variation of it can be used for learning Gaussian variational
approximations (GVAs) for variational inference. This variant of MORE is used by VIPS
for independent component updates, which will be discussed in Section 3.2.

3.1.1. Problem formulation

Variational inference is typically framed as an information projection (I-projection) prob-
lem, that is, we want to find the parameters θ of a model q(x;θ) that minimize the KL
divergence between q(x;θ) and the target distribution p(x),

KL (q(x;θ)||p(x)) =
∫︂

x

q(x;θ) log

(︃
q(x;θ)

p(x)

)︃
dx

=

∫︂

x

q(x;θ) log

(︃
q(x;θ)

p̃(x)

)︃
dx+ logZ

= −L(θ) + logZ.

The normalizer Z does not affect the optimal solution for the parameters θ as it enters the
objective function as constant offset and can thus be ignored. Hence, the KL divergence
can be minimized by maximizing L(θ), which is a lower bound on the log normalizer due
to the non-negativity of the KL divergence. In Bayesian inference, the target distribution
p(x) corresponds to the posterior, the unnormalized distribution p̃(x) corresponds to
the product of prior and likelihood, and the normalizer corresponds to the evidence.
Minimizing the KL divergence thus corresponds to maximizing a lower bound on the (log)
evidence, L(θ), which is therefore commonly referred to as the evidence lower bound
objective (ELBO, e.g., Blei et al. 2017).
Although VIPS is not restricted to the Bayesian setting but aims to approximate in-

tractable distributions in general, we also frame our objective as ELBO maximization
because this formulation highlights an interesting connection to policy search. We treat
information projection as the problem of finding a search distribution, q(x;θ), over a
parameter space x, that maximizes an expected return R(x) = log p̃(x) with an additional
objective of maximizing its entropy H

(︁
q(x;θ)

)︁
= −

∫︁
x
q(x;θ) log q(x;θ)dx, that is, we

aim to solve

argmax
θ

[︃
L(θ) =

∫︂

x

q(x;θ)
(︁
log p̃(x)− log q(x;θ)

)︁
dx =

∫︂

x

q(x;θ)R(x)dx+ H(q(x;θ))

]︃
.
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Entropy objectives are also commonly used in policy search for better exploration [Abdol-
maleki et al., 2015; Neu et al., 2017]. Policy search methods that support such entropy
objectives can thus be applied straightforwardly for variational inference. However, many
policy search methods are restricted to unimodal distributions (typically Gaussians) and
are therefore not suited for learning accurate approximations of multimodal target distri-
butions. We will now review one such policy search method, MORE [Abdolmaleki et al.,
2015], and show that it can be adapted straightforwardly for learning Gaussian variational
approximations.

3.1.2. Model-Based Relative Entropy Stochastic Search

Policy search methods start with an initial search distribution q(0)(x) and iteratively
update it in order to increase its expected reward.1 Areas of high reward are initially not
known and have to be discovered based on evaluations of the reward function R(x) during
learning. Policy search methods, therefore, typically evaluate the reward function on
samples from the current search distribution in order to identify regions of high reward,
and update the search distribution to increase the likelihood of the search distribution in
these areas.
In order to avoid premature convergence to poor local optima, it is crucial to start

with an initial search distribution q(0) with sufficiently high entropy and to ensure that
high reward regions are not erroneously discarded due to too greedy updates. This trade-
off between further exploring the search space and focusing on high reward areas is
an instance of the exploration-exploitation dilemma that several policy search methods
address using information-geometric trust regions [Abdolmaleki et al., 2015, 2017; Levine
and Koltun, 2013; Peters et al., 2010; Schulman et al., 2015]. These methods compute
each policy update by solving a constrained optimization problem that bounds the KL
divergence between the next policy and the current policy.
MORE [Abdolmaleki et al., 2015] additionally limits the entropy loss between subse-

quent iterations by computing the update as

q(i+1) = argmax
q

∫︂

x

q(x)R(x)dx,

s.t. KL
(︂
q(x)||q(i)(x)

)︂
≤ ϵ, H

(︂
q(x)

)︂
≥ β(i),

∫︂

x

q(x)dx = 1,

(3.2)

1Here and in the following, we indicate variables and functions at a given iteration by using superscripts
that are set in parentheses.
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where the lower bound on the entropy, β(i) = H
(︂
q(i)(x)

)︂
−γ, is computed at each iteration

based on a hyper-parameter γ, and ϵ specifies the maximum allowable KL divergence.
Hence, at each iteration, the entropy of the search distribution may not decrease by more
than γ.

Introducing Lagrangian multipliers η, ω and λ, the Lagrangian function corresponding
to optimization problem 3.2 is given by

L(q, η, β, ω) =

∫︂

x

q(x)R(x)dx+ η
(︂
ϵ− KL

(︂
q(x)||q(i)(x)

)︂)︂

+ ω
(︂
H
(︂
q(x)

)︂
− β(i)

)︂
+ λ

(︃
1−

∫︂

x

q(x)dx

)︃
.

Maximizing the Lagrangian with respect to the search distribution q allows us to express
the optimal search distribution q(i+1) as a function of the Lagrangian multipliers,

q(i+1)(x) ∝ q(i)(x)
η

η+ω exp (R(x))
1

η+ω . (3.3)

The update according to Equation 3.3 can not be computed analytically for general
choices of policies q and reward functions R(x). MORE is therefore restricted to Gaussian
search distributions q(x;θ(i)) = N

(︁
x;µ(i),Σ(i)

)︁
and optimizes a local, quadratic reward

surrogate

R̃(x) = −
1

2
x⊤R(i)x+ x⊤r(i) + const. (3.4)

The parameters of the reward surrogate, R(i) and r(i), are learned using linear regression
based on samples from the current approximation. For this choice of search distribution
and reward surrogate, the updated distribution according to Equation 3.3 is also Gaussian
with natural parameters

Q(η, ω) =
η

η + ω
Q(i) +

1

η + ω
R(i), (3.5) q(η, ω) =

η

η + ω
q(i) +

1

η + ω
r(i), (3.6)

which directly relate to mean µ = Q−1q and covariance matrix Σ = Q−1. It can be seen
from Equation 3.5 and 3.6 that η controls the step size, whereas ω affects the entropy by
scaling the covariance matrix without affecting the mean. The optimal parameters η⋆ and
ω⋆ can be learned by minimizing the convex dual objective

G(η, ω) =ηϵ− ωβ(i) + η logZ(Q(i),q(i))− (η + ω) logZ(Q(η, ω),q(η, ω)),
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where logZ(X,x) = −1
2(x

⊤X−1x+ log |2πX−1|) is the log partition function of a Gaus-
sian with natural parametersX and x. This optimization can be performed very efficiently
using the partial derivatives

∂G(η, ω)

∂η
= ϵ− KL(qη,ω(x)||q(x;θ

(i))),
∂G(η, ω)

∂ω
= H(qη,ω(x))− β,

where qη,ω(x) refers to the Gaussian distribution with natural parameters computed
according to Equation 3.5 and Equation 3.6. In the next section we introduce a slight
variant of MORE that can be used for variational inference. The derivations of that variant
are shown in Appendix B.1 and can be straightforwardly extended to derive the equations
shown in this section.

3.1.3. Adapting MORE to Variational Inference

Inspired by policy search methods, we want to use information-geometric trust regions for
variational inference in order to achieve efficient optimization while avoiding premature
convergence. Hence, we want to compute each update of the approximation by solving
the constrained optimization problem

θ(i+1) = argmax
θ

∫︂

x

q(x;θ)R(x)dx+ H(q(x;θ)),

subject to KL
(︂
q(x;θ)||q(x;θ(i))

)︂
≤ ϵ,

∫︂

x

q(x;θ)dx = 1.

(3.7)

Optimization Problem 3.7 is very similar to Optimization Problem 3.2 solved by MORE
and only differs due to the fact that the entropy of the search distribution does not enter
the optimization problem as constraint, but as additional term in the objective. It can be
solved analogously to MORE by introducing Lagrangian multipliers and minimizing the
dual problem

G(η) =ηϵ+ η logZ(Q(i),q(i))− (η + 1) logZ(Q(η, 1),q(η, 1)), (3.8)

using the gradient
dG(η)

dη
= ϵ− KL(qη,1(x)||q(x;θ

(i))). (3.9)

Here, the natural parameters Q(η, 1) and q(η, 1) for a given step size η are obtained by
substituting ω = 1 in Equation 3.5 and 3.6. Please refer to Appendix B.1 for the full
derivations.
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Hence, a Gaussian variational approximation can be learned analogously to MORE by
iteratively (1) fitting a local, quadratic surrogate R̃(x) ≈ log p̃(x), (2) finding the optimal
step size η by convex optimization and (3) updating the approximation based on Equation
3.5 and 3.6. The update of a Gaussian variational approximation given a quadratic reward
surrogate is shown in Algorithm 1.

Algorithm 1 Updating a Gaussian variational approximation based on surrogate

Require: coefficients of quadratic surrogate R, r (equation 3.4)
Require: current mean and covariance matrix µ,Σ
Require: KL bound ϵ
1: function GVA_update(µ,Σ,R, r, ϵ)
2: Q← Σ−1

3: q← Σ−1µ

4: η ← minimize dual (Equation 3.8) using the gradient (Equation 3.9)
5: Q′ ← η

η+1Q+ 1
η+1R

6: q′ ← η
η+1q+ 1

η+1r

7: Σ′ ← Q′−1

8: µ′ ← Q′−1q′

9: return Σ′,µ′

10: end function

3.2. Variational Inference by Policy Search

We showed in Section 3.1.3 that we can learn Gaussian variational approximations using
our variant of MORE [Abdolmaleki et al., 2015]. However, Gaussian approximations
can lead to high modeling errors, especially for multimodal target distributions. We will
now derive VIPS++, a general-purpose method for learning GMM approximations of an
unnormalized target distribution p̃(x). In Section 3.2.1 we will show that an I-projection
to a GMM can be decomposed into independent I-projections for its Gaussian components
using a similar decomposition as used by expectation-maximization. In combination with
our variant of MORE, this result enables us to learn GMM approximations with a fixed
number of components. Sections 3.2.2, 3.2.3 and 3.2.4 discuss several extensions to this
procedure that are critical for efficiently learning high quality approximations in practice.
Namely, we will discuss reusing function evaluations from previous iterations, selecting
relevant samples and dynamically adapting the number of components.
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3.2.1. Learning a GMM Approximation

In order to represent high quality approximations of multimodal distributions, we want to
learn a GMM approximation,

q(x;θ) =
∑︂

o

q(o;θ)q(x|o;θ),

where o is the index of the mixture component, q(o;θ) are the mixture weights and
q(x|o;θ) = N (x|µo,Σo) is a multivariate normal distribution with mean µo and full
covariance matrix Σo. The parameters θ of our variational approximation are thus given
by the mixture weights, means and covariance matrices. To improve readability we will
often omit the parameter θ when referring to the distribution q.

The approximation is learned by maximizing the ELBO

L(θ) =
∑︂

o

q(o)

∫︂

x

q(x|o)
(︁
R(x)− log q(x)

)︁
dx

=
∑︂

o

q(o)

∫︂

x

q(x|o)
(︁
R(x)− log q(o)− log q(x|o) + log q(o|x)

)︁
dx

=
∑︂

o

q(o)
[︂ ∫︂

x

q(x|o)
(︁
R(x) + log q(o|x)

)︁
dx+ H

(︁
q(x|o)

)︁]︂
+ H

(︁
q(o)

)︁
, (3.10)

where we used the identity

log q(x) = log q(o) + log q(x|o)− log q(o|x)

which can be derived from Bayes’ rule.

Variational Lower Bound

Unfortunately, the occurrence of the log responsibilities, log q(o|x), in Equation 3.10 pre-
vents us from optimizing each component independently. However, we can derive a lower
bound L̃(θ, q̃(o|x)) on the objective by adding and subtracting an auxiliary distribution
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q̃(o|x),

L(θ) =
∑︂

o

q(o)
[︂ ∫︂

x

q(x|o)
(︁
R(x) + log q(o|x)

)︁
dx+ H

(︁
q(x|o)

)︁]︂
+ H

(︁
q(o)

)︁

=
∑︂

o

q(o)
[︂ ∫︂

x

q(x|o)
(︁
R(x) + log q̃(o|x) + log q(o|x)− log q̃(o|x)

)︁
dx+ H

(︁
q(x|o)

)︁]︂

+ H
(︁
q(o)

)︁

=
∑︂

o

q(o)
[︂ ∫︂

x

q(x|o)
(︁
R(x) + log q̃(o|x)

)︁
dx+ H

(︁
q(x|o)

)︁]︂
+ H

(︁
q(o)

)︁

⏞ ⏟⏟ ⏞
L̃(θ,q̃(o|x))

+

∫︂

x

q(x)KL (q(o|x)||q̃(o|x)) dx.

(3.11)

Please note, that the last term in Equation 3.11 corresponds to an expected KL divergence
and is therefore non-negative which implies that

L̃(θ, q̃(o|x)) ≤ L(θ).

The decomposition in Equation 3.11 has already been previously applied in the broad
context of variational inference [Agakov and Barber, 2004; Maaløe et al., 2016; Ranganath
et al., 2016; Tran et al., 2016]. However, these approaches parameterize the auxiliary
distribution and are not well-suited for learning accurate GMM approximations. In contrast,
we exploit that the responsibilities q(o|x) can be computed in closed form for Gaussian
mixture models, which allows us to exactly tighten the lower bound similar to expectation-
maximization [Bishop, 2006]. However, whereas EMminimizes the forward KL divergence,
KL(p(x)||q(x;θ)), for density estimation, our approach can be used for minimizing the
reverse KL divergence, KL(q(x;θ)||p(x)), in a variational inference setting. The forward
KL divergence can be easier optimized when samples from the target distribution are
available while the (unnormalized) target density function p̃(x) is unavailable and is
therefore well suited for density estimation. In contrast, the reverse KL divergence can be
more easily optimized based on samples from the model only, when assuming access to
the (unnormalized) target density function and is therefore well suited for variational
inference.
Following the same reasoning as EM, we can show convergence to a stationary point

of the ELBO L(θ) by iteratively setting q̃(o|x) = q(o|x) (analogously to an E-step) and
increasing the lower bound L̃(θ, q̃(o|x)) (M-step) while keeping the auxiliary distribution
fixed. Tightening the lower bound by setting q̃(o|x) = q(o|x) does not affect the ELBO
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since the parameters θ are not changed. Increasing the lower bound increases both the
lower bound and the expected KL divergence and thus also increases the ELBO. Such
procedure strictly increases the ELBO until we reach a fixed point of the (hierarchical)
lower bound optimization, that is,

θ(i) = argmax
θ

L̃
(︂
θ, q(x,θ(i))

)︂
.

At such fixed point, the gradients of both terms of Equation 3.11 are zero (since they are
both at an extremum) and thus the gradient of the ELBO is also zero.

In order to ensure monotonous improvement of the approximation, we need to ensure
that the lower bound indeed increases during the M-Step. The lower bound L̃(θ, q̃(o|x)),
however, contains intractable integrals that need to be approximated based on samples. In
order to keep the resulting approximation errors low, we need to stay close to the current
set of samples. We therefore combine the iterative procedure with trust region optimization
by bounding the change of each component during the M-step. For sufficiently small step
sizes, such trust region updates ensure monotonous improvement [Akrour et al., 2018;
Schulman et al., 2015]. Furthermore, such constrained maximization does not affect
the theoretical guarantees of the iterative procedure as any increase of the lower bound
ensures an increase of the ELBO.

M-Step for Component Updates

Maximizing the lower bound L̃(θ, q̃(o|x)) with respect to the mean and covariance matrix
θo = [µo,Σo] of an individual component is not affected by the mixture coefficients q(o)
or the parameters of the remaining components and can be performed independently and
in parallel by maximizing the term inside the square brackets of Equation 3.11, that is,

argmax
θo

∫︂

x

q(x|o;θo)
(︁
R(x) + log q̃(o|x)

)︁
dx+ H

(︁
q(x|o)

)︁
,

subject to KL
(︂
q(x|o;θo)||q(x|o;θ

(i))
)︂
≤ ϵ(o),

(3.12)

where we already added the trust region constraint for better exploration and stability. The
upper bound on the Kullback-Leibler divergence, ϵ(o), is adapted during learning. If the
Monte-Carlo estimate of the component-specific objective after the component update is
smaller than the Monte-Carlo estimate before the update, we decrease ϵ(o) by multiplying
it by 0.8; otherwise we increase it slightly by multiplying it by 1.1. The optimization
problem can be solved using our variant of MORE (Equation 3.7) with a component
specific reward function Ro(x) = R(x) + log q̃(o|x). As the auxiliary distribution q̃(o|x)
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was fixed to the responsibilities q(o|x;θ(i)) according to the previous mixture model, the
component specific part of Ro(x) penalizes each component for putting probability mass
on areas that are already covered by other components.
For applying our variant of MORE, we need to fit a quadratic reward surrogate

R̃o(x) ≈ Ro(x) that approximates the component specific reward Ro(x) in the vicin-
ity of the respective component q(x|o). The surrogate can be fit using ordinary least
squares, where the independent variables are samples from the respective component and
the dependent variables are the corresponding function evaluations of Ro(x). However,
because we want to use the same set of samples for all component updates as well as the
weight update, we use weighted least squares based on importance weights which will be
discussed in greater detail in Section 3.2.2. After fitting the surrogate, the optimization
problem in Equation 3.12 can be solved efficiently using L-BFGS-B [Byrd et al., 1995] to
minimize the dual problem (Equation 3.8) and using the learned step size η to compute
the update in closed form as outlined in Section 3.1.3.

Drawing the connection to reinforcement learning and investigating the reward function
Ro(x) for a given component reveals that the proposed algorithm treats every component
update as a reinforcement learning problem, where the reward is computed based on the
achieved log-densities log p̃(x) with a penalty for sampling in regions that are already
covered by other components due to low log responsibilities. Moreover, the components
strive for high entropy which prevents them from always choosing the same sample.

M-Step for Weight Updates

After updating the individual components, we can keep the learned means and covari-
ance matrices fixed while updating the mixture coefficients q(o). As shown in previous
work [Arenz et al., 2018], we can also enforce an information-geometric trust region for
the weight update. However, in subsequent experiments we could not show a significant
effect of such constraint and will therefore only consider the unconstrained optimization.
The M-step with respect to the mixture coefficients is thus framed as

argmax
q(o)

∑︂

o

q(o)R(o) + H
(︁
q(o)

)︁
, (3.13)

where the objective for the component update,

R(o) =

∫︂

x

q(x|o)
(︁
R(x) + log q̃(o|x)

)︁
dx+ H

(︁
q(x|o)

)︁
, (3.14)

serves as reward for choosing component o. The reward R(o) contains an intractable
integral, and thus it needs to be approximated from samples. It is to note that R(o)

50



corresponds to a discrete function, which can be represented by a vector, whereas the
reward function Ro(x) used for the component update is a continuous function. It is
not beneficial to approximate R(o) based on a quadratic surrogate of Ro(x), since we
can estimate each element of the vector more efficiently and more accurately using a
Monte-Carlo estimate

R̃(o) =
1

No

No∑︂

n=1

[︁
R(xo,n) + log q̃(o|xo,n)

]︁
+ H(q(x|o)), (3.15)

where xo,n refers to the nth of No samples from component q(x|o). We will discuss in
Section 3.2.2 how we use importance weighting to estimate the reward of each component
based on the same set of samples that is used for the component update.

Based on the approximated rewards R̃(o), the optimal solution of optimization problem
in Equation 3.13 is given in closed form as

q(o) =
exp

(︂
R̃(o)

)︂

∑︁
o exp

(︂
R̃(o)

)︂ . (3.16)

The weight optimization can also be treated as a reinforcement-learning problem, where
actions correspond to choosing components and the agent gets rewarded for choosing
components that sample in important regions, that do not interfere with other components
and that have high entropy. The agent itself also strives for high entropy and will thus
make use of every component.
The complete optimization can be treated as a method for hierarchical reinforcement

learning where we learn both, a higher level policy q(o) over options and Gaussian lower
level policies q(x|o). However, since our approach does not consider time series data,
it mainly relates to black-box approaches to reinforcement learning that use stochastic
optimizers such as ARS, NES or MORE [Abdolmaleki et al., 2015; Mania et al., 2018;
Salimans et al., 2017]. HiREPS [Daniel et al., 2012] already applied black-box optimization
for learning GMM policies based on episodic REPS [Peters et al., 2010].
The basic variant of our method is shown in Algorithm 2. The individual component

updates (line 3-8) are performed by sampling from the respective components (line 3),
evaluating the samples on the target distribution (line 4), computing the log responsibilities
log q̃(o|x) according to the previous approximation (line 5), fitting the reward surrogate
(line 6-7) and performing the trust region update (line 8). The components can be updated
in parallel since the responsibilities are computed based on the same mixture parameters
θ. The weight update (line 11-17) is computed based on Equation 3.16 (line 17) using
the Monte-Carlo estimates of the component rewards (line 15). Updating the parameters
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of the GMM in between the component updates and the weight update (line 10) is
optional and relates to an additional E-Step in EM, which does not affect the theoretical
guarantees [Neal and Hinton, 1998].

Algorithm 2 Variational Inference by Policy Search (Basic Variant)

Require: number of components No

Require: initial mixture parameters θ = {q(o),µo,...,No
,Σo,...,No}

Require: number of iterations Ni

Require: number of samples per component Ns

1: for i = 1 . . . Ni do

2: for o = 1 . . . No do

3: Xo ←sample_Gaussian(µo,Σo, Ns)
4: p̃o ← log p̃(Xo) ▷ evaluate target log likelihood for each sample

5: q̃o|x ← log q(Xo, o;θ)− log q(Xo;θ) ▷ evaluate log responsibilities

6: yo ← p̃o + q̃o|x ▷ Compute targets for ordinary least squares (OLS)

7: Ro,ro ←OLS(Xo,yo) ▷ learn quadratic surrogate

8: µ′
o,Σ

′
o ←GVA_update(µo,Σo,Ro, ro, ϵo) ▷ Algorithm 1

9: end for

10: θ ← update_components(θ,µ′
o,...,No

,Σ′
o,...,No

)
11: for o = 1 . . . No do

12: Xo ←sample_Gaussian(µo,Σo, Ns)
13: p̃o ← log p̃(Xo) ▷ evaluate target log likelihood for each sample

14: q̃o|x ← log q(Xo, o;θ)− log q(Xo;θ) ▷ evaluate log responsibilities

15: R̃o ← Ns
−1 sum(p̃o + q̃o|x) + H(Σo) ▷ Estimate reward (Equation 3.15)

16: end for

17: q′(o)← exp(R̃o)∑︁
o exp(R̃o)

18: θ ← update_weights(θ, q′(o))
19: end for

3.2.2. Sample Reuse by Importance Weighting

VIPS relies on samples for approximating the reward for choosing a given component,
R(o), and for computing the quadratic surrogates for the component update. These
samples need to be evaluated on the unnormalized target distribution p̃(x) which may be
costly. In order to reduce the number of function evaluations we want to also make use of
samples from previous iterations, which can be achieved by using importance weighting.
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We will now show how importance weights can be used to approximate the rewards for
the weight updates and how to learn the quadratic surrogates for the component update
based on the same subset X⊂ of samples.

Importance Weighting for Updating the Mixture Weights

Importance sampling is a technique for estimating the expected value Eq[f(x)] of a given
function f(x) with respect to a distribution q(x) while using samples from a different
distribution z(x) ̸= q(x). Assuming that the support of z(x) covers the support of q(x),
we can express the desired expectation as

Eq[f(x)] =

∫︂

x

q(x)f(x)dx =

∫︂

x

z(x)
q(x)

z(x)
f(x)dx = Ez[w(x)f(x)],

using importance weightsw(x) = q(x)
z(x) . Hence, the desired expectation can be approximated

by using a Monte-Carlo estimate based on Nz samples from the sampling distribution
z(x),

Eq[f(x)] ≈
Nz∑︂

i=1

1

Nz
w(xi)f(xi). (3.17)

Instead of using the estimator given by Equation 3.17, it is also common to use self-

normalized importance sampling

Eq[f(x)] ≈
Nz∑︂

i=1

w̄(xi)f(xi), w̄(xi) =

(︄
Nz∑︂

i=1

q(xi)

z(xi)

)︄−1
q(xi)

z(xi)
.

Self-normalized importance sampling introduces a bias that is asymptotically zero since
lim

Nz→∞

∑︁Nz

i=1
q(xi)
z(xi)

= Nz, but it has the advantages that it is consistent for different constant

offsets on the function f(x) and that it is also applicable if the target distribution is not
normalized.

An important consideration for choosing the sampling distribution is the variance of the
estimator. In general, the estimator’s variance can be significantly worse than standard
Monte-Carlo [Hesterberg, 1988]. When using samples from the desired distribution, that
is, z(x) = q(x), the importance weighted estimate and the self-normalized estimate are
both equivalent to standard Monte-Carlo. However, it is also possible to obtain lower
variance than standard Monte-Carlo, for example, when using the optimal sampling
distribution

z(x) =
1

C
q(x)|f(x)− c|, (3.18)
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where C is a normalizing constant and c = 0 for importance sampling and c = Eq[f(x)] for
self-normalized importance sampling [Hesterberg, 1988]. If the function f(x) is positive
everywhere, the former estimate has even zero variance since

w(xi)f(xi) =
q(xi)

z(xi)
f(xi) = C

q(xi)

q(xi)f(xi)
f(xi) = C =

∫︂

x

q(x)f(x)dx = Eq[f(x)].

Although the optimal sampling distributions according to Equation 3.18 are intractable
as they depend on the expectation Eq[f(x)], which is the value of interest, they can be
useful for designing appropriate sampling distributions.
In order to estimate the expected reward R(o) using a subset X⊂ of the samples from

previous iterations X we need to evaluate the respective sampling distribution z⊂(x) for
computing the importance weights. For that purpose, we store all samples together with
the respective unnormalized target densities and the parameters of the component from
which it was sampled in a database

S = {(x0, log p̃(x0),Nx0), . . . , (xN , log p̃(xN),NxN
)},

where Nx refers to the Gaussian distribution that was used for obtaining the sample
x. By also storing its respective Gaussian distributions, we can represent the sampling
distribution as a Gaussian mixture model z⊂(x) that contains for each sample xs ∈ X⊂

the respective Gaussian distribution Nxs(x), that is,

z⊂(x) =
∑︂

xs∈X⊂

1

|X⊂|
Nxs(x).

Please note, that in practice, we represent the GMM z⊂(x) more concisely by exploiting
that usually several samples were drawn from the same Gaussian distribution. We estimate
the reward Ro(x) for each component using self-normalized importance sampling, that is,

R̃(o) =
∑︂

xs∈X⊂

w̄o(xs)
[︁
R(xs) + log q̃(o|xs)

]︁
+ H(q(x|o)).

where the self-normalized importance weights for component o are given by

w̄o(xs) =
1

Z

q(xs|o)

z⊂(xs)
, Z =

∑︂

xs∈X⊂

q(xs|o)

z⊂(xs)
.

We could choose different subsets, depending on the component for which we want to
estimate the reward R(o). However, because we need to evaluate each sample on any
component anyway in order to compute the responsibilities q(o|x), we use the same subset
X⊂ for estimating all component rewards as well as the surrogate models.
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Importance Weighting for Fitting the Quadratic Surrogates

For updating the individual components we need to learn local quadratic surrogates
R̃o(x) in the vicinity of the respective components. MORE achieves locality by using
samples from the respective component q(x|o) as independent variables for ordinary
least-squares. Learning the surrogate based on samples from a different distribution z⊂(x)
introduces covariate shift, that is, the distribution of the training data z⊂(x) does not
match the distribution of the test data q(x|o). The covariate shift can be accommodated
by minimizing a weighted least-squares problem [Chen et al., 2016]

argmin
βo

Ez⊂

[︃
q(x|o)

z⊂(x)⏞ ⏟⏟ ⏞
w̄o(xs)

(︂
Ro(x)− R̃o(x;βo)

)︂2 ]︃
,

where the quadratic surrogate R̃o(x;βo) is linear in the parameters βo. In practice, we
also perform ℓ2-regularization with ridge coefficient κo. The optimal parameters are thus
given by

βo = (X⊤WoX+ κoI)
−1X⊤Woy,

where X is the design matrix where each row contains the linear and quadratic features
for the respective sample xs ∈ X⊂ as well as a constant feature, Wo is a diagonal matrix
where each element relates to the respective self-normalized importance weight wo(xs),
y is a vector containing the targets ys = R(xs) + log q(o|xs) and βo is a vector containing
the elements of ro and Ro as well as a constant offset that can be discarded. Specifying
an appropriate ridge coefficient κo can be difficult as different components may require
different amounts of regularization. We therefore adapt the coefficient during optimization
by multiplying it by 10 if the matrix inversion failed and by dividing it by 2 if it succeeded.

Although we use importance weights for learning the surrogates, we do not aim to
estimate an expected value. The minimum-variance sampling distributions given by
Equation 3.18 are in general not useful for learning accurate surrogate models as they
focus on bringing the weighted function evaluation w(x)f(x) close to the expected value,
rather than aiming to accurately represent the function’s landscape. Instead, we aim
to construct a sampling distribution z⊂(x) that covers all components of the current
approximation well. Such sampling distribution ensures that the importance weighted
estimates are not much worse than Monte-Carlo estimations, both, for estimating the
expected rewards R̃(o) and for learning locally valid surrogate models R̃o(x). In the next
section, we will discuss a heuristic for constructing such sampling distribution.
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3.2.3. Sample Selection

Using all previous samples in each iteration would be computationally costly. Instead,
we want to select a small set of samples such that we can get good approximations of all
surrogate models and component rewards while requiring only a small number of new
samples from each component. A common technique that was used in CMA-ES [Shirakawa
et al., 2015], MORE [Abdolmaleki et al., 2015] and VIPS [Arenz et al., 2018] is to reuse
all samples from the k latest iterations, where k is a hyper-parameter to balance between
sample efficiency and computational efficiency. As the components that were used for
the most recent iterations were similar to the current components, the reused samples
can usually provide meaningful information about the target distribution in the vicinity
of the respective components. However, we noticed that such procedure can be wasteful
when optimizing large GMMs if some component have already converged and others
still need to improve. For example, we typically have enough samples in the database to
estimate the reward and local surrogate for components that did not significantly change
during several iterations even without requiring any new samples; yet, when only using
the latest k samples we need to continuously sample from each component during the
whole optimization in order to maintain stability.

In order to avoid discarding old samples, we could sub-sample uniformly among the
sample database. However, such procedure can result in a large number of irrelevant
samples and, furthermore, does not ensure that the relevant samples are evenly distributed
among the components of the current approximation. A more sophisticated method was
presented by Uchibe [2018] in the context of policy search. Instead of sub-sampling
uniformly, they treat all components in the database as components of a mixture model,
qαsampling(x), and optimize the corresponding mixture coefficients α such that the model
is close to the optimal sampling distribution given by Equation 3.18. However, the
resulting sampling distribution might not be suited for learning the surrogate models, and,
furthermore, such approach would be computational intractable because, by optimizing
a GMM, VIPS may add up to several hundreds of components to the database in each
iteration and would also need to identify an optimal sampling distribution for each of the
respective components.
Furthermore, it is hard to make use of function evaluations such as p̃(xi) or q(xi|o)

for deciding whether to reuse a given sample xi without introducing additional bias
in the importance sampling estimate. When such function evaluations influence our
decision to use a given sample xi for importance weighting, we can no longer consider it
as an unbiased draw from Nxi

(x) and computing the importance weights based on the
background distribution z⊂(x) would, thus, not be admissible.

Instead, we propose to identify for each component q(x|o) of the current approximation
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those components in the database Nxi
(x) that are close according to a given dissimilarity

measure d
(︁
q(x|o),Nxi

(x)
)︁
that is independent of the actual samples drawn from Nxi

(x).
In order to reduce the risk of selecting the same samples in each iteration, which may
result in overfitting, we iteratively sample (without replacement) components from our
database according to

h(i, o) ∝ exp
(︁
−d
(︁
q(x|o),Nxi

(x)
)︁
− ni

)︁
, (3.19)

where ni keeps track of the number of times the samples of distribution Nxi
(x) have been

reused. We add all samples from the chosen component to the active set of samples X⊂ and
stop sampling distributions when a desired number of reused samples nreused is reached.
This process is performed for each component q(x|o) of the current approximation.

A natural choice for the dissimilarity is to use the Kullback-Leibler divergence,

dKL
(︁
q(x|o),Nxi

(x)
)︁
= KL

(︁
q(x|o)||Nxi

(x)
)︁
,

which favors sampling distributions Nxi
(x) that cover the respective mixture component

q(x|o) well. However, even though the KL divergence between two Gaussian distributions
can be computed in closed form, computing it for every component in the current ap-
proximation with respect to every component in the database can quickly become the
computational bottleneck of the whole optimization.
Instead, VIPS++ computes the dissimilarity as the negative Mahalanobis distance of

the mean µi of the sampling distribution Nxi
(x) with respect to the given component

q(x|o), that is,
dMahalanobis

(︁
q(x|o),Nxi

(x)
)︁
= − log p(µi|o).

While neglecting the covariance matrix of the sampling distribution may appear too crude,
we argue that it is necessary to stay within a reasonable computational budget for selecting
relevant samples. We demonstrate in Section 3.4.2 that the proposed selection strategy is
able to identify relevant samples for each component q(x|o) among all previous samples
without adding significant computational overhead. We also compare the Mahalanobis
distance to different dissimilarity measures, namely, forward and reverse KL, as well as
uniform selection in Appendix B.2. Pseudo-code for identifying relevant samples is shown
in Appendix B.3.

Drawing new samples

After selecting the set X⊂ of samples to be reused during the current iteration, we need
to draw new samples from those components that are not sufficiently covered. A useful
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diagnostic for monitoring the quality of the chosen sampling distribution is the effective

sample size

neff(o) =
(︂ ∑︂

xs∈X⊂

w̄o(xs)
2
)︂−1

,

which approximates the number of samples that standard Monte-Carlo would require to
achieve the same variance as the importance sampling estimate [Djuric et al., 2003; Kong
et al., 1994].
Hence, we compute for each component the number of effective samples, and draw

nnew(o) = ndes − ⌊neff(o)⌋ new samples, such that its effective sample size should approx-
imately match a specified desired number of effective samples ndes. These samples are
added to the database and to the set of active samples X⊂ as illustrated in Algorithm 3.

Algorithm 3 Ensure that every component has sufficiently many effective samples.

Require: database S = {(x0, log p̃(x0),Nx0
), . . . , (xN , log p̃(xN),NxN

)}
Require: Set of chosen samplesX⊂, respective self-normalized importance weights wo(x)
Require: desired number of effective samples per component ndes
1: function sample_where_needed

2: for o = 1 . . . No do

3: neff(o)←
(︂∑︁

xs∈X⊂
wo(xs)

2
)︂−1

4: nnew(o)← ndes − ⌊neff(o)⌋
5: X new,o ← sample_Gaussian(µo,Σo, nnew(o))
6: for xs in X new,o do

7: S ← S ∪ {(xs, log p̃(xs),Nxs)}
8: end for

9: X⊂ ← X⊂ ∪X new,o

10: end for

11: return X⊂

12: end function

3.2.4. Adapting the Number of Components

The component optimization (Algorithm 1) is a local optimization, and the component
will typically converge to a nearby mode (although the trust region constraint may help to
traverse several poor optima). The quality of the learned approximation thus depends
crucially on the initialization of the mixture model. However, the modes of the target
distribution are often not known a priori and have to be discovered during optimization.
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We therefore adapt the number of components dynamically by adding new components
in promising regions and by deleting components with very low weight. The number of
components is adapted at the beginning of each learning iteration before obtaining new
samples. By always assigning low weight to newly added components and by only deleting
components that have low weight, the effect on the approximation is negligible and the
stability of the optimization is thus not affected.

Deleting Bad Components

Components that have been initialized at poor locations may converge to irrelevant
modes of the target distribution and get very low weights such that they do not affect
the approximation in practice. As keeping such components would add unnecessary
computational overhead, we delete any component that had low weight for a given
number of iterations, ndel, and that further did not increase its expected reward R̃(o)
during that period.

Initializing the Mean of New Components

By adding components to the mixture model, we can increase the representational power
and thus improve the quality of the approximation. Furthermore, adding components
affects the search distribution and can thus be used for exploration. In either case, we want
the new components to eventually contribute to the approximation and hence achieve
high weight q(o) ∝ exp (R(o)) and thus high reward R(o). We treat every sample xs in
the database as candidate for the initial mean of the new component and then select the
most promising candidate according to an estimate of its initial reward. As we will discuss
in Section 3.2.4, we will decide on the initial entropy irrespective of the initial mean, but
we will choose the exact initial covariance only after deciding for an initial mean. Hence,
in the following we will derive an estimate of the initial reward that depends on the initial
mean and initial entropy Hinit, but not on the covariance matrix.

Let qxs(x|on) denote the new component on assuming that its mean was initialized
at location µn = xs and let qxs(x) = (1− q(on))q(x) + q(on)qxs(x|on) denote the GMM
approximation after adding the new component with initial weight q(on). According to

59



Equation 3.14 the initial reward of the new component Rxs(on) would be given by

Rxs(on) =

∫︂

x

qxs(x|on)
(︁
R(x) + log qxs(on|x)

)︁
dx+ H

(︁
qxs(x|on)

)︁
(3.20)

=

∫︂

x

qxs(x|on)
(︁
R(x) + log q(on) + log qxs(x|on)− log qxs(x)

)︁
dx

+ H
(︁
qxs(x|on)

)︁
dx

= log q(on) +

∫︂

x

qxs(x|on)
(︁
R(x)− log qxs(x)

)︁
dx

= log q(on) +

∫︂

x

qxs(x|on)
(︁
R(x)− log

(︁
(1− q(on))q(x) + q(on)qxs(x|on)

)︁)︁
dx.

(3.21)

Based on Equation 3.21 we can estimate the initial reward depending on the initial weight
of the new component q(on), the current mixture model q(x), the target distribution R(x),
and the new component qxs(x|on). The first term can be ignored because we choose the
initial weight of the new component irrespective of its mean and a constant offset does not
affect which initial mean achieves the maximum initial reward. The integral is intractable
but can be approximated based on the sample xs = µn as

R̃xs(on) = R(xs)− log

(︃
(1− q(on))q(xs) + q(on) exp

(︂1
2
D − Hinit

)︂)︃
(3.22)

where we exploit that the Gaussian density at its mean can be computed based on its
entropy Hinit and the number of dimensions D, that is, log qxs(xs|on) =

1
2D−Hinit. As the

function evaluations R(xs) of the target distribution are stored in the database, we only
need to evaluate the current mixture model q(x) on all candidate samples xs to estimate
the initial reward for these locations.

To investigate the approximated reward in Equation 3.22 we note that the second term
corresponds to a log-sum-exp (LSE), that is,

R̃xs(on) = R(xs)− log
(︁
(1− q(on))q(xs) + q(on)qxs(xs|on)

)︁

= R(xs)− LSE
(︁
log(1− q(on)) + log q(xs), log q(on) + log qxs(xs|on)

)︁

≈ R(xs)−max (log q(xs), log q(on) + log qxs(xs|on)) , (3.23)

where we exploit that LSE(a1, a2, . . . , an) = log
∑︁n

i=1 exp(ai) behaves similar to a max-
imum and that (1 − q(on))q(x) ≈ q(x), since we initialize the new component with
negligible weight, q(on) ≈ 0. Although the effect of the initial weight on the first operand
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of the log-sum-exp is negligible, it may have considerable effect on the second operand
because the logarithm of small values is a large negative value. Hence, the initial weight
that we choose for a new component may affect its approximated reward, which can be
explained by its effect on the responsibilities qxs(on|xs) in Eq. 3.20.
If we would add the new components with an initial weight of zero, the maximum-

operator would always return the first operand and the proposed estimate (which ignores
the constant offset log q(on) = −∞ in Eq. 3.22) of the initial reward would return the
amount of missing log probability-density, R̃xs(on|q(on) = 0) = R(xs)− log q(xs). Adding
a new component at the location where our current approximation misses most log
probability density seems sensible. However, the problem of such heuristic becomes
evident when considering target distributions with heavy tails. In such cases, the amount
of missing log probability density increases the farther we move away from the current
approximation. The new component might, thus, be added in a region where the target
distribution has low probability density, since the current approximation might have even
lower probability density.

This failure case is a direct consequence of ignoring the effect of the new component on
the mixture model. When considering non-zero weights, the log-responsibilities of the
new component are finite and tend to increase the farther we move away from the current
approximation. Yet, they saturate at log qxs(on|xs) ≈ 0 for every candidate location xs that
is sufficiently far from the current approximation, that is, where q(xs) ≈ 0. This behavior
is reflected by the log-sum-exp in Equation 3.22, which provides additional reward based
on the negative log probability density − log q(xs) of the current approximation but never
much more than −(log q(on) + log qxs(xs|on)).
The proposed heuristic has different effects depending on the choice of the initial

weight, which upper-bounds the benefit of adding a component far from the current
approximation to −(log q(on) + log qxs(xs|on)) (Eq. 3.23). Small initial weights increase
this threshold and, thus, the proposed heuristic becomes more explorative by tending to
initialize new components far from the current approximation. However, a benefit of the
proposed heuristic is that it often does not rely on a specific threshold to propose useful
candidate locations. For example, when a candidate is very close to a mode of the target
distribution that is currently not covered by the approximation, the heuristic will often
choose it for a large range of different thresholds that might vary across several orders or
magnitude. If there is no clear winner, the choice of log q(on) typically affects the proposed
location. For relatively large initial weights, we will create the component at a location
where R(xs) is close to the best values that we have discovered and therefore often close
to an existing component. Such component will improve our approximation with high
probability by allowing the mixture model to approximate the mode more accurately, but
is not likely to discover a new mode. Estimating the initial reward based on a small initial
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weight, in contrary, is more likely to place the component far from the current mixture
model at locations where R(xs)may be significantly worse than the best discovered values.
Such component might converge to an irrelevant mode, that is, a local maximum of the
target distribution that is still significantly worse than the best mode. The component
will then get a very low weight, such that its effect on the approximation is negligible
and the computational time (e.g., function evaluations) that was spent for improving this
component was mainly wasted. If, however, such component discovers a new relevant
mode, it will turn out much more valuable than a component that was added close to an
existing mode.

In our experiments, we always add component with an initial weight of 1× 10−29 which
results in log q(on) ≈ −66.77. However, this value is quite arbitrary because adding a
new component with initial weight of 1× 10−300 would result in essentially the same
mixture model and log q(on) ≈ −690.78. Hence, we do not estimate the initial reward
based on the actual initial weight, but instead choose a value in place of log q(on) and
vary it in the range of [−1000,−50]. By varying the (assumed) initial weight we can
maintain exploration and avoid only adding components at irrelevant locations. Please
refer to Appendix B.4 for a sensitivity analysis and for details on how the initial reward in
Equation 3.22 is approximated.

Initializing the Covariance Matrix of New Components

The initialization of the covariance matrix of the new component is performed in two
steps. In the first step, we decide on the initial entropy; in the second step, we decide on
the initial correlations.
A possible option for choosing the initial entropy is to use the same entropy that was

used when initializing the mixture at the beginning of the optimization, which would
typically be relatively large in accordance with an uninformed prior. Such an initialization
has the benefit of maintaining broad exploration during the whole optimization, and is not
very sensitive to the initialization of the mean. However, initializing new components with
high entropy can also be very wasteful as it will typically take a long time until they can
contribute to the approximation. Furthermore, smaller initial entropies in combination
with our heuristic for initializing the mean will result in a more directed exploration
of promising regions. Hence, we initialize the new component with an entropy that
is similar to those of the best components in the current model, namely we choose
Hinit =

∑︁
o q(o)H(q(x|o)) as initial entropy. The entropy of the best components will

typically decrease during optimization until it reaches a problem specific level. Hence,
the exploration of new components will also become more local, without falling below a
reasonable level.
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For deciding on the correlations among the different dimensions, we can consider
restarting the local search from scratch by choosing an isotropic covariance matrix Σiso =
cisoI, and making use of the existing components by averaging their covariance matrices,
that is, Σavg = cavg

∑︁
o p(o|µnew)Σo, where ciso and cavg are appropriately chosen to

obtain the desired entropy Hinit as shown in Appendix B.5. In VIPS we always averaged
the covariance matrices, which can be sensible when adding components close to existing
ones, or when similar correlations occur at different locations. However, we noticed
that such initialization can impair exploration and, thus, degrade performance in one
of our new experiments as shown in Section 3.4.2. As it is often difficult to predict,
whether the curvature at the most responsible components is similar to the curvature at
the new component, we perform a line search over a step size α ∈ [0, 1] to find the best
interpolation

Σα = αΣiso + (1− α)Σavg

between both candidate covariance matrices with respect to the expected reward

Rnew(α) =

∫︂

x

N (x|µnew,Σα) log p̃(x)dx.

The expected reward can be approximated using an importance weighted Monte Carlo
estimate based on samples from the mixture

z(x) = 0.5N (x|µnew,Σiso) + 0.5N (x|µnew,Σavg).

These samples and the respective function evaluations are also stored in the database S
and can thus be reused during subsequent learning iterations.

Flow charts for the basic variant and the modified version are shown in Figure 3.1. An
open-source implementation is available online2. In comparison to VIPS, VIPS++ makes
better use of previous function evaluations and initializes new components based on a line
search. Furthermore, VIPS++ uses fewer hyper-parameters by automatically adapting the
bounds on the KL-divergences for the individual component updates and the regularization
coefficients for fitting the reward surrogates. The number of hyper-parameters was further
reduced by simplifications of the algorithms; namely, by performing an unconstrained
optimization for the weight updates and by performing a single EM-like iteration on a
given set of samples.

2The implementation can be found at https://github.com/OlegArenz/VIPS.
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Figure 3.1.: We show flow charts for the basic variant (left) and VIPS++ (right). The ba-
sic variant updates the individual components by learning surrogates using
ordinary least-squares (OLS) and uses Monte-Carlo (MC) for estimating the
component’s reward R̃(o). VIPS++ adapts the number of component and
uses the same set of samples for computing the components’ reward using
importance sampling (IS) and for updating the individual components using
weighted least squares. The order of theweight and component updates has
been swapped on the right flow chart to match the actual implementation.
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3.3. Related Work

We will now discuss related work in the fields of variational inference, sampling and policy
search.

3.3.1. Variational Inference

Traditionally, variational inference was applied for learning coarse approximations of
high dimensional distributions, typically by assuming that the individual dimensions of
the random variable are uncorrelated—the so-called mean-field assumption—and by
choosing the variational distribution based on the target distribution. For example, Saul
et al. [1996] approximated the hidden nodes of sigmoid belief networks with Bernoulli
distributions, enabling them to maximize a lower bound on the ELBO in closed form. An
iterative procedure was used for improving this lower bound. As such approach can only
model unimodal distributions, it was later extended to mixtures of mean field distributions
[Bishop et al., 1998; Jaakkola and Jordan, 1998].

However, relying on a variational distribution that can be fitted in closed form can
be restrictive and the necessary derivations can be a major burden when applying such
variational inference approaches to different models. Hence, Gershman et al. [2012]
introduced non-parametric variational inference (NPVI), a black-box approach to varia-
tional inference that can be applied to any twice-differentiable target distribution. NPVI is
restricted to GMMs with uniform weights and isotropic components that are iteratively
optimized using first-order and second-order Taylor approximations. Although such vari-
ational approximation can in principle approximate any target distribution arbitrarily
well, NPVI is in general not suited for learning highly accurate approximations with a
reasonable number of components as shown in our comparisons.

Similar to VIPS, several black box approaches to variational inference rely on function
evaluations of the target distributions that are chosen by sampling the variational approxi-
mation. Ranganath et al. [2014] apply the log-derivative trick, which is well-known in
reinforcement learning [Williams, 1992], to variational inference in order to estimate the
gradient of the ELBO with respect to the policy parameters. The gradient estimation does
not require the gradient of the reward log p̃(x) but typically suffers from high variance.
Ranganath et al. [2014], thus, suggest control variates and Rao-Blackwellization (for
which they assume a mean-field approximation) for variance reduction. If the target
distribution is differentiable and the variational approximation is reparameterizable, it
is usually preferable to estimate the gradient with the reparameterization trick [Kingma
and Welling, 2014; Rezende et al., 2014] which typically has much lower variance. Such
approach can, for example, be used to train normalizing flows [Dinh et al., 2014]. Nor-
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malizing flows are likelihood-based models that transform a simple distribution through
one or several non-linear mappings. The probability density of the transformed distri-
bution can be evaluated using the change-of-variables formula, which requires that the
transformations are invertible and that the (log-)determinants of their Jacobians can
be efficiently computed. Rezende and Mohamed [2015] proposed transformations that
contract the density with respect to a learned hyperplane or to a point. The expressiveness
of these planar and radial flows is rather limited and thus many flows has to be stacked to
obtain rich approximations. However, several more expressive flows have been recently
proposed [Dinh et al., 2016; Grathwohl et al., 2019; Huang et al., 2018; Kingma and
Dhariwal, 2018; Kingma et al., 2016; Papamakarios et al., 2017]. Most of these flows
make use of autoregressive transformations. For example, inverse autoregressive flows [IAF,
Kingma et al., 2016] shift and scale each dimension of an input, xi, by quantities that are
computed based on the previous input dimensions xj<i. As the resulting Jacobian matrices
are triangular, the log determinants can be efficiently computed based on the diagonal
elements. Rich approximations can be learned by stacking several such flows and shuffling
the dimensions in-between based on fixed random or learned [Kingma and Dhariwal,
2018] permutations, which can also be seen as normalizing flows. In order to ensure the
autoregressive property, IAFs use a technique that was previously used for autoregressive
auto-encoders [Germain et al., 2015]. Namely, a mask is applied to a fully connected
neural network in order to cut weights such that each output yi is only connected to
inputs xj if j < i. Although such flows are invertible by construction, computing the
inverse can be expensive because the different dimensions have to be inverted sequentially.
Hence, evaluating the probability density of a sample that was produced by different
distribution can be inefficient. Masked autoregressive flows [Papamakarios et al., 2017],
thus, parameterize the inverse transformation (compared to IAFs) which makes them
more efficient for density estimation at the cost of less efficient sampling. In general,
normalizing flows are very popular nowadays, because they scale to high dimensions,
allow for rich representations and are reparameterizable whenever the initial distribution
is reparameterizable. However, we argue that such purely gradient-based optimization is
not suited for learning accurate approximations of multimodal target distributions due to
insufficient exploration. In our experiments, we compare against IAFs, which are well-
suited for variational inference because we only need to evaluate the density of samples
that were drawn from the normalizing flow.
Hessian-free stochastic Gaussian variational inference (HFSGVI, Fan et al. 2015) and

TrustVI [Regier et al., 2017] can be used for learning Gaussian variational approximations.
HFSGVI [Fan et al., 2015] learns GVAs with full covariance matrices using fast second
order optimization. This idea has been extended by Regier et al. [2017] to trust region
optimization. However, in difference to our approach, a euclidean trust region is used in
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parameter space of the variational distribution. Such approach requires the computation of
the Hessian of the objective which is only tractable for mean-field approximations of single
Gaussian distributions. In contrast, we use the trust regions directly on the change of the
distributions instead of the change of the parameters of the distribution. The information
geometric trust regions in this paper allow for efficient estimation of GMMs with full
covariance matrices without requiring gradient information from p̃(x).

Information geometric trust regions and related methods such as certain proximal point
methods as well as methods based on natural gradient descent have already been applied
to variational inference. Salimans and Knowles [2013] derive a fixed point update of the
natural parameters of a distribution from the exponential family that corresponds to a
Monte-Carlo estimate of the gradient of Equation 3.1 preconditioned by the inverse of
their empirical covariance. By making structural assumptions on the target distribution,
they extend their method to mixture models and show its applicability to bivariate GMMs.
Hoffman et al. [2013] consider mean-field variational inference and assume a certain
structure on the target distribution. Namely, they consider models that consist of a product
of conditionally independent distributions parameterized by local parameters that are
correlated through global parameters. Furthermore, all distributions are assumed to
belong to the exponential family and the distribution of the global parameters is assumed
to be conjugate for computational reasons. They show that the natural gradient of the
corresponding mean-field approximation can be efficiently computed, and approximated
from mini-batches. Theis and Hoffman [2015] extended their approach by enforcing
a trust-region based on the KL-divergence for better exploration. Khan et al. [2015]
consider slightly more general models where optimizing the ELBO can be computationally
expensive. They propose to apply the proximal point method by adding a penalty to
the ELBO based on the reverse Kullback-Leibler divergence to the current iterate. They
decompose the ELBO into easy and difficult parts and linearize the difficult parts. The
derivations where extended by Khan et al. [2016] to other divergences and to stochastic
gradients making the approach applicable to posterior approximations based on mini-
batches. Altosaar et al. [2018] propose a slightly more general framework that can
penalize derivations from a moving average instead of derivations from the last iterate,
which can further help in avoiding bad local optima.

Several methods use the same hierarchical bound as VIPS in the broad context of
variational inference. The first usage seems to date back to 2004, where Agakov and Barber
[2004] proposed the bound for learning an optimal weighting between several mean-field
approximations. Ranganath et al. [2016] proposed Hierarchical variational methods
(HVM) where the lower-level distributions q(x|o) where again mean-field distributions.
In their setting, the latent variable o corresponds to a parameter vector that fully specifies
the mean-field distribution. They learned complex priors q(o) over these parameters,
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namely GMMs and normalizing flows, in order to allow for rich variational approximations.
However, in contrast to the responsibilities in VIPS the conditional q(o|x) is not tractable
and thus has to be approximated and learned along the variational distribution. Our EM-
inspired approach based on exact tightening of the hierarchical lower bound would thus not
be applicable in their setting. Although Ranganath et al. [2016] learned Gaussian mixture
models to model the upper-level distribution q(o), they did not apply the hierarchical
bound for this, but optimized the parameters directly using stochastic gradient descent.
As we will show in our experiments, such black-box approach is not suited for learning
variational GMM approximations. Tran et al. [2016] consider a similar setup for their
variational Gaussian process. For the mean-field factors p(xn|on) of their lower-level
components they consider degenerated point masses specified by their scalar parameter
value on. As Ranganath et al. [2016], they optimize the hierarchical lower bound with
respect to the prior distribution q(o) and the conditional q(o|x). Their main contribution
is the representation of the prior distribution. Each parameter value on is sampled by
evaluating a Gaussian process [GP, Rasmussen and Williams, 2006] on an input that was
sampled from a fixed distribution. The parameters of the prior are given by the kernel
hyper-parameters of the GP as well as the variational data that is interpolated by the
GP. Whereas all these methods only consider mean-field distributions for the lower-level
components that are fully specified by the latent variable, Maaløe et al. [2016] represent
them using inference networks, that is, neural networks that take a data point as input
and output the parameters of a (typically diagonal) Gaussian distribution. They consider
variational autoencoders VAE and aim to learn more expressive approximations of the
latent code z. They also introduce an additional latent variable representing class labels
in order to train a classifier end-to-end while optimizing the variational autoencoder in
semi-supervised fashion. In contrast to these previous applications of the hierarchical lower
bound, VIPS shows that it can also be used to learn accurate variational approximations
without having to approximate the inverse model p(o|x). This enables us to optimize the
ELBO by alternately maximizing and (exactly) tightening the hierarchical lower bound.
Closely related to our work are two recent approaches for variational inference that

concurrently explored the idea of applying boosting to make the training of GMM ap-
proximations tractable [Guo et al., 2016; Miller et al., 2017]. These methods start by
minimizing the ELBO objective for a single component and then successively add and
optimize new components and learn an optimal weighting between the previous mixture
and the newly added component. However, because these methods can not adapt pre-
viously added components or their relative weighting, they can require an unnecessary
large number of components to learn accurate approximations. Furthermore, they do not
use information-geometric trust regions to efficiently explore the sample space and there-
fore have problems finding all the modes as well as accurate estimates of the covariance
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matrices. GMMs are also used by Zobay [2014] where an approximation of the GMM
entropy is used to make the optimization tractable. The optimization is gradient-based
and does not consider exploration of the sample space. It is therefore limited to rather
low dimensional problems.

The work of Weber et al. [2015] already explored the use of reinforcement learning for
VI by formalizing VI as sequential decision problem. However, only simple policy gradient
methods have been proposed in this context which are unsuitable for learning GMMs.

3.3.2. Sampling

Although MCMC samplers can not directly be used for approximating distributions, they
are for many applications the main alternative to VI. Especially, when applying VIPS
as a model-based sampler, that is, if we do not have direct interest in learning a GMM
approximation, it should be compared to other zero-order sampling methods that do not
need gradient information from the target density. The most prominent methods to use
here are MCMC methods such as slice sampling [Neal, 2003], elliptical slice sampling
[Murray et al., 2010] or generalized elliptical slice sampling [Nishihara et al., 2014].
MCMC methods define a Markov chain for the sampling process, that is, the current
sample defines the state of the chain, and we define a conditional distribution how to
generate new samples from the current state.

Slice sampling introduces an auxiliary variable y to define this conditional distribution.
The variable y is always sampled between 0 and the unnormalized target density of the
current sample. The random variable x is only accepted if the new target density is larger
than y. In case of rejection, the area where a new x sample is generated is reduced to
limit the number of rejections. However, the sampling process is still very inefficient for
higher dimensional random variables. Elliptical slice sampling [Murray et al., 2010] is a
special case of slice sampling and defines the slice by an ellipse defined by the current
state x and a random sample from a Gaussian prior (with origin 0). Such ellipse allows
for more efficient sampling and rejection in high dimensional spaces but relies on a strong
Gaussian prior.

If the gradient of the target distribution is available, Hamiltonian MCMC [Duane et al.,
1987] and the Metropolis-adjusted Langevin algorithm [Roberts and Stramer, 2002] are
also popular choices. The No-U-Turn sampler (NUTS) [Hoffman and Gelman, 2014] is a
notable variant of Hamiltonian MCMC that is appealing for not requiring hyper-parameter
tuning.
While many of these MCMC methods have problems with multimodal distributions

in terms of mixing time, other methods use multiple chains and can therefore better
explore multimodal sample spaces [Calderhead, 2014; Earl and Deem, 2005; Neal, 1996;
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Nishihara et al., 2014]. Parallel tempering MCMC [Earl and Deem, 2005] runs multiple
chains, where each chain samples the target distribution at a different temperature.
Each step consists either of updating each chain independently, or swapping the state
between two neighboring chains which allows for more efficient mixing between isolated
modes. However, because only one chain samples the target distribution at the correct
temperature, PTMCMC can be inefficient if the number of chains and their respective
temperatures are not adequately tuned for the sampling problem. Generalized elliptical
slice sampling [Nishihara et al., 2014] uses multiple Markov chains simultaneously using
massive parallel computing. The current state of the Markov chains is used to learn a
more efficient proposal distribution, where either Student-t distributions or Gaussian
mixture models can be used. Yet, learning such distributions in high dimensional spaces
using maximum likelihood is prone to overfitting and the GMM approach has not been
evaluated on practical examples. Moreover, the approach requires a massive amount of
sample evaluations. In this paper, we want to minimize the amount of sample evaluations.
Rainforth et al. [2018] explicitly consider the exploration-exploitation trade-off. They

use a method similar to Monte-Carlo tree search [Coulom, 2006] to build a tree for parti-
tioning the search space. By covering regions where the target distribution has high density
more finely, the resulting inference trees (IT) are well-suited for inference on multimodal
distributions, for example, in combination with sequential Monte-Carlo [Doucet et al.,
2001].

Stein variational gradient descent (SVGD) [Liu and Wang, 2016] is a sampling method
that closely relates to variational inference. However, instead of optimizing the parameters
of a model, SVGD directly optimizes an initial set of particles. By framing sampling
as optimization problem, SVGD inherits the computational advantages of variational
inference and because it is non-parametric, it is capable of approximating multimodal
distributions. However, this method requires to construct the Gram matrix of the particles
and is thus not suitable for drawing large number of samples. Furthermore, defining
appropriate kernels can be challenging for high-dimensional problems.

3.3.3. Policy Search

Our algorithm shares a lot of ideas with information-geometric policy search algorithms
such as REPS [Peters et al., 2010], HiREPS [Daniel et al., 2016] and MORE [Abdolmaleki
et al., 2015]. In difference to policy search, where we want to maximize an average reward
objective, we want to minimize the KL-divergence to a target distribution. REPS introduces
the first time information-geometric policy updates, while the MORE algorithm introduces
closed form updates for single Gaussians using compatible function approximation and
additional entropy regularization terms that yields an optimization problem similar to KL
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minimization.
The HiREPS [Daniel et al., 2016] and LaDiPS [End et al., 2017] algorithms extended

the REPS and MORE ideas to mixture distributions such that multiple modes can be
represented. However, the used updates were based on approximations or heuristics and
can not optimize the entropy of the complete mixture model.

3.4. Experiments

In this section we will evaluate VIPS++ with respect to the quality of the learned ap-
proximation and relate it to a variety of state-of-the-art methods in variational inference
and Markov chain Monte Carlo. We start with a description of the considered sampling
problems in Section 3.4.1. The effects of the most important hyper-parameters and al-
gorithmic choices are examined in Section 3.4.2. Section 3.4.3 contains an illustrative
experiment to show how VIPS++ approximates a two-dimensional, multimodal target
distribution by starting with a single component and iteratively adding more components
according to our heuristic. The selected methods for our comparisons, and the selection
of their hyper-parameters are discussed in Section 3.4.4 and Section 3.4.5. The results of
the quantitative experiments are presented and discussed in Section 3.4.6.

3.4.1. Sampling Problems

Wewill evaluate VIPS++ on typical sampling problems such as Bayesian logistic regression,
Bayesian Gaussian process regression and posterior sampling of a multi-level Poisson
generalized linear model. We further approximate the posterior distribution over the
parameters of a system of ordinary differential equations known as the Goodwin model,
which can be used for modeling oscillating gene-protein interaction. As these problems
tend to have concentrated modes, we devised several more challenging problems that
require careful exploration of the sampling space. Namely, we consider sampling from
unknown GMMs with distant modes and sampling the joint configurations of a planar
robot such that it reaches given goal positions.

Bayesian Logistic Regression

We perform two experiments for binary classification that have been taken from Nishihara
et al. [2014] using the German credit and breast cancer data sets [Lichman, 2013]. The
German credit data set has twenty-five parameters and 1000 data points, whereas the breast
cancer data set is thirty-one dimensional and contains 569 data points. We standardize
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both data sets and perform linear logistic regression where we put zero-mean Gaussian
priors with variance 100 on all parameters.

Multi-Level Poisson GLM

We also took an experiment from the related work VBOOST [Miller et al., 2017]. For
this experiment we want to sample the posterior of a hierarchical Poisson GLM on the
37-dimensional stop-and-frisk data set, where we refer to Miller et al. [2017] for the
description of the hierarchical model.

GP Regression

We perform Bayesian Gaussian process regression on the ionosphere data set [Lichman,
2013] as described by Nishihara et al. [2014]. Namely, we use 100 data points and want
to sample the hyper-parameters of a squared exponential kernel where we put a gamma
prior with shape 1 and rate 0.1 on the 34 length-scale hyper-parameters. We initialize
VIPS with a single Gaussian component, N (x|0, I) and sample in log-space to ensure
positive values for the hyper-parameters.

Goodwin Model

Similar to Calderhead and Girolami [2009], we want to sample the posterior over the
parameters of a Goodwin oscillator [Goodwin, 1965] based on noisy observations. The
Goodwin oscillator is a system of nonlinear ordinary differential equations (ODE) that
models the oscillatory behavior between protein expression and mRNA transcription
in enzymatic control processes. We consider a Goodwin oscillator with ten unknown
parameters and put a Gamma prior with shape 2 and rate 1 on each of these. The likelihood
of 41 observations is computed by numerically integrating the ODE and assuming Gaussian
observation noise with zero mean and variance σ2 = 0.2. Please refer to Appendix B.6 for
more details on the ODE and the experimental setup.

Gaussian Mixture Model

In order to evaluate how VIPS++ can explore and approximate multimodal probability
distributions with distant modes, we consider the problem of approximating an unknown
GMM comprising 10 components. We consider different number of dimensions, namely
D = 20, D = 40 and D = 60. For each component, we draw each dimension of the mean
uniformly in the interval [−50, 50]. The covariance matrices are given by Σ = A⊤A+ ID
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where each entry of theD×D-dimensional matrixA is sampled from a normal distribution
with mean 0 and standard deviation 0.1D. Note that each component of the target
distribution can have a highly correlated covariance matrix, which is even a problem for
the tested MCMC methods.

Planar Robot

In order to test VIPS++ on a multimodal problem with non-Gaussian modes we devised
a challenging toy task where we want to sample the joint configurations of a planar robot
with 10 links of length 1 such that it reaches desired goal positions. The robot base is at
position (0, 0) and the joint configuration describes the angles of the links in radian. In
order to induce smooth configurations, we put a zero mean Gaussian prior on the joint
configurations where we use a variance of 1 for the first joint and a variance of 4× 10−2 for
the remaining joints. Deviations from the nearest goal position are penalized based on a
likelihood that is given by a Gaussian distribution in the Cartesian end-effector space, with
a variance of 1× 10−4 in both directions. We consider two experiments that differ in the
number of goal positions. For the first experiment, we want to reach a single goal-position
at position x = 7 and y = 0. For the second experiment we want to reach four goal
positions at positions (7, 0), (0, 7), (−7, 0) and (0,−7). Please refer to Appendix B.7 for
details on how the target distribution is computed.

Ground-truth samples for both experiments are shown in Figure 3.2. Each goal position
can be reached from two different sides, either up and down, or left and right. Other
configurations that would reach the goal position, for example some zig-zag configurations,
are not relevant due to the smoothness prior and can create poor local optima. Although
there are only two relevant ways for reaching each goal position, closely approximating
these modes can require many mixture components, because the small variance of the
Cartesian likelihood term enforces components with small variance. We therefore also
evaluate slightly different hyper-parameters for VIPS++, where we add a new component
at every iteration.

3.4.2. Ablations

In this subsection we will evaluate the effects of some algorithmic choices. Namely, we
will show that adapting the number of components can be crucial for discovering relevant
modes of multimodal target distributions, that the previously proposed initializing of
covariance matrices can have detrimental effects, and that the sample reusage of VIPS++
can significantly increase sample efficiency.
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Figure 3.2.: The plots show 200 ground-truth samples for both planar robot experiments
that have been generated using generalized elliptical slice sampling. The
base of the planar robot is shown as a gray box and the end-effector posi-
tions are shown as circles.

Adapting the number of components

As discussed in Section 3.2.4, VIPS automatically adapts the number of components during
learning for better exploration, which enables it to improve on local optimal solutions. We
evaluate the effect of this adaptation by comparing VIPS++ with a variant that keeps
the number of components fixed on the breast cancer experiment and the 20-dimensional
GMM experiment. We initialize the non-adaptive variant with different numbers of initial
components, where each mean is drawn from an isotropic Gaussian N (0, αI). We use
α = 100 for the breast cancer experiment and α = 1000 for the GMM experiments. For
VIPS++ we start with a single component with mean 0. All covariance matrices are
initialized as Σ = αI. The achieved MMDs are shown in Figure 3.3. The non-adaptive
variant converges to better approximations when increasing the number of components
on the breast cancer experiment. However, the required number of function evaluations
until convergence scales approximately linearly with the number of components. VIPS++
can learn good approximations with few function evaluations and further improves while
increasing the size of the mixture model. On the GMM experiment, all tested variants
would in principle be able to model the target distribution exactly. However, depending
on the initialization, several components may converge to the same mode which results
in bad local optima. We therefore needed at least 25 initial components for occasionally
learning good approximations during this experiment and even when initializing with 100
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components the non-adaptive variant would sometimes fail to discover all true modes. In
contrast, by adaptively adding new components at interesting regions VIPS++ reliably
discovers all ten modes. Please refer to Appendix B.8 for a plot of the average number of
components that are learned by VIPS++ for all experiments in the test bed.

Initializing the covariance matrices

We also evaluate the different strategies for initializing the covariance matrix of a newly
added component, which were discussed in Section 3.2.4. We compare the proposed
line search used by VIPS++ with the interpolation used by VIPS as well as an isotropic
initialization. Figure 3.4 compares the different strategies on the Goodwin experiment and
the planar robot experiment (with four goal positions). The planar robot experiment shows,
that interpolating based on the responsibilities can seriously impair the performance on
multimodal problems. We believe that interpolating based on the responsibilities can
lead to highly anisotropic initial covariance matrices that do not sufficiently explore along
relevant directions which would explain the detrimental effects. Although we could not
show a benefit of the line search compared to the isotropic initialization, we opted for
the line search for the quantitative experiments, because it seems sensible and did not
perform significantly worse in our experiments.

Sample Reusage

Compared to VIPS, VIPS++ uses a more sophisticated method for reusing samples from
previous iteration—as detailed in Section 3.2.2 and 3.2.3—by identifying relevant samples
among all previous function evaluations and by controlling the number of new samples
from each component based on its number of effective samples. We compare the new
sample strategy with the previously employed method of always using the samples of the
three most recent iterations. Figure 3.5 evaluates the different strategies on the Goodwin

experiment and the 20-dimensional GMM experiment. The proposed strategy of VIPS++
significantly outperforms the previous method by reducing the sample complexity by
approximately one order of magnitude.

3.4.3. Illustrative Experiment

We start with a qualitative two-dimensional experiment to illustrate the sample reusage
and the adaptation of the number of components. The target distribution is given by a
Gaussian mixture model with ten components similar to the higher-dimensional GMM
experiments. We use the same hyper-parameters as in the remaining experiments and
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Figure 3.3.: We compare VIPS++ with a variant that does not add or delete components.
On the breast cancer experiment, VIPS++ converges to a good approxima-
tion as fast as the variant that learns a single component, but it refines the
approximation by adding more components. When not adapting the num-
ber of components on the GMM experiment, the quality of the approxima-
tion strongly depends on the initialization and even 100 initial components
would sometimes fail to detect all modes.
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Figure 3.4.: We compare different strategies for initializing the covariance matrices of
newly added components. Interpolating the covariance matrices of the cur-
rent model based on the responsibilities can have detrimental effects as
shown in the planar robot experiment.
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Figure 3.5.: The sample reusage of VIPS++ is approximately one order of magnitude
more efficient than the sample reusage of VIPS.
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Figure 3.6.: The first 12 plots show the learned approximation for the illustrative experi-
ment every 30 iterations, directly after adding a new component. Themeans
of the Gaussianmixture model are indicated with a white plus except for the
newest component which is marked by a star. Black dots indicate all sam-
ples that have been drawn except for those that have already been shown at
previous plots. The last two plots compare the learned approximation and
the target distribution.
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start with a single component. Figure 3.6 shows the target distribution as well as the
learned approximation directly after adding each new component. The new components
are often added close to missing modes and components are typically not sampled after
they have converged. The learned model closely approximates the target distribution.

3.4.4. Considered Competitors

We compare VIPS++ to the closely related methods variational boosting [VBOOST, Miller
et al., 2017] and non-parametric variational inference [NPVI, Gershman et al., 2012]
as well as state-of-the-art methods in variational inference and MCMC, namely inverse
autoregressive flows [IAF, Kingma et al., 2016], Stein variational gradient descent [SVGD,
Liu and Wang, 2016], Hamiltonian Monte Carlo [HMC, Duane et al., 1987], elliptical
slice sampling [ESS, Murray et al., 2010], parallel tempering MCMC [PTMCMC, Earl and
Deem, 2005] and slice sampling [Neal, 2003]. We also compare to naive gradient based
optimization of a Gaussian mixture model (with fixed but tuned number of components).
As GMMs are not exactly reparameterizable, we compute their stochastic gradients using
black-box variational inference (BBVI). Please refer to Appendix B.9 for details on the
specific implementations. Due to the high computational demands, we do not compare
to every method on each experiment but rather select promising candidates based on
the sampling problem or on the preliminary experiments that we had to conduct for
hyper-parameter tuning. We present our justification for each omitted experiment in
Appendix B.10, where we also present a table that shows the competitors we compared
against on each test problem.
Instead of using a variant of MORE (which we denote as VIPS1), it would also be

possible to update the individual components using the reparameterization trick [Kingma
and Welling, 2014; Rezende et al., 2014]—which assumes that the target distribution is
differentiable—or black-box variational inference [Ranganath et al., 2014]. We evaluated
these options by comparing VIPS1, black-box variational inference and the reparame-
terization trick for learning Gaussian variational approximations on the breast cancer

experiment and the planar robot experiment. The results are presented in Appendix B.11
and show that VIPS1 is not only more efficient than black-box variational inference, but
also one to two orders of magnitude more efficient than the reparameterization trick.

3.4.5. Hyper-Parameters

For the competing methods, we tuned the hyper-parameters independently for each test
problem. We typically tuned the hyper-parameters based on our test metric, the maximum
mean discrepancy (MMD). However, in all our experiments black-box variational inference
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and inverse autoregressive flows collapsed to single modes on multimodal test problems
which increased the MMD. In these cases, we tuned the hyper-parameters with respect to
the ELBO, rather than setting the learning rate to zero which would perform better on
our test metric. For VIPS++, we use the same set of hyper-parameters on all experiments.
However, for the planar robot experiment which can profit from large GMMs with several
hundred components, we add a new component at every iteration. Learning such large
mixture models for simpler, unimodal problems would be wasteful, and we thus use
a slower adding rate nadd = 30 for the remaining experiments. The remaining hyper-
parameters are shown in Appendix B.12.

3.4.6. Results

We compare the different methods in terms of efficiency, regarding both, the number
of function evaluations and wall clock time, and in terms of sample quality which we
assess by computing the maximum mean discrepancy [MMD, Gretton et al., 2012] with
respect to ground-truth samples. The MMD is a nonparametric divergence between mean
embeddings in a reproducible kernel Hilbert space. Please refer to Appendix B.13 on how
the MMD and the ground-truth samples are computed.
Figure 3.7 shows plots of the MMD over the number of function evaluations for the

different sampling problems in the test bed. We perform five runs for each method and
linearly interpolate the MMD values to produce continuous curves. The plots show the
mean of these curves, as well as the smallest and largest value as shaded area. The
tested methods are apparent from the legends. VBOOST can make use of low-rank
approximations for learning the covariance matrices and we indicate the chosen ranks
in the legends. The German credit, breast cancer, stop-and-frisk and the 20-dimensional
GMM experiment, as well as the planar robot experiment with a single goal position were
also used in our previous work [Arenz et al., 2018] and we use some of the previous
results. For example, we directly compare VIPS++ with the previously published results
of VIPS. Unlike VIPS++, VIPS bounds the maximum number of components by stopping
to add new components if the current number of components matches a given threshold.
This threshold is indicated in the respective legends. Figure 3.8 presents the results with
respect to computational time for the ionosphere and Goodwin model experiment as well
as the planar robot experiment with a single goal position. As the results are similar
compared to the evaluations with respect to the number of function evaluations, we show
the remaining plots in Appendix B.14.

Furthermore, for our comparisons with the variational inference methods BBVI and IAF
we also present learning curves regarding the ELBO in Appendix B.15.
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Figure 3.7.: The maximum mean discrepancy with respect to ground-truth samples is
plotted over the number of function evaluations on log-log plots for the dif-
ferent sampling problems in the test bed. VIPS++ achieves in most cases
a sample quality that is on par with the best MCMC sampler while requiring
up to three orders of magnitude fewer function evaluations.
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Figure 3.8.: Evaluating the methods with respect to computational time yields compara-
ble results as evaluating with respect to the number of function evaluations.
These results show that VIPS++ can also be competitive to MCMC in terms
of computational time.

Discussion

The sample quality achieved by VIPS is unmatched by any variational inference method
on all considered experiments and in most cases on par with the best MCMC sampler.
VIPS requires significantly fewer function evaluations and computational resources for
producing such high quality samples. VIPS++ is approximately one order of magnitude
more efficient than VIPS and two to three orders of magnitude more efficient than the re-
maining methods. VIPS and VIPS++ were also the only methods that could produce good
results on the 20-dimensional GMM experiment, where they were able to reliably discover
and approximate all ten modes of the target distribution. We therefore only evaluated
VIPS++ on the higher-dimensional GMM experiments where it also approximated the
target distribution with high accuracy. However, on the planar robot experiment with four
goal positions ESS and PTMCMC could produce significantly better samples than VIPS++.
We believe that learning highly accurate GMM approximations would require a very large
number of components for this experiment. Already on the planar robot experiment with
a single goal position, we could slightly improve the learned approximations by adding
new components more frequently. Compared to the default adding rate, which learned
GMMs with approximately 150 components, the faster adding rate resulted in GMMs
with approximately 350 components. We believe that VIPS++ would require significantly
more components to achieve comparable sample quality to the MCMC samplers on the
more challenging planar robot experiment. However, learning very large mixture models
can become infeasible, because computing the (log-)responsibilities log q(o|x) exactly can
become prohibitive. Figure 3.9 visualizes the weights and means of the learned approxi-
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Figure 3.9.: The plots visualize the weights and means of the mixture models learned
by VIPS++ for each of the planar robot experiments when adding new com-
ponents with adding rate nadd = 1. The gray box indicates the base of the
robot; the red crosses indicate the goal positions. Components with larger
weight are drawn darker. The visualized mixture models comprise 333 and
360 components for the experiments with one goal position (left) and four
goal positions (right), respectively.
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mation of the first run for both planar robot experiments when adding new components
at every iteration. We can see that the learned components are still of very good quality.
Samples from the learned models are shown in Appendix B.16 and compared to those
obtained by BBVI, IAF, PTMCMC.

3.5. Conclusion and Future Work

We proposed VIPS++, a method for learning GMM approximations of intractable proba-
bility distributions that exploits the connection between variational inference and policy
search. We introduced a variant of MORE [Abdolmaleki et al., 2015] that can be efficiently
used for learning Gaussian variational approximations. We further derived a lower bound
on the I-projection to latent variable models that can be used for learning a local optimum
of the true objective, similar to expectation-maximization. By applying this decomposition
to Gaussian mixture models, the I-projection can be performed independently for each
component, allowing us to improve the GMM approximation by independently updating
the components using our variant of MORE. We argue that a good trade-off between
exploration and exploitation is essential for efficiently learning accurate multimodal ap-
proximations. We tackle the exploration-exploitation dilemma locally for each component
by updating them using information-geometric trust regions. For global exploration, we
dynamically add new components at interesting regions.

For target distributions that can be well approximated with few components, VIPS does
not only outperform existing methods for variational inference, but is also several orders
of magnitude more efficient than Markov chain Monte Carlo at drawing samples. We also
showed that VIPS can learn large mixture models comprising several hundred components.
However, learning very large GMMs is computationally expensive and MCMC methods
can be more efficient at drawing samples.

Learning Gaussian components with full covariance matrices can become intractable for
high dimensional problems, and we thus applied VIPS only for medium-scaled problems
with up to 60 dimensions. For significantly higher-dimensional problems, learning low-rank
approximations and using gradient information for the component updates are interesting
routes of future work. It is also interesting to further investigate the strong ties between
variational inference and policy search. Using our decomposition we can learn GMMs
of policy parameters for the black-box reinforcement learning setting where time-series
data is not assumed and exploited. In order to apply VIPS for multimodal reinforcement
learning with time-series data, we aim to contextualize the GMM parameterization on the
state of an MDP to directly learn GMM policies. Furthermore, it is interesting to investigate
how our decomposition can be applied to different problems such as clustering or density
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estimation, or to other latent variable models.

3.6. Follow-Ups

In this section, we want to briefly mention two follow-up works that fit well to the scope of
this thesis. Namely, we will discuss the work by Ewerton, Arenz, and Peters [2020] where
we applied VIPS for robotic teleoperation and the work by Becker, Arenz, and Neumann
[2020] where we applied the lower bound decomposition of VIPS to the problem of density
estimation, which—although interesting by itself—can be regarded as an intermediate step
to applying the decomposition to imitation learning, which will be the focus of Chapter 4.

3.6.1. Assisted Teleoperation in Changing Environments with a Mixture of
Virtual Guides

In contrast to humans, robots can be safely deployed to hazardous environments and
may possess greater strength or precision. On the other hand, they lack the capability
of high-level reasoning that is often necessary to autonomously perform a desired task
in unstructured environments, for example, when segregating nuclear waste [Abi-Farraj
et al., 2019]. Teleoperation allows us to combine these advantages of humans and robots.
Instead of using standard joysticks for controlling the robot, it is common to use special
haptic devices [for example, as used by Ewerton et al., 2019]—which themselves can
be characterized as a robot—or even standard collaborative robots [Singh et al., 2020].
Such device (the leader) can be used to directly control several degrees of freedom (DoFs)
of the teleoperated robot (the follower)—for example, six DoFs, when controlling the
end-effector position and orientation. Furthermore, they can provide haptic feedback or
cues to the operator. An example for such haptic device, the Virtuose Tao 6D, is illustrated
in Figure 3.10. When learning a controller that applies wrenches to the handle of the
leader in order to assist the operator during teleoperation, we obtain a shared control
setting, where both, the operator and the learned controller, control the follower by
overlaying wrenches at the leader’s handle. Compared to an unassisted teleoperation
setup, such setup has the advantage that it can reduce stress and cognitive load of the
operator, for example, by guiding the movement around obstacles, while ensuring that
the operator remains in control of the system (when the wrenches of the controller are
sufficiently limited). However, learning a suitable controller faces several challenges.

• We need to ensure that the guiding wrenches change smoothly (in time and space)
because sudden changes could catch the operator off guard.
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Figure 3.10.: An operator controls
a robot (not shown) using the Vir-
tuose Tao 6D haptic device. Im-
age was taken from [Ewerton et al.,
2020].
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Figure 3.11.: We learn a mixture of three ProMPs
for guiding a point mass to a goal position
(marked by a red cross). Each ProMP corre-
sponds to a trajectory with variable stiffness. Im-
age was taken from [Ewerton et al., 2020].

• Often, several (movement-)plans are possible, and we can not know beforehand
which one is preferred by the operator. Hence, we want to discover different solutions
and potentially re-plan online if the operator does not seem to follow any of the
learned plans.

• The desired strength of the guiding wrench may vary during a given plan. For exam-
ple, when grasping a small object we need high precision and thus strong guiding
wrenches, whereas we might want to provide little feedback while approaching the
object freely in space.

• The cause of the applied wrenches—that is the inferred plan—should be compre-
hensible to the operator in order to enable them to coordinate with the learned
controller.

We address these challenges by providing wrenches based on a mixture of probabilistic
movement primitives (ProMPs, Paraschos et al. 2013). A ProMP corresponds to a Gaussian
distribution over trajectories that is represented as a Gaussian distribution over trajectory
parameters. A single ProMP, thus, encodes a plan (given by the mean trajectory) with
variable stiffness (based on the covariance matrix). Furthermore, a Gaussian mixture
model over parameters corresponds to a mixture of ProMPs and thus several variable
stiffness plans, as depicted in Figure 3.11. Such GMM can be learned by solving an entropy
regularized, episodic reinforcement learning problem (that is, a variational inference
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Figure 3.12.:We performed experiments on a Kuka IIWAR820 robotwherewe re-planned
themixture of ProMPs online. Re-planning was triggered when new obstacles appeared
or when objects where grasped or released. The left image shows the visualization of
the learned plans that was shown to the operator. For better visualization, the (variable)
stiffness was not visualized. Image was taken from [Ewerton et al., 2020].

problem), where the entropy regularization is introduced for obtaining different plans,
and the reward function (that is, the unnormalized target distribution) is assumed to be
given. We applied VIPS for learning the mixture of ProMPs which—thanks to its sample
efficiency—enabled us to re-plan during teleoperation. Furthermore, the negated log-
density of the GMM corresponds to a smoothed minimum of convex quadratic functions.
By applying a wrench proportional to the gradient of this energy landscape, we can
ensure that the wrenches vary smoothly and guide the operator along the closest planned
trajectory. We applied the approach to a pick-and-place task as depicted in Figure 3.12.
Please refer to the original publication [Ewerton et al., 2020] for details.
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3.6.2. Expected Information Maximization: Using the I-Projection for Mixture
Density Estimation

For VIPS, we considered the problem of variational inference where we want to minimize
the reverse KL divergence (RKL) to an unnormalized target distribution R(x) = p̃(x). In
contrast, Becker et al. [2020] apply similar ideas for RKL-based density esimation, which
instead of assuming that the (unnormalized) target distribution p̃(x) is known, assumes
that samples from p(x) are given. It is well-known that the M-projection (maximum
likelihood estimation) for density estimation with latent variable models—such as GMMs—
can be performed using expectation-maximization [Dempster et al., 1977]. Becker et al.
[2020] established a similar procedure, called expected information maximization (EIM),
for performing the I-projection. Compared to the M-projection, the I-projection results in
models that generate samples that are harder to distinguish from samples from the target
distribution at the cost of having less variability (entropy).
To derive a lower bound on the negated RKL, we revisit the lower bound of VIPS

(Eq. 3.11),

L̃(θ, q̃(o|x)) =
∑︂

o

q(o)
[︂ ∫︂

x

q(x|o)
(︁
log p(x) + log q̃(o|x)

)︁
dx+ H

(︁
q(x|o)

)︁]︂
+ H

(︁
q(o)

)︁
,

(3.24)

where we replaced the unnormalized target distribution R(x) = log p̃(x) with the (un-
known) true target distribution p(x). As p(x) is not known, we can not directly optimize
the lower bound given by Equation 3.24. Substituting

log q̃(o|x) = log q̃(o) + log q̃(x|o)− log q̃(x)

in Equation 3.24 we obtain

L̃(θ, q̃(o|x)) =
∑︂

o

q(o)
[︂ ∫︂

x

q(x|o) log
(︂p(x)
q̃(x)

)︂

⏞ ⏟⏟ ⏞
ϕ(x)

dx+DKL
(︁
q(x|o)

)︁
||q̃(x|o)

]︂
+DKL

(︁
q(o)||q̃(o)

)︁
,

(3.25)

where the log density-ratio ϕ(x) now serves as reward function. We directly estimate
the log density ratio ϕ(x) based on samples from p(x) and our model q̃(x), which can be
framed as a classification problem [Menon and Ong, 2016]. Namely, we train a classifier
to discriminate samples from p(x) and q̃(x). As shown by Sugiyama et al. [2012], and
to be discussed in Section 4.1.2, the logits of an optimal classifier approximate the log

88



density-ratio ϕ(x). Comparing the different formulations of the lower bound given by
Equation 3.24 and Equation 3.25, we can see that Equation 3.24 encourages entropy using
entropy-objectives and locality by providing the log-responsibility log q̃(o|x) as additional
reward, whereas Equation 3.25 encourages locality using KL objectives and entropy by
providing the current log-densities log q̃(x) as additional cost. Using the approximate log
density-ratio ϕ̃(x) as reward function, EIM optimizes the lower bound (Eq. 3.25) similar
to VIPS by using MORE to update the individual components and a variant of episodic
REPS [Peters et al., 2010] for updating the weights.

By only requiring samples from the target distribution, EIM brings the lower bound that
was used by VIPS one step closer to being applicable to imitation learning and inverse
reinforcement learning. However, these problem settings are characterized by the presence
of time-series data. How to make use of a similar lower bound when data is generated by
a Markov decision process will be the focus of the next chapter.
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4. Non-Adversarial Imitation Learning and
its Connections to Adversarial Inverse
Reinforcement Learning

Imitation learning [IL, Osa et al., 2018; Schaal, 1999] and inverse reinforcement learning
[IRL, Ng and Russell, 2000] are two related areas of research that aim to teach agents
by providing demonstrations of the desired behavior. Whereas imitation learning aims to
learn a policy that results in a similar behavior, inverse reinforcement learning focuses on
inferring a reward function that might have been optimized by the demonstrator, aiming
to better generalize to different environments. Both areas of research are often formalized
as distribution-matching, that is, the learned policy (or the optimal policy for IRL) should
induce a distribution over states and actions that is close to the expert’s distribution with
respect to a given (usually non-metric) distance. Commonly applied distances are the
forward Kullback-Leibler (KL) divergence [e.g., Ziebart, 2010], which maximizes the likeli-
hood of the demonstrated state-action pairs under the agent’s distribution, and the reverse
Kullback-Leibler (RKL) divergence [e.g., Arenz et al., 2016; Fu et al., 2018; Ghasemipour
et al., 2020] which minimizes the expected discrimination information [Kullback and
Leibler, 1951] of state-action pairs sampled from the agent’s distribution. However, since
the emergence of generative adversarial networks [GANs, Goodfellow et al., 2014] as a
solution technique for both areas, other divergences have been investigated such as the
Jensen-Shannon divergence [Ho and Ermon, 2016], the Wasserstein distance [Xiao et al.,
2019] and general f -divergences [Ghasemipour et al., 2020; Ke et al., 2019]. Although
GANs are typically not applied to time-series data, their application for imitation learning is
surprisingly straightforward. The discriminator can typically be trained in the exact same
way—agnostically to the data-generation process—by aiming to discriminate state-action
samples of the agent and the expert. The generator objective, on the other hand, can
be typically solved using an off-the-shelf reinforcement learning [RL, Sutton and Barto,
1998] algorithm. Apart from this flexibility, the adversarial formulation is also appealing
for scaling to neural network policies and reward functions and for its efficiency, since
unlike some previous approaches [e.g., Ratliff et al., 2006; Ziebart, 2010], they do not
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require to solve a full reinforcement learning problem iteratively but only perform few
policy updates at each iteration. However, it is often difficult to achieve stable optimization
with adversarial approaches. Firstly, the discriminator typically relies on an estimate of the
probability density ratio which is difficult to approximate for high-dimensional problems,
especially for those areas of the state-action-space that are not encountered by the current
policy or the expert. Secondly, the reward signal provided by the discriminator is specific
to the current policy and, thus, can quickly become invalid if the generator is updated to
greedily.

In this work, we directly address the latter problem. We derive an upper bound on the
reverse Kullback-Leibler divergence between the agent’s and expert’s distribution which
allows us to guarantee improvement even for large policy updates (when assuming an
optimal discriminator). By iteratively tightening and optimizing this bound similar to
expectation-maximization, we can show convergence to the optimal solution. Similar to
adversarial methods, the reward signal in our non-adversarial formulation is based on
a density-ratio that is learned by training a discriminator to classify samples from the
agent’s distribution and the expert’s distribution. However, in contrast to the adversarial
formulation, our reward function is explicitly defined with respect to the density ratio
based on the agent’s previous distribution which is achieved by adding a term that penalizes
the divergence to the last policy. However, our non-adversarial formulation is not only
closely connected to adversarial imitation learning, but also to inverse reinforcement
learning: As our reward signal is not specific to the current policy, it can serve as reward
function for which any maximizing policy matches the expert demonstrations.

Indeed, we show that adversarial inverse reinforcement learning [AIRL, Fu et al., 2018]
learns and optimizes the lower bound reward function of our non-adversarial formulation
suggesting that AIRL is better viewed as a non-adversarial method. To the best of our
knowledge, the theoretical justification of AIRL is currently not well understood. For
example, Fu et al. [2018] justify AIRL as an instance of maximum causal entropy inverse
reinforcement learning [MaxCausalEnt-IRL, Ziebart, 2010] by relating the update of their
reward function—which corresponds to an energy-based model of the policy—with the
gradient of the maximum likelihood (forward KL) objective of MaxCausalEnt-IRL. However,
we clarify that the gradients of the different objectives only coincide after convergence
and, furthermore, only when the expert demonstrations are perfectly matched and, thus,
any divergence is minimized. Furthermore, AIRL is not a typical adversarial method, since
the discriminator directly depends on the policy and is, thus, not held constant during the
generator update. To the best of our knowledge, it has never been investigated whether
the theoretical analyses of generative adversarial nets apply to this setting. However,
based on our non-adversarial formulation, we show that AIRL indeed enjoys stronger
convergence guarantees than adversarial methods since we can drop the requirement of
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sufficiently small policy updates at each iteration and instead only assume improvement
with respect to the current reward function.

Apart from deepening our understanding of AIRL, our non-adversarial formulation gives
rise to novel algorithms for imitation learning and inverse reinforcement learning. For
example, we show that the Q-function for our non-adversarial reward function can be
estimated offline based on DualDice [Nachum et al., 2019], a method for offline density-
ratio estimation. The resulting algorithm is closely connected to the recently proposed
imitation learning method ValueDice [Kostrikov et al., 2020] but does not involve solving
a saddle point problem.

The contributions of this work include

• introducing non-adversarial imitation learning (NAIL), a framework for imitation
learning that resembles adversarial imitation learning but enjoys stronger conver-
gence guarantees by not involving a saddle point problem,

• presenting an alternate derivation for adversarial inverse reinforcement learning
based on our non-adversarial formulation,

• introducing offline non-adversarial imitation learning (O-NAIL), an instance of
non-adversarial imitation learning that does not involve interactions with the envi-
ronment, and

• presenting a more general derivation of several adversarial imitation learning meth-
ods [Ghasemipour et al., 2020; Ho and Ermon, 2016; Torabi et al., 2018] that is
based on matching noisy trajectory observations.

The remainder of this article is structured as follows. We formally specify our more
general formulation for imitation learning and discuss adversarial imitation learning and
AIRL in Section 4.1. Our derivations for non-adversarial imitation learning are presented
in Section 4.2. In Section 4.3.1, we investigate AIRL through the lens of non-adversarial
imitation learning. In Section 4.3.2, we present an offline imitation learning algorithm
based on our non-adversarial formulation, and in Section 4.4 we present experimental
results. The main insights from our work are discussed in Section 4.5.

4.1. Preliminaries

After formalizing the problem setting, we will discuss how GANs can be applied for
imitation learning. Furthermore, we will discuss the modifications employed by AIRL for
extracting a reward function.

93



4.1.1. Problem Formulation

We consider a Markov decision process for the discounted, infinite horizon setting. At
each time step t, an agent observes the state st and uses a stochastic policy π(at|st) to
choose an action at. Afterwards, with probability γ < 1, the agent transitions to the next
state st+1 according to stochastic system dynamics p(st+1|st,at), which we do not assume
to be known. With probability 1 − γ, the episode ends and the environment gets reset
to an initial state s0 drawn from the initial state distribution p0(s). By assuming such
environment resets, we introduce a discounting of future rewards—which is commonly
applied in practice—and ensure existence of a stationary distribution, which includes
transient behavior [van Hoof et al., 2017]. We refer to the tuple containing the states and
actions encountered during an episode as trajectory τ i = (s0,a0, . . . , sTi

,aTi
), where sTi

and aTi
correspond to the last state and action encountered at episode i. A given policy

π induces a distribution over trajectories pπ(τ ) and for each time step t a distribution
over states and actions pπt (s,a) (which can be computed from pπ(τ ) by marginalization).
The stationary distribution over states and actions induced by a policy π is given by
pπ(s,a) = (1− γ)

∑︁∞
t=0 γ

tpπt (s,a).

In a reinforcement learning setting, the agent would further obtain a reward r(st,at)
at each time step t and would aim to find a policy that maximizes the expected reward
JRL =

∫︁
s,a
pπ(s,a)r(s,a)dsda. However, for the purpose of this work, we do not assume

that a reward function is available. Instead, we consider the problem of imitation learning
from observations, which generalizes state-action based imitation learning. Namely, we
assume that the agent observes a set of N expert demonstrations D = {oi}1≤i≤N in some
observation space O. We further assume that p(o|τ ), the probabilistic mapping from the
agent’s trajectory to a distribution of observations, is given. For example, if the observation
space is given by the end-effector pose of a robot and the state-space includes the robot’s
joint position, the mapping from trajectory to observation space would be given as the
distribution over end-effector poses during the trajectory, which can be computed from
the states using the robot’s forward kinematics. We do not assume that the states and
actions of the expert are observed nor do we assume that the expert acts in the same MDP
as the agent. In the aforementioned example, the demonstrations might be recorded by
tracking the hand pose of a human expert. Furthermore, depending on the probabilistic
mapping, we can match distributions over full trajectories, individual steps or transitions.
This formulation generalizes the setting of several imitation learning methods such as,
GAN-GCL [Finn et al., 2016a], GAIL [Ho and Ermon, 2016], AIRL [Fu et al., 2018] or
GAIfO [Torabi et al., 2018]. In imitation learning, we aim to minimize a given divergence
D(pπ(o)||q(o)) between the agent’s distribution over observations pπ(o) and the expert’s
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distribution over observations q(o), that is,

JIL = min
π
D(pπ(o)||q(o)). (4.1)

Optimizing Objective 4.1 is complicated by the fact that the agent’s distribution over
observations pπ(o) is not analytically known and can only be controlled implicitly by
changing the agent’s policy.

4.1.2. Generative Adversarial Nets

We will now briefly review (Jensen-Shannon-)GANs and their generalization to general
f -divergences. We will also discuss the connection between density-ratio estimation and
optimizing a discriminator.

Jensen-Shannon-GANs

Generative adversarial nets [Goodfellow et al., 2014] are a popular technique to train
implicit distributions to produce samples that are similar to samples from an unknown
target distribution. Implicit distributions are distributions for which the density function
is implicitly defined by a sampling procedure but not explicitly modeled. Goodfellow et al.
[2014] proposed to minimize the Jensen-Shannon Divergence DJS(p(x||q(x)) between an
implicit distribution p(x) and a data distribution q(x) by solving the saddle point problem

JGAN(p,D) = min
p

max
D

Ex∼q [logD(x)] + Ex∼p(x) [log (1−D(x))] . (4.2)

Here, D(x) (typically a neural network) is called discriminator and assigns a scalar value
in the range ]0, 1[ to each sample x. The generator p(x) is typically represented as a neural
network G(z) that transforms Gaussian input noise z ∼ N (z). However, the derivations
provided by Goodfellow et al. [2014] also apply for general implicit distributions p(x).
Goodfellow et al. [2014] show that solving the saddle point problem (Eq. 4.2) minimizes
the Jensen-Shannon divergence and that the optimal solution can be found by alternating
between optimizing the discriminator to convergence and performing small generator
updates. However, in practice, the discriminator also obtains only slight updates at
each iteration in order to avoid vanishing gradients [Arjovsky and Bottou, 2017]. The
discriminator objective corresponds to minimizing the binary cross-entropy loss which is
commonly used for binary classification. Hence, the discriminator is trained to classify
samples from the data distribution and samples from the generator. The generator
objective does not involve the probability density of the generator and can, thus, also
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be optimized for implicit distributions. Whereas, the original formulation by Goodfellow
et al. [2014] minimizes the Jensen-Shannon Divergence, similar ideas can also be applied
to other divergences [Arjovsky et al., 2017; Nowozin et al., 2016]. We will briefly review
f -GANs [Nowozin et al., 2016], which can minimize general f -divergences because the
family of f -divergences also includes the reverse Kullback-Leibler divergence which is
central to this work.

f-GANs

The family of f -divergences is defined for a given convex, lower-semicontinuous function
f as

Df (q(x)||p(x)) = Ep

[︃
f
(︂q(x)
p(x)

)︂]︃
.

Nowozin et al. [2016] showed that we can minimize the f -divergence between the data
distribution q and an implicit distribution p by solving the saddle point problem

JF-GAN(p,D) = min
p

max
D

Ex∼q [D(x)]− Ex∼p(x) [f
∗(D(x))] , (4.3)

where
f∗(t) = sup

u∈domf

ut− f(u)

is the convex conjugate of f . Depending on the choice of f , we need to ensure that
the output of the discriminator respects the domain of the convex conjugate, that is
∀x : D(x) ∈ domf∗ , which can be achieved by applying an appropriate output activation.
Nowozin et al. [2016] provide for several common choices of f their respective convex
conjugates and suitable output activations. Nowozin et al. [2016] also note, that the
optimal discriminator D⋆(x) for a given generator p(x) corresponds to the derivative of f
evaluated at the density-ratio q(x)

p(x) , that is,

D⋆(x) = f ′
(︂q(x)
p(x)

)︂
.

Hence, for any f -divergence and when assuming the discriminator to be optimal, optimiz-
ing the f -GAN objective given by Equation 4.3 with respect to the generator,

max
p

Ex∼p(x) [f
∗(D⋆(x))] = max

p
Ex∼p(x)

[︃
f∗ ◦ f ′

(︂q(x)
p(x)

)︂]︃
= max

p
Ex∼p(x)

[︃
g
(︂q(x)
p(x)

)︂]︃
,

(4.4)
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corresponds to maximizing the expected value of a function g = f⋆ ◦ f ′ of the density-
ratio ϕ(x) = q(x)

p(x) , which closely connects the problem of minimizing f -divergences with
density-ratio estimation.

A Connection to Density-Ratio Estimation

Density-ratio estimation considers the problem of estimating the density-ratio ϕ(x) based
on samples from q(x) and p(x). A naive approach would perform density estimation to
independently estimate both distributions and then approximate the density ratio based
on these estimates. However, while it is possible to compute the density ratio from the
individual density, it is not possible to recover the individual densities from their ratio, and,
thus, density-ratio estimation is a simpler problem than density estimation [Sugiyama et al.,
2012]. Indeed, density-ratio estimation is closely related to binary classification [Menon
and Ong, 2016].
To illustrate this connection, consider the following binary classification task. Assume

that we aim to classify samples that have been drawn with probability z(Q) from the
distribution q(x) and with probability z(¬Q) = 1−z(Q) from the distribution p(x). Hence,
we consider the mixture model

z(x) = z(Q)q(x) + (1− z(Q))p(x),

where the class frequencies z(Q) and z(¬Q) are known, and we want to learn a model
z̃(Q|x) to approximate the conditional class probabilities z(Q|x)—for example, by minimiz-
ing the expected cross entropy between z(Q|x) and z̃(Q|x) as in the inner maximization
in Eq. 4.2. The model is typically represented by squashing learned logits ν(x) with a
sigmoid, that is

z̃(Q|x) =
1

1 + exp (−ν(x))
⇒ ν(x) = log

(︂ z̃(Q|x)

1− z̃(Q|x)

)︂
.

At the optimum, where z̃(Q|x) ≈ z(Q|x), we have

ν(x) ≈ log
(︂ z(Q|x)

1− z(Q|x)

)︂
= log

(︂ z(Q)q(x)

z(¬Q)p(x)

)︂
= log

(︂ z(Q)

z(¬Q)

)︂
+ log

(︂
ϕ(x)

)︂
. (4.5)

Hence, when choosing equal class frequencies, that is z(Q) = z(¬Q) = 0.5, the logits ν(x)
of the optimal classifier approximate the log density-ratio log(ϕ(x)).
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4.1.3. Adversarial Imitation Learning

As generative adversarial nets can be used to minimize a variety of different divergences
between an implicit distribution and the data distribution, they are suitable also for imita-
tion learning. When applying GANs to imitation learning, the generator is given by the
distribution over observations induced by the agent’s policy, pπ(o) =

∫︁
τ
pπ(τ )p(o|τ )dτ .

Ho and Ermon [2016] introduced this idea when they proposed generative adversar-
ial imitation learning (GAIL), where they applied the Jensen-Shannon-GAN objective
(Eq. 4.2). However, we will directly consider the more general f -GAN objective given by
Equation 4.3, which was congruently proposed for imitation learning by Ke et al. [2019]
and Ghasemipour et al. [2020].

f-GANs for Imitation Learning

When using an f -GAN for imitation learning, the saddle-point problem is given by

JAIL(π,D) = min
π

max
D

Eo∼q [D(o)]− Eo∼pπ(o) [f
∗(D(o))] . (4.6)

Please note that the minimization is still performed over pπ(o) which we can only affect
through π. Optimizing the discriminator is performed in the same way as for standard
f -GANs using samples from pπ(o) that can be obtained by executing the policy π. In
the trajectory-centric formulation, where we make no further assumptions than pπ(o) =∫︁
τ
pπ(τ )p(o|τ )dτ , optimizing the generator corresponds to an episodic reinforcement

learning problem
max
π

Eτ∼pπ(τ )

[︁
rep(τ )

]︁
, (4.7)

for the episodic reward

rep(τ ) =

∫︂

o

p(o|τ )f∗(D(o))do.

As we can only obtain a reward signal for full trajectories, we can not apply standard
reinforcement learning algorithms that typically assume Markovian rewards r(s,a) or
r(s,a, s′), where s′ is the state at the next time step. Instead, the policy can be optimized
using stochastic search or black-box optimizers [Abdolmaleki et al., 2015; Hansen et al.,
2003].

Hence, adversarial imitation learning methods are typically restricted to step-based
distribution matching. Furthermore, they often assume direct observations of states and
actions, that is, they aim to match q(s,a) [Ho and Ermon, 2016; Xiao et al., 2019],
q(s) [Ghasemipour et al., 2020], or q(s, s′) [Torabi et al., 2018]. We can incorporate such
restrictions by making further assumptions on the form of p(o|τ ) as shown by Proposition 1.
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Proposition 1. Assume that the distribution over observations at a given time step t is
completely characterized by the state st and action at at that time step, and hence,

p(o|τ , t) = p(o|sτt ,a
τ
t ).

Then, the episodic reinforcement learning problem given by Equation 4.7 can be solved by

maximizing the Markovian reward function

radv(s,a) =

∫︂

o

p(o|s,a)f∗(D(o))do. (4.8)

Proof. See Appendix C.2. Intuitively, when the distribution over observations can be
computed independently for each time step using p(o|s,a), we can obtain p(o) also by
marginalizing based on the stationary distribution pπ(s,a), which turns the optimization
over the policy in Eq. 4.6 into a step-based reinforcement learning problem.

While the restriction to step-based distribution matching is necessary for obtaining
Markovian rewards, assuming direct observerations of states and action is in general not
necessary. Indeed, dropping this assumption greatly generalizes the problem formulation
of imitation learning, for example, by enabling us to imitate certain features (e.g. hand
poses) of a human demonstration without assuming that their states and actions can be
observed or mapped to the agent’s MDP. However, while our derivations for non-adversarial
and adversarial imitation learning are formulated for general observations, both instances
of NAIL that we will discuss in Section 4.3 assume direct state-action observations which
are exploited by the optimization.
Proposition 1 can be straightforwardly extended to also include the next state by

assuming that p(o|τ , t) = p(o|sτt ,a
τ
t , s

τ
t+1), and when maximizing the reward with respect

to the stationary distribution pπ(s,a, s′). However, the observation model needs to treat
the last time step of an episode τ i differently, because we can not make use of the next
state s′ which corresponds to the first time step of the next episode τ i+1 and thus can not
affect p(o|τ i). Instead, we could emit a distinct observation oreset—for example, by setting
a special flag [Kostrikov et al., 2018]—for final time steps. However, in the following, we
will only consider the more common imitation learning setting, where the observations
and, thus, the rewards at time step t only depend on st and at.

Choosing a Divergence

The exact form of the reward function depends on the choice of f and, thus, the divergence
that we want to minimize. When assuming that the expert’s distribution can be matched
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exactly, all divergences yield the same optimal solution pπ(o) = q(o). However, especially
due to restriction on the agent’s policy—which is often Gaussian in the actions for a given
state—matching the expert’s distribution exactly is often not feasible. In such cases, the
choice of divergence has large impact on the solution. For example, it is well-known that
the forward KL divergence

DKL(q(o)||p
π(o)) = DKL

f (pπ(o)||q(o)) = Eq

[︃
log
(︂ q(o)
pπ(o)

)︂]︃
,

which corresponds to f(u) = u log(u), results in a mode averaging behavior. The agent’s
policy will maximize the likelihood of all expert demonstrations, which may require
putting most of its probability mass on areas where we do not have expert observations.
As the resulting behavior can potentially be dangerous, it is often argued that the reverse
KL divergence should be preferred for imitation learning [Finn et al., 2016a; Ghasemipour
et al., 2020]. The reverse KL divergence,

DKL(p
π(o)||q(o)) = DRKL

f (pπ(o)||q(o)) = Epπ

[︃
log
(︂pπ(o)
q(o)

)︂]︃
,

is obtained when choosing f(u) = − log(u) and typically results in a mode-seeking
behavior. The resulting policy will assign high likelihood to as many expert observations
as possible while avoiding putting much probability mass on areas where we do not have
expert observations. Although the resulting behavior might not exhibit the same variety
as the expert, it will avoid producing any observations that are significantly different from
the expert demonstrations, resulting in a safer behavior. Hence, we also focus on the
reverse KL divergence for deriving our non-adversarial imitation learning formulation.
The convex conjugate and the derivative for fRKL(u) = − log(u) are given by

f∗RKL(t) = −1− log(−t) and f ′RKL(u) = −
1

u
.

For an optimal discriminator, the observation-based reward function is, thus,

r(o) = f∗RKL ◦ f
′
RKL

(︂ q(o)
pπ(o)

)︂
= −1 + log

(︂ q(o)
pπ(o)

)︂

or

radv(s,a) = −1 + log
(︂ q(s,a)
pπ(s,a)

)︂
(4.9)

when we perform step-based matching and directly observe state and actions. As the do-
main of f∗RKL isR

−, a suitable output activation for the discriminator isD(o) = − exp(ν(o))
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[Nowozin et al., 2016]. The discriminator loss based on Equation 4.3 for the reverse
KL-divergence is then given by

JRKL-FGAN(ν) = max
ν

Eo∼pπ(o) [ν(o)]− Eo∼q(o) [exp ν(o)] + 1, (4.10)

where the optimal solution

ν⋆(o) = log (−D⋆(o)) = log

(︃
−f ′RKL

(︂ q(o)
pπ(o)

)︂)︃
= log

(︂pπ(o)
q(o)

)︂
= −r(o)− 1

corresponds to the negated log density-ratio and thus to the cost function −r(o), apart
from a constant offset that does not affect the generator optimization. Indeed, the f -GAN
discriminator objective for the reverse KL is also known as a generalized form [Menon
and Ong, 2016] of Kullback-Leibler importance estimation (KLIEP) [Sugiyama et al.,
2008], which is well-known loss for density-ratio estimation. Instead of learning the
density-ratio based on Equation 4.10, we can also use the discriminator objective of the
Jensen-Shannon-GAN (Eq. 4.2), where—as shown in Section 4.1.2—the logits of the
discriminator also converge to the log density-ratio.
We will now review adversarial inverse reinforcement learning (AIRL) which also

minimizes the reverse KL, albeit it uses a reward function that subtly differs from the
adversarial formulation given by Equation 4.9.

4.1.4. Adversarial Inverse Reinforcement Learning

Adversarial inverse reinforcement learning was derived as an instance of maximum causal
entropy inverse reinforcement learning (MaxEnt-IRL, [Ziebart et al., 2008]), which mini-
mizes the forward KL to the expert distribution. Hence, we will briefly discuss MaxEnt-IRL.

Interlude: Maximum Causal Entropy IRL

MaxCausalEnt-IRL assumes the expert to use the policy

πexpert(a|s) = exp
(︂
Qsoft(s,a)− V soft(s)

)︂
= exp

(︁
Asoft)︁. (4.11)

Here, the soft-Q functionQsoft, the soft-value function V soft and the soft-advantage function
Asoft are defined as [Ziebart, 2010]

Qsoft(s,a) = rexpert(s,a) + γ

∫︂

s′
p(s′|s,a)V soft(s′)ds′,

V soft(s) = log

∫︂

a

exp
(︁
Qsoft(s,a)

)︁
da,

Asoft(s,a) = Qsoft(s,a)− V soft(s).

(4.12)
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The soft-value function V soft(s) is the log-normalizer of π, but also corresponds to the
value (which includes the expected entropy to come) of state s for the optimal policy of
the entropy-regularized reinforcement learning problem

max
π

Jmaxent-RL(π) = max
π

∫︂

s,a

pπ(s,a)
(︁
rexpert(s,a)− log π(a|s)

)︁
dsda. (4.13)

The expert model (Equation 4.11) is indeed well-motivated as it follows the principle of
maximum (causal) entropy [Jaynes, 1957; Ziebart, 2010]. Namely, Ziebart [2010] showed
that this expert model corresponds to the maximum entropy policy that matches given
empirical features f̃(s,a) in expectation for a linear reward function

rexpert(s,a) = θ
⊤f(s,a),

where the feature function f is assumed to be given.
Maximum causal entropy IRL learns the parameters θ of the expert’s reward function

by maximizing the likelihood of the expert demonstrations

L = Es,a∼q(s,a)

[︂(︂
rθ + γEs′∼p(s′|s,a)V

soft,θ(s′)− V soft,θ(s)
)︂]︂

= Es,a∼q(s,a) [rθ] + (1− γ)
(︂ ∞∑︂

t=1

γtEs∼qt(s)

[︂
V soft,θ(s)

]︂
−

∞∑︂

t=0

γtEs∼qt(s)

[︂
V soft,θ(s)

]︂ )︂

= Es,a∼q(s,a)

[︂
rθ

]︂
− (1− γ)Es∼p0(s)

[︂
V soft,θ(s)

]︂
. (4.14)

As shown by Ziebart [2010], the gradient of the log-likelihood (Eq. 4.14) is given by

dL

dθ
= Es,a∼q(s,a)

[︂drθ
dθ

]︂
− Es,a∼pθ(s,a)

[︂drθ
dθ

]︂

= Es,a∼q(s,a)

[︂
f(s,a)

]︂
− Es,a∼pθ(s,a)

[︂
f(s,a)

]︂
,

(4.15)

where pθ(s,a) is the state-action distribution induced by the optimal policy of the entropy
regularized reinforcement learning problem (Eq. 4.13) for the reward function rθ. The
first term of the gradient (Eq. 4.15) can be approximated based on samples from the
expert distribution. For estimating the second term one can either learn the optimal policy
at each iteration [Ziebart, 2010]—which is only feasible for simple problems such as low-
dimensional discrete problems [Levine et al., 2011] or linear-quadratic regulators [Monfort
et al., 2015]—or employ importance sampling [Boularias et al., 2011; Finn et al., 2016b].
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Adversarial Inverse Reinforcement Learning

AIRL is based on an adversarial formulation and models the reward function rθ as a
neural network which is trained as a special type of discriminator. Fu et al. [2018] show
that the gradient of their discriminator objective coincides with the maximum likelihood
gradient (Eq. 4.15) when the generator is optimal, that is pπ(s,a) = pθ(s,a). AIRL
uses a special type of discriminator, which was suggested by Finn et al. [2016a] for the
trajectory-centric case. Namely, the logits ν(s,a) are given by

ν(s,a) = ν̄θ(s,a)− log π(a|s) (4.16)

and thus directly depend on the policy π. Actually, Fu et al. [2018] propose a second
modification to the discriminator so that their discriminator is given by

ν(s,a, s′) = fθ(s) + γg(s′)− g(s)− log π(a|s)

which aims to recover a “disentangled”, state-only reward function fθ(s) under the
assumption of deterministic system dynamics. However, the latter modification is not
relevant for our theoretical analysis, and we will, thus, focus on the discriminator given
by Equation 4.16. The optimization is very similar to adversarial imitation learning by
alternating between updating the discriminator using the binary cross entropy loss, and
updating the policy using the discriminator logits ν(s,a) as reward function. As shown in
Section 4.1.3—and also noted by Ghasemipour et al. [2020]—such procedure would in
general minimize the reverse KL divergence. However, during the discriminator update
at iteration i, the discriminator logits ν(s,a) = ν̄θ(s,a) − log π(i)(a|s) are trained such
that for the current policy π(i) they approximate the density ratio q(s,a)

pπ
(i)

(s,a)
. Hence, the

generator update according to the adversarial formulation, would optimize the reward
that is computed based on the fixed policy π(i), that is,

r(s,a) = ν(s,a) = ν̄θ(s,a)− log π(i)(a|s).

Instead, AIRL treats the discriminator as a direct function of π by optimizing the entropy-
regularized reinforcement learning problem

JAIRL-maxent = max
π

∫︂

s,a

pπ(s,a) (ν̄θ(s,a)− log π(a|s)) dsda, (4.17)

which does not correspond to the generator objective of any known adversarial formulation.
Fu et al. [2018] argue that the gradient of the discriminator update corresponds to an
unbiased estimate of the gradient of the MaxCausalEnt-IRL objective (Eq. 4.15) when
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assuming that the entropy-regularized reinforcement learning problem (Eq. 4.17) is solved
at each iteration. However, as shown in Appendix C.1 we would not only need to assume
that the policy is optimal for the given reward function ν̄θ, but also that this policy matches
the expert distribution q(s,a) to show that the gradients coincide. Hence, we can only show
that the optimal reward function of the maximum-likelihood objective is also a stationary
point of the discriminator once the algorithm has converged—if the demonstrations can
be perfectly matched—, but we can not show convergence of the algorithm by relating
it to MaxCausalEnt-IRL. Hence, we argue that although AIRL showed some promising
results, its theoretical justification is currently not well understood. We will now derive
a non-adversarial formulation for imitation learning (NAIL), which is neither based on
MaxCausalEnt-IRL nor on generative adversarial nets, and show that adversarial inverse
reinforcement learning is indeed an instance of this non-adversarial formulation.

4.2. Non-Adversarial Imitation Learning

We aim to match the observations by minimizing the reverse KL-divergence between the
agent’s and the expert’s respective distribution of observations, that is,

max
π
−

∫︂

o

pπ(o) log
pπ(o)

q(o)
do

= max
π

∫︂

τ ,o

pπ(τ )p(o|τ ) log
q(o)

pπ(o)
dτdo

= max
π

∫︂

τ

pπ(τ )r(τ , π)dτ . (4.18)

Optimization Problem 4.18 resembles the optimization problem solved by (episodic)
reinforcement learning. However, note that the reward function

r(τ , π) =

∫︂

o

p(o|τ ) log
q(o)∫︁

τ
pπ(τ )p(o|τ )dτ

do (4.19)

depends on the agent’s policy via its induced trajectory distribution pπ(τ ). The dependency
on the current policy has twomain drawbacks. Firstly, the reward function can only be used
to minimize the KL-divergence if we perform sufficiently small policy updates. Secondly,
the reward function given by Equation 4.19 does not solve the inverse reinforcement
learning problem, since maximizing the expected reward will in general not match the
expert distribution. We will now show that we can remove this dependency by formulating
a lower bound on Optimization Problem 4.18. This lower bound (which corresponds to a
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negated upper bound on the reverse KL) enables us to replace pπ(τ ) in Equation 4.19 by
a fixed, auxiliary distribution p̃(τ ). In Section 4.2.2, we will further show that this lower
bound can be used to maximize the original objective given by Equation 4.18.

4.2.1. An Upper Bound on the Reverse KL

In order to derive the lower bound, we express pπ(τ ) in terms of an auxiliary distribution
p̃(τ ) as follows:

pπ(o) =
pπ(τ )p(o|τ )

pπ(τ |o)
=
pπ(τ )p(o|τ )

p̃(τ |o)

p̃(τ |o)

pπ(τ |o)
= p̃(o)

pπ(τ )p(o|τ )

p̃(τ )p(o|τ )

p̃(τ |o)

pπ(τ |o)

= p̃(o)
pπ(τ )

p̃(τ )

p̃(τ |o)

pπ(τ |o)
. (4.20)

Based on Equation 4.20 we can express Optimization Problem 4.18 in terms of the
auxiliary distribution, that is,

max
π

∫︂

τ ,o

pπ(τ )p(o|τ ) log
q(o)

pπ(o)
dτdo

=max
π

∫︂

τ ,o

pπ(τ )p(o|τ )

(︃
log

q(o)

p̃(o)
− log

pπ(τ )

p̃(τ )
+ log

pπ(τ |o)

p̃π(τ |o)

)︃
dτdo

=max
π

∫︂

τ ,o

pπ(τ )p(o|τ ) log
q(o)

p̃(o)
dτdo− KL (pπ(τ )||p̃(τ )) (4.21)

+ Epπ(o) [KL (p
π(τ |o)||p̃(τ |o))]

=max
π

∫︂

τ ,o

pπ(τ )p(o|τ ) log
q(o)

p̃(o)
dτdo

− (1− γ)
∑︂

t

γt
∫︂

s

pπt (s)

∫︂

a

π(a|s) log
π(a|s)

π̃(a|s)
dads+ Epπ(o) [KL (p

π(τ |o)||p̃(τ |o))]

=max
π

H(π) +

∫︂

τ ,o

pπ(τ )p(o|τ ) log
q(o)

p̃(o)
dτdo

+ (1− γ)
∑︂

t

γt
∫︂

s

pπt (s)

∫︂

a

π(a|s) log π̃(a|s)dads+ Epπ(o) [KL (p
π(τ |o)||p̃(τ |o))] .

(4.22)

Here H(π) denotes the discounted causal entropy of policy π, which is defined as

H(π) = −(1− γ)
∞∑︂

t=0

γt
∫︂

s

pπt (s)

∫︂

a

π(a|s) log π(a|s)dads.
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As the last term of Eq. 4.22 is an expected KL divergence and thus non-negative, we can
omit it to obtain the lower bound

L = H(π)+

∫︂

o

pπ(o) log
q(o)

p̃(o)
do+(1−γ)

∑︂

t

γt
∫︂

s

pπt (s)

∫︂

a

π(a|s) log π̃(a|s)dads. (4.23)

For step-based, noiseless observations of the states and action, this corresponds to an
entropy-regularized reinforcement learning problem

max
π

JNAIL,π̃(π) =max
π

∫︂

s,a

pπ(s,a)
(︂
log

q(s,a)

pπ̃(s,a)
+ log π̃(a|s)

⏞ ⏟⏟ ⏞
rπ̃lb(s,a)

− log π(a|s)
)︂
dsda. (4.24)

In the following we will only consider this step based setting. However, the analysis
presented in this section (including Theorem 1) can be straightforwardly extended to
general observations.

Lemma 1. Let rπ̃lb(s,a) = log
(︂

q(s,a)
pπ̃(s,a)

)︂
+log π̃(a|s) denote the lower bound reward function

for policy π̃. Any policy π that improves on the lower bound objective (Eq. 4.24) compared to

π̃, also decreases the reverse Kullback-Leibler divergence to the expert distribution, that is,

JNAIL,π̃(π) > JNAIL,π̃(π̃) =⇒ DRKL(p
π(s,a)||q(s,a)) < DRKL(p

π̃(s,a)||q(s,a)).

Proof. See Appendix C.3. The proof is similar to the proof for expectation-maximization
presented by Bishop [2006]. Namely, since the lower bound JNAIL,π̃(π) is tight for the
policy π̃, improving on the lower bound also increases the expected KL term that had been
omitted for deriving the lower bound.

Comparing the policy objective for the non-adversarial formulation (Eq. 4.24) with the
adversarial objective for the reverse KL (following Eq. C.3 and Eq. 4.9),

max
π

JAIL-RKL(π) =

∫︂

s,a

pπ(s,a) log
q(s,a)

pπ(s,a)⏞ ⏟⏟ ⏞
radv(s,a)

dsda,

we can identify the following differences. Due to the last term in Eq. 4.24, the rein-
forcement learning problem turned into an entropy regularized reinforcement learning
problem. Furthermore, the lower bound reward function rπ̃lb(s,a) contains an additional
term, namely, log π̃(a|s). Together, these changes correspond to an additional KL objective
that penalizes deviations from the policy π̃ that was used for training the discriminator.
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Furthermore, the density-ratio in the lower bound reward (and consequently also the
lower bound reward itself) explicitly depends on the auxiliary policy π̃ and not on the
policy π that is optimized. This key difference to the adversarial formulation, enables us
to greedily optimize the policy with respect to the lower bound reward function rπ̃lb(s,a)
and ensures that, upon convergence, the lower bound reward function solves the inverse
reinforcement learning problem.
Our upper bound on the reverse KL divergence is similar to bounds that have been

previously applied for learning hierarchical models for variational inference [Agakov and
Barber, 2004; Arenz et al., 2018; Maaløe et al., 2016; Ranganath et al., 2016; Tran et al.,
2016] and I-projection-based density estimation [Becker et al., 2020]. Our derivations
are most related to the work by Becker et al. [2020] since we only assume samples from
the target distribution q(o). However, in contrast to Becker et al. [2020], we consider
time-series data and do not use the bound for learning a hierarchical model, but for
learning a reward function that is independent of the current policy.

4.2.2. Iteratively Tightening the Bound

Based on Lemma 1 we propose a framework for non-adversarial imitation learning that is
sketched by Algorithm 4. Theorem 1 shows that Algorithm 4 solves the imitation learning
problem when assuming that the density-ratio estimator (discriminator) is optimal. Al-
though this assumption is very strong, it is also typical for adversarial methods [Goodfellow
et al., 2014; Nowozin et al., 2016]. An important difference to the adversarial formulation
stems from the fact, that we can show convergence for any policy improvement, that is, we
do not require “sufficiently small” generator updates. However, the algorithmic differences
compared to the adversarial formulation are quite modest: the generator update of NAIL
has an additional reward term log π̃(a|s) and solves an entropy-regularized reinforce-
ment learning problem. Together these changes correspond to an additional KL-penalty,
KL (pπ(τ )||p̃(τ )) (see Eq. 4.21), that penalizes large deviations from the policy π̃ that was
used for training the discriminator. Due to the similarity of both formulations, it can be
difficult to show significant differences between the adversarial and the non-adversarial
approach in practice. However, we will show in the next section that the non-adversarial
formulation can help in better understanding existing (adversarial) methods and that it
can be used to derive novel algorithms.

Theorem 1. When ignoring approximation errors of the density-ratio estimator, Algorithm 4

converges to a stationary point of the reverse KL imitation learning objective.

Proof. See Appendix C.4
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Algorithm 4 Non-Adversarial Imitation Learning

Require: Expert demonstrations D = {(si,ai)}i=1...N

Require: Initial policy π̃
1: function NAIL

2: repeat

3: ϕ̃(s,a) =DensityRatioEstimator(π̃,D) ▷ Estimate q(s,a)
pπ̃(s,a)

, e.g. using

samples from pπ̃

4: π̃ ← PolicyImprovement(π̃, ϕ̃(s,a)) ▷ improve on JNAIL,π̃ using ϕ̃ to estimate
rπ̃lb

5: until converged
6: end function

4.3. Instances of Non-Adversarial Imitation Learning

We will discuss two instances of non-adversarial imitation learning. In Section 4.3.1, we
will focus on an existing method, AIRL, and show that it is an instance of non-adversarial
imitation learning even though it has been originally formulated as adversarial method.
In Section 4.3.2, we present a novel algorithm based on our non-adversarial formulation,
which is suitable for offline imitation learning.

4.3.1. Adversarial Inverse Reinforcement Learning

We showed in Section 4.1.4 that AIRL is neither a typical adversarial algorithm nor can it
be derived from maximum causal entropy IRL. However, AIRL can be straightforwardly
justified as an instance of NAIL, as shown in Corollary 1.

Corollary 1. Adversarial inverse reinforcement learning is an instance of non-adversarial

imitation learning (Algorithm 4).

Proof. Let π̃ denote the current policy during the discriminator update at any given
iteration. As shown in Section 4.1.2, the logits of the discriminator trained with the binary
cross-entropy loss approximate the log density-ratio log q(s,a)

pπ̃(s,a)
. Hence, we have

ν(s,a) = ν̄θ(s,a)− log π̃(s,a) ≈ log
q(s,a)

pπ̃(s,a)
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and thus

ν̄θ(s,a) ≈ log
q(s,a)

pπ̃(s,a)
+ log π̃(s,a) = rπ̃lb(s,a).

The policy objective JAIRL-maxent(π) (Eq. 4.17) solved by AIRL, thus, corresponds to an
approximation of JNAIL,π̃(π) (Eq. 4.24) based on the density-ratio estimator ˜︁ϕ(s,a) =
ν(s,a). Hence, AIRL implements Algorithm 4.

Intuitively, NAIL solves the inverse reinforcement learning problem because any policy
that maximizes the lower bound reward function rπ̃lb(s,a) matches the expert demonstra-
tion at least as good as the learned policy π̃. After convergence, when pπ̃(s,a) ≈ q(s,a),
maximizing the lower bound reward function, thus, matches the expert demonstrations.
In contrast, the adversarial reward function after convergence radv(s,a) = log q(s,a)

pπ̃(s,a)
≈ 0

is specific to the current policy and converges to a constant, which is not suitable for match-
ing the expert demonstrations. However, as noted by Fu et al. [2018], when modeling the
expert according to Equation 4.11, the reward function learned by AIRL/NAIL corresponds
to the advantage function Asoft

expert(s,a) = log πexpert(a|s) if the expert’s distribution can
be matched exactly by the agent. To be more specific, we can see from the definition of
rπ̃lb(s,a) that, in general, it additionally contains a correction-term based on the mismatch
of the induced state distributions, namely,

rπ̃lb(s,a) = log

(︃
q(s,a)

pπ̃(s,a)

)︃
+ log π̃(a|s) = log

(︃
q(s)

pπ̃(s)

)︃
+ log πexpert(a|s).

As the advantage function strongly depends on the system dynamics, the learned reward
function is typically not transferable to different dynamical systems. Hence, Fu et al.
[2018] proposed to parameterize the discriminator as

ν(s,a, s′) = fθ(s) + γgη(s
′)− gη(s)− log π(a|s)

and showed that fθ(s) approximates the reward function of the expert, when assuming
that the system dynamics are deterministic and that the true reward function does not
depend on the actions. Note that this modification is also covered by our derivation which
does not make specific assumptions on the parameterization of ν̄(s,a).

4.3.2. Offline Non-Adversarial Imitation Learning

We will now use the non-adversarial formulation to derive a novel algorithm for offline
imitation learning. Offline imitation learning considers the imitation learning problem,
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with the additional restriction that we are not able to interact with the environment during
learning. Behavioral cloning (BC) is a common approach for offline imitation learning
that frames imitation learning as supervised learning, for example, by maximizing the
likelihood of the states and actions, that is,

max
π

[︂
Jbc(π) = Es,a∼q(s,a) [log π(a|s)]

]︂
.

However, as observed by Pomerleau [1989] and further examined by Ross and Bagnell
[2010] compounding errors can lead to covariate shift, that is, the learned policy may
reach states that significantly differ from the states encountered by the expert. As the
policy was not trained on these states, it is often not able to recover from such mistakes.

Interlude: ValueDice

Our method is inspired by ValueDice [Kostrikov et al., 2020] which is able to outperform
behavioral cloning for offline imitation learning. ValueDice aims to match the expert
distribution q(s,a) by expressing the reverse KL divergence using the Donsker-Varadhan
representation [Donsker and Varadhan, 1983], that is,

min
π

KL(pπ(s,a)||q(s,a)) = min
π

max
ν
− log Es,a∼q(s,a) [exp (ν(s,a))]+Es,a∼pπ(s,a) [ν(s,a)] .

(4.25)
Similar to the KLIEP loss or the binary cross-entropy loss, the optimal solution of the inner
maximization problem is given by

ν⋆(s,a) = log
pπ(s,a)

q(s,a)
+ const, (4.26)

which closely relates the saddle point problem given by Equation 4.25 to the previously
discussed adversarial methods for minimizing the reverse KL divergence. Indeed, a similar
algorithm to ValueDice could be straightforwardly derived from the f -GAN formulation
for the reverse KL (Eq. 4.10), which differs from Optimization Problem 4.25 by not taking
the logarithm of the first expectation.

Optimization Problem 4.25 can not directly be used for offline imitation learning since
we can not get samples from the agent’s state-action distribution pπ(s,a) to approximate
the second expectation. Hence, Kostrikov et al. [2020] applied a trick for offline density-
ratio estimation [Nachum et al., 2019] by using a change of variables to express ν(s,a)
in terms of the Q-Function Qπ

ν for policy π where the reward function is given by ν(s,a),
that is

ν(s,a) = Qπ
ν (s,a)− γEs′∼p(s′|s,a)Ea′∼π(a′|s′)

[︁
Qπ

ν (s
′,a′)

]︁
. (4.27)
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When applying the change of variables (Eq. 4.27) and optimizing Eq. 4.25 with respect to
the Q-function, the expected “reward” given by the second expectation can be computed
based on the initial state distribution and the Q-function, that is,

min
π

max
Qπ

ν

− log Es,a∼q(s,a)

[︁
exp

(︁
Qπ

ν (s,a)− γEs′∼p(s′|s,a)Ea′∼π(a′|s′)

[︁
Qπ

ν (s
′,a′)

]︁)︁]︁

+ Es,a∼pπ(s,a)

[︁
Qπ

ν (s,a)− γEs′∼p(s′|s,a)Ea′∼π(a′|s′)

[︁
Qπ

ν (s
′,a′)

]︁]︁

= min
π

max
Qπ

ν

− log Es,a∼q(s,a)

[︁
exp

(︁
Qπ

ν (s,a)− γEs′∼p(s′|s,a)Ea′∼π(a′|s′)

[︁
Qπ

ν (s
′,a′)

]︁)︁]︁

+ (1− γ)Es0∼p0(s)Ea0∼π(a0|s0) [Q
π
ν (s0,a0)] .

(4.28)

As shown by Kostrikov et al. [2020], a (biased) Monte-Carlo estimate of Eq. 4.28 can be
optimized based on triplets (s,a, s′) sampled from the expert demonstrations, initial states
s0 sampled from the initial state distribution and actions a′ and a0 sampled from the policy.
Compared to the other adversarial methods discussed earlier, ValueDice differs mainly

by directly learning the Q-function for the adversarial reward radv(s,a) = log
(︂

q(s,a)
pπ(s,a)

)︂

which does not only make it applicable to the offline setting, but—conveniently—also
greatly simplifies the reinforcement learning problem. However, common to prior methods
for adversarial imitation learning, ValueDice involves solving a saddle point problem
(Eq. 4.28) which may require careful tuning of the step size for the policy updates to avoid
too greedy updates.

ONAIL

Instead of framing distribution matching as a saddle-point problem, we use the non-
adversarial formulation to derive a (soft) actor critic algorithm. That is, we alternate

between a critic update, where we learn the soft Q-function Qsoft, π(i)

lb for the current policy

π(i) and lower bound reward function rπ
(i)

lb (s,a), and an actor update where we use the
soft Q-function to find a policy π(i+1) that improves on the lower bound objective JNAIL,π(i)

(Eq. 4.24).

The soft Q-function for the lower bound reward function rπ
(i)

lb (s,a) can be learned
analogously to the (standard) Q-function for the adversarial reward function by applying
a change of variables to the KLIEP-loss (Eq. 4.10) or Donsker-Varadhan-loss (Eq. 4.25).
However, as shown by Lemma 2, the soft Q-function for the lower bound reward can also
be directly computed from the Q-function of the adversarial reward.
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Lemma 2. Let Qπ̃
r be the Q-function for policy π̃ and a given reward function r. Further, let

Q
soft,π̃
rlb be the soft Q-function for policy π̃ and reward function rlb(s,a) = r(s,a) + log π̃(a|s).

Then, Q
soft,π̃
rlb can be expressed in terms of Qπ̃

r as follows:

Qsoft,π̃
rlb

(s,a) = Qπ̃
r (s,a) + log π̃(a|s).

Proof. see Appendix C.5.

Lemma 2 might seem surprising at first because in general it is neither straightforward
to transform a Q-function to a soft Q-function nor to transform the Q function for one
reward function to the Q-function for a different reward function. However, intuitively, the
expected negative cross-entropy to come (originating from the change of reward function)
and the expected entropy to come (originating from the change to the soft Q-function)
cancel out, since both terms are computed for policy π̃. Hence, both Q functions only
differ by the change of the immediate reward. Lemma 2, thus, enables us to implement
the critic update by performing the inner maximization of the saddle point solved by
ValueDice 4.28, that is,

−Qπ̃
radv

= argmax
Qπ̃

ν

− log Es,a∼q(s,a)

[︁
exp

(︁
Qπ̃

ν (s,a)− γEs′∼p(s′|s,a)Ea′∼π̃(a′|s′)

[︁
Qπ̃

ν (s
′,a′)

]︁)︁]︁

+ (1− γ)Es0∼p0(s)Ea0∼π̃(a0|s0)

[︁
Qπ̃

ν (s0,a0)
]︁
.

(4.29)

Please note, that we changed the sign for Qπ̃
radv

because ν (Eq. 4.26) approximates the
adversarial cost function ν(s,a) ≈ −radv(s,a) + const.

In contrast to ValueDice, we do not need to solve a saddle point problem, since we can
replace the policy update of ValueDice (based on Eq. 4.28) with an update based on the
loss

Lactor,π(i)(π) =− Es∼z(s)

[︃∫︂

a

π(a|s)
(︂
Qπ(i)

adv + log π(i)(a|s)− log π(a|s)
)︂
da

]︃
(4.30)

=− Es∼z(s)

[︂
Lactor,π(i)(π, s)

]︂
,

which can be optimized using the reparameterization trick [Kingma and Welling, 2014;
Rezende et al., 2014]. The state distribution z(s) used for training the policy should
ideally have full support on every state that is encountered by the new policy π. In our
experiments we found it sufficient to only use the states encountered during the expert
demonstrations, that is z(s) = q(s). However, it would also be possible to use artificial
states, e.g., by adding noise to the expert demonstrations, or to build a replay buffer by
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Algorithm 5 Offline Non-Adversarial Imitation Learning

Require: Expert demonstrations D = {(si,ai)}i=1...N

Require: Initial policy π̃
1: function ONAIL

2: repeat

3: Qπ̃
radv
← ImplicitDensityRatioEstimator(π̃,D) ▷ approximately solve

Optimization Problem 4.29
4: π̃ ← PolicyImprovement(π̃, Qπ̃

radv
) ▷ improve on JNAIL,π̃ by decreasing loss

Lactor,π̃(π) (Eq. 4.30)
5: until converged
6: end function

rolling out the policy after each iteration (which would leave the offline-regime). The
conceptual difference between O-NAIL and ValueDice enables us to show convergence
even for large improvement on the loss (Eq. 4.30) based on Lemma 3.

Lemma 3. When ignoring approximation errors of the Q-function Qπ̃
radv

, any policy π that

achieves lower or equal loss Lactor,π(i)(π, s) (Eq. 4.30) than π(i) on any state s also improves

on π(i) with respect to the lower bound objective JNAIL,π(i)(π) (Eq. 4.24), that is,

∀s : Lactor,π(i)(π, s) ≤ Lactor,π(i)(π(i), s) =⇒ JNAIL,π(i)(π) ≥ JNAIL,π(i)(π(i)).

Proof. See Appendix C.6.

The resulting algorithm (Alg. 5) is, thus, an instance of non-adversarial imitation
learning based on the implicit density-ratio estimator

˜︁ϕ(s,a) = exp
(︁
Qπ̃

radv
(s,a)− γEs′∼p(s′|s,a)Ea′∼π(a′|s′)

[︁
Qπ̃

radv
(s′,a′)

]︁)︁
.

Theorem 2. When ignoring approximation errors of the Q-function Qπ̃
radv

, Algorithm 5

converges to a stationary point of the reverse KL imitation learning objective.

Proof. Based on Lemma 3, the theorem can be derived analogously to Theorem 1.

4.4. Experiments

We compared the policy updates of O-NAIL and ValueDice on the Mujoco [Todorov
et al., 2012] Hopper, Walker2d, HalfCheetah and Ant experiment. We obtained 50 expert
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Figure 4.1.: The plots show the approximated return (average of ten roll-outs) of the
stochastic policy for ten trials for O-NAIL and ValueDice for different num-
bers of demonstrations and environments. For behavioral cloning, the
shaded region corresponds to the 0.95 confidence region based on the em-
pirical standard error of the mean (when Gaussianity is assumed).
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hyper-parameter value (ValueDice) value (O-NAIL)

ηπ 1× 10−5 1× 10−4

ηQ 1× 10−3 1× 10−3

Nπ 1 10 000
NQ 5 1000

Table 4.1.: The table shows the hyper-parameters used by O-NAIL and ValueDice for the
HalfCheetah experiment. O-NAIL performed better for large number of gradi-
ent steps, whereas ValueDice performed best for fewgradient updates before
switching policy updates and Q-function updates.

demonstrations—each corresponding to one trajectory consisting of thousand steps—from
a policy that was trained using soft actor-critic [SAC, Haarnoja et al., 2018]. We initialized
the policy using behavioral cloning. More precisely, we used ten per cent of the training
data as validation data for early-stopping, and trained the policy by maximizing the
likelihood of the remaining expert data. Both algorithms are evaluated based on the
same implementation1 and differ only due to the different policy loss and the chosen
hyper-parameters. For ValueDice, the policy updates are performed based on a mini-batch
approximation of the saddle point problem given by Equation 4.28. For O-NAIL, we
use a mini-batch approximation of the I-projection-loss (Eq. 4.30). Both algorithms use
a mini-batch size of 256. The Q-function and policy are each represented by a neural
networks with two hidden layers of 256 units. The policy network outputs the parameters
of a Gaussian distribution (with a diagonal state-dependent covariance matrix) and the
sampled action are squashed by a tanh to respect action bounds, as discussed by Haarnoja
et al. [2018].
We tuned the learning rates ηπ and ηQ for the policy and Q-function as well as the

number of gradient steps Nπ and NQ for the policy optimization and Q-optimization.
We performed a grid-search on these hyper-parameters and present the chosen hyper-
parameters in Table 4.1.
The results of our experiments are shown in Figure 4.1. Although O-NAIL seems to

clearly outperform ValueDice on these experiment, we want to stress, that the purpose of
our evaluation was not to show practical advantages, but rather to demonstrate that we
can derive novel algorithms based on our non-adversarial formulation that achieve similar
performance compared to adversarial methods, while working at a significantly different
modus operandi—namely, by using three to four orders of magnitude more update step

1The code can be downloaded from https://www.github.com/OlegArenz/O-NAIL.
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for the Q-function and policy. Regarding the performance in practice, we want to point
out the following shortcomings of our evaluations:

• Lack of regularization. We did not perform any regularization on the Q-function or
policy. It is well-known that adversarial methods sometimes can significantly benefit
from regularizing the discriminator (or Q-function for ValueDice). For example,
ValueDice applied a gradient penalty similar to the one that was introduced for
Wasserstein-GANs [Gulrajani et al., 2017] on the Q-function. We actually tried
this gradient penalty also on our experiment and were not able to show a benefit.
Still, although Kostrikov et al. [2020] focused on the online setting, they also
performed experiments in the offline setting, where they could show that ValueDice
can outperform behavioral cloning. We believe that by introducing some type of
regularization, both algorithms could potentially also achieve significantly better
performance on our implementation. However, since these improvements are often
achieved by introducing inductive biases, which can widen the gap between theory
and practice, we have limited the evaluation to a simple implementation of the
respective algorithms.

• Initialization. We initialized the policies using behavioral cloning. When per-
forming the same experiment with randomly initialized policies, ValueDice would
perform similarly, while O-NAIL would fail to learn at all with the chosen hyper-
parameters. The lack of convergence of O-NAIL is to be expected because using
many discriminator updates to estimate a density-ratio between distributions with
non-overlapping support typically results in sharp decision-boundaries that do not
possess meaningful gradients or maxima. However, when performing only few
Q-function-updates between optimizing the policy—which corresponds to a strong
type of early-stopping—, such problems can be mitigated. Rather than relying
on strong regularization that further disconnect theory and practice, we applied
behavioral cloning to ensure overlapping support, which also seems reasonable and
applicable in practice.

4.5. Discussion

Many modern methods in imitation learning and inverse reinforcement learning are based
on an adversarial formulation. These methods frame the problem of distribution-matching
as a minimax game between a policy and a discriminator, and rely on small policy updates
for showing convergence to a Nash equilibrium. In contrast to these methods, we formulate
distribution-matching as an iterative lower-bound optimization by alternating between
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maximizing and tightening a bound on the reverse KL divergence. This non-adversarial
formulation enables us to drop the requirement of “sufficiently small” policy updates for
proving convergence. Algorithmically, our non-adversarial formulation is very similar to
previous adversarial formulations and differs only due to an additional reward term that
penalizes deviations from the previous policy.

4.5.1. Limitations and Future Work

As the resulting algorithms are very similar to their adversarial counterparts, it can be
difficult to show significant differences in practice. Hence, in this work, we focused on
the insights gained from the non-adversarial formulation. For example, we showed that
adversarial inverse reinforcement learning, which was previously not well understood, can
be straightforwardly derived from our non-adversarial formulation. However, eventually we
would like to derive stronger practical advantages from our formulation. We demonstrated
that the non-adversarial formulation can be used to derive novel algorithms by presenting
O-NAIL, an actor-critic based offline imitation learning method and our comparisons with
ValueDice suggest that the non-adversarial formulation may indeed be beneficial. However,
we hope to further distinguish O-NAIL from prior work by building on the close connection
between non-adversarial imitation learning and inverse reinforcement learning in order
to learn generalizable reward functions offline.
Adversarial methods have been suggested for a variety of different divergences, in-

cluding [Ghasemipour et al., 2020] but not limited to [Xiao et al., 2019] the family of
f -divergences. The non-adversarial formulation is currently limited to the reverse KL
divergence and penalizes deviations from the previous policy based on the reverse KL
divergence. It is an open question, whether our lower bound can be generalized to other
divergences, for example, when penalizing deviations based on different divergences.
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5. Conclusion and Future Work

We investigated the I-projection in different problem settings that are shown in Table 5.1.
For variational inference and density estimation we can evaluate the probability density of
the variational model (“explicit model”). For reinforcement learning and imitation learning
we act in an MDP and can only sample from the learned behavior using policy roll-outs but
can not evaluate its probability density which depends on complex and often unknown
interactions with the system dynamics (“implicit model”). For variational inference and
reinforcement learning1 the (unnormalized) target distribution is given (“explicit target”),
whereas for density estimation and imitation learning, we only have access to samples
(“implicit target”). For variational inference and density estimation we can also obtain
samples from the model, and, thus these problem settings can be considered simpler than
the respective formulations in a Markov decision process. However, this simplification in
the problem formulation is put into perspective by the fact that we have higher demands
on the model, namely, we aim to approximate all the modes in the target distribution.
The unnormalized target distributions in variational inference and reinforcement learning
can not be sampled straightforwardly and these problem formulation are, hence, not
necessarily simpler than their counterparts with implicit targets.

1Here, by reinforcement learning we refer to the special case, where we have an additional entropy objective
on the behavior (not just on the policy). As discussed in Section 1.2.2, the reward function then corresponds
to an unnormalized target distribution.

Explicit Model Implicit Model (MDP)

Explicit Target variational inference (Ch. 3) reinforcement learning (Ch. 2)
Implicit Target density estimation (Sec. 3.6.2) imitation learning (Ch. 4)

Table 5.1.: The table shows the different problem settings discussed within this thesis
and refers to the corresponding chapter or section. The problem settings
differ depending on whether we can evaluate the (unnormalized) target dis-
tribution or the model or whether we only have access to samples.
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The reinforcement learning setting was discussed in Chapter 2, where we assumed that
a target distribution is given instead of a reward function. By also regularizing the entropy
of the policy, we could show that the optimal policy can be found by maximizing a reward
function that is given by the scaled log density-ratio between the target distribution and
the distribution induced by the optimal policy. We exploited this circular dependency
using a fixed-point iteration in order to efficiently learn policy and reward function. By
using density estimation for learning the target distribution from demonstrations, this
approach was also used for inverse reinforcement learning.

In Chapter 3, we discussed our method for variational inference, where we used an upper
bound on the reverse KL for latent variable models in order to learn GMM approximations
of the target distribution. By using insights from policy search and by dynamically adapting
the number of components, we could show that our variational approximations can obtain
similar sample quality as expensive Markov chain Monte-Carlo on a large number of test
problems. In Section 3.6.2, we also briefly discussed the follow-up by Becker et al. [2020],
which used the same upper bound for density estimation.

We built on our formulation for density estimation [Becker et al., 2020] and extended
it in order to apply the upper bound also for imitation learning, which we discussed in
Chapter 4. We showed that we can obtain a non-adversarial formulation for imitation
learning and inverse reinforcement learning that resembles current adversarial methods.
In particular, we showed that adversarial inverse reinforcement learning [Fu et al., 2018]
is actually a non-adversarial method that can be derived based on our formulation. We
also derived a novel non-adversarial method for offline imitation learning.

5.1. Future Work

Depending on the respective problem formulation, we developed different algorithms
that can be improved and extended individually, which we already discussed in the
corresponding chapters. Here, we will mainly discuss potential synergies between the
different methods.
We successfully applied the same upper bound to three of the four problem settings

shown in Table 5.1, namely for variational inference [Arenz et al., 2018, 2020], density
estimation [Becker et al., 2020] and imitation learning [Arenz and Neumann, 2020].
It is therefore natural to also consider the bound for the remaining problem setting,
reinforcement learning. It could be possible to apply our decomposition to simplify the
training of latent-variable policies—for example GMMs—in order to learn multimodal or
hierarchical [Sutton et al., 1999] policies. We already performed first steps towards this
goal by learning GMM policies for robot teleoperation [Ewerton et al., 2020], however,
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here, we only considered episodic policy search.
The motivation for using the upper bound in variational inference and in imitation

learning are slightly different; in variational inference it allowed us to reduce the problem
of optimizing a Gaussian mixture model to the problem of optimizing individual Gaus-
sian components, whereas in imitation learning it allowed us to reduce the I-projection
problem—which includes the intractable entropy of the behavior—to a more standard
reinforcement learning problem that only includes the entropy of the policy. It would be
interesting to apply the upper bound in both ways in order to perform both hierarchical
and non-adversarial imitation learning. As discussed in Chapter 4, the advantage function
and thus the log-density of the policy can also be treated as a maximally entangled reward
function, which can be learned by using our non-adversarial formulation. We could exploit
this connection between the policy and reward function, by treating the state transitions
in the Semi-MDP as non-Markovian reward function which we would expect to be less
entangled with the system dynamics than the lower-level policies.
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6. Contribution Statements

Although this thesis is a summary of my scientific work, it would not have been possible
without the involvement of my collaborators. In this Section, we will disentangle the
individual contributions based on the publications that underlie Chapters 2, 3 and 4.

6.1. Contributions for Chapter 2

I derived the concrete algorithm and implemented most parts of it. I also performed
the evaluation and wrote most parts of the resulting article [Arenz et al., 2016]. Hany
Abdulsamad suggested alternate options for optimizing the dual problem, contributed
small parts to the implementation and provided feedback on the draft. Gerhard Neumann
suggested the initial problem formulation and also sketched the derivations. He also
assisted in identifying problems in the implementation, suggested experiments and wrote
small parts of the article.

6.2. Contributions for Chapter 3 (disregarding Section 3.6)

I proposed most algorithmic choices, for example those discussed in Section 3.2.2, 3.2.3
and 3.2.4. I also implemented the algorithm (except for code related to the Goodwin oscil-
lator), performed the evaluation and wrote the article [Arenz et al., 2020]. Mingjun Zhong
implemented the Goodwin oscillator, suggested MCMC competitors for the evaluation
and provided feedback on the draft. Gerhard Neumann (re-)discovered the lower bound
and suggested using it in combination with MORE for learning GMM approximations. He
also advised me during the development of the concrete algorithm and provided feedback
on the draft.
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6.3. Contributions for Section 3.6.1

Marco Ewerton led the research and proposed several algorithmic choices, implemented
the parts related to the simulation environments and probabilistic movement primitives
(ProMPs), conducted the experiments and user studies and wrote most parts of the
article [Ewerton et al., 2020]. I suggested to use VIPS for learning a mixture of ProMPs,
proposed some algorithmic choices, implemented parts related to VIPS and robot control,
assisted during the robot experiments and wrote small parts of the paper. Jan Peters
provided advice during the development of the approach and provided feedback on the
draft.

6.4. Contributions for Section 3.6.2

Philipp Becker proposed several algorithmic choices, performed the derivations, imple-
mented the algorithm, conducted the experiments and wrote the article [Becker et al.,
2020]. I gave advice for the implementation, made few suggestions regarding experiments
and provided feedback on the draft. Gerhard Neumann suggested applying the lower
bound for density estimation and to extend VIPS to conditional latent variable models
and sketched the derivations. He also provided advice during the development of the
approach and revised the draft.

6.5. Contributions for Chapter 4

I performed the derivations for the adversarial and non-adversarial formulation in the
observation-based, trajectory-centric setting and showed that Markovian reward functions
can be obtained under additional assumptions. I also identified the relation to AIRL. I
proposed to apply the lower bound for offline imitation learning and derived the resulting
algorithm (O-NAIL). I also performed the implementation and evaluation and wrote the
article [Arenz and Neumann, 2020]. Gerhard Neumann suggested applying the lower
bound for imitation learning and sketched the derivation. He also provided advice during
the development of the approach and provided feedback on the draft.
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A. Appendix for Chapter 2

A.1. Full Specification of the Optimization Problem and its
Derivations

maximize
πt(a|s)

−
T−1∑︂

t=1

∫︂

s

pt(s)

∫︂

a

πt(a|s) log πt(a|s)dads−
T∑︂

t=2

βt

∫︂

y

pt(y) log
pt(y)

qt(y)
dy

subject to ∀t<T

∫︂

s

pt(s)

∫︂

a

πt(a|s) log
πt(a|s)

πt,last(a|s)
da ≤ ϵt,

∀s p1(s) = µ1(s)

∀t>1∀s′ pt(s
′) =

∫︂

s,a

pt−1(s)πt−1(a|s)pt−1(s
′|s,a)dsda,

∀2<t<T∀y pt(y) =

∫︂

s

pt(s)

∫︂

a

πt(a|s)pt(y|s,a)dads,

∀y pT (y) =

∫︂

s

pT (s)pT (y|s)ds,

∀t<T∀s

∫︂

a

πt(a|s)da = 1,

∀t>2

∫︂

y

pt(y)dy = 1.
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Lagrangian:

L = −
T−1∑︂

t=1

∫︂

s

pt(s)

∫︂

a

πt(a|s) log πt(a|s)dads−
T∑︂

t=2

βt

∫︂

y

pt(y) log
pt(y)

qt(y)
dy

+
T−1∑︂

t=1

αt

(︃
ϵt −

∫︂

s

pt(s)

∫︂

a

πt(a|s) log
πt(a|s)

πt,last(a|s)
dads

)︃

+

∫︂

s

V1(s) (µ1(s)− p1(s)) ds

+
T∑︂

t=2

∫︂

s′
Vt(s

′)

(︃∫︂

s,a

pt−1(s)πt−1(a|s)pt−1(s
′|s,a)dads− pt(s

′)

)︃
ds′

+
T−1∑︂

t=2

∫︂

y

ηt(y)

(︃∫︂

s

pt(s)

∫︂

a

πt(a|s)pt(y|s,a)dads− pt(y)

)︃
dy

+

∫︂

y

ηT (y)

(︃∫︂

s

pT (s)pT (y|s)ds− pT (y)

)︃
dy

+

T−1∑︂

t=1

∫︂

s

λπ,t(s)

(︃
1−

∫︂

a

πt(a|s)da

)︃
ds+

T∑︂

t=2

λy,t

(︃∫︂

y

pt(y)dy − 1

)︃

The partial derivative of the Lagrangian w.r.t. the policy is given by

∂L

∂πt(a|s)
= −pt(s) (1 + log πt(a|s))− αtpt(s)

(︁
1 + log πt(a|s)− log πt,last(a|s)

)︁

+

∫︂

s′
Vt+1(s

′)pt(s)pt(s
′|s,a)ds′ + ✶t>1

∫︂

y

ηt(y)pt(s)pt(y|s,a) dy − λπ,t(s).

(A.1)

Setting the partial derivative to zero yields

π⋆t (a|s) = exp
(︂ 1

1 + αt

(︂
− 1− αt + αt log πt,last(a|s) +

∫︂

s′
Vt+1(s

′)pt(s
′|s, a) ds′

+ ✶t>1

∫︂

y

ηt(y)pt(y|s,a)dy −
λπ,t(s)

pt(s)

)︂)︂

=
1

Zπ,t
exp

(︂ 1

1 + αt

(︂
αt log πt,last(a|s)

+

∫︂

s′
Vt+1(s

′)pt(s
′|s, a) ds′ + ✶t>1

∫︂

y

ηt(y)pt(y|s,a)dy
)︂)︂
,

(A.2)
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with partition function

Zπ,t = exp

(︃
1

1 + αt

(︃
−1− αt −

λπ,t(s)

pt(s)

)︃)︃
.

By setting the partial derivative ∂L
∂λπ,t

= 1−
∫︁
a
πt(a|s)da to zero, we find that inserting

the optimal Lagrangian multiplier λ⋆π,t normalizes the policy πt(a|s) and hence

Zπ,t =

∫︂

a

exp
(︂ 1

1 + αt

(︂
αt log πt,last(a|s) +

∫︂

s′
Vt+1(s

′)pt(s
′|s, a) ds′

+ ✶t>1

∫︂

y

ηt(y)pt(y|s,a)dy
)︂)︂
da.

(A.3)

By inserting (A.3) in (A.2) we find that

⇒ π⋆t (a|s) = exp
(︂ 1

1 + αt

(︂
αt log πt,last(a|s) +

∫︂

s′
Vt+1(s

′)pt(s
′|s, a) ds′

+ ✶t>1

∫︂

y

ηt(y)pt(y|s,a)dy
)︂

− log

∫︂

a

exp
(︂ 1

1 + αt

(︂
αt log πt,last(a|s) +

∫︂

s′
Vt+1(s

′)pt(s
′|s, a) ds′

+ ✶t>1

∫︂

y

ηt(y)pt(y|s,a)dy
)︂)︂
da
)︂

(A.4)
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Inserting (A.4) into the Lagrangian yields the dual

G = −
T−1∑︂

t=1

∫︂

s

pt(s)

∫︂

a

πt(a|s)
(︂
αt log πt,last(a|s) +

∫︂

s′
Vt+1(s

′)pt(s
′|s, a) ds′

+ ✶t>1

∫︂

y

ηt(y)pt(y|s,a)dy
)︂
dads

+

T−1∑︂

t=1

(1 + αt)

∫︂

s

pt(s) log

∫︂

a

exp
(︂ 1

1 + αt

(︂
αt log πt,last(a|s)

+

∫︂

s′
Vt+1(s

′)pt(s
′|s, a) ds′ + ✶t>1

∫︂

y

ηt(y)pt(y|s,a)dy
)︂)︂
dads

−
T∑︂

t=2

βt

∫︂

y

pt(y) log
pt(y)

qt(y)
dy +

T−1∑︂

t=1

αt

(︃
ϵt +

∫︂

s

pt(s)

∫︂

a

πt(a|s) log πt,last(a|s)dads

)︃

+

∫︂

s

V1(s) (µ1(s)− p1(s)) ds

+

T∑︂

t=2

∫︂

s′
Vt(s

′)

(︃∫︂

s,a

pt−1(s)πt−1(a|s)pt−1(s
′|s,a)dads− pt(s

′)

)︃
ds′

+
T−1∑︂

t=2

∫︂

y

ηt(y)

(︃∫︂

s

pt(s)

∫︂

a

πt(a|s)pt(y|s,a)dads− pt(y)

)︃
dy

+

∫︂

y

ηT (y)

(︃∫︂

s

pT (s)pT (y|s)ds− pT (y)

)︃
dy

+

T−1∑︂

t=1

∫︂

s

λπ,t(s)

(︃
1−

∫︂

a

πt(a|s)da

)︃
ds+

T∑︂

t=2

λy,t

(︃∫︂

y

pt(y)dy − 1

)︃

=

T−1∑︂

t=1

(1 + αt)

∫︂

s

pt(s) log

∫︂

a

exp
(︂ 1

1 + αt

(︂
αt log πt,last(a|s)

+

∫︂

s′
Vt+1(s

′)pt(s
′|s, a) ds′ + ✶t>1

∫︂

y

ηt(y)pt(y|s,a)dy
)︂)︂
dads

−
T∑︂

t=2

βt

∫︂

y

pt(y) log
pt(y)

qt(y)
dy +

T−1∑︂

t=1

αtϵt +

∫︂

s

µ1(s)V1(s)ds−
T∑︂

t=1

∫︂

s

Vt(s)pt(s) ds

−
T∑︂

t=2

∫︂

y

ηt(y)pt(y)dy +

∫︂

y

ηT (y)

∫︂

s

pT (s)pT (y|s)dsdy +
T∑︂

t=2

λy,t

(︃∫︂

y

pt(y)dy − 1

)︃

128



Gradients of Dual:
We first define

rt(s,a) =

⎧
⎨
⎩

∫︁
y
pT (y|s)ηT (y)dy , if t = T∫︁

y
ηt(y)pt(y|s,a)dy + αt log πt,last(a|s) , if 1 < t < T

αt log πt,last(a|s) , if t = 1

Qt(s,a) =

{︃
rt(s,a) , if t = T

rt(s,a) +
∫︁
s′
pt(s

′|s, a)Vt+1(s
′)ds′ , if t < T

The partial derivatives of the dual are then given by:

∂G

pt(s)
= −Vt(s) + (1 + αt) log

∫︂

a

exp

(︃
1

1 + αt
Qt(s,a)

)︃
, (A.5)

Setting the derivative w.r.t. the state distribution to zero yields Bellman’s Equation (back-
ward pass).

∂G

∂Vt(s)
=

{︃
−p1(s) + µ1(s) , if t = 1

−pt(s) +
∫︁
s,a

πt−1(a|s)pt−1(s)pt−1(s
′|s, a) , if t > 1

Setting the partial derivative w.r.t. the value function to zero yields the dynamics equation
(forward pass).

∂G

∂pt(y)
= −ηt(y)− βt(1 + log

pt(y)

qt(y)
) + λy,t

Setting the partial derivative w.r.t. the distribution over task variables to zero yields the
regularized target distribution p̃t(y),

p̃t(y) = exp

(︃
log qt(y)−

ηt(y)

βt
− 1 +

λy,t
βt

)︃

= exp

(︃
log qt(y)−

1

βt
ηt(y)− log

∫︂

y

exp

(︃
log qt(y)−

1

βt
ηt(y)

)︃
dy

)︃
. (A.6)

Alternatively, we can solve for the task space reward function, yielding

η̃t(y) = −βt log
pt(y)

qt(y)
. (A.7)
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Setting (A.5) and (A.6) back into the dual yields

G(β, ηt) =
T∑︂

t=2

βt log

∫︂

y

exp

(︃
log qt(y)−

1

βt
ηt(y)

)︃
dy +

T−1∑︂

t=1

αtϵt +

∫︂

s

V1(s)µ1(s).

A.2. Proof that the Alternate Update Direction is a Descent
Direction

Wewill now prove, that interpolating the current estimate of the task-space reward function
with the estimate computed by (A.7) corresponds to an update along a descent direction
of G. To do so, we assume that the target distribution over task-variables, qt(y), and
the induced distribution over task-variables, pt(y), are Gibbs distributions with potential
function that are–without loss of generality–linear in arbitrary features ψ(y). The reward
function estimate according to Equation (A.7) and the regularized target distribution
according to Equation (A.6) are then given by

η̃t(y) = βt

(︂
θq,t − θp(i),t

)︂⊤
ψ(y)+ const = θ̃

(i)⊤
η,t ψ(y)+ const,

p̃t(y) ∝ exp

(︃
(θq,t −

1

βt
θ
(i)
η,t)

⊤ψt(y)

)︃
.

Interpolating the current estimate of the reward function weights θ(i+1)
η,t with the new

estimate θ̃
(i)
η,t with step size α corresponds to the weight update

θ
(i+1)
η,t = (1− α)θ

(i)
η,t + αθ̃

(i)
η,t

= θ
(i)
η,t − α

(︂
θ
(i)
η,t − θ̃

(i)
η,t

)︂
= θ

(i)
η,t − αδθη ,t.

Lemma 4. Let p̃t(y) and pt(y) be Gibbs distributions, i.e. p̃t(y) = Z−1
p̃t

exp
(︂
θ⊤p̃tψ(y)

)︂
and

pt(y) = Z−1
pt exp

(︁
θ⊤ptψ(y)

)︁
. Further, let δ′θη ,t = β−1

t δθη ,t. The scaled update direction δ′θη ,t
then corresponds to the difference between the weights of the potential functions of pt(y) and
p̃t(y),

δ′θη ,t = θpt − θp̃t .

Proof.

δ′θη ,t = β−1
t

(︂
θ
(i)
η,t − θ̃

(i)
η,t

)︂
= β−1

t θ
(i)
η,t −

(︂
θqt − θp(i)t

)︂

= θpt − θp̃t
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Theorem 3. Let p̃t(y) and pt(y) be defined as in Lemma 4. The update direction δ′θη ,t is

then an ascent direction of G.

Proof.

⟨︃
δ′θη ,t,

∂G

∂θη,t

⟩︃
=
⟨︁
θpt − θp̃t ,Ept(y) [ψ(y)]− Ep̃t(y) [ψ(y)]

⟩︁

= Ept(y)

[︂
(θpt − θp̃t)

⊤ψ(y)
]︂

− Ep̃t(y)

[︂
(θpt − θp̃t)

⊤ψ(y)
]︂

= Ept(y)

[︃
log

pt(y)

p̃t(y)

]︃
+ Ep̃t(y)

[︃
log

p̃t(y)

pt(y)

]︃

= DKL(pt(y)||p̃t(y)) +DKL(p̃t(y)||pt(y))

≥ 0,

where strict inequality holds if p̃t(y) ̸= pt(y).

By replacing p̃t by the empirical expert distribution qt, convergence can also be shown
for the special case of MaxEnt-IRL.
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B. Appendix for Chapter 3

B.1. VIPS1 Derivations

For each update we wish to solve the optimization problem

max
q(x)

∫︂

x

q(x)R̃(x)dx+ H(q(x)),

subject to KL
(︂
q(x)||q(i)(x)

)︂
≤ ϵ,

∫︂

x

q(x)dx = 1,

where we recall that the the reward surrogate R̃(x) is a quadratic function and the
variational approximation of the previous iteration, q(i)(x), is Gaussian. We formulate the
optimization for general distributions q(x), but we will see that the optimal solution is also
Gaussian. Using the definition of the Shannon entropy and Kullback-Leibler divergence
and introducing the Lagrangian multipliers η and λ, the Lagrangian function is given by

L(q, η, λ) =

∫︂

x

q(x)
(︁
R̃(x)− log q(x)

)︁
dx+ η

(︃
ϵ−

∫︂

x

q(x)
(︁
log q(x)− log q(i)(x)

)︁
dx

)︃

+ λ
(︁
1−

∫︂

x

q(x)dx
)︁

=

∫︂

x

q(x)
(︁
R̃(x)− (1 + η) log q(x) + η log q(i)(x)− λ

)︁
dx+ ηϵ+ λ.

The optimum q⋆(x) occurs where the partial derivative ∂L(q,η,λ)
∂q(x) is equal to zero, that is,

∂L(q⋆, η, λ)

∂q(x)
= R̃(x)− (1 + η) log q⋆(x; η, λ)− (1 + η) + η log q(i)(x)− λ

!
= 0

⇒ q⋆(x; η, λ) = exp
(︂
−
λ+ 1 + η

1 + η

)︂
exp

(︂R̃(x) + η log q(i)(x)

1 + η

)︂
. (B.1)
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The Lagrange dual function is, thus, given by

G(η, λ) =L(q⋆, η, λ)

=

∫︂

x

q⋆(x; η, λ)
(︁
R̃(x)−

(︁
− λ− 1− η + R̃(x) + η log q(i)

)︁
+ η log q(i)(x)− λ

)︁
dx

+ ηϵ+ λ

=(1 + η)

∫︂

x

q⋆(x; η, λ)dx+ ηϵ+ λ.

As strong duality holds due to Slater’s condition [Boyd and Vandenberghe, 2004], we can
find the optimal distribution q⋆(x; η, λ) by minimizing the dual function with respect to η
and λ and then using the optimal step size η⋆ and Lagrangian multiplier λ⋆ to compute
q⋆(x; η⋆, λ⋆) according to Equation B.1. The partial derivatives are given by

∂G(η, λ)

∂η
=ϵ+

∫︂

x

q⋆(x; η, λ)dx

+ (1 + η)

∫︂

x

q⋆(x; η, λ)
(︂ log q(i)(x)− 1

1 + η
−

log q⋆(x; η, λ)

(1 + η)

)︂
dx

=ϵ−

∫︂

x

q⋆(x; η, λ)
(︁
log q⋆(x; η, λ)− log q(i)

)︁
dx

and

∂G(η, λ)

∂λ
= −

∫︂

x

q⋆(x; η, λ)dx+ 1,

where the optimal Lagrangian multiplier λ⋆(η) for a given η normalizes q⋆(x; η, λ⋆), that
is,

∂G(η, λ⋆)

∂λ
= 0⇔

∫︂

x

q⋆(x; η, λ⋆)dx = 1.

Hence, we can perform coordinate descent by alternately updating η along its partial
derivative and computing the optimal λ. Such procedure corresponds to optimizing the
dual

G(η) = (1 + η)

∫︂

x

q⋆(x; η, λ⋆)dx+ ηϵ+ λ⋆(η) = 1 + η + ηϵ+ λ⋆(η) (B.2)

based on the gradient

∂G(η)

∂η
= ϵ− KL(q⋆(x; η, λ⋆)||q(i)(x)).
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We will now express the approximation of the previous iteration q(i)(x) in terms of its
natural parameters Q(i) and q(i) and the reward surrogate as

R̃(x) = −
1

2
x⊤R(i)x+ x⊤r(i).

Then, according to Equation B.1, the optimal distribution

q⋆(x; η) = exp
(︁η logZ(Q(i),q(i))− λ⋆(η)− 1− η

1 + η

)︁

· exp
(︁
−

1

2
x⊤R(i) + ηQ(i))

1 + η
x+ x⊤ r(i) + ηq(i))

1 + η

)︁ (B.3)

is Gaussian with natural parameters

Q(η) =
η

η + 1
Q(i) +

1

η + 1
R(i),

q(η) =
η

η + 1
q(i) +

1

η + 1
r(i).

Further, we can see from Equation B.3 and the optimality condition
∫︁
x
q(x; η, λ⋆) = 1, that

λ⋆(η) =− (1 + η) log

∫︂

x

exp
(︁
−

1

2
x⊤R(i) + ηQ(i))

1 + η
x+ x⊤ r(i) + ηq(i))

1 + η

)︁
dx− 1− η

+ η logZ(Q(i),q(i))

=η logZ(Q(i),q(i))− (1 + η) logZ(Q(η),q(η))− 1− η. (B.4)

Using Equation B.4 and Equation B.2, the dual function can be expressed as

G(η) = ηϵ+ η logZ(Q(i),q(i))− (1 + η) logZ(Q(η),q(η)). (B.5)

B.2. Effects of Different Dissimilarity Measures for Sample
Selection

VIPS++ uses the Mahalanobis distance to the mean of the distributions in the sample
database as dissimilarity measure for sample selection according to Equation 3.19. We
compared this choice to different dissimilarity measures, namely KL (q(x|o)||Nxi

(x))
(denoted as reverse KL) and KL (Nxi

(x||q(x|o))) (denoted as forward) and against using
a uniform distribution instead of Equation 3.19. The results are shown in Figure B.1.

B.3. Pseudo-Code for Sample Selection

The procedure for selecting relevant samples from the database is shown in Algorithm 6.
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Figure B.1.: Using the Mahalanobis distance as dissimilarity measure results in similar
sample efficiency compared to using the KL divergence while adding less
computational overhead.

Algorithm 6 Identifying relevant samples in the database

Require: database S = {(x0, log p̃(x0),Nx0
), . . . , (xN , log p̃(xN),NxN

)}
Require: number of components in the approximation, No

Require: desired number of samples that should be reused per component, nreuse
1: function select_samples

2: X⊂ ← {}
3: for o = 1 . . . No do

4: nadded ← 0
5: h(·, o) ← compute for each distinct component in the database according to

(3.19)
6: while nadded < nreuse do
7: i ∼ h(·, o) ▷ choose a distribution by sampling h(i, o)
8: h(·, o)← remove element i and normalize
9: for each sample xj of component Ni do

10: if xj ̸∈ X⊂ then

11: X⊂ ← X⊂ ∪ xj

12: end if

13: nadded ← nadded + 1 ▷ also count xj if it was already added
14: if nadded == nreuse then
15: break

16: end if

17: end for

18: end while

19: end for

20: return X⊂

21: end function
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B.4. Approximating the Initial Reward and Sensitivity Regarding
its Hyper-parameter

We approximate the initial reward of a new component based on the approximation given
by Equation 3.23 because it is simpler and more efficient and unlikely to affect the selected
candidate. Please note that the difference between the log-sum-exp and the maximum is
numerically zero unless for candidates where the density of the current mixture model is
close to the threshold. In such case the log-sum-exp can be larger by at most log(2).
Furthermore, during our experiments we did not exploit that the initial entropy of

the new component can already be computed before deciding on the mean of the new
component. Hence, we estimated the density at its mean as

qxs(xs|on) ≈ max
xi∈Xtotal

log q(xi), (B.6)

since the current approximation needs to be evaluated anyway on each candidate for
the first operand of the maximum operator in Equation 3.23. In the main document
we presented the more principled, exact computation of qxs(xs|on) to improve clarity.
However, in practice the difference between the described heuristic and the implemented
heuristic is negligible because the errors that are introduced by the approximation are
small compared to the variations of the assumed log weight log q(on).

For varying the (negated) assumed initial weights we specify several different values in
an array ∆ = [1000, 500, 200, 100, 50] and pick one of these values ∆j by cycling through
this array. The adding heuristic is thus computed as

R̃xs(on) = R(xs)−max
(︁
log q(xs), max

xi∈Xtotal

log q(xi)−∆j

)︁
. (B.7)

Instead of pre-specifying the possible values for the assumed initial weights, it would also
be possible to sample continuous values from a given distribution. However, for small
changes in the assumed initial weight the heuristic would typically select qualitatively
similar candidates and, thus, it is simpler to specify a few values that relate to different
levels of exploration than to specify a distribution. It would also be possible to specify a
single value∆, however, this would add a hyper-parameter that has to be tuned depending
on the experiment. Furthermore, switching between different levels of exploration can be
more efficient because we do not only want to add components close to missing modes,
but also close to modes that are already covered in order to approximate them better.
Figure B.2 shows learning curves for different values of ∆ on the planar robot experiment
with four goals, which features several disconnected non-Gaussian modes. Here, varying
the values performed better than any fixed assumed value for the initial weight. Figure B.3
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Figure B.2.: We evaluated the MMD for the planar robot experiment with four goals for
different fixed values ∆ of the assumed initial log-weight (negated) as well
as for varying values. Varying the value (VIPS++) performed better than any
fixed value that we tested. However, the experiment with ∆ = 500 indicates
that tuning a fixed value may also perform well.

shows the different initial means that would have been chosen depending on the assumed
initial weight. The selected candidates are sensible for a large range of ∆.

B.5. Scaling a Gaussian to Obtain a Desired Entropy

We want to find the scaling factor c to obtain a desired entropy Hinit for a Gaussian
distribution with given covariance matrix Σ of order n× n.

H(Σ; c) =
1

2
log |2πecΣ|

=
1

2
n log(c) +

1

2
log |2πeΣ|

!
= Hinit ⇒ c = exp

(︁ 1
n
(2Hinit − log |2eπΣ|)

)︁
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Figure B.3.: The plots show the candidates selected by the heuristic (Equation B.7) for
values of ∆ from 0 to 1000 in steps of 10 on the planar robot experiment
with 4 goal positions for the first 30 iterations. At each iteration a new com-
ponent is added based on the value shown in the title. These components
are colored in black. Often the same candidate is selected for large ranges
of ∆. All selected candidates seem reasonable. However, although all can-
didates reach one of the desired goal positions, the configurations can be
less smooth (resulting in low likelihood due to the prior) for large values of
∆, which can be seen especially at iterations 20-23. While optimizing such
components may require more iterations and samples, they are also more
likely to discover a new mode. For example, the component added at iter-
ation 20 is the first component that reaches the top goal position from the
left side.
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B.6. Goodwin Model

The Goodwin model is defined as
dx1
dt

=
a1

1 + a2x
ρ
g
− αx1

dx2
dt

= k1x1 − αx2

...

dxg
dt

= kg−1xg−1 − αxg,

(B.8)

where x1 represents the concentration of mRNA for a target gene, x2 represents the
corresponding protein product of the gene, and x3 to xg are intermediate protein species
that ultimately lead to a negative feedback, via xg, on the rate at whichmRNA is transcribed.
We consider g = 9 intermediate species and assume that the parameters ρ = 10 and
α = 0.53 are known. We put a Gamma prior with shape 2 and rate 1 on the remaining 10
parameters a1, a2 and κ1 . . . κ8 that need to be inferred. We use the prior also to randomly
choose their true values. For an initial condition x0 = 0, we create 81 noisy observations
o1...81 of x1 and x2 using steps of dt = 1. We assume Gaussian observation noise with
zero mean and variance σ2 = 0.2 and discard the first 40 observations. The posterior
distribution is given by

p(a1, a2, κ1, . . . , κ8|o40...81) =
1

Z
p(a1)p(a2)

8∏︂

i=1

p(κi)

81∏︂

t=40

pt(ot|a1, a2, κ1, . . . , κ8), (B.9)

where pt(ot|a1, a2, κ1, . . . , κ8) is a Gaussian distribution with variance σ2 = 0.2 and a
mean which is computed by numerically integrating the ODE (Equation B.8).

B.7. Planar Robot Experiment

The x and y coordinate of the end-effector are given by

x(θ) =

10∑︂

i=1

cos

⎛
⎝

i∑︂

j=1

θj

⎞
⎠ , y(θ) =

10∑︂

i=1

sin

⎛
⎝

i∑︂

j=1

θj

⎞
⎠ .

The target distribution is given as the product of two distributions,

p(θ) =
1

Z
pconf(θ)pcart(θ),
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Figure B.4.: The plots show the target densities for the planar robot experiments with
one goal position (left) and four goal positions (right), when varying the first
two dimensions of a ground truth sample.

where pconf(θ) enforces smooth configurations and pcart(θ) penalizes deviations from
the goal position. We model pconf(θ) as zero mean Gaussian distribution with diagonal
covariance matrix, where the angle of the first joint has a variance of 1 and the remaining
joints have a variance of 4× 10−2. We consider two experiments that differ in the choice
of goal positions. For the first experiment we specify a single goal position at position
(7, 0) modeled by a Gaussian distribution in Cartesian space with variance 1× 10−4 in
both directions, namely

pcart,1(θ) = N

(︃[︃
x(θ)
y(θ)

]︃
|

[︃
7
0

]︃
,

[︃
1× 10−4 0

0 1× 10−4

]︃)︃
.

For the second experiment we specify four goal positions at positions (7, 0), (0, 7), (−7, 0)
and (0,−7). The likelihood pcart,2 is given by the maximum over the four respective
Gaussian distributions. Figure B.4 visualizes the target densities for both variants, when
varying the first dimension of the respective first ground-truth sample.

B.8. Number of Components

The average number of components learned by VIPS++ is shown in Figure B.5.
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Figure B.5.: The average number of components learned by VIPS++ is plotted over func-
tion evaluations for all experiments in the test bed. When using the faster
adding rate, nadd = 1, VIPS++ learns GMMs with approximately 350 compo-
nents.

B.9. Implementations

For our comparisons we relied on open-source implementations, preferably by the original
authors.

• For PTMCMC, we use an implementation by Ellis and van Haasteren [2017] that
uses adaptive proposal distributions for the individual chains. We roughly tuned the
number of chains for each experiment. As we could not run this implementation
on our cluster, we ran the experiments on a fast quad-core laptop and made use of
multi-threading. We therefore report four times the actual wall-clock time.

• For ESS, we use a Python implementation by Bovy [2013] that is based on the
Matlab implementation by Iain Murray. If the target distribution decomposes into a
product of a Gaussian prior and an arbitrary likelihood term, we directly provide this
decomposition to the algorithm. If the target distribution does not use a Gaussian
prior, we choose an appropriate Gaussian distribution pprior(x) = N (x|0, αI) as
prior and provide it along with the resulting likelihood log plikelihood(x) = log p̃(x)−
log pprior(x), as described by Nishihara et al. [2014].

• Our comparisons with HMC are based on pyhmc [Nabney et al., 2018]. We tuned the
step size and trajectory length for each experiment based on preliminary experiments.
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We also performed some experiments with NUTS [Hoffman and Gelman, 2014],
however, HMC with tuned parameters always outperformed the automatically tuned
parameters of NUTS.

• For slice sampling, we use a Python adaptation [Slavitt, 2013] of a Matlab imple-
mentation by Iain Murray and tuned the step size based on preliminary experiments.

• For SVGD, we use the implementation of the original authors [Liu and Wang, 2016]
and tune the step size based on preliminary experiments.

• For Variational Boosting, we use the implementation of the original authors [Miller
et al., 2017]. However, this implementation is not optimized with respect to the
number of function evaluations and often uses an unnecessary large number of
samples. We therefore modified the implementation slightly. We also use their
implementation of NPVI for our experiments.

• For black-box variational inference and inverse autoregressive flows we used our own
implementation based on tensorflow [Abadi et al., 2015]. The code for conducting
these experiments is available online1. For black-box variational inference, we tuned
the learning rate as well as the number of samples per iteration (batch size). For
inverse autoregressive flows, we tuned the learning rate, the batch size, the number
of flows and the (common) width of the two hidden layers of the autoregressive
networks for each flow.

B.10. Considered Algorithms and Experiments

Table B.1 provides an overview about which algorithms have been evaluated on which
experiments.

• Our implementations of IAF and BBVI use a different code base (based on Tensorflow
[Abadi et al., 2015]) for which we only implemented a subset of the experiments.
However, we ensured that the test bed includes simple, unimodal experiments
(German credit and breast cancer) as well as the most challenging, multi-modal
experiments that we considered (planar robot and GMM).

• We did not evaluate PTMCMC on the simple test problems where parallel Markov
chains would be wasteful.

1The implementation can be found at https://github.com/OlegArenz/tensorflow_VI.
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V P
B T S

V S N O M L B
I V E H P O C I I B
P G S M V S M C A V
S D S C I T C E F I

German Credit X X X X X X - X X X
Breast Cancer X X X X X - - X X X
Frisk X X X X X X - X - -

GMM X X X - - - X X X X
Planar (1 goal) X X X - X X X X X X
Ionosphere X X X X - - - X - -

Goodwin X X X X - - X X - -

Planar (4 goal) X X X - - - X X X X
GMM (Higher Dim.) X - - - - - - - - -

Table B.1.: The table shows which algorithms were applied to each test problem. New
experiment compared to our previous work [Arenz et al., 2018] are marked in
bold.

• We did not evaluate HMC on the experiments with disconnected modes because we
do not expect it to mix efficiently on such problems.

• We tried to evaluate VBOOST and NPVI on all test problems. However, we could
not always obtain reliable results due to numerical problems that we could not fix
without major changes to the implementation.

• We only evaluated VIPS++ on the higher-dimensional GMM experiments because
it was the only method to solve the twenty-dimensional variant.

B.11. Alternatives for Learning Gaussian Variational
Approximations

VIPS++ uses a variant of MORE (which we denote as VIPS1) for learning Gaussian
variational approximations. However, it would also be possible to update the individ-
ual components using black-box variational inference [Ranganath et al., 2014] or the
reparameterization trick, which assumes that the target distribution is differentiable. We
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Figure B.6.: The proposed variant of MORE is significantly more efficient at optimizing
Gaussian variational approximations compared to stochastic gradients us-
ing the reparameterization trick or black-box variational inference. By using
locale surrogate objectives, we require trust regions to ensure stable opti-
mization.

compared against these alternatives on breast cancer experiment as well as on the planar

robot experiment with a single goal position. The learning curves of the ELBO are shown in
Figure B.6. For each experiment, we subtracted a constant offset from the ELBO such that
the highest (approximated) ELBO on each plot equals zero. Such relative ELBO ensures
high resolution in the vicinity of the best ELBO on each of the plots. Please note that we
use the symmetric logarithm to scale the y-Axis. Remarkably, VIPS1 is significantly more
efficient than the reparameterization trick even though we do not require the gradient
of the target distribution. We also compared against a variant of VIPS1 that does not
constrain the KL divergence between updates. Such optimization is unstable as it exploits
model errors caused by the local surrogate.

B.12. VIPS++ Hyper-Parameters

The hyper-parameters used for all experiments are given in Table B.2.
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description value

KL bound for components 1× 10−2 ≤ ϵ(o) ≤ 5
number of desired samples (per dim. and component) 20
number of reused samples (per dim. and component) 40
adding rate for components 30 or 1
deletion rate for components 10
minimum weight 1× 10−6

initial weight 1× 10−29

∆ for adding-heuristic [1000, 500, 200, 100, 50]
ℓ2-regularization for WLS 1× 10−14 ≤ κ ≤ 1× 10−6

Table B.2.: The table shows the hyper-parameters of VIPS++ as well as their values used
during the experiments. The bound on the KL-divergence and the coefficient
for ℓ2-regularization when fitting the surrogates are automatically adapted
within in the provided ranges.

B.13. Computing the Maximum Mean Discrepancy

We approximate the MMD between two sample sets X and Y as

MMD(X,Y) =
1

m2

m∑︂

i,j

k(xi,xj) +
1

n2

n∑︂

i,j

k(yi,yj)

−
2

mn

m∑︂

i

n∑︂

j

k(xi,yi).

We use a squared exponential kernel given by

k(x,y) = exp

(︃
−
1

α
(x− y)⊤Σ(x− y)

)︃
,

where Σ is a diagonal matrix where each entry is set to the median of squared distances
within the ground-truth set and the bandwidth α is chosen depending on the problem.
As true ground-truth samples are only available for the GMM experiment, we apply
generalized elliptical slice sampling [Nishihara et al., 2014] with large values for burn-in,
thinning and chain lengths to produce baseline samples that are regarded as ground-
truth for the remaining experiments. Note that obtaining these ground-truth samples
is computationally very expensive, taking up to two days of computation time on 128
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Figure B.7.: The maximum mean discrepancy with respect to baseline samples is plot-
ted over computational time on log-log plots for the different sampling prob-
lems in the test bed.

CPU cores. We estimate the MMD based on ten thousand ground-truth samples and two
thousand samples from the given sampling method. For MCMC methods, we choose the
two thousand most promising samples by applying a sufficient amount of burn-in and
using the largest thinning that keeps at least two thousand samples in the set.

B.14. Evaluations with Respect to Computational Time

Figure B.7 shows the achieved MMDs with respect to time for the experiments that have
been omitted in the main document.

B.15. Evaluations with Respect to ELBO

We also compared the achieved ELBO L(θ) between VIPS++, inverse autoregressive flows
(IAF) and black-box variational inference (BBVI). We approximate the ELBO based on
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2000 samples from the learned approximation. The respective learning curves are shown
in Figure B.8 where we subtracted a constant offset as described in Appendix B.11.

B.16. Visualization of Samples for Planar Robot Experiments

Samples obtained by BBVI, IAF, PTMCMC and VIPS++ for the planar robot experiment
with one goal and four goals are shown in Figure B.9 and Figure B.10, respectively.
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Figure B.8.: In contrast to the evaluation with respect to the MMD, all methods improve
on the ELBO during learning, which is expected as the respective optimiza-
tion problems aim to maximize the ELBO. Interestingly, IAF achieves a simi-
lar ELBO on the simpler planar robot experiment as VIPS++, although it per-
formed significantly worse on theMMD.We verified that IAF achieves a sim-
ilar approximated entropy as VIPS++, which is surprising since the learned
approximation only sampled from one of the two main configurations (see
Figure B.9). We hypothesize that even the large GMMs learned by VIPS++
are not able to cover the modes as well as the normalizing flows.
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BBVI, Run 1 BBVI, Run 2 BBVI, Run 3 BBVI, Run 4 BBVI, Run 5

IAF, Run 1 IAF, Run 2 IAF, Run 3 IAF, Run 4 IAF, Run 5

PTMCMC, Run 1 PTMCMC, Run 2 PTMCMC, Run 3 PTMCMC, Run 4 PTMCMC, Run 5

VIPS++, Run 1 VIPS++, Run 2 VIPS++, Run 3 VIPS++, Run 4 VIPS++, Run 5

Figure B.9.: 200 sampled configurations are shown for five different training runs for
the planar robot experiment with a single goal. For the variational infer-
ence methods BBVI, IAF and VIPS++, the plots show samples of the final
learned model. For PTMCMC, the plots show the 200 most promising sam-
ples, which are obtained by applying a sufficient amount of burn-in and using
the largest thinning that keeps at least 200 samples in the set.
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BBVI, Run 1 BBVI, Run 2 BBVI, Run 3 BBVI, Run 4 BBVI, Run 5

IAF, Run 1 IAF, Run 2 IAF, Run 3 IAF, Run 4 IAF, Run 5

PTMCMC, Run 1 PTMCMC, Run 2 PTMCMC, Run 3 PTMCMC, Run 4 PTMCMC, Run 5

VIPS++, Run 1 VIPS++, Run 2 VIPS++, Run 3 VIPS++, Run 4 VIPS++, Run 5

Figure B.10.: A thousand sampled configurations are shown for five different training
runs for the planar robot experiment with four goals. For the variational in-
ferencemethods BBVI, IAF and VIPS++, the plots show samples of the final
learned model. For PTMCMC, the plots show the thousand most promis-
ing samples, which are obtained by applying a sufficient amount of burn-in
and using the largest thinning that keeps at least thousand samples in the
set.
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C. Appendix for Chapter 4

C.1. BCE-loss of the AIRL Discriminator

The binary cross entropy loss for the AIRL discriminator is given by

JBCE(θ) =Es,a∼q(s,a)

⎡
⎣log

⎛
⎝

exp
(︂
ν̄θ(s,a)

)︂

π(a|s) + exp
(︂
ν̄θ(s,a)

)︂

⎞
⎠
⎤
⎦

+ Es,a∼pπ(s,a)

⎡
⎣log

⎛
⎝ π(a|s)

π(a|s) + exp
(︂
ν̄θ(s,a)

)︂

⎞
⎠
⎤
⎦

=Es,a∼q(s,a) [ν̄θ(s,a)] + Es,a∼pπ(s,a) [log π(a|s)]

− 2Es,a∼µ(s,a)

[︂
log
(︂
π(a|s) + exp

(︂
ν̄θ(s,a)

)︂)︂]︂
,

where µ(s,a) = 1
2(q(s,a)+p

π(s,a)) is a mixture of the distributions induced by the expert
and the agent. The gradient with respect to the discriminator parameters is given by

dJBCE(θ)

dθ
=Es,a∼q(s,a)

[︃
dν̄θ(s,a)

dθ

]︃
− 2Es,a∼µ(s,a)

⎡
⎣

exp
(︂
ν̄θ(s,a)

)︂

π(a|s) + exp
(︂
ν̄θ(s,a)

)︂ dν̄θ(s,a)
dθ

⎤
⎦

=Es,a∼q(s,a)

[︃
dν̄θ(s,a)

dθ

]︃
− Es,a∼µ(s,a)

[︄
p̄θ(s,a)

1
2 (p

π(s,a) + p̄θ(s,a))

dν̄θ(s,a)

dθ

]︄

=Es,a∼q(s,a)

[︃
dν̄θ(s,a)

dθ

]︃
− Es,a∼µ(s,a)

[︃
p̄θ(s,a)

µ̄(s,a)

dν̄θ(s,a)

dθ

]︃
, (C.1)

where we introduced p̄θ(s,a) = pπ(s) exp (ν̄θ(s,a)) and µ̄(s,a) =
1
2 (p

π(s,a) + p̄θ(s,a)).
Fu et al. [2018] argue that, when assuming that the policy π maximizes the policy

objective, we would have p̄θ(s,a) = pθ(s,a) and that the gradient (Eq. C.1) would then
correspond to an importance-sampling based estimate of the maximum-likelihood gradient
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(Eq. 4.15). However, for obtaining the correct importance weights, we would need to
further assume that p̄θ(s,a) = q(s,a) such that µ̄(s,a) = µ(s,a), that is, we would need
to assume that the distribution induced by the current policy pπ(s,a) = p̄θ(s,a) matches
the expert distribution. Furthermore, we would additionally need to assume that the
discriminator is optimal such that ν̄θ(s,a) = Asoft,π(s,a) = log π(a|s) in order to ensure
p̄θ(s,a) = pθ(s,a). While it is reassuring that both methods share a stationary point when
the expert distribution is perfectly matched and the policy and discriminator are optimal,
the connection between AIRL and MaxCausalEnt-IRL presented by Fu et al. [2018] seems
rather weak.

C.2. Proof for Proposition 1

Let

p(t|τ ) =

{︄
1

T (τ ) t < T (τ )

0 otherwise

denote the probability of observing the time step t when the trajectory τ of length T (τ ) is
given. Based on the assumption p(o|τ , t) = p(o|sτt ,a

τ
t ), we can express p(o|τ ) as follows:

p(o|τ ) =
∞∑︂

t=0

p(t|τ )p(o|τ , t) =
∞∑︂

t=0

p(t|τ )p(o|sτt ,a
τ
t ). (C.2)

Based on equation C.2, we can express the objective of the episodic reinforcement learning
problem given by Eq. 4.7 as

Jrl,ep(π) = Eτ∼pπ(τ )

[︃∫︂

o

p(o|τ )f∗(D(o))do

]︃

=

∫︂

τ

pπ(τ )

∫︂

o

∞∑︂

t=0

p(t|τ )p(o|sτt ,a
τ
t )f

∗(D(o))dodτ

=
∞∑︂

t=0

p(t)

∫︂

τ

pπ(τ |t)

∫︂

o

p(o|sτt ,a
τ
t )f

∗(D(o))dodτ

=

∞∑︂

t=0

p(t)

∫︂

s,a

pπt (s,a)

∫︂

o

p(o|s,a)f∗(D(o))dodsda

= (1− γ)
∞∑︂

t=0

γt
∫︂

s,a

pπt (s,a)

∫︂

o

p(o|s,a)f∗(D(o))dodsda
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= (1− γ)
∞∑︂

t=0

γt
∫︂

s,a

pπt (s,a)radv(s,a)dsda

=

∫︂

s,a

pπ(s,a)radv(s,a)dsda. (C.3)

Hence, we can solve the episodic reinforcement learning problem (Eq. 4.7) also bymaximiz-
ing the expected Markovian reward radv(s,a) =

∫︁
o
p(o|s,a)f∗(D(o))do. When defining

p(o|s,a) as a delta distribution at o(s,a) = [s⊤,a⊤]⊤ or at o(s,a) = s we can also re-
cover the common objective of matching the expert’s state-action distribution or its state
marginal. However, such restrictions are not necessary to obtain Markovian rewards.

C.3. Proof for Lemma 1

Based on Equation 4.22, we can express the reverse KL divergence DRKL(p̃(s,a)||q(s,a))
in terms of the lower bound JNAIL,π̃(π̃) (Eq.4.24) as

DRKL(p̃(s,a)||q(s,a)) = −JNAIL,π̃(π̃)− Ep̃(o) [KL (p̃(τ |o)||p̃(τ |o))] = −JNAIL,π̃(π̃),

and the reverse KL for a given policy π as

DRKL(p
π(s,a)||q(s,a)) = −JNAIL,π̃(π)− Epπ(o) [KL (p

π(τ |o)||p̃(τ |o))] .

Hence, for any policy π that satisfies JNAIL,π̃(π) > JNAIL,π̃(π̃), we have

DRKL(p̃(s,a)||q(s,a))−DRKL(p
π(s,a)||q(s,a))

= JNAIL,π̃(π)− JNAIL,π̃(π̃)⏞ ⏟⏟ ⏞
>0

+Epπ(o) [KL (p
π(τ |o)||p̃(τ |o))]

⏞ ⏟⏟ ⏞
>0

> 0.

C.4. Proof for Theorem 1

The sequence
{︂
DRKL(p

π(i)
(s,a)||q(s,a))

}︂∞

i=0
is monotonously decreasing (see Lemma 1)

and bounded below (due to the non-negativity of the KL) and thus convergent [Bibby,
1974]. At convergence π(i) must be a stationary point of the lower bound objective
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(otherwise we could improve using gradient descent), that is

0 =
d

dπ
JNAIL,π(i)(π)

⃓⃓
⃓⃓
π=π(i)

=
d

dπ
DRKL(p

π(s,a)||q(s,a))

⃓⃓
⃓⃓
π=π(i)

+
d

dπ
Epπ(o)

[︂
KL
(︂
pπ(τ |o)||pπ

(i)
(τ |o)

)︂]︂ ⃓⃓
⃓⃓
π=π(i)⏞ ⏟⏟ ⏞

=0

.

Hence, π(i) is a stationary point of the KL objective, that is,

d

dπ
DRKL(p

π(s,a)||q(s,a))

⃓⃓
⃓⃓
π=π(i)

= 0.

C.5. Proof for Lemma 2

Haarnoja et al. [2018] showed that the soft Q-function for policy π and reward r can be
learned by repeatably applying the modified Bellman backup operator

T πQsoft(st,at) ≜ r(st,at) + γEst+1∼p

[︂
V soft(st+1)

]︂
(C.4)

where
V soft(s) = Ea∼π

[︂
Qsoft(s,a)− log π(a|s)

]︂
. (C.5)

We will now prove that Q̂(s,a) ≜ Qπ̃
r (s,a) + log π̃(a|s) is the soft Q-function for policy π̃

and lower bound reward rlb(s,a) = r(s,a) + log π̃(a|s), that is Q̂ = Qsoft,π̃
rlb , by showing

that it is a fixed point of the modified Bellman backup operator (Eq. C.4).
Applying the modified Bellman update to Q̂(s,a) yields

T π̃Q̂(st,at) = rlb(st,at) + γEst+1∼p,at+1∼π̃

[︂
Q̂(s,a)− log π̃(at+1|st+1)

]︂

= r(st,at) + log π̃(at|st)

+ γEst+1∼p,at+1∼π̃

[︂
Qπ̃

r (st+1,at+1) + log π̃(at+1|st+1)− log π̃(at+1|st+1)
]︂

= r(st,at) + log π̃(at|st) + γEst+1∼p,at+1∼π̃

[︁
Qπ̃

r (st+1,at+1)
]︁

= Qπ̃
r (st,at) + log π̃(at|st) = Q̂(s,a).
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C.6. Proof of Lemma 3

The first part of the proof closely follows the proof given by Haarnoja et al. [2018], which
itself closely follows the proof of the policy improvement theorem given by Sutton and
Barto [1998]. However, Haarnoja et al. [2018] only considered policies that are optimal
with respect to the I-projection-loss (Eq. 4.30), although the proof is also valid for the less
strict assumption of policy improvement, as shown below.

Based on our assumption we have for any state s

Ea∼π(a|s)

[︂
Qsoft,π(i)

rlb
(s,a)− log π(a|s)

]︂
≥Ea∼π(i)(a|s)

[︂
Qsoft,π(i)

rlb
(s,a)− log π(i)(a|s)

]︂

= V soft,π(i)

rlb
(s).

(C.6)

Based on Equation C.6 we can repeatedly apply the soft Bellman equation to bound the
soft Q-function for the old policy by the soft Q-function for the new policy, as follows:

Qsoft,π(i)

rlb
(st,at) = rlb(st,at) + γEst+1∼p

[︂
V soft(st+1)

]︂

≤ rlb(st,at) + γEst+1∼p,at+1∼π

[︂
Qsoft,π(i)

rlb
(st+1,at+1)− log π(at+1|st+1)

]︂

...

≤ Qsoft,π
rlb

(st,at).

(C.7)

We now express the lower bound objective JNAIL,π(i)(π) in terms of its Q-function Qsoft,π
rlb

and relate it to the lower bound objective of the last policy JNAIL,π(i)(π(i)) using the
inequalities C.7 and C.6, namely,

JNAIL,π(i)(π) =

∫︂

s,a

pπ(s,a)
(︂
rπ

(i)

lb (s,a)− log π(a|s)
)︂
dsda

=(1− γ)Es∼p0(s),a∼π

[︃
Qsoft,π

rπ
(i)

lb

− log π(a|s)

]︃

≥(1− γ)Es∼p0(s),a∼π

[︃
Qsoft,π(i)

rπ
(i)

lb

− log π(a|s)

]︃

≥(1− γ)Es∼p0(s),a∼π(i)

[︃
Qsoft,π(i)

rπ
(i)

lb

− log π(i)(a|s)

]︃
= JNAIL,π(i)(π(i)).
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