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Abstract

Legged locomotion has proven to be effective for robots navigating complex environments.
Incorporation of reference motion datasets into learning locomotion controllers offers benefits
in efficiency by introducing additional guidance towards desired motions. In this context, a core
challenge lies in obtaining control policies that can solve diverse high%level tasks while imitating
the reference motions, without expensive retraining for new tasks, which limits generalizability.
To address this, we introduce a trajectory optimization framework designed to distill a reference
motion dataset into a task%agnostic planner and a low%level execution policy. The planner
utilizes a Gaussian Mixture Model (GMM) to represent a distribution over multiple possible
solutions, enabling the consideration of diverse, high%level locomotion trajectories. Optimization
is performed in the latent space of a Variational Autoencoder%based general motion representation
model, which is trained on the reference dataset. We investigate both autoregressive and latent
spline trajectory%based architectures. Task objectives are incorporated via reward functions which
are applied on the decoded trajectories. We formulate the reward maximization as a Variational
Inference problem to enable distributional optimization of the GMM.
Evaluated on the Go2 quadrupedal robot, our framework demonstrates successful execution in
tasks like goal reaching and planar obstacle avoidance, including stepping%aware planning. We
validate the performance for open%loop execution (for long planning horizons) and closed%loop
Model Predictive Control (for real%time planning) in simulation and real%world experiments.



Zusammenfassung

Die Fortbewegung mit Beinen hat sich als effektiv für Roboter erwiesen, die in komplexen
Umgebungen navigieren. Das Einbeziehen von Referenzbewegungsdatensätzen in das Training
der Fortbewegungssteuerung bietet Effizienzvorteile, indem diese zusätzliche Anleitungen für
die gewünschten Bewegungen liefern. In diesem Zusammenhang besteht eine zentrale Heraus%
forderung darin, Steuerungspolicies zu erhalten, die vielfältige übergeordnete Aufgaben lösen
und gleichzeitig die Referenzbewegungen nachahmen, ohne dass für jede neue Aufgabe ein
aufwendiges, erneutes Training erforderlich ist, was die Generalisierbarkeit einschränkt.
Hierfür stellen wir ein Trajektorienoptimierungs%framework vor, das einen Referenzbewegungs%
datensatz in einen aufgabenunabhängigen Planer und eine Low%Level%Policy destilliert. Der
Planer verwendet ein Gaussian Mixture Model (GMM), um eine Verteilung über mehrere
mögliche Lösungen darzustellen. Dadurch ist es möglich, verschiedene High%Level Fortbewe%
gungstrajektoren zu berücksichtigen. Die Optimierung wird im latenten Raum eines Variational
Autoencoder (VAE) basierten allgemeinen Bewegungsrepräsentationsmodells durchgeführt, das
auf dem Referenzdatensatz trainiert wurde. Wir untersuchen sowohl autoregressive als auch
auf latenten Spline%Trajektorien basierende Architekturen. Aufgabenziele werden durch Reward%
funktionen integriert, die auf die dekodierten Trajektorien angewendet werden. Wir formulieren
die Rewardmaximierung als ein Variational Inference (VI) Problem, um eine distributionelle
Optimierung des GMM zu ermöglichen.
Evaluiert am vierbeinigen Roboter Go2, demonstriert unser Framework erfolgreiche Ausführung
bei Aufgaben wie dem Erreichen eines Zielpunkts und planarer Hindernisvermeidung, ein%
schließlich Planung unter Vermeidung unzulässiger Trittzonen. Wir validieren die Performance
sowohl für die Open%Loop%Ausführung (für lange Planungshorizonte) als auch für die Closed%
Loop Model Predictive Control (MPC) (für Echtzeitplanung) in Simulationsexperimenten und in
Experimenten am echten Roboter.
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1  Introduction

Legged locomotion for robots has proven effective for various scenarios, such as navigating com%
plex environments and performing dynamic motions. Recent research enabled learning dynamic
controllers for humanoid and quadrupedal robots based on Reinforcement Learning (RL). A
promising aspect in this field lies in the incorporation of given reference motions into the learning
process, introducing additional guidance towards desired motions and improving learning effi%
ciency. A common challenge in this context is how to reuse the given low%level references and
behaviors for learning different higher%level tasks such as navigation. The reference motions are
generally given as a dataset either coming from recorded real%world animal data, trajectory opti%
mization or from recording motions from other given locomotion policies. Here, many works focus
on fully learning%based approaches where task%specific models are learned [1–5]. For example,
in [1], an encoder%decoder%based policy is trained to imitate given reference motions. To realize
high%level tasks, the previously learned reference encoder is replaced by a task%specific module
trained to solve the given task. Similarly, in [2], a pretrained low%level motion imitation policy
for quadrupedal locomotion is instructed by a second high%level policy trained on a specific task
setting. Motion planning based on reference trajectories can also be achieved with kinematics%
based approaches, where we learn a high%level representation and/or a planning module solely
based on the data without employing RL. For example, in [3], a diffusion planning model trained
on the reference dataset, produces trajectories which are then executed by a separate low%level
policy. Note that this method requires a text%annotated dataset for training, since the planner
receives text%based instructions. Note that all these approaches generally require retraining for
new and previously unseen tasks. Here, we do not want to focus on learning specific tasks, but
instead allow for generalizability to new tasks after the training process.
To address this challenge, we present our trajectory optimization framework that allows to distill
a given motion dataset into a high%level task%agnostic planner and low%level execution policy. Our
approach allows considering multiple possible solutions during the optimization by employing
a Gaussian Mixture Model (GMM) to represent a whole distribution over possible trajectories.
The individual components of the GMM distribution can thereby focus on different regions of the
solution space. This is useful e.g. in a navigation setting where different possible trajectories exist
that lead towards a given goal and solve the task. We perform the optimization in the latent space
of a task%agnostic motion representation model which is trained on the given reference dataset.
In this work, we consider two different Variational Autoencoder (VAE) [6] based architectures for
the motion model. The former autoregressive VAE model is based on [7] and encodes trajectory
segments of a specific length with latent vectors. The latter spline VAE model considers temporal
latent space trajectories represented by splines. It incorporates a polar phase%based representation
to address the periodic nature of locomotion motions. Both motion models allow representing
locomotion trajectories of arbitrary lengths where the number of latent dimensions is proportional
to the considered time horizon.
During the optimization, different tasks are represented by reward functions within our frame%
work. Each reward acts on the absolute locomotion trajectories resulting from decoding latent
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Figure 1:  Real-world deployment of our framework. Top image: multiple time steps of closed-
loop execution for an obstacle avoidance slalom task. Bottom left: planned trajectory towards
the green goal at one time step of the slalom task, shown in the top picture. We visualize planned
feet and base trajectories. Bottom right: planned trajectories from different GMM components
for another stepping-aware planning task with long horizon and open-loop execution. Here, the
robot is supposed to not step onto the blue areas on the ground while walking from the left to a

goal on the right. The various components consider different solutions.

samples from the current GMM distribution. For example, a task reward function may encourage
trajectories to end at a specified goal location or penalize collisions with obstacles. To enable
distributional optimization, we frame the task reward maximization as Variational Inference (VI)
problem, where the total reward is considered as the target distribution. Thereby, higher rewards
correspond to regions with high density. We base the optimization of the GMM on the work of
Arenz et al. [8]. To execute planned trajectories we train a RL%based low%level policy on the
reference dataset.
For the evaluation of our approach, we consider the quadrupedal robot Go2. The reference
motion dataset is generated from a simple heading direction instructed optimal control policy.
After learning the motion representation model and low%level policy, our framework can imitate
the motions of the original heading policy but has additional planning capabilities. We consider
two different deployment configurations. First, for longer predictive planning horizons, i.e. 6s,
we execute planned trajectories open%loop. Second, for a shorter planning horizon, i.e. 2s, where
the optimization is real%time capable, we perform closed%loop Model Predictive Control (MPC).
Here, after a previously planned trajectory is executed by the low%level policy, we replan with
the new robot state as start condition. We perform evaluation experiments and demonstrate that
our framework is capable of performing different tasks, such as goal reaching and simple planar
obstacle avoidance. Additionally, we demonstrate stepping%aware planning capabilities where the
robot is not allowed to step into certain areas on the ground. We demonstrate our framework on
simple flat terrain, both in simulation and in real%world experiments, see Figure 1.
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2  Foundations

In this chapter, we describe the relevant concepts required to implement our framework. First,
we discuss RL required to learn our low%level tracking policy, see Section 2.1. In Section 2.2,
we introduce VAEs which are essential for our motion representation models. Subsequently, we
describe VI with GMMs, on which our optimization algorithm is based, in Section 2.3. Finally, we
discuss the related work in Section 2.4.

2.1  Reinforcement Learning

Reinforcement Learning (RL) is a foundational framework that enables learning behaviors
(agents) through interaction with the environment and a learning feedback signal. More specifi%
cally, the environment is defined by a Markov Decision Process (MDP), which is given by the tuple(�, �, �, �, �). The MDP defines the transition dynamics �(�′|�, �), specifying the probability of
moving from a previous state � ∈ � to a next state �′ ∈ � given action � ∈ �. The action is chosen
by the agent. The behavior of the agent is described by its policy, a distribution over actions �
in a given state �, �(�|�). To enable learning, the MDP provides a feedback signal (the reward�(�, �) : � × � → ℝ). The reward is a scalar that defines how profitable it is to be in state � and
performing the action � in that state. Additionally, the MDP defines the discount factor � which
indicates the importance of rewards received in the distant future relative to those received in the
near future. � and � denote the sets of possible states and actions in the MDP. Figure 2 shows
this agent%environment interaction process in more detail.

�� ��
��+1
��+1 ��

Agent �
Environment

Figure 2: The agent interacts with the MDP environment, by providing an action to be executed
in the current state ��. The environment then transitions to the next state ��+1 and provides the

agent with a reward ��+1 = �(��, ��). Figure adapted from Sutton et al. [9].

One rollout (“chain of interactions”) of the agent with the environment yields the trajectory� = (�0, �0, �1, �1, �1, �2, …, ��, ��, ��+1, …). We can compute the total reward, also called the
return � , of a trajectory �  as the sum of its discounted rewards.�(�) = ∑∞�=0 ����+1 (1)
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Note that �(�) corresponds to the total reward of one possible trajectory starting from � = �0. To
quantify the expected return when starting from state � considering not just one, but multiple
possible future trajectories, we use the value function � �(�) for a given policy �. This function
yields the expected return for all trajectories starting from state � when using policy � to select
actions during each rollout. � �(�) = ��∼�[�(�) | �0 = �] (2)
From the value function, we can derive the Q%function, which corresponds to the expected return
when starting from state � and taking action � in that state.��(�, �) = ��∼�[�(�) | �0 = �, �0 = �] = �(�, �) + ���′∼�(⋅|�,�)[� �(�′)] (3)
Our objective is to find a policy that maximizes the expected return � � over all possible states.
The various RL algorithms to find such a policy can be divided into two groups [10]. Value-based
algorithms focus on learning the value or Q%function. The policy is then indirectly defined via
the value or Q%function. For example, a “greedy” policy can be obtained by maximizing the Q%
value (�greedy(�) = arg max� �(�, �)). For better exploration, often the �%greedy action is chosen,
where we sample a random action with probability �, instead of the action from the purely greedy
policy . The latter policy-based algorithms directly learn the policy and may also learn a value or
Q%function.
For simpler environments with discrete states and actions, the value function, Q%function or policy
can be parameterized by a table. For example, SARSA [11] is a value%based algorithm that learns
the Q%function. It iteratively chooses an �%greedy action using the current Q%function and updates
the Q%function afterward. SARSA employs TD%learning which updates the Q%function based on
the observed transition (�, �, �, �′, �′), see Equation 4. Here, �, �′ are chosen as �%greedy actions
in � and �′. The update is scaled by �. Note that TD%learning can be defined for both the value
and Q%function. It works by bootstrapping the value of the next state �′ via the current value or
Q%function itself. This yields the TD%target, which the Q%function is updated towards.�(�, �) ← �(�, �) + �((((� + ��(�′, �′)⏟⏟⏟⏟⏟⏟⏟TD target − �(�, �))))) (4)
Note that there are also value%based methods for continuous state and/or action spaces, such as
Deep Q%learning [12].

2.1.1  Policy Gradient Methods

For our application, we focus on policy%based methods with states and actions being continuous.
Here, the policy �� is not given by a table but by a parametric function, e.g. a neural network, with
parameters �. To improve the current policy, we can take the gradient of the expected return based
on a set of collected trajectories [13], see Equation 5. The term �(�|�) refers to the probability of
trajectory �  when running policy ��.���(�) = ����∼�� [�(�)] = ��∼�� [�� log �(�|�)�(�)] (5)
This formalism allows us to define an iterative base algorithm for policy search with policy
gradients. First, we generate multiple trajectories by creating rollouts with our current policy ��,
then we compute the policy gradient via Equation 5. Finally, we improve our policy with a gradient
update using learning rate �: � ← � + ����(�).
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There are different ways to compute the return �(�) in Equation 5. Here, we focus on utilizing
an additionally learned value function, which leads to actor-critic methods. To express the policy
gradient in terms of the value function, we can make use of the advantage function ��(�, �) =��(�, �) − � �(�), which captures the advantage of taking action � in state � compared to the
current policy behavior. This yields Equation 6. Using the advantage function instead of the Q%
function directly has the advantage of reducing the variance of the gradient without introducing
an additional bias, since it subtracts a state%dependent baseline (the value function is subtracted
from the Q%function).���(�) = ��∼��[∑�=0 �� log �(��|��)���(��, ��)] where � = (�0, �0, …) (6)
In practice we often perform multiple small updates of the policy based on the same previous
rollouts. This leads to a formulation with an old policy ��old  that was used for data collection and a
new policy �� that may be different from ��old . We can account for this by adding the importance
sampling term ��(�) into the expectation of Equation 6.��(�) = ��(��|��)��old(��|��) (7)
Note that we also would have to add an importance sampling term for the shift in the state
distribution, since the states visited by rolling out the old and new policies are not the same. But
this requires knowing the state distribution of the new policy, thus we cannot directly evaluate
this adapted version of Equation 6.
To avoid this issue, algorithms like Trust Region Policy Optimization (TRPO) [14] optimize a
surrogate objective ℒCPI(�) whose gradient is an approximation of the policy gradient. This is
done under the assumption that the state distribution does not change too much, and thus the
old and new policies are similar.ℒCPI(�) = �(��,��)∼��old [��(�)���old (��, ��)] (8)
Additionally, TRPO constrains the update of the new policy by restricting the Kullback%Leibler
Divergence (KL) between ��old  and ��, to keep the similarity assumption of the new and old
policies. Instead of directly learning the advantage function, TRPO updates a value function ��
during each iteration with the dataset collected from ��old  via TD updates. The value function
is represented by a neural network with parameters �. For calculating the surrogate loss, the
advantage value ���old (��, ��) is calculated from �� and the collected transition dataset for each��, �� pair, via generalized advantage estimation.

2.1.2  Proximal Policy Optimization

Like TRPO, Proximal Policy Optimization (PPO) [15] uses a surrogate loss for the policy gradient
and generalized advantage estimation. But PPO ensures that the old and new policies stay close
by introducing a clipped version ℒCLIP(�) of the surrogate loss. This makes PPO simpler in
comparison to TRPO.ℒCLIP(�) = �(��,��)∼��old [min(��(�)���old (��, ��)), clip(��(�), 1 − �, 1 + �)���old (��, ��))] (9)
The clipping term in Equation  9 leads to the objective not improving when the importance
sampling ratio moves outside the range [1 − �, 1 + �]. This ensures stability during training by
restricting the policy update. The outer minimum operation ensures that ℒCLIP(�) is a lower
bound of ℒCPI(�).
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2.2  Variational Autoencoder

The Autoencoder (AE) is a neural network architecture that learns to encode data into a low%
dimensional latent space and then decodes it back to the original data space. The learned latent
representations can be used for other tasks such as classification of an encoded data sample. The
VAE [6] extends the AE by making it probabilistic and transforming it into a generative model
where we can sample from the latent space to generate new data samples. Here we assume that
samples �(�) for the dataset � = {�(0), …, �(�)} were generated from a hidden variable � via
the likelihood ��(�|�). Thereby the distribution of � is given by ��(�). We now want to learn this
generative distribution ��(�|�). Therefore we can estimate its parameters � by maximizing the
marginal likelihood ��(�) for our whole dataset in Equation 10. The posterior in Equation 11 is
the distribution of � given a data sample �.��(�) = ∫ ��(�|�)��(�)�� (10)��(�|�) = ��(�|�)��(�)��(�) (11)
Since the integral in Equation 10 and the posterior in Equation 11 are intractable, we use a Neural
Network (NN) ��(�|�) ≈ ��(�|�) to approximate the posterior distribution in Equation 11. Here��(�|�) corresponds to a probabilistic encoder with parameters � that maps a given data sample� to a distribution over the latent values �. The likelihood ��(�|�) is also represented by a NN with
parameters � and corresponds to a probabilistic decoder that reconstructs a given latent value� back into the original data space. To get the parameters � and �, we maximize the log of the
marginal likelihood for all samples in the dataset �, see Equation 12.log ��(�) = ∑�∈� log ��(�(�)) (12)
With our approximation of the posterior, we can rewrite the log marginal likelihood of each data
sample as the sum of the Evidence Lower Bound (ELBO) and an additional KL%divergence term in
Equation 13. Note that here � = 1 in Equation 13. The ELBO is a lower bound of the log marginal
likelihood. Since it is fully computable, in contrast to the full log marginal likelihood, we use it
to train the encoder and decoder networks and omit the additional KL term.log ��(�(�)) = ℒELBO�,� (�(�)) + �KL(��(�|�(�)) ‖ ��(�|�(�)))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟≥0ℒELBO�,� (�(�)) = ��∼��(⋅|�(�))[log ��(�(�)|�)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟−�recon�,� (�(�)) − ��KL(��(�|�(�)) ‖ ��(�))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟�KL�,�(�(�)) (13)
The objective ℒELBO�,� (�(�)) that we want to maximize can be interpreted as two conflicting tasks.
The first term tries to reconstruct the original data sample as well as possible, while the second KL
term tries to keep the distribution of � as close as possible to the prior. To better tune this trade%
off, we can consider the hyperparameter � that weights the KL term �KL�,�(�(�)) in Equation 13
[16, 17]. A higher � value leads to a smoother latent space and better disentanglement of the
latent variables, while a lower � value leads to better reconstructions.
To calculate the gradient of the objective, the reparametrization trick [6] is applied for sampling
from ��(�|�). Thereby we just sample � from a standard normal distribution and then shift and
scale the sampled value by the output of the encoder network. Commonly, just one � sample from
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�
� �� Encoder��(�|�) scale

shift

� ∼ �(0, �)
Decoder��(�|�) �̂

Prior �(�) �KL�,� �recon�,�
Figure 3: During training of the VAE we encode a data sample � and obtain � and � of ��(�|�).
We then indirectly sample from this distribution and pass the sampled � through the decoder.

��(�|�(�)) per data point is used to estimate the expectation in Equation 13, which showed to
be sufficient when batch size is large enough [6]. The final loss function used in training is the
average of −ℒELBO�,�  for all samples in a batch of the full dataset. Note that we want to maximize
the ELBO and thus minimize −ℒELBO�,� .
In practice, the prior ��(�) is often chosen to be a standard normal distribution �(0, �) with
mean 0 and identity covariance matrix. Thus, the prior does not have any parameters and can be
expressed as �(�). The encoder outputs a Gaussian distribution with mean ���(�) and standard
deviation ���(�). Here, the KL%divergence term in Equation 13 is simplified in Equation 14.�KL�,�(�(�)) = −12 ∑���=1(1 + log((���(�(�))�)2) − (���(�(�))�)2 − (���(�(�))�)2) (14)
For continuous data (� ∈ ℝ�) the decoder output distribution is often chosen to be a Gaussian,
where the decoder NN output determines the mean, and the covariance is set to be a fixed identity
matrix. In this case, the gradient of the reconstruction loss does not depend on the fixed covariance
Gaussian parameters and thus can be simplified to the mean squared error¹ �̂recon�,� (�(�)) between
the data sample and the mean decoder output ���(�(�)|�), see Equation 15. Note that the � value
is computed by taking a single sample from the encoder output given �(�). An overview of the VAE
architecture is shown in Figure 3.�recon�,� (�(�)) ∝ �̂recon�,� (�(�)) = 1� ∑��=1 (�(�)� − ���(�(�)|�))2 if ��(�|�) = �(���(�|�), �) (15)
2.2.1  Variational Autoencoders for Trajectory Representations

To learn trajectory representations of walking motions for legged robots from a given dataset,
various approaches have been explored, see Section 2.4.0.1. One way to approach this problem is
by framing it as an autoregressive prediction task, where we want to learn a model that predicts
possible future trajectories given the current pose or state. To capture the variety of possible
future trajectory continuations, Ling et al. [7] employ a VAE where the latent space distribution

¹In practice, we perform one update over multiple data samples in one batch, where we average over the batch,
so that the loss is not affected by the batch size.
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represents this variety. Their MotionVAE uses the current pose as a condition to ensure that
predicted future poses, produced by the decoder, fit to the current given pose. In this conditional
VAE architecture, both the encoder and decoder are provided with an additional context or
condition input �. Here, � consists of the current pose ��. MotionVAE then encodes and decodes
the next pose �̂�+1. After training, we can use the decoder to get possible next poses by passing it
the current pose and sampling a latent � from the normally%distributed latent space prior.
Ling et al. consider a 17 minute long humanoid locomotion dataset consisting of different motion
types like running, walking, or turning. The data is recorded with a frame rate of 30Hz where
each frame represents one pose including link positions of all legs, feet, arms, head, and torso.
The dataset is then converted into the VAE input/output format where the absolute hip pose is
projected onto the ground to obtain the root frame xy%position and z%angle. The root pose is then
converted to its linear and angular velocities. The link positions are represented by their relative
position and orientation in this root frame. The authors highlight the importance of tuning the
KL weight � of the VAE loss, see Equation 13, to balance between generalization capabilities and
the reconstruction quality. The autoregressive nature of the method causes the prediction error
to accumulate for multiple preceding next pose predictions. This leads to the model drifting away
from the dataset distribution which yields infeasible poses. To prevent this, Ling et al. employ
scheduled sampling where instead of providing the current pose �� from the dataset as the model
context input, the corresponding output prediction pose �̂� produced by passing �̂�−1 or ��−1
through the VAE, is chosen with the probability ��̂� . The probability ��̂�  is thereby increased over
time during the training process.
The learned MotionVAE can then be utilized to perform higher%level tasks, such as following a
path or walking to a goal. In this scenario, we want to find a latent � for producing the next pose,
given the current pose, while fulfilling the task objective. We then repeat this while using the
decoder output as the new current pose. Consequently, the decoder acts as a simulator that is
provided with an action, the latent �, to execute. Ling et al. provide two different approaches for
retrieving the latent �. 1) With sampling%based control, autoregressive rollouts of 4 future steps
are performed with the decoder by sampling latent values from the prior for each time step. From
200 of these rollouts the best one is chosen and the first latent value of this rollout is selected as
action. Note that this approach only works for simpler tasks, like walking to a goal, and it is only
able to plan 133 milliseconds into the future. 2) Alternatively, an RL policy can be trained that
outputs a latent value as action. The learned policy is able to solve more complex tasks such as
path following or navigating through a maze.
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2.3  Variational Inference with Gaussian Mixture Models

We consider a Variational Inference (VI) problem where we want to approximate a target distri%
bution �(�) = �̃(�)�  where �̃(�) can be evaluated for different values of �. Here the normalization
constant � is not available. Generally this problem can be approached by optimizing a parametric
distribution ��(�) to approximate �(�). Therefore, the KL between the two distributions is mini%
mized by maximizing the ELBO. An appealing choice of ��(�) are GMMs. GMMs are efficient to
evaluate and allow approximation of arbitrary target distributions given a large enough number
of components. A GMM is a sum of weighted Gaussians, see Equation 16, where the parameters� = (��, ��, ��) consist of the weights, mean and covariance values for all Gaussian components��. ��(�) = ∑���=1 ��(�)��(�|�)where��(�) = �����(�|�) = �(� | ��� , ���)

(16)
Note, that initially we do not know the areas where �(�) has a high density, which implies that
some form of exploration or search is required for discovering these regions. Thus, a trade%off
between exploration, i.e. searching for new high density regions, and exploitation, where we
focus on improving the approximation of high density areas that were already discovered, has to
be taken into account while optimizing ��(�).
To do VI with GMMs, Arenz et al. [8] provide a general and flexible framework (GMMVI)
that allows to address the exploration%exploitation trade%off via trust%region updates. GMMVI
approximates the target distribution by performing multiple iterations of updating ��(�). Arenz
et al. provide many different variations of their algorithm. Here we only focus on the variant also
used in [18] (SAMTRUX) with two applied changes: We only use a fixed number of Gaussian
components and do not employ a sample database, which results in the “SEPTRUX” configuration.
These changes are further explained in Section 3.4. To describe the proposed algorithm we first
derive the ELBO objective for �� in Equation 17. Here we can see that minimizing the KL between
our approximation and the target distribution, is equivalent to maximizing the ELBO. Arenz et
al. emphasize that this objective can be reinterpreted as maximizing the reward �(�) = log(�̃(�))
under an additional entropy objective �(�) [8, 19]. Here �(�) = − ∫� ��(�) log ��(�)�� encour%
ages high entropy of our approximation ��.arg max� −�KL(�� ‖ �) = arg max� − ∫� ��(�) log(��(�)�̃(�) )��⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ELBO − log �

=(²) arg max� ∫� ��(�)�(�)�� + �(�)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟�(�)
(17)

²use − log �log � = log � − log �
9



A key aspect of GMMVI are independent GMM component updates to enable efficient computa%
tion. In Equation 18, where ��(�) is substituted by the GMM in the objective �(�), we can already
see that the component updates are independent³ for the first integral term.�(�) = ∑���=1 ��(�) ∫� ��(�|�)�(�)�� + �(�) (18)
The entropy term �(�) in �(�) prevents component%independent updates since it relies on the
responsibilities ��(�|�) that represent the probability of a component belonging to a data sample�, see Equation 19. �(�) = − ∑���=1 ��(�) ∫� ��(�|�) log(��(�)��(�|�)��(�|�) )�� (19)
To address this issue, Arenz et al. derive a lower bound �̃ (�) for the objective �(�̃�, �), see
Equation 20. Here an auxiliary distribution ̃��(�|�) is introduced which approximates ��(�|�). We
can directly see that �(�̃�, �) is a lower bound, since the KL term in the second row is always ≥0. The bound gets tighter when �̃�(�|�) more closely matches ��(�|�). When �̃�(�|�) = ��(�|�),
the bound is tight and �̃ (�̃�, �) will be equal to �(�).�̃ (�̃�, �) = ∑���=1 ��(�)[∫� ��(�|�)(�(�) + log �̃�(�|�))�� + �(��(�|�))] + �(��(�))= �(�) − ∫� ��(�)�KL(��(�|�) ‖ �̃�(�|�))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟≥0 �� (20)
GMMVI employs �̃ (�̃�, �) to update the individual components and component weights in two
separate steps. During both steps, the auxiliary distribution is set to the fixed value of the current
GMM (�̃�(�|�) ← ��(�|�)) First, �̃ (�̃�, �) is maximized w.r.t. the parameters ��� , ���  of each
component. This can be done by maximizing the expression in the square brackets in Equation 20
separately for each component, since only this term depends on the individual Gaussians ��(�|�).
Second, the component weights are updated by maximizing �̃ (�̃�, �) w.r.t ��(�), thereby ��(�|�)
is considered fixed to the parameters of the previous update step. During both update steps, the
trust%region update is implemented by employing the natural gradient which directly reflects how
much the GMM distribution changes by a gradient update.
The main algorithm works by iteratively sampling multiple � from the current GMM and subse%
quently updating the GMM parameters � based on the log �̃(�) values of the samples. In the
beginning, the GMM parameters are randomly initialized based on a given prior distribution.
For the version that we consider for this work, a fixed number of samples is drawn from each
component to retrieve �. The following update of the GMM, shown in Algorithm 1, utilizes the
density/reward value log �̃(�) of the samples. Also, the gradient of ��� log �̃(�) is provided to the
update algorithm. In Algorithm 1, we first update the history of reward values for the components
in the algorithm state � which is required for the next sub%step. Then we determine the update
sizes for all the components based on the reward history. If the last update improved the reward
of a component, its step size is increased, otherwise decreased (Line 2). Note that here the
update step size is interpreted as the trust region size of the following update of ��, �� for each
component.

³The gradient of first term of the objective �̃ (�) can be computed independently for each component due to the
outer sum operation.
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To realize the trust%region update, we have to project⁴ the raw gradient⁵ ��� log �̃(�) to the
required changes of the parameters of each Gaussian component via the natural gradient. The
natural gradient is a good choice for this, since it directly incorporates how the distribution of
each component changes by the gradient update. Therefore natural gradient of each component
is computed by Monte%Carlo estimate over all samples. To incorporate samples from different
components, importance sampling is applied. The Hessian �2���� log �̃(�) required for this compu%
tation is thereby approximated only via the values of � and ��� log �̃ [20].

Algorithm 1: GMM update

Input: current GMM params �, samples �, log �̃(�), ��� log �̃(�), algorithm state �
1 � ← updateSampleHist(�, log �̃(�))
2 �compStepsizes ← updateComponentsStepsizes(�compStepsizes, �)
3 ng ← naturalGradient(�, log �̃(�), ��� log �̃(�), �)
4 ��, ��, � ← trustRegionComponentsUpdate(ng, �, �compStepsizes, �)
5 �� ← weightsUpdate(�, log �̃(�), �)

return �, �
Finally, the update to the parameters of each component is performed in Line 4. Therefore,
GMMVI performs a search over possible step sizes for the actual natural gradient update, such
that the KL between distribution of the old and new component is below the previously computed
bound �compStepsizes. This search also ensures that the new covariance matrix, which results from
the update, is valid⁶. To improve efficiency, the step size search is warm%started using the search
range bounds from the previous iteration, which is stored in �. The search range bounds are
updated afterward based on the actual best found step size and the previous bound values. In
the final step of the iteration, in Line 5, the weights of all components are updated also based on
computing the natural gradient. Here, the natural gradient is also computed via a Monte%Carlo
estimate over all samples with importance sampling.

⁴More specifically, we compute the natural gradient of �̃ (�̃�, �) w.r.t. the component parameters.
⁵The gradient ��� log �̃(�) indicates how each sample has to move in order to improve the reward.
⁶�� needs to be positive definite.
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2.4  Related Work

The problem of motion generation for robots based on given reference datasets has been the
subject of many works in the literature. This methodology is appealing because it enables incorpo%
ration of prior knowledge, in the form of reference motions, into motion planning and robot policy
learning. We can split existing works into two broader categories, kinematics% and physics%based
approaches. 1) The former primarily originates from the field of computer animation and focuses
on directly learning motion representation and/or generation models solely on the given data.
Generally supervised learning is employed in this category. For usage in computer animations, the
produced motions can be directly played back. However, to execute planned motions on a robot,
generally a separate policy is required that maps target poses to actions. 2) In contrast, physics%
based approaches directly require interaction with the environment, e.g. the robot or character
physics simulator, to generate motions. In these methods, there is no direct separation between a
motion generation model and the execution policy. Here, typically RL with some form of imitation
objective in the reward function is used.

Kinematics-Based Motion Models

For kinematics%based approaches, we first look at fully supervised learning with direct incorpo%
ration of commands or labels [21–23]. For example, [21] learns a next pose prediction model for
quadrupedal locomotion where a target velocity command is passed as an additional condition
input. In contrast, model%then%control methods first learn a motion representation independent of
task%specific conditioning. Afterward, a separate task%specific module utilizes the representations
of the previously learned motion model. For example, MotionVAE [7], that we already discussed
in Section  2.2.1, first learns a continuous latent representation for next pose prediction and
subsequently utilizes RL to learn a task%specific upper%level policy acting on this latent space.
Also, discrete latent space representations can be employed such as in [24], where an action%
label conditioned next latent prediction model acts on a previously trained Vector%Quantized
Variational Autoencoder (VQ%VAE).
The periodicity often found in legged locomotion can be exploited for more expressive latent
representations [4, 25–29]. DeepPhase [25] encodes character motions as time sub%slices by an
AE. Thereby each time sub%slice maps into a continuous temporal latent trajectory that is then
fitted to a sinusoidal representation consisting of amplitude, frequency, phase per time step and
offset. During training the decoder receives the temporal reconstruction of latent values obtained
from the fitted sinusoidals. This way, the encoder is encouraged to align its latent values with
the periodic representation by exploiting periodic motion patterns in the dataset. By learning
an additional model that predicts the parameters of the sinusoidal representation for the next
time step given current phase values and user commands, new motions can be generated. An
extension of DeepPhase, which ensures consistent sinusoidal parameters over time via enforced
latent dynamics, has been successfully applied to humanoid robots in simulation [27]. Thereby
an additional execution policy is learned with RL that receives the latent sinusoidal parameters
as command. This approach has also been applied to execute quadrupedal dance motions on a
real robot in [28]. A different approach from Mitchel et al. [29] focuses on a VAE architecture
that outputs possible future trajectories given a past trajectory. By adding a separate contact state
decoder that outputs future contact predictions, the VAE learns to separate contact states in the
two most dominant latent dimensions, leading to a periodic temporal structure in these latent
dimensions. This allows to produce controllable walking motions by overwriting the latent value of
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the most dominant latent dimension, that has the lowest variance output from the encoder, with a
periodic driving signal. In their follow%up work, Gaitor [4], the authors learn an additional latent
space planner that acts on a polar projection of the two most dominant latent values. Thereby the
user specifies the gait speed by a polar phase angular velocity value which is integrated over time
to get the phase value. The planner outputs the polar radius given the current phase value to adapt
the stepping behavior to the currently given terrain. The phase and radius are transformed from
the polar to the Cartesian representation, which overwrites the two main latent values. The other
latent values come from encoding the past state trajectory. For execution on a real quadrupedal
robot, the decoded trajectory is forwarded to a Whole Body Controller (WBC) in a MPC manner.
In some more recent works, diffusion models are employed instead of AE%based architectures.
For example in [3], a diffusion model is trained that predicts a future kinematic trajectory given
past states and text%based instructions. The first predictions are then executed with a separately
learned RL policy in a closed%loop setup.
Note that our work also falls into this category since we use a kinematics%based planner that acts
on a representation model that was solely trained on a reference dataset. Like [3, 4] we also
employ a separately learned RL policy to execute planned motions.

Physics-Based Imitation Policies

One of the most elementary ways to learn an imitation policy end%to%end, is to incorporate a
reward term for following the joint values of the current reference motion time step. For example,
DeepMimic [30] allows learning imitation policies that simultaneously follow additional tasks.
Here an imitation reward, which encourages following the reference pose and joint values, is
combined with additional task rewards, such as following a target velocity. DeepMimic is also
applied to real quadrupedal robots in [31]. Similar, [5] learns imitation policies for a bipedal
robot for different motion types, such as running and walking, while simultaneously following
other task objectives. Here, the policy receives the next target imitation joint positions for a
future horizon directly as input. More complex imitation rewards such as Adversarial Motion
Priors [32, 33] can be employed to focus on just imitating the style of the reference and not the
exact motions. Thereby, during learning, the policy tries to fool a discriminator, that itself tries to
differentiate between state transitions coming from the policy and transitions coming from the
reference dataset.
Similar to the kinematics%based approach, we can also utilize latent representation models for
learning polices. For example, [1], distills a VAE%based policy from previously learned imitation
policies. The VAE is conditioned on the current state and encodes the next imitation target pose
to a latent value. The decoder maps this latent value and given state condition to an action. This
allows to subsequently replace the encoder with a higher%level task%specific policy. [2] takes a very
similar approach, except it uses a discrete latent space via a VQ%VAE instead of a continuous one.
[2] also focuses on directly learning the VAE%based policy instead of distillation. [34] can be seen
as a hybrid approach, where a kinematic VAE is initially learned to represent reference motion
poses. However, only the encoder is employed to convert the current robot state to a latent value
which is used as an input by a subsequently learned policy. Therefore, the policy is represented
by an action decoder.
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3  Methodology

In this chapter, we present our approach for task%adaptive imitation locomotion planning. Based
on a locomotion reference dataset, we derive a planner suitable for different scenarios such as
obstacle avoidance, goal reaching or command velocity following. In an initial pre%training phase,
we first generate the reference trajectory locomotion dataset for a specified type of robot, see
Section 3.1. To later execute planned trajectories, an RL low%level execution policy is trained
based on the dataset, see Section 3.3. Our planning algorithm requires a compact representation
of locomotion trajectories, thus we train a latent representation model. For this representation
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Figure 4:  For our approach, we first train a latent trajectory model and a low-level execution policy
based on a previously generated dataset. During deployment, we iteratively optimize a GMM to
produce a reference trajectory that fulfills the given tasks. This reference is then executed with

the low-level policy.
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model, we provide two different versions, both based on the VAE architecture, see Section 3.2.
Finally, we introduce our GMM%based planning algorithm which iteratively optimizes a distrib%
ution over latent values, see Section 3.4. This optimization process involves sampling from the
current GMM distribution and decoding the latent values to their respective trajectories, using the
pretrained latent trajectory model. Subsequently, given task definitions, each provides a reward
value � for the decoded trajectories, which we use to update the GMM. After multiple iterations,
the best sample from the current distribution is chosen and passed as decoded reference trajectory
to the low%level policy. The policy then executes the reference. We provide an overview of our
approach in Figure 4.

3.1  Locomotion Reference Dataset Generation

To apply our approach to a robot, we consider the quadruped Go2 from Unitree Robotics,
where each of its four legs has 3 joints (hip, thigh, calf). For recording reference motions of the
quadruped walking, we employ the MPC%based approach of Stark et al. [35].
Stark et al. implement a framework of 4 hierarchical stages that generate walking motions based
on a given command. This command consists of the target base xy%velocity and z%height, the
target base angular z%velocity and absolute xy%angles. 1) First, a Gait Sequencer computes a future
contact sequence (including contact foot positions), target base pose and velocities for a horizon
of 20 steps at 100Hz. 2) Based on a simplified Single Rigid Body Dynamics (SRBD) model,
the subsequent MPC planner then computes the required contact forces based on the desired
trajectory of the gait sequencer. This task is formulated as Quadratic Programming (QP) problem
where the system dynamics are linearized around the current state. 3) For planned foot flight
phases, the Swing Leg Controller computes leg swing trajectories. 4) The resulting planned foot
force sequences and swing trajectories are then tracked with a WBC that itself is also formulated
as QP problem.
To collect one reference trajectory, we execute the planner of Stark et al. for 15s in simulation
using the Drake simulator [36]. We employ a dynamic Gait Sequencer version from [35] with a
trot gait type where the contact timings are automatically adjusted to the base velocity. We record
the absolute base position �base and rotation �base, absolute feet positions �feet, joint values � and
foot contact states �. For capturing different motion types and the transitions between them, e.g.
switching from a right to a left turn, we randomly vary the planner input command multiple
times during the recording of a reference. Therefore, the target base xy%velocity, base angular z%
velocity and base z%height are sampled uniformly from a predefined range. To ensure smooth
transitions, we linearly interpolate between the new and the previous command. To randomize
the time of new commands, at each time step of the command loop⁷, a new command is sampled
with the probability �newcmd and the old command is kept with the probability 1 − �newcmd. During
a waiting phase after applying a new command, no new command is sampled to avoid abrupt
changes. All the parameters used for the generation are listed in Table A.1. In total, we record1000 trajectories.
For matching the control frequency of our low%level policy, we resample the recorded trajectories
at 50Hz. We additionally filter out trajectories where the base of the robot makes an abrupt falling
motion due to non%optimal foot positions produced by the planner. This yields a final number of906 trajectories in the dataset.

⁷The command loop runs at 10Hz.
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3.2  Learned Gait Trajectory Representations

Given the reference datasets obtained in Section 3.1, we can learn general representations for
gait trajectories. These representations are not task%specific and therefore allow for potential
usage across different tasks. To learn the gait representations, we focus on autoencoder%based
approaches that represent trajectory segments via latent values �. We use two different methods
to achieve this. The former, Latent Spline VAE (Section 3.2.3), focuses on capturing the changes
of a trajectory over time via latent space trajectories. It offers a compact representation for trajec%
tories. The latter, Autoregressive VAE (Section 3.2.2), predicts possible completions of a trajectory
given a current state.

3.2.1  Relative Trajectory Representation

Before training our trajectory models, we convert the dataset to the correct input/output format
used by the VAEs. Similar to MotionVAE [7], we represent the base%frame of the robot by its
linear xy ( ̇�baserel,��) velocities and angular z%velocity (�̇base,�). The linear velocities refer to the
planar movement of the base%frame while (�̇base,�) encodes the rotation around the vertical z%
axis. Thereby ̇�baserel,�� is expressed in the z%rotated base frame where its z%axis is aligned with
the global z%axis. Additionally, �base,� and �base,�� describe the absolute z%height and absolute xy
Euler angles of the base. Note that here �̇base,� is the derivative of �base,� and thus refers to the
Euler angle change rate. The foot positions are expressed relative to the base frame xy%position
and z%rotation. See Equation 21 for the conversion process from an absolute foot position �foot,�
to the relative one �footrel,�. Here ��(�base,�) is the rotation matrix that only rotates around the
z%axis from the base frame to the global frame. Summing up, our final relative reference trajec%
tory representation for one time step consists of � = ( ̇�baserel,��, �base,�, �base,��, �̇base,�, �footrel, �)
where � additionally refers to the contact state of each foot.�footrel,� = ��� (�base,�)(�foot,� − (�base,��0 )) (21)
In general, when we want to reconstruct the original absolute trajectory format �abs from
the relative representation model output, the previously described conversion can be inverted.
Therefore, an additional start base xy%position �base,�� and start base z%rotation �base,� have to be
provided for the required integration over time of the xy%position and z%angle.

3.2.2  Autoregressive VAE

We base our autoregressive latent trajectory model on the work of Ling et al. [7], discussed in
Section 2.2.1, where a conditional VAE encodes possible next states into the latent space given a
previous state as context. In contrast to Ling et al., we not only represent the next state, but the
next � = 20 states with a single latent value, which corresponds to a duration of 0.4s with our
quadruped dataset sampled at 50Hz. This is necessary to allow for planning of longer trajectories.
To improve consistency with the given previous trajectory state, we extend the context length�ctx to two time steps. Furthermore, for the context, the VAE trajectory format � is extended with
additional velocity terms for the base z%height ̇�base,� and foot link positions ̇�footrel yielding ̄� =(�, ̇�base,�, ̇�footrel). We can convert from � to ̄� by calculating the additional velocities with finite
differences. For the NN architecture of the encoder we choose a Multilayer Perceptron (MLP) with

16



4 hidden layers, where the size of the hidden neurons decreases from the input to the output.
The decoder is mainly a mirrored version of the encoder. For more details on the layer structure,
see Figure A.1.
It is crucial to push the VAE into using the given context instead of just encoding the whole
trajectory into �, while still ensuring high variability of the decoder output. This is achieved in
two ways. First, we pass the context �ctx not only to the first, but all hidden layers except the last
one, which is similar to [7]. Second, the final decoder output is parameterized as a delta value
relative to the last context time step. This way the decoder has to take the context into account
to produce a matching trajectory reconstruction. To still ensure variety of the decoded output, �
is passed to all hidden layers and the final output layer.

Training

For the training process, we first apply z%score normalization to the dataset as in [7], which
converts the values in the range [� − �, � + �] to the range of [−1, 1], where �, � are the mean and
standard deviation of a Gaussian fitted to each dimension of the dataset. The training procedure
itself applies the scheduled sampling from [7]. Thereby, for each batch element, we take a time%slice(�start, …, �start + �ctx + (� − �ctx) ⋅ �rollouts) from the dataset. This slice then expands to �rollouts
sub%slices, where each is shifted by �  time steps, resulting in temporally sliding over the time%
slice. Note that the last �ctx time steps of the previous sub%slice overlaps with the first �ctx time
steps of the next sub%slice. Before each sub%slice is passed through the VAE, it is split into � and�ctx, see Figure 5. We sequentially process the sub%slices, which allows for randomly replacing the
real context �ctx from the dataset with the end of the previous decoder reconstruction output. This
way the VAE is able to learn handling accumulated errors in the reconstruction output, which is
relevant for the later optimization process that utilizes autoregressive reconstruction over multiple
latent steps. The previous decoder output �̂ first needs to be converted to the context format ̂̄� by
inferring the missing velocity values, see Figure 5. For switching between the real context from
the dataset and the autoregressive context from the last decoder output we uniformly sample from
a Bernoulli distribution where �ctx,autoreg denotes the probability of using the context from the last
decoder output. Throughout the training epochs, �ctx,autoreg follows a 3 phase schedule, like in [7],
where in the first phase �ctx,autoreg = 0. In the second phase we linearly increase �ctx,autoreg from0 to 1. In the last phase �ctx,autoreg is constantly 1, which leads to training with full �rollouts%step
autoregressive predictions.

}}}}} �ctx,�}}}}}
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Figure 5:  Training of the autoregressive conditional VAE. We randomly choose the VAE context
either as the true value from the dataset or as the end of the previous decoder output.
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For the loss, we employ Equation  13 where the prior is determined by a standard normal
distribution. This leads to Equation 14 being used for the KL loss term. For the reconstruction
loss, we use �̂recon�,�  in Equation 15 for all but the contact values. The foot contact output of the
decoder represents a binary distribution given one logit �̂lg,contact,� for each foot � ∈ {1, …, �feet}
and time step. Note that the contact probability for the decoder output corresponds to �̂contact,� =�sig(�̂lg,contact,�), where �sig(�) is the sigmoid function. To calculate the reconstruction error for
the contact per time step, we use the binary cross entropy loss, see Equation 22.�̂recon,contact�,� (�, �̂) = − 1� ∑�feet�=1[�� log(�sig(�̂lg,contact,�)) + (1 − ��) log(1 − �sig(�̂lg,contact,�))] (22)
In the final loss ℒvae,autoreg that we want to minimize, we take the mean over the time steps for
the reconstruction terms. The contact loss term is weighted with the hyperparameter �contact. For
one update, ℒvae,autoreg is computed for one sub%slice for each batch element, then we take the
gradient of the mean of ℒvae,autoreg over all batch elements and sub%slices.ℒvae,autoreg = 1� ∑�−1�=0 [�̂recon�,� (��, �̂�) + �contact�recon,contact�,� (��, �̂�)] + ��KL�,�(��, ��) (23)
The model is trained by the Adam optimizer with linear decreasing learning rate over the epochs.
As stated in [7], it is important to tune the VAE � hyperparameter for finding a good trade%off
between decoded output variety and reconstruction quality. For the parameters used in training
the model with the quadruped dataset, see Table A.2.

Inference

During deployment, we can generate longer trajectories by first sampling multiple latent values
from the prior. We start with a given context and decode the first latent value. Afterward, we use
the end of the last decoder output as new context for the next latent value for all remaining latent
values. All resulting decoded sub%trajectories are then concatenated.

3.2.3  Latent Spline VAE

Our latent spline VAE model is motivated by other works [4, 25] that employ periodic temporal
latent space trajectories for encoding reference motions. In particular, we incorporate the split
decoder structure from Gaitor [4] which separately decodes poses and contact states. This
encourages the model to learn a latent space that separates contact states. Our VAE maps �  time
steps of a sub%slice of a reference trajectory to one latent value �� with �� dimensions. To encode
the one whole reference trajectory, we temporally slide over the reference, shifting by one time
step at a time, which produces a latent space trajectory �� = (��=0, …, ��=��) over �� time steps.
We want to encourage our model to learn expressive higher%level features in the latent space that
smoothly change over time, such as the gait phase, current walking direction or walking velocity.
At the same time, a longer latent space trajectory should be representable with a limited number
of parameters to allow for trajectory optimization based on these parameters, which we show
in Section 3.4. To address both of these requirements, we assume that each dimension of �� is
representable by splines. Splines can be defined by multiple knot points and they ensure temporal
smoothness. In order to enable representability of periodic patterns in the latent space with higher
frequencies without increasing the number of knot points, we parameterize two latent dimensions
as polar coordinates. Thereby the spline trajectories of these two dimensions correspond to the
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phase velocity and radius over time. Our spline parameterization thereby provides a reversible
mapping from the encoder output latent trajectory �� to spline parameters ��� .

Spline Latent Trajectory Representation

For this spline ↔ latent trajectory mapping we define a B%spline basis matrix � ∈ ℝ��×�basis  where�basis is the number of spline basis functions. Each column of � represents the basis for one spline
which is a polynomial curve of degree 3 (cubic spline). Thereby each polynomial spline only has
local support in the sense that it only influences a local region. Since each parameter in ���  scales
one basis spline, the same local%only influence holds for the spline parameters. The spline basis
columns of � are calculated via the Cox%de Boor recursion formula where we add two additional
knot points for clamped boundary conditions, see Figure 6.

0 100 200 300 400 500 600 700
0

1

Figure 6:  Spline basis functions for a 15s latent trajectory with 20 knot points (22 with boundary
conditions) resulting in 22 basis functions in �. The x-axis denotes the time step at 50Hz.

Given spline parameters, we can reconstruct the latent space trajectory of the non%polar dimen%
sions (��,cart = ��,(2,…,�−1)) via Equation 24.��,cart = �((((( |���,cart,2| … |���,cart,�−1| ))))) (24)
The other way around, we can obtain spline parameters for a given latent trajectory by applying
ridge regression. A least squares fit is performed while regularizing the squared norm of the
spline parameters. Here, a higher value of the hyperparameter �reg encourages smaller spline
coefficients, which leads to a higher smoothness of the fitted trajectory and improves numerical
stability. At the same time, a larger �reg increases the fitting error. Solving Equation 25 for each
dimension of the latent trajectory yields the spline parameters.���,cart,� = (�� � + �reg�)−1�� ��,cart,� (25)
To handle the first two dimensions of the latent trajectory, which are parameterized in polar
coordinates, we define one mapping from the Cartesian to the polar space ��→� : ℝ2 → ℝ2 and
one reverse mapping ��→� : ℝ2 → ℝ2 in Equation 26. Here the unwrap operation ensures that
there are no jumps between � and −� for the phase value. Note that we parameterize the radius in
log space with a predefined minimal radius �min. This prevents the latent trajectory from passing
through the polar center causing jumps in the phase value which would not be representable
by splines. ��,pol = ��→�(��,(0,1)) = ((( unwrap(arctan2(��,1, ��,0))log[max(0, ‖��,(0,1)‖2 − �min)])))��→�(��,pol) = (sin(��,pol,0) ⋅ (exp(��,pol,1) + �min)cos(��,pol,0) ⋅ (exp(��,pol,1) + �min)) (26)
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We found that for the trajectory optimization with our learned model it is beneficial to optimize
the phase velocity instead of the phase value directly. Thus, the spline trajectory encodes the phase
velocity �̇ph that we obtain by finite differences of the phase �ph. To be able to fully reconstruct
the polar dimensions we additionally add the phase start value �phstart to our spline representation
parameters. The final pipeline for obtaining the polar spline parameters first applies ��→� to the
latent trajectory. Then we calculate the phase velocity and fit the spline representation to the
phase velocity and radius, analog to Equation 25.
For the reconstruction of the temporal latent trajectory �̂�,(0,1) from the spline parameters, we
first integrate the spline for the phase velocity and add the phase start value to obtain the phase
trajectory. Then we apply ��→� to obtain the Cartesian representation of the first two latent
dimensions. Figure 7 summarizes the whole spline fitting and �̂� reconstruction procedure.
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��,��−1…��,2��,1��,0
spline fit spline recon.���,cart���,pol�phstart��→�

1��
spline fit ��→�

∫
spline recon.

�̂�,��−1…̂��,2�̂�,1�̂�,0
Figure 7:  Fitting latent trajectory �� to spline parameters (left side) and vice versa (right side).

VAE Architecture and Training

The architecture of the VAE itself is similar to our autoregressive VAE model. We use a 3 hidden
layer MLP with shrinking layer sizes towards the output for the encoder. The decoder is again
mainly a mirrored version of the encoder. Note that here we have two decoders, one for the contact
states and one for all other trajectory entities. Both decoders have the same architecture. For the
full layer structure see Figure A.2. We use a Gaussian prior with diagonal covariance matrix for
the latent space prior. The main loss terms are equivalent to ℒvae,autoreg from Section 3.2.2. Note
that we only employ the relative trajectory representation �, described in Section 3.2.1, since our
VAE has no additional context input. The dataset is normalized to the range [−1, 1] by min%max
scaling.
It is important to align the latent space with our spline%based representation, thus we include
an additional reconstruction loss utilizing the spline representation during training. The training
procedure works as follows. For each element in a batch, we sample a time slice from one random
reference trajectory from our dataset. The length �stepstrain of this slice is fixed while the start
time step is also random. Now we temporally slide over this slice, encoding �  time steps at a
time to one mean and variance value for the latent ��. Here �� represents the encoded time steps(�, …, � + � − 1) of the slice. Concatenating the mean latent values yields the latent trajectory�� for the batch element reference trajectory slice. Subsequently, �� is fitted to the parameters
of our spline representation (���,cart, ���,pol, �phstart), and reconstructed to the latent trajectory�̂� as shown in Figure 7. For the VAE reconstruction loss terms for each latent time step value,
we now have two paths through the decoder. The first path stems from the normal VAE loss
where we sample the latent from the encoder output distribution. The second path takes the
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latent time step value from �̂� and passes it through the decoder. Thus, our total loss is equivalent
to ℒvae,autoreg with an added second reconstruction loss term for the latent values from �̂�. This
second reconstruction term is scaled by �recon,spline. Note that here we just take the sum over
the dimensions of the reference trajectory and latent in the KL and reconstruction loss terms. In
summary, for one update we calculate the loss value for each latent time step with the KL loss
and both reconstruction loss terms. Subsequently, we take the mean over all latent time steps
and batch elements to get the final loss value. All parameters used for training on the quadruped
dataset are shown in Table A.3.

Inference

For inference, we can obtain a latent trajectory from encoding a given reference trajectory or
by employing our spline representation. Given the latent trajectory we reconstruct it to the full
reference trajectory �̂full by decoding each latent ��. This yields multiple overlapping decoder
outputs, where each overlaps by � − 1 time steps. The simplest way to reconstruct the full
reference trajectory lies in just concatenating the first time step outputs �̂��,0 of each decoded
latent value. Here �̂��,� denotes the i%th time step of the decoder output for the latent �� . We can
further improve the reconstructions by also utilizing the overlapping decoder outputs. Therefore
we average over all previous time shifted decoder outputs that correspond to the same final
time step. Each output is thereby assigned a weight, with the weight decreasing exponentially
for outputs that belong to latent values further in the past. With this method, we construct an
exponential filter over past decoder predictions. The calculation of each filtered reconstructed
value �̂full,� is shown in Equation 27.�̂full,� = �norm ∑�−1�=0 (1 − �filter)��̂��−�,� where �norm = �filter1 − (1 − �filter)� (27)
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3.3  Low-Level Tracking Policy Learning

To obtain a low%level policy for executing the reference trajectories from the optimization, we
employ PPO described in Section 2.1.2. Thereby we consider an asymmetric actor%critic version
of PPO where the value function NN receives additional privileged observations unavailable to
the policy. The policy action output consists of the joint target positions. These target values are
then converted to torques with a PD%controller.
The observation/state input for the policy is divided into two groups: proprioception and refer%
ence command. 1) For the former proprioception observations, the policy receives the current
base%frame angular velocity, joint angles relative to the default pose, joint velocities and gravity
vector. 2) The reference command contains the target base%frame angular velocity, target base%
frame z%height and z%height error. Additionally, we include the relative angle between the current
base%frame and the target base%frame rotation as rotation vector. For the base xy%positions we
use the difference between the current and the target base position. Thereby this difference is
clipped to a maximum vector length of 1. The clipping ensures that values of this observation are
limited when the base is far away from the target position. For the feet, the policy receives the
target positions for each foot in the base%frame, as well as the target contact state. To ensure that
the policy has a future view of the reference, we compute all the previously described reference
command values for the next 3 time steps. In addition to the values of the two main observation
groups, the policy also gets the last applied action as observation, which allows learning smoother
motions. The observations are summarized in Table 4a.
To ensure successful sim%to%real transfer, we make use of domain randomization. First, we add
noise to the proprioception policy observations. Here we make use of the asymmetric actor%critic
design by providing the value function with the original values of the proprioception observa%
tions without the noise, in addition to all the observations that the policy receives. Second, we
randomize the physics parameters which includes, among other things, the ground friction, body
masses and PD%controller gains. All these randomization parameters are sampled uniformly from
a predefined range and are either directly applied or added to the corresponding default value. We
provide a list of all randomized properties and their sampling ranges in Table A.5. Furthermore,
we add action delay where the last action is applied to the simulation instead of the one coming
from the policy with probability �a_delay.
For increasing the robustness of the policy, we randomly apply pushes on the base%frame following
the procedure presented in [37]. Therefore, at the beginning of each episode, we sample the
duration of the pushes �push, the wait time between pushes and the push force magnitude�push,max. The angle of attack is sampled for each push during the episode. During each push we
first increase the force from zero to the maximum value, then we scale it back down to zero
following the shape of a sinusoidal curve. The maximum push force is thereby computed via 0.5 ⋅�base�push,max(1/�push), where �base is the mass of the base frame. Also, the initial state of the
robot is slightly randomized at the beginning of each episode. Therefore, we add random offsets
to the default pose, e.g. for the base%link position, rotation, and linear and angular velocities. For
the used parameters, see Table A.7.
Since we also want to deploy our optimization framework closed%loop as MPC, we need to
consider possible reference trajectory optimization delays. In practice, these delays lead to a
mismatch between the current robot state and the reference start when switching from an old
to a new optimized reference. To account for these mismatches, we include random temporal
jumps of the reference trajectories during training of the low%level policy. Therefore, we sample a
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duration for the wait time until the the next jump and the number of time steps for a jump during
the episode from predefined ranges, see Table A.7.
The additional privileged observations for the value function contain more entries than just the
non%noisy proprioception. The value function also receives observations for the base%link linear
velocities, the base%link acceleration, actuator forces, foot velocities, contact state and applied
push force on the base%frame. Furthermore, we also provide information about when the next
push on the base will happen and how long the feet are currently in the air to the value function.
All these additional privileged observations are summarized in Table 4b.

Rewards

All reward terms can be split into two groups: imitation and regularization. The imitation terms
are similar to [30] and encourage the policy to follow the current reference trajectory command.
These terms are expressed as the exponential of the negative tracking error. In Equation 28 we
show the reward terms for tracking the base position, velocity, rotation, and angular velocity.
For the feet, we provide reward terms for tracking the feet positions (relative to the base frame)
and contact states. Here �base�  denotes the real current base%frame position, while entities with
 ̂correspond to the current value of the reference that we want to track. For the base rotation
reward, we compute the quaternion difference via ⊝ as the angle between the two quaternions�baserot� , �̂baserot� . The feet positions for the feet tracking reward are expressed in the base%frame.
To match the reference foot contact state �̂�, we apply a simple penalty value for each foot where
the contact state does not match.�track base pos xy� = exp(−20‖ �base,xy� − �̂base,xy� ‖22)�track base pos z� = exp(−200‖ �base,z� − �̂base,z� ‖22)�track base linvel� = exp(−4‖ ̇�base� − ̂̇�base� ‖22)�track base rot� = exp(−15‖ �baserot� ⊝ �̂baserot� ‖22)�track base angvel� = exp(−4‖ �base angvel,z� − �̂base angvel,z� ‖22)�track feet pos� = exp(−80‖ �feet in base� − �̂feet in base� ‖22)�track feet contact� = − ∑4�=1|��,� − �̂�,�|

(28)
The second group of regularization rewards improve the general policy behavior. Here, we
use similar terms as in [37]. First, we introduce the regularization rewards for the joints in
Equation 29. Thereby, we encourage staying in the joint position and velocity limits where we
add a margin around the real limit values of the hardware. Furthermore, the policy should stay
close to the default standing joint positions. We allow more deviation in the calf joint, since it will
move the most during walking. For less aggressive motions, the joint accelerations are penalized.
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�q limit� = min(�� − 0.95 ⋅ �lower limit, 0) − max(�� − 0.95 ⋅ �upper limit, 0)�q default� = exp(− ∑12�=1 (��,� − �default)2�(�)) where �(�) = {0.1 if type(�) = calf1 else�q vel� = − ∑� max(| ̇��,�| − 0.65 ⋅ ̇�limit� , 0)�q acc� = − 112 ‖ ̈�‖2
(29)

We also penalize high joint torques, energy, and fast changes in the action to enable smoother
motions, see Equation 30. When in contact, the feet should not move to avoid slipping. Addi%
tionally, high angular velocities of the base are penalized. We encourage more horizontal base
orientations with the �base rot�  reward where �rot(�baserot� ) corresponds to the rotation matrix from
the base to the global frame. �torque� = −‖��‖2 − ‖��‖1�action rate� = −‖�� − ��−1‖2�energy� = − ∑� | ̇��,�| ⋅ |��−1,�|�feet slip� = − ∑4�=1‖ ̇�feet global�,� ‖22 ⋅ ��,��base angvel� = −‖�base angvel� ‖22�base rot� = −‖[�rot(�baserot� )(0, 0, 1)� ]xy‖22�terminate� = {−1 if terminate else 0�survival� = {0 if terminate else 1

(30)

To counteract too small overall reward values caused by the regularization penalty terms, we
add a survival bonus for each step where we do not terminate. When we terminate early, e.g. by
falling down, the agent receives a negative penalty. The final reward for each step is computed
by summing the individual weighted reward terms. We provide the weights for all reward terms
in Table A.8.

Training

For the simulation, we employ mujoco [38] and implement our environment in JAX [39] for
efficient training on the GPU. For the PPO implementation, we use Brax [40]. The policy and
value function NN architectures are shown in Figure A.3. At the beginning of each episode we
sample one reference trajectory from the dataset. Then we run the policy while providing it with
the current reference command. The episode is terminated when we either reach the end of the
reference or when the base%frame z%height falls below 5cm or when the z%vector of the base%
frame points downwards⁸ in the global frame. The parameters used for the PPO training are listed
in Table A.9.

⁸This happens when the orientation of the base%link is inverted, which is the case when the robot is upside down.
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3.4  GMM Reference Trajectory Optimization

Using our learned latent gait representation model, we want to search for suitable trajectories
given multiple tasks, while enabling multimodality of possible solutions. The GMM%based
approach, described in Section 2.3, is well suited for this purpose, since different components can
capture distinct regions of the solution space. For example, for a goal reaching task where multiple
paths to the goal exist, two distinct components each may represent a different path. In order
to employ this VI%based approach, we frame the rewards of our tasks as density value log �̃(�)
of the target distribution that we want to approximate with the GMM, see Equation 17. Thereby
our samples � are parameterized in the latent space of the previously trained latent trajectory
models, see Section 3.2.

Algorithm 2: GMM Latent Trajectory Optimization

Input:
initial GMM params �, initial algorithm state �, context �ctx,
reward weights and reward functions (�1, …, ���), (�1, …, ���)

1 repeat
2 � ← sampleFromComponents(�)
3 for sample �� in samples �
4 �abs,�, �� ← latentDecode(��, �ctx)
5 �� ← ∑���=1 ����(��, �abs,�, ��) ▹ log �̃(��)
6 ���� �� ← calcGradientZi(��) ▹ ���� log �̃(��)
7 �, � ← GMMUpdate(�, �, �, ����, �) ▹ Algorithm 1
8 until max iterations
9 �best ← arg max� ��

return �abs,�best
Our method is shown in Algorithm 2, where we first define a set of tasks. Each task consists of
one or multiple reward functions ��, …, ��+��, task �  and corresponding weights ��, …, ��+��, task � .
Here, a reward indicates how well a decoded sample satisfies a task, e.g. the distance to a
goal position at a specific time step of the decoded reference trajectory. A weight indicates the
priority of a reward in relation to all the other rewards. The algorithm starts with an initial GMM
distribution and an initial algorithm state � for the GMM update, see Section 2.3. The initial
GMM distribution parameters, which we pass to Algorithm 2, are obtained by sampling the mean
and covariance values from a specified prior. A context �ctx can be provided that is required for
decoding the latent samples � depending on the trajectory representation model used. For one
iteration, we first sample latent values � from the current GMM (componentwise). Then each
sample is decoded by the trajectory representation model to the absolute and relative reference
trajectory representations �abs,�, �� (Line 4). To get one scalar reward value for each sample, we
evaluate all rewards from all tasks and sum up the weighted values (Line 5). Then the gradient of
the reward of each sample �� w.r.t. that sample is then computed (Line 6). Note that the loop in
Line 3%6 is executed in parallel in our implementation. Finally, the current GMM parameters � are
updated with the samples and evaluated rewards according to Algorithm 1. After we executed
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the defined number of optimization iterations, we return the decoded reference trajectory of the
final sample with the highest final summed reward.
We base our implementation for the GMM update on the work of [18] which implements the
“SAMTRUX” variation of GMMVI [8]. To enable fast real%time capable computation, we implement
the whole Algorithm 2 using JAX [39]. Thereby Algorithm 2 is compiled as a single JAX function
call, which can run end%to%end on the GPU. This requires all shapes of used variables to be fixed. To
satisfy this constraint, we make two changes to the GMMVI version used in [18]. First, we remove
the sample database where a variable number of samples is reused from previous iterations. Usage
of the sampling database would result in a variable number of samples to be redrawn (Line 2)
and reevaluated (Line 4%6). Instead, a fixed number of samples is drawn from each component.
Second, also the number of components is fixed to a defined value. This corresponds to the
GMMVI “SEPTRUX” algorithm variation. Note that although Algorithm 2 is compiled as one GPU
function call, reward weights can be adapted during runtime by passing them as parameters to the
function. This allows for efficient tuning of reward weights for different tasks due to instantaneous
feedback.
For converting from the relative trajectory representation to the absolute one �abs,� in the decoding
process in Line 4, the current robot state base xy%position �base,�� and z%rotation �base,� is used,
see Section 3.2.1. These values are provided as part of the context �ctx.

Autoregressive VAE Parameterization: For the parameterization of one sample, �� corresponds
to the concatenated latent values over a defined number of prediction steps for the autoregressive
VAE, see Section 3.2.2. The first decoder step thereby receives �ctx as context input. Here �ctx
is provided to Algorithm 2 as the last time steps of the current robot state history in the format
described in Section 3.2.2.

Spline VAE Parameterization: For the Spline VAE, �� contains the latent trajectory parameters(���,cart, ���,pol, �phstart). The total number of latent time steps and spline knot points are
predetermined as hyperparameters. We noticed that for convergence of Algorithm 2 with this
representation model, it is crucial to use the polar trajectory log%radius and angular velocity as
normalized form in ��. Thus, we first calculate the latent time step values of the log%radius and
angular velocity over the whole training dataset and calculate the z%score normalization, where
we map the range of the standard deviation around the mean to a range of [−1, 1]. During
optimization, the log%radius and phase velocity values of the sample are then denormalized after
reconstruction from the spline parameters in ��. For the decoder reconstruction output of the
latent trajectory, we additionally apply the filtering described in Equation 27.

3.4.1  Base Task

There are some general reward terms used in all scenarios, which we consider as the base task.
First, we want the sampled latent values to stay in a reasonable range, see Equation 31. Thereby,
we penalize when latent values leave the range [−�max, �max]. Here �̃� contains all the latent values
in the Cartesian VAE latent space. For the autoregressive VAE we set �̃� = ��. But for the spline
VAE, �̃� contains all the Cartesian latent time steps reconstructed from the spline parameters of��. This reward can be interpreted as a prior with an additional tolerance range.�z in range� = − 1��̃� ‖ max(|�̃�| − �max, 0)‖22 (31)
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Next we encourage our optimizer to produce physically feasible trajectories by adding inductive
bias rewards. This is necessary since both representations can produce non%realistic trajectories
where e.g. the feet slide over the ground when in contact. This is especially important for
the spline VAE. First, we penalize contact values that are not clearly 1 or 0 with �indbias cont�  in
Equation 32. Figure 8 visualizes the penalty value per time step for this reward.

0.0 0.5 1.00.00.10.2� �(1−� �
)

Figure 8: Inner penalty value for �indbias cont�  for one foot per time step. X-axis shows ��.
For all inductive bias reward terms we take the average violations over the number of recon%
structed time steps ��  and number of feet �feet. Each reward is also clipped by a maximum
tolerance value �… total, where the penalty becomes zero if the violation is below the tolerance
value. Second, the velocity of a foot in xy direction should be zero when the foot is in contact to
avoid slipping motions, see �indbias slip� . Here, an additional tolerance value �slip max step is used as
a maximum allowed slipping velocity per time step. Similar, the final reward term encourages a
foot to touch the ground when � indicates that it is in contact. In case of a contact, the foot z%
height should match the foot radius �foot. Note that this penalty assumes a flat ground plane at�ground z = 0. Introducing a height field function �ground z(�foot xy) could be used to extend this to
non%flat terrain in future work. The tolerance parameter values are listed in Table A.10.�indbias cont� = − max( 1�feet�� ∑�,� ��,�,�(1 − ��,�,�) − �contact max total, 0)
�indbias slip� = − max( 1�feet�� ∑�,� ��,�,� max(‖ ̇�footxy �,�,�‖2 − �slip max step, 0) − �slip max total, 0)

�indbias footz� = − max( 1�feet�� ∑�,� ��,�,� max(�footz �,�,� − �foot − �footz max step, 0) − �footz max total, 0)(32)
Lastly, we add two regularization rewards that encourage avoiding large linear xy%velocity and
angular z%velocity values of the base%frame, see Equation 33.�reg base angular z vel� = 1�� ∑� exp(−(�̇base z �,�)2)�reg base linear xy vel� = 12�� ∑� exp(−( ̇�base x �,�)2) + exp(−( ̇�base y �,�)2) (33)
Spline VAE Specific Rewards

The spline VAE requires some additional reward term for matching the current state of the robot
as the start of the optimized reference, since it does not support a context input for the decoder.
Therefore, we first include one reward �spline start rel�  for matching the relative representation with
the current robot state. This reward penalizes the 2%norm error of the difference between the
start state of the sample and the given start state for multiple entities. This includes the base%
frame xy%velocity, base%frame z%angular velocity, feet positions in the base%frame and foot contact
states. All error terms are summed up and multiplied with −1. Analogously, the second reward
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�spline start abs�  penalizes the sum of 2%norm errors of the base%frame rotation, base%frame absolute
position and absolute feet positions in the global frame.
Note that we also tested encoding the past state history with the encoder and using the resulting
latent values as fixed start state for the spline latent trajectory. But this consistently caused strong
artifacts at the beginning of the reconstructed trajectory while still having a high matching error
for the last state of the past state history. Thus, we discard this approach of matching the start
state and use the reward%based matching instead.
Additionally, we add a regularization reward to ensure that the values for the phase velocity stay
in a reasonable range, see Equation 34. The allowed phase velocity range is determined by the
range 3 ⋅ ��̇ph  around ��̇ph , where ��̇ph , ��̇ph  come from the z%score normalization of the phase
velocity values. �spline dphase in range� = − 1�� ‖ max(|�̇ph,�,0…�� − ��̇ph | − 3 ⋅ ��̇ph , 0)‖22 (34)
3.4.2  Goal Reaching Task

This task adds rewards for reaching optional mid and end base%frame goal positions, which all
employ a Huber%loss%based penalty term, shown in Equation 35. In contrast to a squared error
based loss, �goal(�) introduces a cutoff value �lin, which ensures only linear growth of the penalty
value if the error is larger than �lin. A nice consequence of this is that the gradient of the error
term is constant 1 for errors beyond �lin. We found that this improves solutions for cases when the
goal is too far away to be reached in the predictive horizon. Here, �goal ensures that the goal error
will not dominate if the goal is unreachable.�goal(�) = { 12�lin �2 if |�| < �lin(|�| − 12�lin) otherwise (35)
Figure 9 illustrates the shape of �goal(�). We can see that in the range from 0 to �lin, the penalty
value increases smoothly until it reaches a gradient of 1 at �lin and only increases linearly
afterward. �lin = 0.25�lin = 1�lin = 1.5�goal(�) = �2

−2 −1 0 1 201
2

� goal(�)

Figure 9: Huber-loss-based penalty �goal(�) for goal reaching for different �lin (x-axis shows �).
For comparison, the black dotted line shows the squared error loss.

First, we define the mid term goal reward in Equation 36 where we take the mean penalty
value from our Huber loss over the xy dimensions. Note that the goal positions just define the
xy coordinates. Second, the same reward is formulated for the goal at the end of the trajectory�pos end. Additionally, a goal base%link z%rotation angle can be defined via �angle z end and included
as reward �goal angle end� . Finally, we add a multi time step reward for the final goal to encourage
minimizing the distance to the final goal as soon as possible. This can be helpful in cases where
the goal position is close to the starting position. This reward �goal pos end steps�  penalizes the distance
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to the final goal for the last �end steps time steps where errors closer to the end of the trajectory are
weighted higher than those closer to the start. Note that in the end, we calculate �end steps via the
fraction of the total time steps �end steps frac. Thereby the weight increases linearly to 1. The default
hyperparameters for this task are shown in Table A.10.�goal pos mid� = −12 ∑�∈{�,�} �goal(�base,�,�,�� ⋅0.5 − �pos mid,�)�goal pos end� = −12 ∑�∈{�,�} �goal(�base,�,�,�� − �pos end,�)�goal angle end� = −12�goal(�base z,�,�� − �angle z end)�goal pos end steps� = −12 ∑�end steps�̃=1 �̃�end steps ∑�∈{�,�} �goal(�base,�,�,�� −�end steps+�̃−1 − �pos end,�)

(36)

3.4.3  Obstacle Avoidance Task

With this task we consider a set of circular and a set of rectangular obstacles our robot should
not collide with over the whole planned reference trajectory. Thereby the collision avoidance is
formulated in the two planar xy dimensions. For each time step of the reference, we evaluate
the positions of multiple points of the robot and add a penalty to the overall reward for each of
the points which is in collision with an obstacle. The penalty evaluation is thereby inspired by
potential field obstacle avoidance. For each obstacle we define a potential function �(�xy) that
outputs a penalty value based on a given position. The penalty gets lower when �xy moves closer
to the outer boundary of the obstacle and higher otherwise. When �xy is outside of the obstacle
the penalty becomes zero. Note that we add a slack boundary value around each obstacle that
virtually extends its size. This allows for a smooth falloff region of the penalty value around the
border of the obstacle, see Figure 10.
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Figure 10:  Obstacles potential function values �(�xy) summed over obstacles. On the left, there
are two overlapping circular obstacles. On the right two rectangular obstacles with different
size and rotations are shown. White lines denote the object boundary while Isolines are shown

in black.

Circular Obstacles: Each circular obstacle is defined by its xy%position and radius�obs circle,�, �obs circle,�. We define the potential function based on the squared distance to the
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center, see Equation 38. Subsequently, we further smooth the distance by applying the smooth
step function, defined in Equation 37. The resulting potential value is larger than zero when the
position is inside the obstacle and zero when it is outside. Note that we extend the radius by
a defined tolerance value �obs circle tol to ensure that during planning the robot does not directly
touch the border of the obstacle.smoothstep(�) = {{{{{0 if � ≤ 01 if � ≥ 13�2 − 2�3 otherwise. (37)

�circle,�(�xy) = smoothstep(((1 − ‖�xy − �obs circle,�‖22(�obs circle,� + �obs circle tol)2 ))) (38)
Rectangular Obstacles: A rectangular obstacle is given by its xy%position �obs rect,�, xy%size�obs rect,� and z%rotation �z obs rect,�. To improve smoothness of the penalty value at the rectangle
corners, we employ ellipsoids which correspond to ellipsoid versions of the original rectangular
shapes. First, the original position �xy is transformed into the local rectangle frame (�̂xy,�) by
employing the 2d rotation matrix �(�z obs rect,�)��  in Equation 39. We then compute a direction%
dependent tolerance value �strech,� based on the given rectangle boundary tolerance �obs rect tol. As
with the circular obstacles, this allows to increase the obstacle size. Here �strech,� will be larger in
the dimensions where the rectangle size is bigger (either x or y). This is needed to compensate
for the ellipsoid shapes that are normally stretched along the larger size dimension, leading to
overly rounded corners. Thus, �strech,� counteracts this. Ellipsoids can have different degrees.
With a higher degree, the corners get sharper, while the ellipsoid function becomes less smooth.
To combine smoothness with sharper corners we use the weighted sum of multiple ellipsoids
with different degrees, see �ells,�. Thereby �obs rect ells num defines the number of ellipsoids while�obs rect ells expos contains the values for the degrees. �obs rect ells weights corresponds to the weights of
the individual ellipsoids. Analog to the circular obstacles, we apply the smoothstep function to
get the final penalty value �rect,�(�xy).�̂xy,� = �(�z obs rect,�)�� (�xy − �obs rect,�)�strech,� = 2�obs rect tol((((0.250.25) + 0.5 �obs rect,�∑�∈{�,�} �obs rect,�,� )))�ells,� = ∑�obs rect ells num� ∑�∈{�,�} [ 2�̂xy,�(�obs rect,� + �strech,�)�obs rect ells expos,� ]� �obs rect ells weights,�∑� �obs rect ells weights,��rect,�(�xy) = smoothstep(1 − �ells,�)

(39)
Rewards: The final reward value for the whole trajectory is given by the mean over all time steps,
where at each time step we calculate the sum of all potential functions for each point in �xy and
then take the sum over all points, see Equation 40.�obs avoid(�xy) = − 1�� ∑��� ∑��xy� (∑� �rect,�(�xy,�,�) + ∑� �circle,�(�xy,�,�)) (40)
For the positions per time step, we split the obstacle avoidance reward into three groups. First the
reward term �obs avoid base�  only considers the base%link position. Second, �obs avoid feet�  includes all
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feet positions. Last, �obs avoid additional�  considers 8 additional points in the base frame that are placed
around the outer bounding box of the base. Thereby the base bounding box points �col base xy rel
are parameterized in the base frame and then transformed to the world frame via Equation 41.
Additionally, �obs avoid additional�  includes one additional point per foot, which corresponds to the
foot position shifted backwards in the base frame. This corresponds to a heuristic estimation of
the knee xy%position which may extend outside the main base%body bounding box points. Note
that we assume a fixed extension of the knee in xy for fast compilation. Again, the additional
foot points are parameterized relative to the foot positions (�col feet xy rel) and are transformed
to their absolute positions in the world frame via Equation 41. The transformed position values�col base xy, �col feet xy are finally used in Equation 40 to calculate �obs avoid additional� .�col base xy,� = �base xy + ��(�base,�)�col base xy rel,��col feet xy,� = �foot xy,� + ��(�base,�)�col feet xy rel (41)
The default parameter values for the obstacle avoidance with the considered quadrupedal robot,
including the position values for the additional collision points, are listed in Table A.11.

3.4.4  Foot Step Obstacle Avoidance Task

For this task we consider additional obstacles that correspond to “holes” in the ground. Here we
define areas where the robot is not allowed to step onto, but can still move over without making
foot contact. We utilize the same formulation for the potential functions of the obstacles as in
Section 3.4.3. We formulate the reward in Equation 42, where we only apply the penalty when a
foot is in contact. Note that the hyperparameters for the rectangle obstacles are slightly adapted
for the step obstacles, see �step obs rect ells expos, �step obs rect ells weights, �step obs rect tol in Table A.11.�step obs avoid feet� = − 1�� ∑��� ∑�feet� ��,�,�(∑� �rect,�(�footxy,�,�,�) + ∑� �circle,�(�footxy,�,�,�)) (42)
The tolerance values for the obstacles in Table A.11 may be adapted to specific scenarios, e.g.
when step obstacles are very close together it may be required to reduce the tolerance values for
good convergence.

3.4.5  Default Parameters

The default weights for all reward terms are shown in Table A.12. These values may be adapted
for specific scenarios to encourage specific behaviors. For example, the mid%term goal can be
deactivated, or the velocity regularization could be increased for slower motions. Task%specific
default hyperparameters are listed in Table A.10 and Table A.11. For Algorithm 2 we use the
default GMMVI parameters for SEPTRUX with some adaptations, shown in Table A.13.

3.4.6  Deployment

First, we can deploy the trajectory optimization as open%loop, where we take the current robot
state as start condition. The resulting reference trajectory is then run open%loop with the low%
level policy. Thereby the result of Algorithm 2 is converted to the policy input reference format
described in Section 3.3.
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Closed-Loop MPC

To incorporate real%time feedback, the trajectory optimization procedure can be deployed
together with the low%level policy as closed%loop MPC. We plan a reference trajectory based on
the current state, but only execute the first � time steps with the low%level policy until we replan
from the new current robot state. Note that in this setup, we have to take the delay caused by the
optimization into account. Therefore, while the optimization is running, we continue to execute
the old reference trajectory with the low%level policy. When Algorithm 2 terminates, we do not
execute the resulting reference directly from the beginning, but from a later time step based on
the duration of the optimization. This is required since the low%level policy has to continue to
move while the optimization is running. From experimentation, we found that this works up to
an optimization delay of about 300ms. This restricts the possible predictive horizon for the MPC
setup, since a longer horizon increases the optimization time. One problem is that this delay can
cause a mismatch between the actual current state, at the time when the optimization is done,
and the shifted start state of the resulting reference that takes the delay into account. This is
especially relevant for the absolute foot positions. To counteract this issue, we add an expected
start state reward for the MPC setup. Here we use an expected delay value based on the duration
of the last optimization. The reward encourages staying close to the last optimized reference,
which is currently executed by the low%level policy, at the expected delay time step. This way,
the divergence between the current robot state and the delay shifted start state of the optimized
reference will be reduced. This reward is given by �match old ref abs� , where we penalize deviations of
the absolute foot positions, base%frame position, base%frame xy%orientation and foot contact states
with the mean squared error.
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4  Evaluation

In this chapter, we perform an experimental evaluation of our framework. First, we report metrics
for training of the motion representation models and low%level policy. Subsequently, we measure
the general performance of the trajectory optimization with both VAE variants for different
planning horizon lengths in an open%loop execution setting. Next, we consider a closed%loop MPC
deployment setup in simulation. Finally, we perform real%world experiments for both open% and
closed%loop deployments on the quadrupedal robot Go2. All evaluations are performed across a
diverse set of scenarios, each consisting of a distinct set of tasks.

4.1  Learned Gait Trajectory Representations

In this section, we evaluate our trajectory representation models, trained on our quadruped
reference dataset, in terms of their reconstruction capabilities and general expressiveness.

4.1.1  Autoregressive VAE

We train our autoregressive VAE model, described in Section 3.2.2, with the quadruped trajectory
dataset for 400 epochs. Thereby we only use the first 100 recorded trajectories from the dataset
to match a similar total trajectory duration as in the work of Ling et al. [7] our model is based on.
This yields a total duration of 25 minutes. Additionally, by limiting the dataset to this duration,
we can compress 0.4s trajectories to only 16 latent dimensions allowing for real%time capable
optimization, shown in Section 4.5. We tested different hyperparameter combinations and show
the final values in Table A.2.
Since we later want to deploy our optimization framework on the real robot where the foot%
contact sensors are unavailable, we train two versions of our autoregressive VAE model. One
version which is only used in simulation where the past contact states are part of the context. And
one version that can be deployed on the real robot where the past real contact state is not part
of the context. Note that in the second version, the decoder still outputs the future contact state
values.

Results

In Figure 11 we show the loss terms over the training epochs for our two final model versions.
We can clearly see that most loss terms increase after the autoregressive context training with�ctx,autoreg > 0 starts at epoch 60. This is due to the VAE adjusting to the new context that includes
accumulated prediction errors. Here all loss terms show increased noise, since we randomly
sample between the real and autoregressive context in this phase. Also the KL loss increases, since
the model can only rely less on the noisy context. When �ctx,autoreg is constantly 1 after 160 epochs,
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the model can fully adapt to the new context distribution and the KL loss goes down again. When
comparing both model versions, the loss curves are almost identical, except for the KL. This is
due to the fact that the model without the contact state in the context receives less information
through the provided context and thus has to rely more on the latent value �.
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Figure 11:  Training loss curves for the autoregressive VAE for the versions with and without
contact in the context. The y-axis is displayed on a log scale. All loss terms except for “Total”

are without scaling by their loss weight.

In Figure 12 we show quantitative results for the reconstruction capabilities of the learned VAE
model. For one trajectory from the training dataset, we encode its time sub%slices of length �
with the encoder to multiple � values. Then we reconstruct the full trajectory by passing each
latent � through the decoder. Thereby we only use the true context from the dataset for the first
reconstructed sub%slice. For the subsequent sub%slices we autoregressively feed the decoder with
the end of the last reconstructed trajectory as the context. As we can see in Figure 12a, the model
can reconstruct the trajectory well, especially the stepping sequence and physical feasibility⁹ are
maintained. However, the absolute position and rotation increasingly drift away from the true
dataset trajectory over time. When we look at the relative representation output of the decoder
in Figure 12a, we see that the reference is mostly well reconstructed, except for some minor
deviations. The drifting in the absolute rotation and position is most likely due to accumulation of
errors in the rotation and base position output of the decoder. Although the errors in the relative
reconstruction output are small, they accumulate when being integrated over time, as it is the case
for the base z%rotation and base xy%position. When later employing this model in our optimization
framework this is not an issue, since the feedback reward terms of the optimization also include
the absolute representation and thus can compensate for potential drifts in the base position or
rotation.

⁹E.g. that the absolute foot position is constant when the foot is on the ground.
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(a) Absolute representation. The y-axis corresponds to radians for the rotation plot and to meters
for all other plots.
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(b) Relative representation normalized �norm. The plots correspond to the entries of the repre-
sentation described in Section 3.2.1

Figure 12:  Reconstruction of a dataset trajectory where the context is passed autoregressively
using the model that includes the contact in the context. We omit the rear feet and contact states
for clarity of the plot. Solid lines correspond to the reconstruction model output while dashed

lines show the true dataset trajectory.

To assess the variability of generated trajectories, we repeat the decoding of the trajectories shown
in Figure 12a, but this time randomly sampling the latent � values from the prior instead of using
the values from the encoder. The absolute decoded trajectories of 75 of these random rollouts
from the same start state are shown in Figure 13. We can observe high variance in the base xy%
position, z%rotation and stepping times over time. Note that some of the trajectories are of lower
quality, since for example a foot moves when its z%height indicates ground contact.
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Figure 13:  75 random walk rollouts from the same start context, shown in the absolute repre-
sentation. � values are sampled from the prior.
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4.1.2  Latent Spline VAE

We train our latent spline VAE, described in Section  3.2.3, on the quadruped dataset from
Section 3.1. We tested different hyperparameters and model sizes and show the final used values
in Table A.3 and Figure A.2.

Results

Figure 14 shows the loss curves over 15 ⋅ 103 training iterations. We can observe for the recon%
struction loss terms of scalar values (“Reconstruct Other”), that the spline path yields lower loss
values than the normal VAE loss path. This is expected since the spline reconstruction path does
not contain noise but only relies on the mean decoder output values. For the contact reconstruc%
tions we get the inverse behavior. When looking at the reconstructed decoder outputs in Figure 15,
see similar results as for the Autoregressive VAE. The overall motions closely match the reference
for the absolute values in Figure 15a, while showing some small mismatches. The same holds for
the direct decoder output shown in Figure 15b. Note that here we apply the filtering described
in Equation 27. The filtering generally improves the reconstruction quality. In the appendix in
Figure A.4, we show a comparison between filtered and non%filtered outputs to quantify its effect.
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Figure 14:  Training loss curves for the spline VAE. The y-axis is displayed on a log scale. All loss
terms except for “Total” are without scaling by their loss weight. The normal VAE reconstruction

and spline reconstruction loss values are combined in the same plot.

37



0s 2s 4s 6s 8s

0.0

0.5

1.0

1.5

2.0
Base Link Rotation

0s 2s 4s 6s 8s

0.0

0.5

1.0

1.5
Base Link Pos

0s 2s 4s 6s 8s

0.0

0.5

1.0

1.5

FL Foot Pos

0s 2s 4s 6s 8s

0.0

0.5

1.0

1.5

FR Foot Pos

x y z dataset trajectory model reconstruction

(a) Absolute representation. The y-axis corresponds to radians for the rotation plot and to meters
for all other plots.

0s 2s 4s 6s 8s

−0.50

−0.25

0.00

0.25

0.50

Base Link Rotation

0s 2s 4s 6s 8s

−0.50

−0.25

0.00

0.25

0.50

0.75
Base Link Pos

0s 2s 4s 6s 8s

−1.0

−0.5

0.0

0.5

FL Foot Pos

0s 2s 4s 6s 8s

−1.0

−0.5

0.0

0.5

FR Foot Pos

x y z dataset trajectory model reconstruction

(b) Relative representation normalized. The plots correspond to the entries of the representation
described in Section 3.2.1

Figure 15:  Reconstruction when passing one dataset trajectory through our spline VAE with
applying the filtering described in Equation  27 with �filter = 0.05. We omit the rear feet and
contact states for clarity of the plot. Solid lines correspond to the reconstruction model output,

while dashed lines show the true dataset trajectory.

When we consider the reconstructions using our spline latent trajectory representation in
Figure 16a, we can observe that here the reconstruction quality is similar to the previously shown
reconstructions through the normal VAE path. In Figure 16b we show the corresponding latent
space trajectory. Here the fitted spline representation matches the decoder mean latent output
well, except for some mismatches at around 4s. We can observe that the latent trajectory matches
features of the reconstructed motion. For example, between 1s and 3s the motion (walking direc%
tion, step length, …) is roughly constant, see Figure 15b. Here the fitted latent trajectory also does
not change much, see Figure 16b. Note that for the polar dimensions this means that the radius
and phase velocity are roughly constant. In the next time frame, from 3s to 6s, the motion pattern
changes and settles afterward. The latent trajectory reflects this pattern. We also examined the
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(b) Latent trajectory fitted spline representation. Dotted lines show the raw encoder output latent
trajectory, while the solid lines correspond to the fitted spline representation that is used as
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Figure 16:  Reconstruction when passing one dataset trajectory through our spline VAE where
the intermediate latent trajectory is fitted to our spline representation. We also apply the filtering

described in Equation 27 with �filter = 0.05.

references of the whole dataset and found that the phase velocity is always negative, where larger
negative values correspond to faster stepping motions. Furthermore, we also changed individual
latent dimension values of encoded trajectory slices to investigate the meaning of individual latent
dimensions. Thereby we found that the most dominant latent dimensions represent quantities
like heading direction, heading velocity, base angular velocity or step length.
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4.2  Low-Level Tracking Policy Learning

We train our RL low%level tracking policy on the quadruped dataset with the parameters shown in
Table A.9 and Table A.8. We perform multiple training runs over 5 seeds, each running for 0.8 ⋅ 109
environment steps.

Results

In Figure 17, we show metrics over the training iterations. We can observe that the overall return
continuously increases while the tracking error decreases. For the base position, the final tracking
error in the z direction is lower than in the xy%plane. This is due to the variation of the target base
height being very low in comparison to the xy target movement.
Figure 18 shows a rollout for the policy from one seed. Over the shown duration of 1.4s, the policy
follows the reference target well. After a disturbance push on the base, the deviation from the
reference increases temporarily. But the policy recovers quickly and reduces the tracking deviation
of the base%frame again after 0.4s.
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Figure 17:  Tracking policy training metrics over 5 seeds, the shaded areas denote the range of
min to max values over all seeds. The base and feet tracking errors are shown with a log-scaled

y-axis. Note that the tracking error for the feet positions is measured in the base-frame.

40



� = 0.4� � = 0.6� � = 0.8� � = 1�

� = 1.2� � = 1.4� (push) � = 1.6� � = 1.8�

Figure 18:  Tracking policy rollout following one reference from the dataset, shown in increments
of 0.2�. The blue box and spheres denote the current base and feet poses, while the green
box and spheres show the target poses from the reference trajectory. The target feet positions
correspond to the absolute values of the reference. A perturbation push is applied to the base-

frame at around � = 1.4�. Note that the camera follows the base-frame.
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4.3  GMM Trajectory Optimization

For our trajectory optimization algorithm, we first consider the open%loop deployment variant
only in simulation to evaluate the general performance of our planning framework. Here, we want
to compare both VAE variants across different scenarios and time horizon lengths. Therefore,
we define 4 evaluation scenarios, where for each, we sample 12 random start states from the
reference trajectory dataset used during training. Then for each start state, we randomly sample
2 different goal positions. This results in 24 different configurations per scenario. We apply our
algorithm twice to each configuration with two different seeds for the GMM optimization. Both
VAE versions share the same reward weights for each task, except for the VAE%specific reward
terms. We employ the autoregressive VAE version with the contact state as condition input in
this experiment. For each scenario and VAE type, we consider two prediction optimization time
horizons of 4 and 6 seconds. For the 6s prediction horizon, we additionally execute the planned
trajectories with the low%level tracking policy. Thereby the simulation is initialized to the start
state that was also provided to the trajectory optimization. The policy then tries to track the
reconstructed trajectories from the best final sample. We also perform a small ablation study
for the optimization parameters with the 6s horizon for two of the 4 scenarios (Wall Gap, Step
Crosswalk). Thereby we vary the number of components (3, 5, 7) and samples per component
(25, 50, 75). In the following we describe the 4 scenarios.

Step Checkerboard: In this scenario, the robot is supposed to walk over a grid of stepping
obstacles. The stepping obstacles are arranged in a checkerboard fashion, where each obstacle
has a size of 15cm × 15cm. The checkerboard has a size of 8 × 15 cells, where each second cell is
a stepping obstacle. For the start state, the xy%position is always set to a central position (at � =0, � = 0) to the right of the checkerboard. The mid goal is deactivated and the end goal position
is sampled in a range of � ∈ �(−1.0, −2.0), � ∈ �(−1.5, 1.5). This yields optimized trajectories
leading from left to right (towards the negative x direction). For a visualization see Figure 20.
For this scenario, we increase the reward weight for �goal pos end to 1.3 ⋅ 104 and decrease the step
obstacle tolerance to 0.05.

Step Crosswalk: Here, the robot has to walk over 6 lengthy holes on the ground (step obstacles),
which are arranged as a 90 degree rotated crosswalk, see Figure  22. Each of these column
obstacles on the ground has a size of 1m × 0.2m, where the spacing between each obstacle is0.2m. As with the Step Checkerboard the xy start position is fixed to the right of the obstacles (at� = 0, � = 0). Only the end goal is active, where its position is again sampled in the range of � ∈�(−1.0, −2.0), � ∈ �(−1.5, 1.5). For this scenario we increase the reward weight for �goal pos end to1.3 ⋅ 104 and the stepping obstacle reward �step obs avoid feet weight to 2.5 ⋅ 104.

Wall Gap: This scenario consists of two normal rectangle obstacles with a gap of 0.75m between
them, see Figure 24. Each obstacle has a size of 0.6m × 1.5m. The xy start position is on the
right of the obstacles. It is set to a sampled value from � ∈ �(−0.2, 0.2), � ∈ �(−0.5, 0.5). Again
only the end goal is active, where its position is sampled in the range of � ∈ �(−1.3, −2.1), � ∈�(−0.5, 0.5).
2 Goal: We do not consider any obstacles in this scenario, but instead two goal positions. Thus,
the mid and end goals are both active. The goal positions are sampled such that the total distance
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from start to the mid goal and mid goal to the end goal is below 2m. At the same time, the sampling
ensures that there is at least a distance of 0.2m between the goal and the mid goal and the start.
For an illustration, see Figure 26.

Algorithm Configuration

We set the number of iterations for Algorithm 2 to the required value for convergence per scenario
and VAE type. For the spline VAE, the number of iterations is 150 across all tasks. The autore%
gressive VAE generally requires more iterations, especially for scenarios with stepping obstacles.
Thus, we run it for 600 iterations for the Step Checkerboard and Step Crosswalk scenarios, and for200 iterations for the Wall Gap and 2 Goal scenarios. We use the algorithm parameters shown in
Table A.13, where we only consider diagonal covariance matrices for the GMM. With diagonal
covariance matrices, the GMM is more efficient to optimize, which keeps the total optimization
runtime within an acceptable range. We run the optimization on an NVIDIA RTX 5080 GPU.

4.3.1  Optimization Results

For each scenario we look at the sum of common reward terms. This only excludes the spline
specific rewards, e.g. start state matching. We also evaluate the quality of the final best sample
after the optimization. For all box plots shown in the following Figures, the box includes the range
from the first to the third quartile, while the middle line corresponds to the median.

Step Checkerboard Scenario

For quantifying the performance of both VAE variants, we can first look at the common reward
plot in Figure 19 (top row). We can observe that while both variants reach similar final rewards
for both prediction horizons, the spline VAE needs fewer iterations for converging. But at the same
time, with the spline VAE, the optimization algorithm can only perform far fewer iterations per
second than with the autoregressive VAE. This is due to the spline VAE requiring to pass the latent
value for each time step through the decoder. At the same time, the autoregressive VAE only needs
one reconstruction pass through the decoder every 20 time steps.
For the 6s horizon, the lower required number of iterations counteracts the longer computation
time per iteration for the spline VAE and both VAEs achieve a similar convergence rate over time.
Note that when looking at the individual component reward distributions in Figure 19 (third
row), we can see that more components of the spline VAE stay at a high reward level. For the
autoregressive VAE the worst component has a significantly lower reward than all others. Here,
also the rewards of the components are generally higher for the spline VAE. This indicates that,
for the spline VAE, generally more components correspond to more valid solutions. At the same
time, the start state mismatch error is higher for the spline VAE, see second row in Figure 19. This
mismatch quantifies the difference between the given start state and the first time step of the
predicted trajectory. In general, this value should be low, otherwise the trajectory “jumps” from
the current start state to the first time step. For this aspect, the optimization is more difficult
for the spline VAE, since matching the start state is formulated as a reward. This reward term
can counteract other terms. For example by better matching the start state, the goal reward may
be reduced when the robot points in the wrong direction at the start state. This may partially
contribute to the better rewards of the spline VAE for the 6s horizon, since matching the start
state stays in direct competition with the other reward terms. In contrast, the autoregressive VAE
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indirectly includes the start state as condition for the decoder, which makes the optimization
simpler by not requiring the additional matching rewards. Thus, for the autoregressive VAE this
aspect is not an issue.
With the 4s horizon, the autoregressive VAE shows a faster convergence over time. Here, the
reward distribution over the components is similar for both VAE variants and the differences
between the better and worse component are more subtle. In general, optimizing a shorter
trajectory is a simpler task since fewer dimensions need to be considered. Note that since the
trajectory start position is beside the step obstacles, for shorter prediction horizons the fraction
of the trajectory interacting with the obstacles is also shorter, further simplifying the task.
For both time horizons and VAE variants there is a low number of outliers where the obstacle
boundaries are violated at some time steps of the trajectory, see third row in Figure 19. It is
important to note that we can not enforce the obstacle avoidance with hard constraints, but only
rewards. The obstacle avoidance rewards are always in competition with the other reward terms.
Thus, it generally cannot be ensured, that only trajectories are produced, which do not violate
the obstacle boundaries. For the final component weights, shown in the last row of Figure 19,
we can observe that the final GMM distribution is fully dominated by one component for almost
all optimizations. This is not ideal, since we want our final distribution to be as versatile as
possible. Nevertheless, multiple components are still considered during the optimization, and the
algorithm may switch out the best component multiple times during the iterations. We only show
the Figure of the final component weights for this scenario, since for the other scenarios the weight
distribution looks very similar.
In Figure 20 we present the reconstructed samples for the final GMM distribution in the top row
for the 6s horizon for one scenario configuration. We can observe that both VAE variants produce
reasonable trajectories that lead to the goal and avoid the stepping obstacle when being in contact.
Note that not fully reaching the goal does not indicate a problem, as the considered horizon
may be too short to reach the specific goal location in time. With both variants, the optimization
converges to a solution where the robot walks slightly sideways, which is advantageous for this
scenario to hit the allowed stepping locations.The variance of the final distribution of trajectories
is very low, partially due to the samples only coming from one component. This also indicates that
the variance of individual components is also low. At the same time the top sample from different
components show higher diversity, see the bottom row of Figure 20.
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Figure 19:  GMM trajectory optimization for the Step Checkerboard scenario. We show metrics
for the 6s planning horizon on the left and metrics for the 4s planning horizon on the right. The
plots in the first row show the common rewards sum over iterations and time. In the second row
we show the total start state difference between the given start context and the first prediction
time step as mean over the base position, base rotation angle and absolute feet positions. Here,
we also show the iterations per second. In the third row, the obstacle violations Figure (Best
Sample Obs. Violations) displays the distribution over the number of time steps of each run
where obstacle boundaries are violated. Here, we also display the final common reward sum
distribution per component (sorted by the mean component reward). The last row shows the
final GMM component weights. Note that here we also differentiate between the VAEs, but this
is hardly visible due to the small boxes. For the start state difference and obstacle violations
plot, we consider the final best sample. The line plots show the mean as a line and the standard

deviation as shaded areas.
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Figure 20:  We show the reconstructions of 5 samples of the final GMM absolute trajectories
for one run in the Step Checkerboard scenario (6� horizon). On the left, we show the samples
for the autoregressive VAE and on the right for the spline VAE. The top plots show 5 samples
from the full GMM. The bottom plots illustrate one best sample from each component. The white
pole denotes the start and the green pole the goal position. The white line shows the planned
base trajectory where the blue arrows indicate the base rotation. The four colored lines on the
ground each show one foot trajectory, where planned contact is indicated by grey dots. Normal

obstacles are shown in gray, while foot stepping obstacles are shown in blue.

Step Crosswalk Scenario

Here, we see a similar picture as with the Step Checkerboard scenario in Figure 21. Except that
here, the convergence rate over time for the autoregressive VAE is also higher for the 6s horizon.
Again, the spline VAE shows a higher start state mismatching while having a better component
reward distribution for the 6s horizon. For the shorter horizon, both component distributions are
again more similar, showing generally high rewards over all components, except for a few outliers
for the worst component.
When looking at the sample reconstructions in the top row of Figure 22, we see that with both VAE
variants, the optimization produces good trajectories that walk towards the goal while avoiding
the stepping obstacles. The optimization finds the required base rotation to walk over the gap.
The final GMM samples show low variance. At the same time the top samples over the different
components, see bottom row of the Figure, are versatile while all produce valid solutions. When
looking at the autoregressive VAE, we can also see one solution where the robot walks over the
gap sideways.
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Figure 21:  GMM trajectory optimization for the Step Crosswalk scenario. We show metrics for
the 6s planning horizon on the left and metrics for the 4s planning horizon on the right. The plots in
the first row show the common rewards sum over iterations and time. In the second row we show
the total start state difference between the given start context and the first prediction time step
as mean over the base position, base rotation angle and absolute feet positions. Here, we also
show the iterations per second. In the third row, the obstacle violations Figure (Best Sample Obs.
Violations) displays the distribution over the number of time steps of each run where obstacle
boundaries are violated. Here, we also display the final common reward sum distribution per
component (sorted by the mean component reward). For the start state difference and obstacle
violations plot, we consider the final best sample. The line plots show the mean as a line and

the standard deviation as shaded areas.
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Figure 22:  We show the reconstructions of 5 samples of the final GMM absolute trajectories for
one run in the Step Crosswalk scenario (6� horizon). On the left, we show the samples for the
autoregressive VAE and on the right for the spline VAE. The top plots show 5 samples from the
full GMM. The bottom plots illustrate one best sample from each component. Normal obstacles

are shown in gray, while foot stepping obstacles are shown in blue.

Wall Gap Scenario

In this scenario, the convergence rate over time behaves similarly to the previous Step Crosswalk
scenario since the autoregressive VAE is generally faster. The same holds for the start state mis%
matching and final component reward distributions. Note that here the spline VAE optimization
leads to significantly higher number of runs where obstacle boundaries are violated, especially
for the shorter horizon. For this scenario further tuning of the obstacle rewards may be required.
In the top row in Figure 24, we can observe that for both VAEs, the optimization finds good
solutions where the body rotates around the z%axis in order to fit through the gap. Again, the
final GMM versatility of the sample is low (slightly higher for the autoregressive VAE at the end
of the trajectories). For the spline VAE, the top samples from the components (bottom row) all
correspond to good solutions leading to walking through the gap. At the same time the autore%
gressive component samples look more versatile, but multiple samples are of lower quality (not
walking through the gap).
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Figure 23:  GMM trajectory optimization for the Wall Gap scenario. We show metrics for the 6s
planning horizon on the left and metrics for the 4s planning horizon on the right. The plots in the
first row show the common rewards sum over iterations and time. In the second row we show
the total start state difference between the given start context and the first prediction time step
as mean over the base position, base rotation angle and absolute feet positions. Here, we also
show the iterations per second. In the third row, the obstacle violations Figure (Best Sample Obs.
Violations) displays the distribution over the number of time steps of each run where obstacle
boundaries are violated. Here, we also display the final common reward sum distribution per
component (sorted by the mean component reward). For the start state difference and obstacle
violations plot, we consider the final best sample. The line plots show the mean as a line and

the standard deviation as shaded areas.
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Figure 24:  We show the reconstructions of 5 samples of the final GMM absolute trajectories
for one run in the Wall Gap scenario (6� horizon). On the left, we show the samples for the
autoregressive VAE and on the right for the spline VAE. The top plots show 5 samples from the
full GMM. The bottom plots illustrate one best sample from each component. Normal obstacles

are shown in gray, while foot stepping obstacles are shown in blue.

2 Goal Scenario

Here, the convergence rate over time behaves analog to the previous Step Crosswalk scenario, see
Figure 25. The same holds for the start state mismatching and component weight distribution.
Note that for this scenario, the worst component of the spline VAE has a few outliers with very
low rewards.
The final GMM samples, shown in the top row of Figure 26, successfully pass through both goals
and show slightly higher versatility than in previous scenarios, especially towards the end of the
trajectories. Again, the samples from the different components show higher variance.
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Figure 25:  GMM trajectory optimization for the 2 Goal scenario. We show metrics for the 6s
planning horizon on the left and metrics for the 4s planning horizon on the right. The plots in
the first row show the common rewards sum over iterations and time. In the second row we
show the total start state difference between the given start context and the first prediction time
step as mean over the base position, base rotation angle and absolute feet positions. Here, we
also show the iterations per second. In the last row, we display the final common reward sum
distribution per component (sorted by the mean component reward). We show this plot a second
time in the last row with the y range clampled to a minimum of −2 ⋅ 104 for better visiblity. For
the start state difference plot, we consider the final best sample. The line plots show the mean

as a line and the standard deviation as shaded areas.
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Figure 26:  We show the reconstructions of 5 samples of the final GMM absolute trajectories
for one run in the 2 Goal scenario (6� horizon). On the left, we show the samples for the autore-
gressive VAE and on the right for the spline VAE. The top plots show 5 samples from the full
GMM. The bottom plots illustrate one best sample from each component. Normal obstacles are

shown in gray, while foot stepping obstacles are shown in blue.

4.3.2  Low-Level Optimized Trajectories Tracking Results

When looking at the low%level policy tracking errors in Figure 27, we can observe that the mean
tracking errors are in a low range (< 3cm for the base and feet and < 0.03rad = 1.72° for the
orientation). We can see that the majority of the distributions is within this low range error region,
indicating that the policy can generally track the references well. When comparing the tracking of
trajectories produced with the different VAE variants, we can see that the distributions look very
similar. But we can also observe that there are some large outliers in all error categories. Thus, for a
few time steps, the policy strongly deviates from the reference. This is especially noticeable for the
more complex task with obstacles. One potential reason for this may be a mismatch between the
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distribution of the references used in training the tracking policy and the distribution of references
produced by the optimizations. In this context, the optimization may produce trajectories that
differ more from the dataset for the more difficult scenarios to solve the task, leading to higher
tracking error outliers for the Step Crosswalk and Step Checkerboard scenarios when looking at the
base tracking. This potential issue could be addressed by further fine%tuning the tracking policy
on trajectories produced with the optimization by including these optimized references in the
policy training.
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Figure 27:  Policy tracking error per time step for the 6� planning horizon. We show the error
distribution over all time steps and runs of each scenario. Inside each violin plot, a box plot spans
from the first to the third quartile, while the small horizontal bars inside the boxes denote the
median. Above each violin plot, we present the mean value. Note that for the feet tracking error,
we show the distribution of the mean error over all feet. The base angle error refers to the angular

difference in radians between the target and the actual base orientation.
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4.3.3  GMM Optimization Variations

We show the results for varying the number of components and samples per component for both
VAE types in Figure A.5 and Figure A.6. We can observe that, in general, a total higher number
of samples per iteration leads to higher final rewards. This is expected, since the total number of
iterations is fixed per scenario and VAE variant, which leads to the optimization receiving more
total samples when the number of samples per iteration is higher. Note that a higher number of
samples per iteration also corresponds to longer total optimization time. We choose our default
configuration of 5 components and 50 samples per component as trade%off between runtime
performance and final achieved reward.

4.3.4  Conclusion

We can generally say that the spline VAE is more suited for longer planning horizons with more
complex tasks where it can compete with the optimization time of the autoregressive VAE. Here,
the spline VAE shows better reward distributions of final components. On the other hand, the
autoregressive VAE achieves better matching of the given start state. Across all tasks and VAE
variants, the diversity of the final GMM distribution is low and one component dominates the
distribution. Also the versatility of reconstructed samples of this final dominant component is low,
showing more variance toward the final time steps of the reconstructed trajectories. We see two
potential reasons for these issues. First, the reconstructed trajectories may be very sensitive to
small latent value changes. On one side, this may come from the fact that the decoders produce the
base trajectory (for position and z%rotation) as velocity over time, which is integrated afterward
to get the absolute trajectory. This way, small changes of the base velocity in the beginning of
the trajectory may drastically change the final position. Thus, the optimization algorithm may
be forced to keep the variance of especially early latent values small to solve the task (e.g. to
not collide with an obstacle towards the end of the trajectory). The autoregressive nature of the
autoregressive VAE may additionally increase the sensitivity of latent values corresponding to
earlier time steps¹⁰. Second, to achieve good final trajectories, high scaling of the inductive bias
reward terms is required. Increasing the scaling of rewards generally reduces the effect of the
entropy regularization term in the optimization objective, since the maximization of rewards will
dominate, see Equation 17. Both of these potential explanations require further experimental
investigation.
As potential improvement, other reference trajectory representation models may be explored that
directly produce absolute trajectories and perform the reconstruction not autoregressively. Addi%
tionally, these models may consider the start state as conditional input, such that no additional
start state matching reward is required. Better reconstruction quality across all potential latent
values may reduce the need for the inductive bias reward terms.

¹⁰E.g. the first latent value will indirectly affect the reconstruction outputs of all following decoder passes.
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4.4  Simulation Closed-Loop MPC Trajectory Optimization

In this experiment we want to evaluate the performance of our planning framework in the closed%
loop MPC deployment setting. Therefore we repeatedly run our optimization algorithm with the
current state as start context. We then execute the resulting reference trajectory for 1s (50 time
steps) in simulation with the tracking policy, before replanning from the new current state, see
Section 3.4.6.1. We consider 3 different scenarios, where our MPC planning loop is executed for
a scenario%specific number of time steps. Each scenario specifies a list of multiple goal positions,
where we only consider one goal at a time. When the robot reaches a goal, i.e. its base is in a
distance range of < 15cm to the goal, we switch to the next goal in the goal list. After reaching
the last goal we go back to the first one. We execute each scenario 3 times from the same start
state, where the robot stands upright in its default pose, with different GMM optimization seeds.
Since in reality, the optimization requires some runtime (see Section  3.4.6.1), we simulate
different optimization delays (0, 7, 15 time steps). We thereby execute all scenarios for all delay
variants. For each delay, we perform one execution with and without the �match old ref abs reward to
measure its effect.
Her,e we adapt the additional collision points that approximate the knee by changing their
position offset from the default −0.175m (see Table A.11) to −0.2m, in order to ensure proper
collision avoidance. We also change the rectangle obstacle tolerance value �obs rect tol to 0.2.
In the following we describe the individual scenarios. Here, we do not consider a similar scenario
as the previous Step Checkerboard since we found that the longer required optimization duration
(> 300ms) for this scenario leads to unstable behaviors when deployed closed%loop.

Slalom: In this scenario, we consider three normal rectangular box obstacles arranged in a line,
with a gap of 0.75m between neighboring obstacles. The first two boxes have a size of 0.5m ×0.5m, while the last box is smaller (0.4m × 0.4m). Here, 6 goal positions are placed right and
left of the boxes, encouraging slalom%like trajectories. See Figure 28 for an illustration. Here, we
execute our framework for 45s.

Figure 28:  Slalom scenario obstacles and goals. The robot starts at the white pole position. It
then walks to the green goals in the following order: top-middle, bottom-right, top-right, bottom-

middle, top-left, bottom-left.

Crosswalk: This scenario is mostly equivalent to the Step Crosswalk scenario in Section 4.3. Here,
we define two goals, the first is positioned on the other side of the crosswalk obstacles at � =2, � = 0. Note that here we walk towards the positive x direction. The second goal matches the
start position at � = 0, � = 0. We execute our framework for 45s in this scenario.
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2 Goal: Similar to the 2 Goal scenario in Section 4.3, we sample two goal positions that are at
minimum 0.45m apart, such that the total distance is ≤ 1.5m. We run each seed 10 times, each
time with different sampled goal positions. We execute our framework for 10s.
Algorithm Configuration

We consider an optimization planning horizon of 100 time steps (2s), which ensures sufficiently
fast optimization performance¹¹, see Figure 42 in Section 4.5. Only the autoregressive VAE can
achieve this optimization runtime requirement, thus we only consider it for the MPC deployment
setup. For this horizon length, 70 iterations are sufficient for convergence across all scenarios.
Since we want to closely match a real%world setup and the real robot has no working foot contact
sensors, we consider the autoregressive VAE version without the foot contact state as condition
input. We use the default GMM optimization parameter from Table A.13. We apply some adapta%
tions to the default reward weights for this MPC setup, see Table A.14. Note that only the end
goal is used, and the mid goal is deactivated.

4.4.1  Results

First, we can look at one example execution for each scenario in Figure 29. Here, we consider the15 time steps delay configuration with the �match old ref abs reward enabled. The robot successfully
walks around the obstacles for the Slalom scenario. Planned foot trajectories do not collide with
the obstacles. Figure 30 displays the trajectory from the top view. We can observe that the robot
passes through all goals¹² while navigating between the obstacles. The policy also tracks the base
xy trajectory closely, except for some small deviations. Note that we can see small position jumps
in the base reference in some places, e.g. at � = 2.1, � = 0.7. These are caused by the optimization
delay when the reference is updated to a new result from the optimization. Here, the policy
continues to follow the old reference while the optimization is performed. The �match old ref abs
reward can only counteract this to a certain degree. This can also be observed in Figure 31,
where at some time steps, the reference command slightly “jumps”, e.g. the “FR Foot Pos” at 5.5s.
Figure 31 also shows that, in general, the tracking policy tracks the reference well with some
smaller deviations. We further investigate this later.
For the Crosswalk scenario the robot walks successfully over the stepping obstacles, see Figure 29.
The optimization produces valid trajectories that keep the required base orientation for not
stepping onto the obstacles. Figure 30 shows that the robot walks over both stepping obstacles
closest to the two goals. The reference is again tracked closely. The robot walks over the horizontal
center of the obstacles, which is required to avoid collisions during foot contact.
With the 2 Goal scenario heading to the first goal then the second goal, the robot reaches both
goals¹², see Figure 29 and Figure 30. In Figure 30 we can again observe jumps in the reference
when it is updated causing larger tracking mismatches for some sections of the execution.
In Figure 32 we compare the different optimization delay configuration. We align the plots at the
time step where the new reference is applied to the policy. As expected, for the no delay variant,
the tracking error reduces after applying the new reference, since the new reference start will
match the current state well. Afterward, the tracking error increases. For the 7 step delay, the

¹¹Optimization delay ≤ 300ms ≙ 15 time steps
¹²Within the specified 15cm tolerance
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tracking error does not reduce after switching to the new reference. For the base angle, the error
increases. This effect is even stronger for the 15 steps delay, where both the position and base
orientation tracking errors increase after applying the new reference. This matches the previously
observed “jumps” in the reference commands, see Figure 31. The policy first needs some time
to keep up with the discontinuous change, thus the tracking error decreases over time. We can
observe that adding the �match old ref abs reward only improves the tracking for the 15 step delay
configuration. Here, it helps to reduce the initial peak in the position tracking error.
Finally we show the tracking error distributions for the 15 step delay configuration, where the�match old ref abs reward is enabled, see Figure 33. We consider this configuration as a pessimistic
estimation of a real%world scenario. It can be observed that the mean tracking errors are generally
higher than in the open%loop deployment, see Figure 27. We primarily attribute this to the already
discussed mismatch between the new applied reference and the actual current state caused by
the optimization delay. Again, there are also some outliers where, at some time steps, the tracking
error is large.

Conclusion

We demonstrate that our framework deployed as closed%loop MPC can successfully solve the
presented scenarios, while optimization delays lead to discontinuities in the reference command
causing larger tracking errors. The �match old ref abs reward helps with larger optimization delays,
thus we use it in the following real%world experiments, see Section 4.5. For future work, reducing
the optimization runtime may enable better tracking performance.
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Figure 29:  Example execution pictures for the closed-loop MPC deployment of the trajectory op-
timization and tracking policy for one seed per scenario (15 time steps delay with �match old ref abs
enabled). Each row shows one scenario, from top to bottom: Slalom, Crosswalk and 2 Goal.
For each scenario we show two time steps. The robot visualization shows the current state in
simulation. We show the current reference trajectory plan resulting from the last optimization
as 5 samples from the final GMM. Green spheres denote the current foot target position given
to the policy. In the top-left the robot walks from the start state to the second goal for the Slalom
scenario. In the second picture in the first row, the robot walks towards the second goal. For the
2 Goal scenario in the last row, the robot walks from the start state towards the first goal in the

first picture. Subsequently, it walks to the second goal in the second picture.
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each scenario we show the reference base position passed to the tracking policy, as well as the
real robot base position. Normal obstacles are shown in gray and stepping obstacles are shown
in light blue. The number above each goal denotes its index in the goal sequence. The x and y

axes show the x and y position coordinates in meters.
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4.5  Real-World Trajectory Optimization

In this experiment we, want to evaluate our framework in a real%world setting, where we execute
planned trajectories on a real Go2 quadrupedal robot. We consider the previously described open%
loop configuration with both VAE variants and the 6s planning horizon, see Section 4.3. We also
execute the closed%loop variant with the autoregressive VAE with the configuration described in
Section 4.4. The evaluation is performed on the same 3 scenarios as in Section 4.4. We also use
the same reward hyperparameter adaptations as in Section 4.4. For the Slalom and Crosswalk
scenarios we performed 3 executions with different GMM optimization seeds. With the 2 Goal
scenario, 4 random goal position configurations are considered, where we execute each config%
uration with just one seed. For every execution of a scenario, we use the same start position¹³
and pose where the robot stands upright in the default joint configuration. For the closed%loop
deployment, the execution of each scenario is analog to Section 4.4 running our framework for
the specified duration.
With the open%loop configurations, we plan from the fixed starting pose towards the first goal for
the Slalom and Crosswalk scenarios. Also the mid goal is considered for the 2 Goal scenario, where
the first goal position is set to the mid goal target and the second goal position is considered as
end goal. During optimization the robot keeps its default pose via PD control. After obtaining the
optimization result, the low%level policy is activated, which tracks the reference trajectory for the
full 6s duration. For the Slalom scenario, we execute each seed twice, the second time starting
from a second position, which is beside the second obstacle box. Although the real robot does
not provide contact state information, we assume that at the start state all feet are in contact for
the open%loop configurations since we always start from the default pose. The algorithm config%
uration is analog to Section 4.3, where the autoregressive VAE variant uses 600 iterations for the
Crosswalk scenario and 200 iterations for the other scenarios. The spline VAE always performs 150
iterations.

Deployment

To estimate the absolute base pose, we employ an optical tracking system [41], where multiple
cameras track reflective markers fixed on the robot’s base body. The position and orientation data
coming from the tracking system is transformed to the origin of the base frame. For the Slalom
scenario we consider real box obstacles. The position and orientation of each box is also monitored
by the optical tracking via markers on each box, see Figure 34. We use two large boxes of the
size 0.45m × 0.5m (x × y), and one small box (0.35m × 0.4m). For the Crosswalk scenario the
stepping obstacles are only considered virtually at fixed positions. To account for the geometry
of the room, we add one rectangular obstacle to model the back wall and one circular obstacle
to represent a pillar in the middle of the room. These two fixed obstacles are considered in every
scenario to avoid collisions. For the current state context provided to the reference optimization,
we require the absolute feet positions. We obtain these by employing forward kinematics with the
current joint angles and transform the result into the global frame with the robot base pose from
the optical tracking system.

¹³We mark the base frame outline on the floor to repeatedly match the same start xy%position and z%rotation.
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Figure 34:  Real-world Go2 robot and box obstacle with tracking markers.

We execute both the low%level policy and trajectory optimization on a separate computer that is
connected to the robot via an Ethernet cable. The optimization is executed on the GPU (NVIDIA
RTX 3090) and the policy on the CPU. This way, the policy execution does not affect the perfor%
mance of the optimization. Running the policy on the CPU is sufficient to achieve the required50Hz update rate. Reference trajectories resulting from the optimization are copied from the GPU
memory to the main memory to be accessible by the policy. The policy then sends joint commands
via the network connection to the robot.

4.5.1  Results

We first consider the closed%loop setup, where we show qualitative examples in Figure  35,
Figure 36 and Figure 37. For the Slalom scenario, we can observe that our framework successfully
navigates the robot around the obstacles and passes all goals, see Figure 35 and Figure 38. Just as
in simulation, the reference trajectories produce “jumps” when switching to a new optimization
result, see Figure 38. For the base xy%position, the policy tracking shows larger deviations for some
time periods. With the Crosswalk scenario, the robot avoids the stepping obstacles while reaching
both goals, see Figure 36 and Figure 38. During returning to the first goal, the optimization
chooses to walk over the obstacles sideways which is a valid solution, just as the previously
forward walking approach. In the 2 Goal scenario, the robot successfully reaches both goals in
the available time frame (Figure 37 and Figure 38). In Figure 42 (left side), we can observe that
the optimization delay is generally below 13 time steps. The Crosswalk scenario has the largest
mean delay since it needs to consider the largest number of obstacles.
With the open%loop deployment setup, both VAE variants manage to walk from the start position
through the gap between the obstacles and get close to the final goal for the Slalom scenario, see
Figure 39. The final autoregressive VAE GMM shows slightly higher variance of the samples. The
stepping obstacles are crossed successfully by both VAE optimizations in the Crosswalk scenario
(Figure 40). Here, each VAE variant converges to a different solution. In the final 2 Goal scenario,
the GMM samples show higher variation. The spline VAE result reaches the mid goal more closely,
while both variants closely match the final goal at the end of the trajectory. When we look at the
optimization time in Figure 42 (right side), we observe that only the autoregressive VAE achieves
lower optimization duration than the considered planning horizon. For the Crosswalk scenario,
both VAE variants need more optimization time than duration of the planned trajectory. Similar
to previous experiments, the autoregressive VAE is generally faster.
In Figure 43, we show the tracking errors when executing the reference from the optimization.
Generally, the tracking errors for the closed%loop MPC deployment are the highest, except for
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some outliers of the open%loop spline VAE variant. We primarily attribute this to the previously
discussed mismatches caused by the optimization delay. Both open%loop variants show similar
tracking error distributions, except for some outliers for the base position in the Crosswalk task
for the spline VAE. When comparing the mean errors with previous simulation experiments, see
Figure 27 and Figure 33, the real%world experiment generally shows higher values. This is likely
a result of state estimation errors but also could hint at potential required improvements to the
policy sim%to%real transfer.

Conclusion

We showed successful deployment of our framework in a real%world setting with both, closed%loop
and open%loop configurations. As already shown in the simulation experiments, see Section 4.4,
tracking performance could potentially be improved by reducing the delay caused by the opti%
mization.
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Figure 35:  Real-world closed-loop trajectory optimization for the Slalom scenario for one seed.
The top image overlays multiple time steps of the first half of the execution. Below, each row
of pictures corresponds to one time step in the temporal order from top to bottom. The right
column shows the current robot state and planned trajectory as 5 samples from the final GMM.

The top picture shows the full scene, the other pictures are zoomed in for better visibility.
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Figure 36:  Real-world closed-loop trajectory optimization for the Crosswalk scenario. We show 2
time steps of one seed, where each row of pictures corresponds to one time step in the temporal
order from top to bottom. The right column shows the current robot state and planned trajectory
as 5 samples from the final GMM. Note that the stepping obstacles are only virtual and thus not

visible in the real photos.

Figure 37:  Real-world closed-loop trajectory optimization for the 2 Goal scenario. We show 2
time steps of one seed, where each row of pictures corresponds to one time step in the temporal
order from top to bottom. The right column shows the current robot state and planned trajectory

as 5 samples from the final GMM.
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Figure 38:  Real-world closed-loop trajectory optimization, showing base position over time for
the same example executions displayed in Figure 35, Figure 36 and Figure 37. For each scenario
we show the reference base position passed to the tracking policy, as well as the real robot base
position. Normal obstacles are shown in gray and stepping obstacles are shown in light blue.
The number above each goal denotes its index in the goal sequence. The x and y axes show the
x and y position coordinates in meters. The fixed back wall obstacle is outside of the plots, but

the pillar room obstacle is visible.
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Autoregressive VAE Spline VAE

Figure 39:  Real-world open-loop trajectory optimization for the Slalom scenario (6s planning
horizon). We show the final time step of on seed with the second starting position, which is
beside the center obstacle. Each column corresponds to one VAE variant. The bottom row shows

the final robot state and planned trajectory as 5 samples from the final GMM.

Autoregressive VAE Spline VAE

Figure 40:  Real-world open-loop trajectory optimization for the Crosswalk scenario (6s planning
horizon). We show the final time step of on seed. Each column corresponds to one VAE variant.
The bottom row shows the final robot state and planned trajectory as 5 samples from the final
GMM. Note that the stepping obstacles are only virtual and thus not visible in the real photos.
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Autoregressive VAE Spline VAE

Figure 41:  Real-world open-loop trajectory optimization for the 2 Goal scenario (6s planning
horizon). We show the final time step of one seed. Each column corresponds to one VAE variant.
The bottom row shows the final robot state and planned trajectory as 5 samples from the final

GMM.
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5  Conclusion

In this work, we presented a framework for task%adaptive imitation%based locomotion planning.
We implemented our approach based on VI with GMMs and demonstrated its capabilities with
the quadrupedal robot Go2. Two different latent motion representation models were evaluated
in combination with our trajectory optimization algorithm. Therefore, we considered a reference
trajectory imitation dataset generated from an optimal control locomotion policy. We evaluated
our framework in three different task settings. 1) We showed that we can perform goal reaching
tasks. 2) Given planar 2D obstacles, obstacle avoidance could be achieved while heading for a
goal location. 3) Areas where the robot is not allowed to step onto could be incorporated, leading
to valid footstep location planning. Our results show that these tasks can be performed by our
framework for open%loop long%horizon planning with both considered motion representation
models. Here, the spline VAE is generally more suited for more complex scenarios and longer
planning horizons, where its slower optimization performance is similar to the generally faster
autoregressive VAE. Our framework also works for closed%loop MPC with shorter planning hori%
zons. Here, only the autoregressive VAE fulfills the runtime requirements. We show successful
deployment together with the learned low%level tracking policy in simulation and with a real%
world robot for both closed% and open%loop configurations.
When looking at the diversity of different GMM component samples, our approach is capable of
considering multiple solutions of a given task. However, the diversity within each GMM compo%
nent is low, and final distributions only focus on one component. Despite our demonstration of the
capabilities for obstacle avoidance, the optimization sometimes produces final trajectories that
violate the obstacle collision constraints. Additionally, delays caused by the optimization runtime
lead to non%continuous reference trajectory commands forwarded to the low%level policy in the
closed%loop setting. This leads to larger tracking errors.

5.1  Outlook

To address some of the current limitations of our approach, we propose the following ideas
for future work. Fine%tuning the low%level policy on trajectories produced by the optimization
may further improve the tracking performance. This could even happen iteratively, where first,
the optimization produces references, which are then incorporated into fine%tuning the policy.
Afterward, the actual motions produced by the tracking policy may be added to the dataset, which
is subsequently used to fine%tune the motion representation model. Then again, new reference
optimizations for given tasks produce new references used to further fine%tune the policy.
To address the low variance of the final GMM samples, new motion representation models may
be explored that directly decode latent values to absolute trajectories. Ideally, these models may
not be autoregressive and may directly incorporate the start state as conditional input to the
decoding process. Additionally, new models may ensure general validity of decoded trajectories,
which would reduce the need for high reward weights for inductive bias terms. More efficient
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architectures could also improve the optimization runtime performance, enabling lower delays
with longer planning horizons in the closed%loop setting.
Our framework could be extended to non%flat terrain scenarios. Here, matching of the terrain
height for stepping could be considered as an additional reward term. Additionally, other refer%
ence dataset sources, such as recorded real%world data from animals, may be considered for
training the motion representation model.
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A.  Appendix

Parameter Value
Sample base linear xy%velocity command (�� ) �(−0.35, 0.35)
Sample base angular z%velocity command ( rad� ) �(−0.8, 0.8)
Sample base z%height command (�) �(0.28, 0.32)
Fixed base xy%angles (rad) 0
Propabilty to sample new command at time step 0.06 ≙ 0.61�
Number of interpolation steps from old to new command 13 ≙ 1.3�
Number steps before starting to sample new a command 14 ≙ 1.4�
Command resample loop frequency 10Hz

Table A.1:  Go2 reference trajectory dataset generation parameters.
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Parameter Value
Encoded time steps � 20
Context length �ctx 2
Latent dimensions �� 16
Autoregressive training rollout length �rollouts 8
Initial learning rate 10−4
Final learning rate 10−7
Loss KL%term weight � 0.015
Loss contact reconstruction weight �contact 0.05
Training phases fractions for

[�ctx,autoreg = 0, �ctx,autoreg = inc, �ctx,autoreg = 1] [15%, 25%, 60%]

Normalization z%score
Update batch size 1024
Training Epochs 400

Table A.2:  Autoregressive VAE training parameters for the quadruped dataset.

Fully Connected % 1024
ELU

Fully Connected % 256
ELU

Fully Connected % 128
ELU

Fully Connected % 64
ELU

Fully Connected % 16 ⋅ 2
ELU

Fully Connected % 16 ⋅ 2�, log(�2) output
(a) Encoder

Fully Connected % 64
ELU

Fully Connected % 128
ELU

Fully Connected % 256
ELU

Fully Connected % 1024
ELU

Fully Connected % 1024
ELU

Fully Connected % 440
delta �̂�=0,…,20 output

(b) Decoder

Figure A.1:  Autoregressive VAE model structure. For each layer we denote the output size.
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Parameter Value
Encoded time steps � 25
Latent dimensions �� 10
Learning rate 2.5 ⋅ 10−4
Loss KL%term weight � 0.15
Loss contact reconstruction weight �contact 0.1
Loss spline reconstruct weight �recon,spline 1
Spline basis knot points per reference duration 20/15�
Polar min radius �min 0.01
Spline regression regularization weight �reg 0.01
Sampled train reference slice time steps �stepstrain 100
Normalization MinMax
Update batch size 16
Training Epochs 14 ⋅ 103

Table A.3:  Spline VAE training parameters for the quadruped dataset.

Fully Connected % 256
relu

Fully Connected % 256
relu

Fully Connected % 64
relu

Fully Connected % 32
relu

Fully Connected % 10 ⋅ 2�, log(�2) output
(a) Encoder

Fully Connected % 32
ELU

Fully Connected % 64
ELU

Fully Connected % 256
ELU

Fully Connected % 256
ELU

Fully Connected % 450�̂no contact, (�=0,…,25) output
(b) Decoder

Fully Connected % 32
ELU

Fully Connected % 64
ELU

Fully Connected % 256
ELU

Fully Connected % 256
ELU

Fully Connected % 100�̂�=0,…,25 output
(c) Contact Decoder

Figure A.2:  Spline VAE model structure. For each layer we denote the output size.
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Observation Dimensions
Base%frame angular velocity (noisy) 3
Joint Angles relative to default pose (noisy) 12
Joint Velocities (noisy) 12

Pr
op

rio
ce

pt
ion

Gravity Vector (noisy) 3
Target base%frame angular velocity 3 ⋅ 3
Target z%height 1 ⋅ 3
Target z%height error 1 ⋅ 3
Target base%frame rotation error vector (as rad) 3 ⋅ 3
Target base%frame xy%position error (clipped to length 1) 2 ⋅ 3
Target feet contact state 4 ⋅ 3Re

fer
en

ce
 C

m
d.

fo
r (�+1,

�+2,�+
3)

Target feet positions in base%frame 3 ⋅ 4 ⋅ 3
Last Action 12

(a) Policy observations.

Observation Dimensions
Base%frame angular velocity 3
Joint Angles relative to default pose 12
Joint Velocities 12
Gravity Vector 3
Base%frame linear velocity 3
Base%frame linear acceleration 3
Actuator torques 12
Global velocities for each foot 3 ⋅ 4
Feet contact states 1 ⋅ 4Pr

op
rio

ce
pt

ion

Push force applied to the base%frame 3
Time steps since last push ≥ time steps to next push 1
Feet air time 1 ⋅ 4

(b) Privileged observation that the value function receives in addition to the policy observations.

Table A.4:  Tracking policy observations for policy and value function.
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Parameter Value
Ground friction �(0.3, 1.0)
Joint friction loss (scaling of default) �(0.8, 1.2)
Joint armature inertia (scaling of default) �(1.0, 1.05)
Base%frame body center of mass position
(xyz offset to default) �(−0.05, 0.05)
Base%frame body mass (offset to default) �(−1.0, 1.0)
All links body mass (scaling of default) �(0.9, 1.1)
Joint zero angle offset (offset to default) �(−0.05, 0.05)
Joint stiffness (scaling of default) �(0.8, 1.2)
PD%controller k%gain (scaling of default) �(0.9, 1.1)
PD%controller d%gain (scaling of default) �(0.8, 1.7)
Gravity value �(−8.81, −10.81)
Probability action delay �a_delay 0.05
Table A.5:  Tracking policy domain randomization parameters.

Parameter Value
Base%frame angular velocity �(−0.2, 0.2)
Joint Angles �(−0.05, 0.05)
Joint Velocities �(−2, 2)
Gravity Vector �(−0.05, 0.05)

Table A.6:  Tracking policy observation noise parameters. The sampled noise values are added
to the observations.
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Parameter Value
P%Gain 45

Co
nt

ro
lle

r

D%Gain 0.5
Push magnitude �push,max (�� ) �(0.0, 1.5)
Push angle around z%axis (rad) �(0.0, 2�)
Push duration �push (�) �(0.05, 0.2)

Ba
se

 P
us

he
s

Waiting time between pushes (�) �(1.0, 3.0)
Wait time between jums (s) �(0.4, 1.2)

Re
fer

en
ce

Ju
m

ps

Jump in time length (s) �(−0.2, 0.2)
Base%frame initial position xy (offset to default, �) �(−0.02, 0.02)
Base%frame initial rotation z (offset to default, °deg) �(−8, 8)
Base%frame initial linear velocity (offset to default, �� ) �(−0.1, 0.1)St

ar
t

St
at

e

Base%frame initial angular velocity (offset to default, rad� ) �(−0.2, 0.2)
Table A.7:  Tracking policy enviroment paramters.
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Reward Term Weight�track base pos xy 5�track base pos z 0.5�track base linvel 0.5�track base rot 2�track base angvel 0.5�track feet pos 1Tr
ac

kin
g

�track feet contact 1�q limit 1�q default 0.5�q vel 0.5�q acc 0.02�torque 0.0002�action rate 0.05�energy 0.001�feet slip 0.6�base angvel 0.05Re
gu

lar
iza

tio
n

�base rot 5�terminate 1�survival 5
Table A.8:  Tracking policy reward weights.

Fully Connected % 32
Layer norm

swish
Fully Connected % 32

swish
Fully Connected % 32

swish
Fully Connected % 32

swish
Fully Connected % 2 ⋅ 12

(a) Policy. The output is a Gaussian distribution
over actions (mean and variance per dimen-

sion)

Fully Connected % 256
Layer norm

swish
Fully Connected % 256

swish
Fully Connected % 256

swish
Fully Connected % 256

swish
Fully Connected % 256

swish
Fully Connected % 1
(b) Value function

Figure A.3:  Policy and value function NN structure. For each layer we denote the output size.
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Parameter Value
Total environment steps 0.8 ⋅ 109
Discount factor � 0.97
Normalize observations yes
Number of minibatches 32
Update batch size 256
Learning rate 3 ⋅ 10−4
Entropy cost 10−2
Number parallel environments 4096
Maximum gradient norm 1.0
GAE lambda 0.95
Policy loss clipping � 0.3
Episode length (steps) 750 ≙ 15�

Table A.9:  Tracking policy training PPO parameters.
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Parameter Value�contact max total 0.01�slip max step (�� ) 1 ⋅ 10−4�slip max total 5 ⋅ 10−4�footz max step (�) 0.02�footz max total 1 ⋅ 10−6�max autoreg vae 3�max spline vae 3.5�lin 0.4�end steps frac 0.2
Table A.10:  Default reference trajectory optimization reward hyperparameters.

Parameter Value

�col base xy rel (�) [[[[
[[[−0.250.050.35−0.250.050.35−0.250.35

−0.16−0.16−0.160.160.160.1600 ]]]]
]]]

�col feet xy rel (m) [−0.1750.0 ]�obs circle tol (m) 0.1�obs rect ells num 3�obs rect ells expos (2, 4, 6)��obs rect ells weights (1, 1, 3)��obs rect tol 0.25�step obs rect ells num 2�step obs rect ells expos (2, 4)��step obs rect ells weights (1, 1)��step obs rect tol 0.15
Table A.11:  Default reference trajectory optimization obstacle avoidance parameters.
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Reward Term Weight�z in range 10000�indbias cont 9�indbias slip 9000000
In

d.
 B

ias �indbias footz 90000�reg base angular z vel 10Ba
se

 Ta
sk

Re
g. �reg base linear xy vel 10�spline dphase in range 10000�spline start rel 50000

Sp
lin

e V
AE �spline start abs 500000�goal pos end 10000�goal pos mid 10000Go

al �goal pos end steps 1000�obs avoid feet 10000�obs avoid additional 20000�obs avoid base 10000

Ob
sta

cle
s

�step obs avoid feet 13000
Table A.12:  Default reference trajectory optimization reward weights.

Parameter Value
GMM init standard deviation 2.0
GMM init prior mean 0.0
GMM init prior scale 1.0
GMM covariance matrix diagonal
GMM number of components 5
Samples per component 50

Table A.13:  Default reference trajectory optimization Algorithm 2 parameters.
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(a) With appling the filtering described in Equation 27 with �filter = 0.05.
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(b) Without appling the filtering, but only taking the first decoder output time step of each
reconstruction.

Figure A.4:  Reconstruction when passing one dataset trajecory through our spline VAE. Solid
lines corresond to the reconstuction model output while dashed lines show the true dataset
trajectory. We show the absolute representation, where the y-axis corresonds to radians for the

rotation plot and to meters for all other plots.
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Figure  A.5:  GMM optimization parameter variation with the autoregressive VAE for the 6�
horizon. We show the final reward (including all reward terms) of the optimization across
different parameterizations relative to the mean reward of the scenario (the mean reward over
all parameterizations). The color of each violin plot indicates the total number of samples per

iteration resulting from the chosen number of components and samples per component.
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Figure  A.6:  GMM optimization parameter variation with the Spline VAE for the 6� horizon.
We show the final reward (including all reward terms) of the optimization across different
parameterizations relative to the mean reward of the scenario (the mean reward over all para-
meterizations). The color of each violin plot indicates the total number of samples per iteration

resulting from the chosen number of components and samples per component.
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Reward Weight�obs avoid additional 10000�step obs avoid feet 8000�indbias slip 7200000�goal pos end 9600�goal pos mid 0�goal pos end steps 1200
Table A.14:  Autoregressive VAE reward weight adaptations for the MPC deployment.
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