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On the Benefit of Optimal Transport for
Curriculum Reinforcement Learning

Pascal Klink, Carlo D’Eramo, Jan Peters, Joni Pajarinen

Abstract—Curriculum reinforcement learning (CRL) allows solving complex tasks by generating a tailored sequence of learning tasks,

starting from easy ones and subsequently increasing their difficulty. Although the potential of curricula in RL has been clearly shown in

various works, it is less clear how to generate them for a given learning environment, resulting in various methods aiming to automate

this task. In this work, we focus on framing curricula as interpolations between task distributions, which has previously been shown to

be a viable approach to CRL. Identifying key issues of existing methods, we frame the generation of a curriculum as a constrained

optimal transport problem between task distributions. Benchmarks show that this way of curriculum generation can improve upon

existing CRL methods, yielding high performance in various tasks with different characteristics.

Index Terms—Reinforcement Learning, Curriculum Learning, Optimal Transport

F

1 INTRODUCTION

R EINFORCEMENT LEARNING (RL) [1] has celebrated
great successes as a framework for the autonomous

acquisition of desired behavior. With ever-increasing com-
putational power, this framework and the algorithms devel-
oped under it have resulted in learning agents capable of
solving non-trivial long-horizon planning [2, 3] and control
tasks [4]. However, these successes have highlighted the
need for certain forms of regularization, such as leagues in
the context of board games [3], gradual diversification of
simulated training environments for robotic manipulation
[4] and -locomotion [5], or a tailored training pipeline in
the context of humanoid control for soccer [6]. These regu-
larizations can help overcome the shortcomings of modern
RL agents, such as poor exploratory behavior – an active
research topic [7, 8, 9].
One can view the regularizations mentioned above under
the umbrella term of curriculum reinforcement learning [10],
which aims to avoid the shortcomings of modern (deep)
RL agents by learning on a tailored sequence of tasks. Such
task sequences can materialize in various ways, and they are
motivated by different perspectives in the literature, such as
intrinsic motivation or regret minimization, to name some
of them [11, 12, 13, 14, 15, 16].
A perspective of particular interest for this article is to
interpret a curriculum as a sequence of task distributions
that interpolate between an auxiliary task distribution –
with the sole purpose of facilitating learning – and a dis-
tribution of target tasks [17]. We refer to these approaches
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Fig. 1: Our approach (CURROT) addresses problems of ex-
isting curriculum RL methods, such as SPRL, which create
curricula between a distribution of initial tasks (blue) and a
distribution of target tasks (green). In this example, the cur-
riculum can change the task via two parameters c1 and c2,
leading to more or less challenging learning environments
for an agent. Looking at the different stages of the curricula
(colored points), we see that existing methods can lead to
distributions that encode hard- and easy tasks, but ignore
tasks of intermediate difficulty. Our method avoids such
a splitting behavior, resulting in interpolations that grad-
ually increase the task difficulty throughout the curriculum.
Please see Sections 4 and 5 for a detailed description.

as interpolation-based curricula. While algorithmic realiza-
tions of such curricula have been successfully evaluated
in the literature [18, 19, 20], some evaluations indicated a
relatively poor learning performance of these methods [21].
Furthermore, applications of interpolation-based curricula
have been limited to scenarios with somewhat restricted dis-
tributions, such as Gaussian- or uniform ones. The observed
performance gaps and lack of flexibility w.r.t. distribution
parameterization call for a better understanding of these
methods’ inner workings to improve their performance and
extend their applicability.
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This article investigates the shortcomings of methods that
realize curricula as a scheduled interpolation between task
distributions based on the KL divergence and an expected
performance constraint. We show how both these concepts
can fail to produce meaningful curricula in simple examples.
The demonstrated failure cases a) illustrate the importance
of explicitly reasoning about the similarity of tasks when
building a curriculum and b) show how parametric assump-
tions on the generated task distributions can masquerade
failures of the underlying framework used to generate cur-
ricula. To resolve the observed issues, we explicitly spec-
ify the similarity of learning tasks via a distance function
and use the framework of optimal transport to generate
interpolating distributions that, independent of their param-
eterization, result in gradual task changes. Based on this
explicit notion of task similarity, we propose our approach
to curriculum RL (CURROT), which replaces the expected
performance constraint with a more strict condition to ob-
tain the behavior visualized in Figure 1. Furthermore, we
contrast our approach with an alternative method, GRADI-
ENT, recently proposed by Huang et al. [22]. We outline how
both approaches use optimal transport to generate curricula
but differ in their use of the agent performance to constrain
the curriculum while avoiding the demonstrated pitfalls of
expected performance constraints.
In experiments, we a) validate the correct behavior of both
CURROT and GRADIENT free from approximations and para-
metric assumptions in a small discrete MDP and b) compare
approximate implementations on a variety of tasks featuring
discrete- and continuous task spaces, as well as Euclidean-
and non-Euclidean measures of distance between learning
tasks. In these experiments, both approaches show convinc-
ing performance with CURROT consistently matching and
surpassing the performance of all other algorithms.

2 RELATED WORK

This work generates training curricula for reinforcement
learning (RL) agents. Unlike supervised learning, where
there is an ongoing discussion about the mechanics and
effects of curricula in different learning situations [23, 24],
the mechanics seem to be more agreed upon in RL.
Curriculum Reinforcement Learning: In RL, curricula im-
prove the learning performance of an agent by adapting
the training environments to its proficiency. This adaptation
of task complexity can reduce the sample complexity of
RL, e.g., by bypassing poor exploratory behavior of non-
proficient agents [25]. Using curricula can avoid the need
for extensively engineered reward functions, which come
with risks, such as failing to encode the intended behavior
[26]. Applications of curricula to RL are widespread, and
different terms have been established. Adaptive Domain
Randomization [4] uses curricula to gradually diversify the
training parameters of a simulator to facilitate sim-to-real
transfer. Similarly, unsupervised environment discovery [16,
27, 28] aims to efficiently train an agent robust to variations
in the environment and can be seen as a more general view
of domain randomization. Automatic curriculum learning
methods [12, 14, 17, 29, 30, 31, 32, 33] mainly focus on
improving an agent’s learning speed or performance on a

set of desired tasks. Curricula are often generated as distri-
butions that maximize a specific surrogate objective, such
as learning progress [14, 34], intermediate task difficulty
[30], regret [28], or disagreement between Q-functions [31].
Curriculum generation can also be interpreted as a two-
player game [29]. The work by Jiang et al. [16] hints at a
link between surrogate objectives and two-player games.
Similar to the variety of objectives that the above algorithms
optimize to build a curriculum, their implementations use
drastically different approaches to approximate the training
distribution for the agent, which is often defined over a
continuous space of training tasks. For example, Florensa
et al. [30] use a combination of GANs and a replay buffer
to represent the task distribution. Portelas et al. [14] use a
Gaussian mixture model to approximate the distribution of
tasks that promise high learning progress. Jiang et al. [16]
use a fixed-size replay buffer to realize an approximate dis-
tribution of high-regret tasks, simultaneously encouraging
frequent replay of buffered tasks to keep a more accurate
estimate of regret.
Interpolation-based curriculum RL algorithms formulate the
generation of a curriculum as an explicit interpolation be-
tween an auxiliary task distribution and a distribution of
target tasks [17, 18, 20]. This interpolation is subject to a
constraint on the expected agent performance that paces its
progress toward the target tasks. As highlighted by Klink
et al. [17], such interpolations can be formally linked to
successful curricula in supervised learning [35], the concept
of annealing in statistics [36], and homotopic continuation
methods in optimization [37]. As for the algorithms based
on surrogate objectives, realizations of these interpolation-
based curricula inevitably need to rely on approxima-
tions such as the restriction to Gaussian distributions in
[17, 18, 19] or approximate update rules enabled by uniform
target task distributions [20].
This article reveals shortcomings of the aforementioned
interpolation-based curriculum RL methods, highlighting
how approximations can masquerade issues in the concep-
tual algorithm formulations. One ingredient to overcome
these shortcomings is an explicit notion of task similarity
that we formulate as a distance function between tasks.
We can then lift this distance function into the space of
probability measures using optimal transport.
Optimal Transport: Dating back to work by Monge in the
18th century, optimal transport has been understood as a
fundamental concept touching upon many fields in both
theory and application [38, 39]. In probability theory, opti-
mal transport translates to the so-called Wasserstein metric
[40] that compares two distributions under a given metric,
allowing, e.g., for the analysis of probabilistic inference
algorithms as approximate gradient flows [41] and provid-
ing well-defined ways of comparing feature distributions
or even graphs in computer vision and machine learning
[42, 43, 44]. Gromov-Wasserstein distances [45, 46] even
allow comparing distributions across metric spaces, which
has been of use, e.g., in computational biology [47] or
imitation learning [48]. In Reinforcement learning, optimal
transport has not found widespread application, albeit some
interesting works exist. Zhang et al. [49] provide a natural
extension of the work by Liu et al. [41] and interpret policy
optimization as Wasserstein gradient flows. Metelli et al.
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[50] use Wasserstein barycenters to propagate uncertainty
about value function estimates in a Q-learning approach. In
more applied scenarios, optimal transport has been used
to regularize RL in sequence generation- [51] or combi-
natorial optimization problems [52]. In goal-conditioned
RL, Wasserstein distances have been previously applied to
improve goal generation in the hindsight experience replay
framework [53] and to realize well-performing data-driven
reward functions by combining them with so-called time-
step metrics [54]. Recently, Cho et al. [55] combined the
data-driven reward function proposed by Durugkar et al.
[54] with a curriculum that, similarly to the work by [53],
improves the selection of training goals from a buffer of
achieved ones. When it comes to building RL curricula
over arbitrary MDPs using Optimal Transport, we are only
aware of our work [56] at ICML 2022 and the work by
[22] at NeurIPS 2022, which we present from a unified
perspective and compare in this journal article. In addition
to the aforementioned methods in goal-conditioned RL,
this article emphasizes curriculum reinforcement learning
as another promising application domain for optimal trans-
port. An important issue of applied optimal transport is its
computational complexity. In Appendix A, we discuss the
computational aspects of optimal transport in more detail.

3 PRELIMINARIES

This section introduces the necessary background on (con-
textual) RL, curriculum RL, and optimal transport.

3.1 Contextual Reinforcement Learning

Contextual reinforcement learning [57] can be seen as a con-
ceptual extension to the (single task) reinforcement learning
(RL) problem

max
⇡

J(⇡) = max
⇡

Ep(τ |⇡)

"

1
X

t=0

�tr(st,at)

#

(1)

τ = {(st,at)|t = 1, . . .}

p(τ |⇡) = p0(s0)
1
Y

t=1

p(st|st�1,at�1)⇡(at�1|st�1),

which aims to maximize the above expected discounted re-
ward objective by finding an optimal policy ⇡:S⇥A 7! R�0

for a given MDP M=hS,A, p, r, p0i with initial state distri-
bution p0 and transition dynamics p. Contextual RL extends
this objective to a space of MDPs M(c)=hS,A, pc, rc, p0,ci
equipped with a distribution µ:C 7!R over contextual vari-
ables c 2 C

max
⇡

J(⇡, µ) = max
⇡

Eµ(c) [J(⇡, c)] . (2)

The policy ⇡ : S⇥C⇥A 7! R is conditioned on the contex-
tual parameter c. The distribution µ(c) encodes the tasks
M(c) to be solved by the agent. Objective J(⇡, c) in Eq.
(2) corresponds to objective J(⇡) in Eq. (1) with the initial
state distribution p0, the transition dynamics p as well as
the reward function r of M replaced by their counterparts
in M(c). This contextual model of optimal decision-making
is well-suited for learning in multiple related tasks, as is
the case in multi-task- [58], goal-conditioned- [59], or cur-
riculum RL [10]. At this point, we want to emphasize that

the context c could be readily embedded in the state space
S , resulting in a regular MDP in which the context – as
part of the state – remains constant throughout an episode.
The context distribution µ(c) would then be subsumed into
the initial state distribution without losing expressiveness.
We nonetheless prefer the contextual RL framework, coined
by Hallak et al. [57], as it emphasizes the distribution µ(c),
which is at the heart of curriculum RL methods, as we will
see now.

3.2 Curriculum Reinforcement Learning

On an abstract level, curriculum RL methods can be un-
derstood as generating a sequence of task distributions
(pi:C 7!R)i under which to train an RL agent by maximizing
J(⇡, pi) w.r.t. ⇡. When chosen appropriately, solving this
sequence of optimization problems can yield a policy that
performs better on the target distribution µ(c) than a policy
found by maximizing J(⇡, µ) directly. The benefit of such
mediating distributions is particularly obvious in settings
where initially random agent behavior is unlikely to observe
any meaningful learning signals, such as in sparse-reward
learning tasks.
CRL methods differ in the specification of pi. Often, the dis-
tribution is defined to prioritize tasks that maximize certain
surrogate quantities, such as absolute learning progress [14],
regret [28], or tasks of intermediate success probability [30].
This article focuses on CRL methods that model pi as the
solution to an optimization problem that aims to minimize
a distance or divergence between pi and µ. One of these
approaches [17, 18, 19] defines pi as the distribution with
minimum KL divergence to µ that fulfills a constraint on
the expected agent performance

min
p

DKL (p(c)kµ(c)) (3)

s.t. J(⇡, p) � � DKL (p(c)kq(c))  ✏,

where � is the desired level of performance to be achieved
by the agent ⇡ under p(c) and ✏ limits the maximum KL di-
vergence to the previous context distribution q(c)=pi�1(c).
The optimizer of (3) balances between tasks likely under
the (target) distribution µ(c) and tasks in which the agent
currently obtains large rewards. The KL divergence con-
straint w.r.t. the previous context distribution q(c) prevents
large changes in p(c) during subsequent iterations, avoiding
the exploitation of faulty estimates of the agent perfor-
mance J(⇡, p) from a limited amount of samples. Objec-
tive (3) performs an interpolation between the distributions
p⌘(c)/µ(c) exp(⌘J(⇡, c)) and q(c), given by

p↵,⌘(c) / (µ(c) exp(J(⇡, c))⌘)
↵
q(c)1�↵. (4)

The two parameters ↵ and ⌘ that control the interpolation
are the Lagrangian multipliers of the two constraints in
objective (3). We will later investigate the behavior of this
interpolating distribution.

3.3 Optimal Transport

The problem of optimally transporting density between
two distributions has been initially investigated by Monge
[60]. As of today, generalizations established by Kantorovich
[40] have led to so-called Wasserstein distances as metrics
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between probability distributions defined on a metric space
M=(d, C) with metric d : C ⇥ C 7! R�0

Wp(p1, p2)=

✓

inf
�2Φ(p1,p2)

E� [d(c1, c2)
p]

◆1/p

, p � 1

Φ(p1, p2)= {� : C⇥C 7!R�0|pi=Pi#�, i2{1, 2}} ,

where Pi# are the push-forwards of the maps P1(c1, c2)=c1

and P2(c1, c2)=c2. We refer to [38, Chapter 2] for an ex-
cellent and intuitive introduction to these concepts. The
distance between p1 and p2 is obtained via the solution to
an optimization problem that finds a so-called plan, or cou-
pling, �. This coupling encodes how to equalize p1 and p2,
considering the cost of moving density between parts of the
space C. The metric d encodes this cost. In the following, we
will always assume to work with 2-Wasserstein distances,
i.e., p=2, due to their suitedness for interpolating measures
[see 38, Chapter 6 and Remark 2.24].
Similar to how (weighted) means can be defined as solu-
tions to optimization problems on a metric space M=(d, C),
Wasserstein distances allow us to define what is referred to
as Wasserstein barycenters [61]

B2(W,P ) = argmin
p

K
X

k=1

wkW2(p, pk), (5)

which represent the (weighted) mean of the distributions
P={pk|k2[1,K]} with weights W={wk|k2[1,K]}.

4 CURRICULUM REINFORCEMENT LEARNING AS

CONSTRAINED OPTIMAL TRANSPORT

At this point, we can motivate our approach to curriculum
RL by looking at the limitations of Objective 3 caused by a)
measuring similarity between context distributions via the
KL divergence and b) the expected performance constraint
used to control the progression towards µ(c).

4.1 Limitations of the KL Divergence

Given the complexity of computing DKL (p(c)kµ(c)) for
arbitrary distributions, previous work restricts µ(c) either
to a Gaussian distribution [17, 18, 19] or to be uniform
over C to ease computation and optimization of a weighted
KL divergence objective [20]. While empirically successful,
these design choices masquerade the pitfalls of the KL
divergence to measure distributional similarity in a CRL
setting, particularly when dealing with a target distribution
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Fig. 2: Interpolations generated by optimizing Objective (6)
for different values of ✏ (and with that ↵). In the top row,
p1(c) and p2(c) are Gaussian, while in the bottom row, they
assign uniform density over different parts of C.
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Fig. 3: Wasserstein barycenters B([↵, 1�↵], [p1, p2]) between
the distributions shown in Figure 2. In the top row, p1(c)
and p2(c) are Gaussian while in the bottom row, they assign
uniform density over different parts of C.

that does not assign uniform density over all of C.
To demonstrate this issue, we focus on an interpolation task
between two distributions

p1(c)
↵(✏)p2(c)

1�↵(✏) = argmin
p2{q|DKL(qkp2)✏}

DKL (pkp1) , (6)

corresponding to a version of Objective (3) with no con-
straint on the expected agent performance. Figure 2 demon-
strates the sensibility of this interpolation to the para-
metric representation of the distributions µ(c) and q(c).
While for Gaussian distributions, interpolations of the form
p1(c)

↵p2(c)
1�↵ gradually shift density in a metric sense,

this behavior is all but guaranteed for non-Gaussian dis-
tributions. The interpolation between two uniform distri-
butions with quasi-limited support 1 in the bottom row of
Figure 2 displaces density from contexts c to contexts c

0

with large Euclidean distance kc�c
0k2. In settings in which

the Euclidean distance between contexts c1 and c2 is a good
indicator for the similarity between M(c1) and M(c2), the
observed ignorance of the KL divergence w.r.t. the under-
lying geometry of the context space leads to curricula with
“jumps” in task similarity. We can easily convince ourselves
that such jumps are not a hypothetical problem by recalling
that neural network-based policies ⇡(a|s, c)=fθ(s, c) tend to
gradually change their behavior with increasing Euclidean
distance to c.
At this point, we can leverage the notion of optimal trans-
port to explicitly encode the similarity of two tasks, M(c)
and M(c0), via a metric d(c, c0) and realize the interpola-
tion between distributions on the resulting metric space as
Wasserstein barycenters (Eq. 5). As we see in Figure 3, this
explicit notion of task similarity allows to generate interpo-
lations that are stable across changes in the parameterization
of context distributions and interpolate between arbitrary
distributions that are not absolutely continuous w.r.t. each
other. Consequently, the optimization problem

min
p

W2(p, µ) s.t. J(⇡, p) � � (7)

is a promising approach to leverage optimal transport in
curriculum RL. We iterate on this candidate in the next
section by investigating the role of the expected perfor-
mance constraint when generating curricula for reinforce-
ment learning agents.

1. We ensure a negligible positive probability density across all of C
to allow for the computation of KL divergences.
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Fig. 4: Interpolations using KL divergence (top) and Wasser-
stein distance (bottom) subject to an expected performance
constraint with different threshold values �. The perfor-
mance J(⇡, c) is visualized in green.

4.2 Challenges of Expected Performance Constraints

The SPRL objective (3) controls the interpolation speed
between the initial- and target task distribution by the
expected performance of the current agent under the cho-
sen context distribution J(⇡, p). As detailed in [17], this
expected performance constraint allows for establishing a
connection to self-paced learning for supervised learning
tasks [35, 62]. While this formal connection is interesting
in its own right, we show in Figure 4 that the expected per-
formance constraint in SPRL can lead to encoding both too
simple and too complex tasks, given the current agent capa-
bilities. Furthermore, using Wasserstein distances in Objec-
tive (7) does not resolve this issue. In Figure 4, both methods
encode tasks with very high and very low agent returns
to fulfill the expected performance constraint, sidestepping
the goal of encoding tasks of intermediate difficulty. At
this point, we can propose our algorithm CURROT and
introduce a recent algorithm proposed by Huang et al. [22]
– called GRADIENT– as two ways of resolving the observed
interpolation issue:

1) CURROT restricts the support of p(c) to those contexts
c 2 C that fulfill the performance constraint J(⇡, c)��.
We refer to this set as V(⇡, �) = {c|c2C, J(⇡, c) � �}.
With this notation in place, we frame the restricted
optimization as

min
p

W2(p, µ) s.t. p(V(⇡, �))=1. (8)

Putting the constraint in words, we require that the cur-
riculum assigns all probability density of p to contexts
that satisfy the performance constraint.

2) GRADIENT restricts the interpolation to the barycentric
interpolation (5) between the initial- and target context
distribution, i.e. p↵(c) = B2 ([1�↵,↵], [p0(c), µ(c)]).
This restriction prevents the problematic behavior
shown in Figure 4 while still allowing to adjust ↵ using
an expected performance constraint

max
↵2[0,1]

↵ s.t. J(⇡, p↵)��. (9)

As shown in Figure 5, both of these methods avoid the
behavior generated by Objective (7), resulting in an inter-
polation that gradually deforms the distribution in a metric
sense with changing agent competence. In the remainder
of this article, we will investigate exact and approximate

0.0

0.2

0.4

0.6

0.8

1.0

δ

gradient

c

currot

Fig. 5: Interpolations generated by GRADIENT (Eq. 9, top)
and CURROT (Eq. 8, bottom) for different threshold values �.
The performance J(⇡, c) is visualized in green.

versions of these algorithms to understand their behavior
better. The first observation in this regard is that the cur-
riculum of GRADIENT is entirely predetermined by the given
metric d(c1, c2) as well as the target- and initial distribution
µ(c) and p0(c). The agent performance only influences
how fast the curriculum proceeds towards µ(c). On the
other hand, CURROT reshapes the curriculum based on the
current agent performance to avoid sampling contexts with
a performance lower than the threshold �. Figure 5 shows
that this reshaping results in a tendency of CURROT to place
all probability density on the border of the desired agent
performance � until reaching regions of non-zero probability
density under µ(c). At this point, the curriculum matches
the target density in those parts of C, in which the perfor-
mance constraint is fulfilled, and continues to concentrate
all remaining density on the boundaries of agent capability.
This behavior is similar to those CRL methods that combine
task-prioritization with a replay buffer of, e.g., previously
solved tasks to prevent catastrophic forgetting, such as
GOALGAN or PLR [28, 30]. To the best of our knowledge,
such behavior has not yet been motivated by a first-principle
optimization objective in the context of curriculum RL.

5 APPROXIMATE ALGORITHMS FOR DISCRETE-

AND CONTINUOUS CONTEXT SPACES

Objectives (8) and (9) face challenges in more realistic ap-
plication scenarios with either large discrete- or continuous
context spaces due to two reasons:

1) We do not have access to the expected performance
J(⇡, c) of an agent ⇡ in context c but can only estimate
it from observed training episodes.

2) Computing Wasserstein barycenters for arbitrary
continuous- or discrete distributions in non-Euclidean
spaces can quickly become intractably expensive.

The following sections address the above problems to
benchmark CURROT and GRADIENT in non-trivial experi-
mental settings.

5.1 Approximate Wasserstein Barycenters

Before branching into the description of the two algorithms,
we first describe a particle-based approximation to the
computation of Wasserstein Barycenters, which allows us
to cheaply approximate Barycenters for the GRADIENT algo-
rithm in large discrete state-spaces and is essential for the
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approximate implementation of the CURROT algorithm.
For approximating a Barycenter p↵=B([1�↵,↵], [p0, µ]), we
first sample a set of N particles from µ(c) and p0(c) to form
the empirical distributions

µ̂(c) =
1

N

N
X

n=1

�cµ,n
(c), cµ,n ⇠ µ(c) (10)

p̂0(c) =
1

N

N
X

n=1

�cp0,n
(c), cp0,n ⇠ p0(c),

where �cref
(c) represents a Dirac distribution centered at

cref. Due to the discrete nature of µ̂(c) and p̂0(c), the
coupling �(c1, c2) reduces to a permutation �2Perm(N),
which assigns the particles between p̂0 and µ̂ [38, Section
2.3]. With that, the computation of W2(p̂0, µ̂) reduces to

min
�2Perm(N)

 

1

N

N
X

n=1

d(cp0,n, cµ,�(n))
2

!

1
2

. (11)

Since a permutation is a particular case of a coupling [38,
Section 2.3], we overload the meaning of � to be either
a permutation or coupling, depending on the number of
arguments. With today’s computing hardware, assignment
problems like (11) can be solved on a single CPU core in
less than a second for N in the hundreds, which is typically
enough to represent the context distributions 2. Given this
optimal assignment, we then compute the Fréchet mean for
each particle pair

c↵,n=argmin
c2C

(1�↵)d(c, cp0,n)
2 + ↵d(c, cµ,�(n))

2 (12)

to form the barycenter p̂↵(c)=
1
N

PN
n=1 �cα,n

(c). While cer-
tainly less efficient than specialized routines for Barycenter
computations in Euclidean Spaces, such as e.g., the Geom-
Loss library [63], the presented approach is useful when
dealing with large discrete spaces. In this case, faithful
Barycenter computations must work with the full distance
matrix. Assuming a discrete context space of size S and ne-
glecting the cost of computing the optimal assignment, the
approximate barycenter computation requires O(N2+2NS)
evaluations of the distance function. Hence for S � N , even
computing the

S(S+1)
2 entries of the entire distance matrix

required for a single step in the Sinkhorn algorithm becomes
more expensive than the presented approximate method.
Additionally, reducing the Barycenter computation to an
optimization problem over individual particles easily allows
to incorporate additional constraints that are required by the
CURROT optimization objective (8).

5.2 Approximate GRADIENT

Huang et al. [22] propose to compute barycenters between
p0(c) and µ(c) for discrete steps of size ✏. Starting from
↵=0, the agent trains for M episodes on tasks sampled
from the current distribution. If the average episodic return
1
M

PM
m=1 Rm is greater or equal to �, ↵ is increased by ✏

and the distribution is set to be the Wasserstein barycenter
for the updated value of ↵.
This step-wise increase of ↵ avoids the explicit optimization

2. In our experiments, we use less than a thousand particles in all
experiments

Algorithm 1 Approximate GRADIENT

Input: Initial context dist. p0(c), target context dist. µ(c),
metric d(c1, c2), performance bound �, step size ✏
Initialize: ↵ = 0
while True do

Compute p̂↵(c) =
1
N

PN
n=1 �cα,n

(c) (Eq. (11) and (12))
Agent Improvement:
Sample contexts cm ⇠ p̂↵(c), m 2 [1,M ]
Train policy ⇡ under cm and observe episodic rewards
Rm =

P1
t=0 �

trcm
(st,at), m 2 [1,M ]

Context Distribution Update:

if 1
M

PM
m=1 Rm�� then

Advance interpolation ↵ = min(↵+ ✏, 1)
end if

end while

over ↵ and, with that, the need to estimate the performance
of the current policy ⇡ for a given context c. Having laid
out a way of computing approximate Barycenters in the
previous section, we can summarize our implementation of
GRADIENT in Algorithm 1.

5.3 Approximate CURROT

As for the GRADIENT algorithm, we make use of an empir-
ical distribution p̂(c) to represent the context distribution
p(c) (see Eq. 10). Unlike for GRADIENT, there is no pos-
sibility to side-step the estimation of J(⇡, c) for CURROT,
and any estimator of J(⇡, c) will inevitably make mistakes.
The mistakes will be particularly big for contexts c with a
considerable distance to those sampled under the current
training distribution p(c). To avoid exploiting such erro-
neous performance predictions, we introduce a trust region
constraint similar to the seminal SPRL objective (3) into
CURROT

min
p

W2(p, µ) (13)

s.t. p(V(⇡, �))=1 W2(p, q)  ✏,

which limits the Wasserstein distance between the current-
and next context distribution q(c) and p(c). Please note
that we overload the meaning of the symbol ✏ with step
size for GRADIENT and the trust region for CURROT, as
both concepts limit the change in sampling distribution be-
tween updates. We realize the performance estimator using
Nadaraya-Watson kernel regression [64, 65] with a squared
exponential kernel

Ĵ(⇡, c)=

PL
l=1 Kh(c, cl)Rl
PL

l=1 Kh(c, cl)
, Kh(c, cl)= exp

✓

�
d(c, cl)

2

2h2

◆

.

This estimator does not rely on gradient-based updates and
requires no architectural choices except for the lengthscale h,
consequently not complicating the application of the overall
algorithm. We postpone the discussion of this lengthscale
parameter h until after we have discussed the approximate
optimization of Objective (13) and first focus on the choice
of dataset D={(cl, Rl)|l 2 [1, L]} used to build the kernel
regressor.
We create the dataset from two buffers, D+ and D�,
of size N . We update the buffers with the results

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3390051

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Algorithm 2 Approximate CURROT

Input: Initial context dist. p0(c), target context dist. µ(c),
metric d(c1,c2), performance bound �, distance bound ✏

Initialize: p̂(c) = 1
N

PN
n=1 �cp0,n

(c), cp0,n ⇠ p0(c)
while True do

Agent Improvement:
Sample contexts cm ⇠ p̂(c), m 2 [1,M ]
Train policy ⇡ under cm and observe episodic rewards
Rm =

P1
t=0 �

trcm
(st,at), m 2 [1,M ]

Context Distribution Update:
Update buffers D+ and D� with {(cm, Rm)|m2[1,M ]}

Estimate Ĵ(⇡, c) ⇡ J(⇡, c) from D+ and D�

Update p̂(c) via Eq. (14) and Ĵ(⇡, c), p̂(c), µ̂(c)
end while

of policy rollouts (c, Rc) during agent training, where
Rc=

P1
t=0 �

trc(st,at). While D� is simply a circular buffer
that keeps the most recent N rollouts with Rc below the
performance threshold �, D+ contains contexts c for which
Rc � �. However, D+ is updated differently if full. Once
full, we interpret the samples in D+ as an empirical distri-
bution p̂+(c) and select rollouts from the union of D+ and
the set of new rollouts above the performance threshold �
to minimize W2(p̂+, µ̂). This optimal selection can be com-
puted with a generalized version of the optimal assignment
problem (11), where p̂+ is represented by N+ particles and µ̂

is represented by N particles with N+ � N . The generalized
problem then produces a selection of N particles to repre-
sent p̂+, which minimizes the resulting distance W(p̂+, µ̂).
We can hence interpret p̂+(c) as a conservative solution
to the CURROT objective (8). The solution is conservative
since the particles are obtained from past iterations and may
exceed the performance threshold � by some margin, hence
not targeting the exact border of the performance threshold.
To more precisely target this border of agent competence, we
proceed as follows: First, we solve an assignment problem
between p̂(c) and p̂+(c) to obtain pairs (cp,n, cp+,�(n)).
We then reset cp,n=cp+,�(n) for those contexts cp,n with

Ĵ(⇡, cp,n)<�. Next, we again sample an empirical target
distribution µ̂(c) and solve an assignment problem between
the updated empirical distribution p̂(c) and µ̂(c) to obtain
context pairs (cp,n, cµ,�(n)). We then solve an optimization
problem for each pair to obtain the particles for the new
empirical context distribution

argmin
c2C

d(c, cµ,�(n)) (14)

s.t. Ĵ(⇡, c) � � d(c, cp,n)  ✏.

Note that the restriction d(c, cp,n)✏ ensures that
W2(p̂, q̂)✏, while de-coupling the optimization for the indi-
vidual particles. We use a simple approximate optimization
scheme that samples a set of candidate contexts around cp,n

and selects the candidate that minimizes the distance to
cµ,�(n) while fulfilling the performance constraint. In the
continuous Euclidean settings, we uniformly sample candi-
dates in the half ball of contexts that make an angle of less
than 90 degrees with the descent direction cp,n � cµ,�(n). In
discrete context spaces, we evaluate all contexts in the trust

dS(c1, c2) dP∗ (c1, c2) dE(c1, c2)

Fig. 6: E-Maze environment and visualizations of barycen-
ters between initial- and target task distribution for the
shortest-path distance dS, performance pseudo-distance dP∗

and Euclidean distance dE. Brighter colors correspond to
distributions generated at later stages of the interpolation.
The states covered by initial- and target task distributions
are highlighted by the blue and red lines.

region. If even after resetting cp,n=cp+,�(n), no candidate
satisfies the performance threshold, and hence Objective (14)
is infeasible, we set cp,n to the candidate with maximum
performance in the ✏-ball.
Having defined Objective (14), we can discuss the length-
scale parameter h of the Nadaraya-Watson estimator. Given
that the purpose of the estimator is to capture the trend in
the ✏-ball around a particle cp,n, we simply set the length-
scale to 0.3✏. This choice ensures that the two-times standard
deviation interval of the squared-exponential kernel Kh

centered on cp,n covers the trust region.
Like for GRADIENT, we train on p0(c) until reaching an
average performance of at least �, at which point we update
the distribution according to Algorithm 2.

6 EXPERIMENTS

To demonstrate the behavior of the introduced algorithms
CURROT and GRADIENT, we benchmark the algorithms in
different environments that feature discrete- and continuous
context spaces with Euclidean- and non-Euclidean distance
metrics. We furthermore evaluate both the exact approaches
as well as their approximate implementations. To highlight
the benefits of the proposed approach over currently popu-
lar CRL methods, we compare against a range of baselines.
More precisely, we evaluate ALP-GMM [14], GOALGAN [30],
PLR [28], VDS [31] and ACL [66] in addition to a random
curriculum and training directly on µ(c) (referred to as De-
fault). Details of the experiments, such as hyperparameters
and employed RL algorithms, can be found in Appendix C.
The code for running the experiments will be made publicly
available upon acceptance.

6.1 E-Maze Environment

To investigate CURROT and GRADIENT without relying on
approximations and highlight the effect of the chosen dis-
tance metric, we start the experiments with the environment
shown in Figure 6. In this sparse-reward environment that
is represented by a 20⇥ 20 grid, an agent is tasked to reach
a goal position by moving around an elongated wall (black
tiles in Figure 6). The curricula for this task control the goal
position to be reached via the context c. We investigate three
different distance functions of C in this environment:
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• A Euclidean distance dE(c1, c2)=kr(c1)� r(c2)k2 based
on representations r(c) 2 R

3 of the discrete contexts
which encode the two-dimensional goal position as
well as the height (walls have a height of 200 and
regular tiles a height of zero).

• A shortest-path distance dS(c1, c2) computed using the
Dijkstra algorithm. The search graph for the Dijkstra
algorithm is built by connecting neighboring contexts
using the previously defined Euclidean distance.

• A pseudo-metric investigated by Huang et al. [22] that
is based on the optimal policy’s absolute difference
in expected return dP∗(c1, c2)= |J⇡∗(c1)� J⇡∗(c2)|. Op-
posed to the metrics dE and dS, this pseudo-metric can
assign dP∗(c1, c2) = 0 for c1 6= c2.

While the definition of Wasserstein barycenters is not en-
tirely rigorous for the pseudo-metric dP∗ , the introduced
approximate algorithms can still operate on it without
problems. Huang et al. [22] also investigated this pseudo-
metric for the current policy ⇡, leading to a different metric
in each algorithm iteration. We investigate this interesting
concept in Appendix C.2 to keep the main article short and
consistent with the previous sections that assumed a fixed
distance. Figure 6 visualizes the barycentric interpolations
generated by dE, dS, and dP∗ . Looking at Figure 6, we can
already anticipate a detrimental effect of the Euclidean met-
ric dE on the generation of the curriculum. The visualization
of dP∗ indicates a weakness of purely performance-based
metrics since a similar expected return for c1 and c2 does not
guarantee similar outcomes of actions in the two contexts.
We visualize the expected return for different curricula in
Figure 7. As we can see, CURROT and GRADIENT can signifi-
cantly improve performance over both a purely random- as
well as no curriculum. However, the performance gains are
highly dependent on an appropriate choice of metric. While
both CURROT and GRADIENT show strong performance for
dS, CURROT’s performance diminishes for dP∗ , and none of
the two methods can make the agent proficient on µ(c)
when using dE.
Figure 8 shows interpolations generated by CURROT for the
investigated metrics. We see that the interpolating distri-

0 50K 100K 150K 200K

Step

0.0
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R
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Random

currot(dS)

currot(dP∗ )

currot(dE)

gradient(dS)

gradient(dP∗ )

gradient(dE)

Fig. 7: Expected return on the target task distribution µ(c)
in the E-Maze environment achieved by CURROT and GRA-
DIENT under varying distance metrics. The shaded area
corresponds to two times the standard error (computed
from 20 seeds). The red dotted line represents the maximum
possible reward achievable on µ(c).

dS(c1, c2) dP∗ (c1, c2) dE(c1, c2)

Fig. 8: CURROT sampling distribution without entropy reg-
ularization for varying distance measures. Brighter colors
correspond to later training iterations.

TABLE 1: Final agent performance of CURROT and GRA-
DIENT on µ(c) in the E-Maze environment for varying
amounts of entropy regularization (� and HLB). Mean and
standard error are computed from 20 seeds.

CURROT

HLB 0. 0.5 1.0 2.0

dS 0.62±0 0.61±0 0.53±0.04 0.58±0.03

dP∗ 0±0 0.45±0.06 0.38±0.06 0.42±0.06

dE 0±0 0±0 0±0 0±0

GRADIENT

λ 0. 10
−8

10
−4

10
−2

dS 0.60±0.01 0.56±0.04 0.62±0.00 0.60±0.01

dP∗ 0.55±0.03 0.48±0.05 0.45±0.05 0.30±0.06

dE 0.01±0.01 0.03±0.03 0.03±0.03 0.01±0.01

butions of CURROT can collapse to a Dirac distribution for
dS and dP∗ . As discussed in Section 5, Huang et al. [22]
proposed using an entropy-regularized version of optimal
transport due to its computational speed. Given that we
solve Objectives (8) and (9) analytically, we can investigate
the effect of entropy-regularization not with respect to com-
putational speed but to performance. In Table 1, we show
the final agent performance when using entropy-regularized
transport plans for GRADIENT as well as a lower bound
HLB on the entropy of the generated task distributions for
CURROT. The detailed formulations of these variants are
provided in Appendix C.2. As the results show, entropy
regularization can benefit CURROT. The visualizations in
Figure 9 indicate that this benefit arises from avoiding the
aggressive targeting of contexts right at the edge of the
performance constraint that we can see in Figures 1, 5, and
8. In the case of the pseudo distance dP∗ , the more diverse
tasks sampled from p(c) sometimes allowed the agent to
generalize enough to solve tasks sampled from µ(c). For

dS(c1, c2) dP∗ (c1, c2) dE(c1, c2)

Fig. 9: CURROT sampling distribution for HLB=2 and vary-
ing distance measures. Brighter colors correspond to later
training iterations.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3390051

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

GRADIENT, we cannot see significant performance gains
but can observe that a too-high entropy regularization in
combination with dP∗ diminished performance. Given that
for an adequate metric (i.e., dS), the observed performance
is stable across different amounts of entropy regularization,
we do not further explore this avenue in the following
experiments.

6.2 Unlock-Pickup Environment

In the following environment, we aim to benchmark approx-
imate implementations of CURROT and GRADIENT for large
discrete context spaces and demonstrate that appropriate
distances for non-trivial context spaces can be designed by
hand. In Figure 10, we visualize the unlock-pickup environ-
ment from the Minigrid environment collection [67] that we
chose for this investigation. To master this environment, the
agent must pick up a key, unlock a door and eventually pick
up a box in the room that has just been unlocked.
We define a curriculum by controlling the starting state of
an episode via the context c, i.e., controlling the position of
the box, key, agent, and door, as well as the state of the door
(whether closed or open). As detailed in Appendix C.3, this
task parameterization results in 81.920 tasks to compile a
curriculum from. The initial context distribution is defined
to encode states in which the agent is directly in front of the
box, similar to the bottom-right image in Figure 10. Starting
from this initial distribution, the learning algorithm needs
to generate a curriculum that ultimately allows the agent to
reach and pick up the box from a random position in the left
room with a closed door. As we show in Appendix C.3, it is
possible to define a so-called highway distance function [68]
between contexts that properly takes the role of the door and
its interaction with the key into account, without relying on
a planning algorithm like in the previous environment. We
use this distance function in the following evaluations.
In addition to the approximate versions of CURROT and
GRADIENT, we evaluate PLR, VDS, and ACL on this task.
We do not evaluate SPRL, ALP-GMM, and GOALGAN since

Fig. 10: The Unlock-Pickup environment, in which an agent
needs to pick up the box in the right room by unlocking the
door. After reset, the agent is randomly placed in the left
room not carrying the key (top left image). After picking up
the key (top right), the door can be unlocked (bottom left) to
move to the box (bottom right). The door-, box- and key po-
sitions as well as their colors vary across environment resets.
The agent receives a partial view of the world (highlighted
rectangle) that is blocked by walls and closed doors.
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Fig. 11: Episodic return on the target task distribution µ(c) in
the Unlock-Pickup environment for different curricula. The
shaded area corresponds to two times the standard error
computed from 20 seeds.

those algorithms have been designed for continuous and
Euclidean context spaces by, e.g., leveraging Gaussian dis-
tributions, kd-trees, or Gaussian sampling noise. The evalu-
ation results in Figure 11 show that CURROT and GRADIENT

consistently allow mastering the target tasks (a cumulative
discounted return of 0.75 ⇡ 0.9928 is obtained by solving a
task in 28 steps). For both CURROT and GRADIENT, each of
the 20 runs led to a well-performing policy, and we can
barely see any difference in learning speed between the
approaches. Learning directly on the target task distribu-
tion allows mastering the environment in some runs while
failing to do so in others due to the high dependence on
collecting enough positive reward signals at the beginning
of learning. These two outcomes lead, on average, to a lower
performance compared to CURROT and GRADIENT. Finally,
we see that all baseline curriculum methods learn slower
than directly learning on the target task distribution µ(c),
with ACL not producing policies that collect any reward
on the target tasks. Given the successful application of PLR

in the Procgen benchmark, which features a diverse set of
Arcade game levels with highly distinct visual observations,
we wish to discuss the observed low performance of PLR

here in more detail. As we show in Appendix C.3, PLR

indeed samples contexts occurring under µ(c) with at least
7% in each run. Furthermore, in about half of the runs, the
agent also learns to solve those target tasks that are replayed
by PLR at some point in the curriculum. However, these
replayed target tasks only make up a small fraction of the
total number of target tasks, resulting in low performance
on all of µ(c). The absence of a notion of target distribution
for PLR seems to lead to ineffective use of samples w.r.t
improving performance on the target. This lack of target
distribution causing problems will be a re-occurring theme
for the subsequent experiments.

6.3 Point-Mass Environment

In this environment, in which a point-mass agent must pass
through a narrow gate to reach a goal position opposite a
wall (Figure 12), we benchmark our approximate implemen-
tations of CURROT and GRADIENT in continuous settings.
The context c2R2 controls the position and width of the
gate that the agent needs to pass. This environment has been
introduced with the SPRL algorithm by Klink et al. [18] with
a Gaussian target distribution that essentially encodes one
narrow gate requiring the agent to detour before reaching
the target position. Combined with a dense reward based
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on the Euclidean distance to the goal, the target task is
subject to a prominent local minimum that simply moves
the agent close to the wall without passing through. We
extend this task with a bi-modal target distribution that
challenges SPRL’s Gaussian restriction that – as we discussed
– is required for it to work properly. As seen in Figure 12,
CURROT and GRADIENT generate curricula that target both
modes of the distribution and allow learning a proficient
policy on all of µ(c). As we show in Appendix C.4, the
Gaussian restriction of SPRL’s context distribution leads to
p(c) matching only one of the modes of µ(c), resulting in
a lower average reward on µ(c) compared to CURROT and
GRADIENT. We additionally visualize summary statistics for
the other CRL methods in Figure 12, showing that they
result in a less targeted sampling of contexts likely under
µ(c). This observation, in combination with the lower per-
formance compared to CURROT and GRADIENT, once more
emphasizes the importance of embedding a notion of target
distribution in CRL algorithms.
We additionally benchmark CURROT and GRADIENT in ver-
sions of the point-mass environment with increasing con-
text spaces dimensions. The results in Appendix D show
that both approaches can scale to higher dimensions (we
investigated up to 30-dimensional context spaces) for this
environment. However, they also emphasize the importance
of certain algorithmic choices such as the choice of initial
context distribution p0(c) for both methods and the choice
of the trust region as well as the sampling schemes of
candidates for Objective (14) for CURROT. To keep the main
article short, we refer the interested reader to Appendix D.

6.4 Sparse Goal-Reaching Environment

We next turn to a sparse-reward, goal-reaching environ-
ment in which an agent needs to reach a desired position
with high precision (Figure 13). Such environments have,
e.g., been investigated by Florensa et al. [30]. The context
c2C ✓ R

3 of this environment encodes the 2D goal position
as well as the allowed tolerance for reaching the goal. This
parameterization results in both infeasible tasks being part
of C (unreachable regions) as well as tasks that are solely

meant to be stepping stones to more complicated ones (low-
precision tasks). Given that the agent is ultimately tasked to
reach as many goals as possible with the highest precision,
i.e., the lowest tolerance, the target distribution µ(c) is a
uniform distribution on a 2D slice of C with minimal task
tolerance. The walls in the environment (Figure 13) render
many target tasks infeasible, requiring the curriculum to
identify the feasible subspace of tasks to achieve a good
learning performance. Figure 13 shows that CURROT results
in the best learning performance across all evaluated CRL
methods. Only an oracle, which trains the learning agent
only on the feasible subspace of high-precision tasks, can
reach higher performance. The evolution of the task tol-
erances shown in Figure 13 highlights that CURROT and
GRADIENT continuously reduce the task tolerance. The base-
line CRL methods lack focus on the tasks encoded by µ(c),
sampling tasks with comparatively high tolerance even
towards the end of training. Interestingly, SPRL samples
high-tolerance tasks throughout all training epochs since its
Gaussian context distribution converges to a quasi-uniform
distribution over C. Otherwise, SPRL would not be able
to cover the non-Gaussian distribution of feasible high-
precision target tasks without encoding many infeasible
tasks. Figure 13 shows the particle evolution for runs of
CURROT and GRADIENT. CURROT gradually decreases the
goal tolerance over epochs, starting from contexts that are
close to the initial position of the agent. Interestingly, it
retains higher tolerance contexts located in the walls of
the environment even in later epochs due to the trade-off
between sampling high-precision tasks and covering all goal
positions. The pre-determined interpolation of GRADIENT

cannot adjust to infeasible parts of the context space and
reduces to a curriculum that shrinks the upper-bound tub of
the tolerance interval [0.05, tub]. Consequently, a decrease
in tub increases the number of infeasible tasks on which
the agent is trained, slowing down learning and resulting
in a significant performance gap between CURROT and
GRADIENT in this environment. We additionally evaluate
CURROT and GRADIENT with Hindsight Experience Replay
(HER) [11] in Appendix C.5, showing that HER can serve as
a drop-in replacement for SAC in this task.
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Fig. 12: a + b) The point-mass environment with its two-dimensional context space. The target distribution µ(c) encodes
the two gates with width wg=0.5, in which the agent (black dot) is required to navigate through a narrow gate at different
positions to reach the goal (red cross). The colored dots visualize a curriculum generated by CURROT and GRADIENT for
this environment. c) Left: Discounted cumulative return over learning epochs obtained in the point mass environment
under different curricula as well as baselines that sample tasks uniformly from all of C (Random) or µ(c) (Default). Middle
and Right: Median minimum distance to the target contexts of µ(c) for the two dimensions of the context space (i.e., gate
position and -width). Mean and two-times standard error intervals are computed from 20 seeds.
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Fig. 13: a + b) Curricula generated by CURROT and GRADIENT in the spare goal-reaching (SGR) environment at different
epochs. The starting area of the agent is highlighted in red. The walls are shown in black. The position of the samples
encodes the goal to be reached while the color encodes the goal tolerance. c) Success rate on the feasible subspace of C (left)
and median goal tolerance (right) for different CRL methods in the SGR environment. We also include an oracle baseline
that only samples the feasible tasks in the context space C. For both plots, mean and two-times standard error intervals are
computed from 20 runs.

6.5 Teach My Agent

In this final evaluation environment, a bipedal agent must
learn to maneuver over a track of evenly spaced obstacles
of a specified height (see Figure 14). The environment is a
modified bipedal walker environment introduced by Porte-
las et al. [14] and extended by Romac et al. [21] in which the
spacing and height of obstacles is controlled by the context
c 2 R

2. The evaluations by Romac et al. [21] demonstrated
poor performance of SPRL, often performing statistically sig-
nificantly worse than a random curriculum. Given that both
CURROT and GRADIENT can be seen as improved versions of
SPRL that – among other improvements – explicitly take the
geometry of the context space into account, we are interested
in whether they can improve upon SPRL.
We hence revisit two learning scenarios investigated by
Romac et al. [21], in which CRL methods demonstrated a
substantial benefit over random sampling: a setting in which
most tasks of the context space are infeasible due to large
obstacles and a setting in which most tasks of the context
space are trivially solvable. Both scenarios lead to slow
learning progress when choosing tasks randomly due to
frequently encountering too complex or too simple learning
tasks. Given that the uniform initial- and target distribution
over the context space lead to poor learning performance,
we extend the CURROT and GRADIENT method with a
simple randomized search to find areas of C where the
agent achieves returns above �, similar in spirit to SPRL. We
describe this method in Appendix B.
Figure 15 visualizes the performance of CURROT and GRA-
DIENT in comparison to other CRL methods that were
already evaluated by Romac et al. [21]. We see that CURROT

achieves the best performance in all environments, in one
case performing statistically significantly better than ALP-
GMM, the best method evaluated in [21]. We also see that
the extended version of GRADIENT can improve upon a ran-
dom curriculum in the “mostly infeasible” scenario while
performing insignificantly worse than a random curriculum
in the “mostly trivial” scenario. Figure 14 can help shed
some light on the observed performance difference between
CURROT and GRADIENT. For the “mostly trivial” scenario,
GRADIENT consistently arrives at sampling from the uni-
form µ(c), whereas CURROT focuses on the contexts at the
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Fig. 14: Sampling distribution of GRADIENT and CURROT

on the teach my agent benchmark in the no expert knowledge
setting in task spaces with mostly infeasible- (left) and mostly
trivial (right) tasks. The small images visualize the obstacles
encoded by the corresponding contexts. For environment
details, please see [21]. Brighter colors indicate tasks at later
epochs of training. The yellow dots represent the samples
from the last generated distribution.

border of agent competence. For the “mostly infeasible”
scenario, the pre-determined interpolation of GRADIENT can
fail to encode feasible learning tasks, ultimately leading to a
lower overall performance than CURROT.
Summarizing, the experimental results underline that em-
pirically successful curricula can be generated by framing
CRL as an interpolation between context distributions. The
leap in performance between GRADIENT and CURROT com-
pared to SPRL and the performance differences between
GRADIENT and CURROT underline the tremendous impact
of design choices, such as the distributional measure of simi-
larity and the way of incorporating performance constraints,
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Fig. 15: Performance (in percentage of solved tasks) in the Teach My Agent benchmark in the no expert knowledge setting. The
baseline results are taken from [21], and only CURROT and GRADIENT are evaluated by us. Statistics have been computed
from 32 seeds. Horizontal lines between connecting two methods indicate statistically significant different performances
according to Welch’s t-test with p < 0.05.

on the final algorithm performance. However, when chosen
correctly, these curricula exhibit strong performance and
allow for guiding training towards tasks of interest specified
via µ(c). Especially this last aspect can allow for more flexi-
bility in the curriculum design, as it is possible to define aux-
iliary task parameterizations without jeopardizing learning
progress toward tasks of interest. We saw an example of this
trade-off in the sparse goal-reaching environment, where the
additional precision parameter boosted the performance of
CURROT while diminishing the performance of other CRL
methods.

7 CONCLUSION

In this article, we framed curriculum reinforcement learning
as an interpolation between distributions of initial- and
target tasks. We demonstrated that the lack of an explicit
notion of task similarity in combination with an expected
performance constraint makes existing approaches highly
dependent on the parameterization of the interpolating
task distribution. We avoided these pitfalls by explicitly
encoding task similarity via an optimal transport formu-
lation, and by restricting the generated task distributions
to only encode tasks that satisfy a specified performance
threshold. The resulting method called CURROT led to good
performance in experiments due to its focus on tasks at the
performance threshold and the adaptive nature of the cur-
riculum. Contrasting our approach to a recently proposed
method that generates curricula via Wasserstein barycenters
between initial- and target task distributions [22], we saw
that the more adaptive nature of our formulation resulted
in better performance when facing learning settings with
infeasible target tasks. In tasks, in which infeasibility is not
a concern, both methods performed similar. In Appendix D,
we saw that both methods can scale to higher dimensional
tasks although the conceptually more simple GRADIENT

algorithm requires less adaptations of its approximations
to do so. Together, both methods demonstrate the bene-
fit of using optimal transport for curriculum RL and we
believe that this benefit can be maximized by developing
algorithms that combine the adaptivity of CURROT with the
simpler algorithmic realization of GRADIENT. Additionally,
we believe that the precise notion of task similarity via
the distance d(c1, c2) can prove beneficial in advancing the
understanding of curriculum RL. We already saw that an
appropriate definition of task similarity is key to successful

curriculum learning. We believe that distances learned from
experience, which encode a form of intrinsic motivation,
will significantly advance these methods by merging the
strong empirical results of intrinsic motivation in open-
ended learning scenarios [13] with the targeted learning
achieved by CURROT and GRADIENT.
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G. Peyré, “Iterative bregman projections for regular-
ized transportation problems,” SIAM Journal on Scien-
tific Computing, vol. 37, no. 2, pp. A1111–A1138, 2015.

[78] M. Cuturi, “Sinkhorn distances: Lightspeed computa-
tion of optimal transport,” Neural Information Processing
Systems (NeurIPS), 2013.

[79] S. Diamond and S. Boyd, “CVXPY: A Python-
embedded modeling language for convex optimiza-
tion,” Journal of Machine Learning Research, vol. 17,
no. 83, pp. 1–5, 2016.

Pascal Klink is a Ph.D. student with Jan Peters
and Joni Pajarinen at the Institute for Intelligent
Autonomous Systems (IAS) at the Techincal Uni-
versity of Darmstadt since May 2019. In his
Ph.D., Pascal focuses on improving the learning
performance of reinforcement learning agents by
leveraging experience across learning tasks via
curricula. He completed a research internship at
Amazon Robotics and received the AI newcomer
award (2021) from the German computer sci-
ence foundation. Before this, Pascal received his

M.Sc. from the Technical University of Darmstadt, where he also worked
as a student assistant.

Carlo D’Eramo is an Associate Professor
for Reinforcement Learning and Computational
Decision-Making at the Center for Artificial Intel-
ligence and Data Science of Julius-Maximilians-
Universität Würzburg. He is also an indepen-
dent group leader of hessian.AI. The research
of his LiteRL group revolves around the prob-
lem of how agents can efficiently acquire expert
skills that account for the complexity of the real
world. To answer this question, his group inves-
tigates lightweight methods to obtain adaptive

autonomous agents, focusing on several RL topics, including multi-task,
curriculum, adversarial, options, and multi-agent RL.

Jan Peters is a full professor (W3) for Intelli-
gent Autonomous Systems at the Computer Sci-
ence Department of the Technical University of
Darmstadt since 2011 and, at the same time,
he is the dept head of the research department
on Systems AI for Robot Learning (SAIROL)
at the German Research Center for Artificial
Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) since 2022. He is
also a founding research faculty member of The
Hessian Center for Artificial Intelligence. He has

received the Dick Volz Best 2007 US Ph.D. Thesis Runner-Up Award,
Robotics: Science & Systems - Early Career Spotlight, INNS Young
Investigator Award, and IEEE Robotics & Automation Society’s Early
Career Award, as well as numerous best paper awards. He received an
ERC Starting Grant and was appointed an IEEE fellow, AIAA fellow and
ELLIS fellow.

Joni Pajarinen is an Assistant Professor at
Aalto University, where he leads the Aalto Robot
Learning research group. The research group
focuses on making robots capable of operat-
ing autonomously alongside humans by helping
them understand what they need to learn in or-
der to perform their assigned tasks. To this end,
the group focuses on developing novel decision-
making methods in reinforcement learning, plan-
ning under uncertainty, and decision-making in
multi-agent systems.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3390051

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://www.kernel-operations.io/geomloss/index.html
https://www.kernel-operations.io/geomloss/index.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html


SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

APPENDIX A

COMPUTATIONAL COST OF OPTIMAL TRANSPORT

The benefits of optimal transport (OT), such as explicitly
incorporating a ground distance on the sample space, come
at the price of a relatively high computational burden
caused by the need to solve an optimization problem to
compute the Wasserstein distance between two distribu-
tions. In practice, OT problems in continuous spaces (such
as some of the context spaces investigated in this article) are
often reduced to linear assignment problems between sets of
particles. Such assignment problems can be exactly solved
with variations of the Hungarian algorithm with a time
complexity of O(n3) [69]. While this polynomial complexity
ultimately leads to prohibitive runtimes for large n, we can
typically avoid this problem for curriculum RL. Given the
often moderate dimensionality of the chosen context spaces,
a few hundred particles are typically sufficient to represent
the context distributions. In our experiments, we used less
than 500 particles in the continuous environments and 640
particles for the discrete unlock-pickup environment, lead-
ing to observed solving times of less than 200ms with the
linear_sum_assignment function of the SciPy library
[70] on an AMD Ryzen 9 3900X. Since the CURROT and
GRADIENT algorithms solve, at most, three OT problems per
context distribution update, the computational costs of OT
are relatively small for the investigated environments.
Furthermore, approximations have emerged to tackle prob-
lems that require a large number of particles. For example,
the GeomLoss library [71], which we use in the GRADIENT

implementations for continuous Euclidean spaces, imple-
ments a variant of entropy-regularized OT that has brought
down the computation time of OT for sets of hundreds
of thousands of samples to seconds on high-end GPUs
[63]. So-called sliced Wasserstein distances [72, 73] approx-
imately solve the given OT problem by solving M OT
problems in 1-D subspaces, reducing the time complexity
to O(Mn log(n)), where typically M ⌧ n. Finally, neural
function approximators have been employed e.g. to speed
up the computation of Wasserstein distances by learning
a metric embedding from data [74] or enable to compu-
tation of regularized free-support Wasserstein barycenters
by approximating the dual potentials [75]. Consequently,
we see opportunities to significantly increase the number
of particles via such approximate approaches, even though
our experiments did not indicate a need for that so far.

APPENDIX B

SEARCH FOR FEASIBLE CONTEXTS

As detailed in Section 6.5, the initial context distribution
p0(c) may be uninformed and consequently lead to sam-
pling many learning tasks for which the agent performance
is below �. In such scenarios, we can initiate a search
procedure for tasks in which the current agent achieves a

performance at least � of as long as R̄ = 1

M

P

M

m=1
Rm < �.

We terminate this search procedure as soon as R̄ � �. Dur-
ing this search, D+ contains the best-encountered samples,
and D

−
is empty. When a batch of M new episodes arrives,

we add those episodes whose return is at least as large as
the median return in D+ to the buffer – and for each new

episode added, remove the worst performing episode. The
search distribution is a (truncated) Gaussian mixture model

psearch(c) =
ND
X

i=1

wiN
�

c
�

�ci,�
2
i
I
�

with weights wi and variances �2
i

defined via the minimum
return observed over all episodes Rmin and the median
performance of the buffered episodes Rmed

wi / max(0, Rci
�Rmed), �i = max

✓

10−3, 2
� �Rci

� �Rmin

◆

.

For simplicity of exposition, we assume that C = [0, 1]d,
i.e., that the context space is a d-dimensional hyper-cube of
edge-length one. Consequently, a context c with a return
of Rmin will have a standard deviation of two in each
dimension, which, in combination with the Gaussian being
truncated, leads to spread-out sampling across the hyper-
cube. If the dimensions of C are scaled differently, a simple
re-scaling is sufficient to use the above sampling procedure.
As detailed in the main article, we only required the search
procedure in the teach my agent environments, as in the
other environments p0(c) provided enough successful initial
episodes. For discrete context spaces, the search distribution
would need to be adapted, e.g., by defining a uniform
distribution over all contexts c with a distance d(c, ci) less
that or equal to a threshold that is similarly scaled as the
variance �

2
i

.

APPENDIX C

EXPERIMENTAL DETAILS

This section discusses hyperparameters and additional de-
tails of the conducted experiments that could not be pro-
vided in the main text due to space limitations. For all ex-
periments except the teach my agent benchmark, we used RL
algorithms from the Stable Baselines 3 library [76].
For teach my agent, we use the SAC implementation provided
with the benchmark.

C.1 Algorithm Hyperparameters

The main parameters of SPRL, CURROT, and GRADIENT

all factor into one parameter � corresponding to the per-
formance constraint and one parameter ✏ controlling the
interpolation speed. We did not perform an extensive hy-
perparameter search for these parameters but used their
interpretability to select appropriate parameter regions to
search in. The performance parameter � was chosen by eval-
uating values around 50% of the maximum reward. This
approach resulted in a search over � 2 {3, 4, 5} for the point-
mass environment and � 2 {0.4, 0.6, 0.8} for the sparse
goal-reaching and unlock-pickup environment. For the teach
my agent experiments, we evaluated � 2 {140, 160, 180}
for CURROT and GRADIENT. We did not evaluate SPRL in
the teach my agent experiment since we took the results
from Romac et al. [21]. We evaluated GRADIENT for ✏ 2

[0.05, 0.1, 0.2]. For SPRL, we initialized ✏ with a value of 0.05
used in the initial experiments by Klink et al. However, we
realized that larger values slightly improved performance.
For CURROT, the value of ✏ depends on the magnitude of
the distances d and hence changes per experiment. In the
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SPRL CURROT GRADIENT

ENV. � ✏ σLB DKLLB
� ✏ � ✏

SPARSE GOAL-REACHING 0.6 .25 - - 0.8 1.2 0.6 0.05
POINT MASS 4 .25 [.2 .1875] 8000 4 0.7 3.0 0.2
UNLOCK-PICKUP - - - - 0.6 3 0.6 0.05
TEACH MY AGENT - - - - 180 0.5|0.4 180 0.05

TABLE 2: Hyperparameters of SPRL, CURROT, and GRADIENT in the different learning environments. The ✏ parameter of
CURROT is computed according to the procedure described in appendix C. We do not provide teach my agent parameters
for SPRL as we rely on the results reported by [21]. We also do not evaluate SPRL in the unlock-pickup environment since
SPRL is designed for continuous context spaces.

conducted experiments, we set the parameter ✏ to around
5% of the maximum distance between any two points in the
context space, also evaluating a slightly larger and smaller
value. However, we refer to Appendix D for a detailed
discussion of how to chose ✏ particularly when dealing with
higher dimensional context spaces. When targeting narrow
target distributions, Klink et al. introduce a lower bound
on the standard deviation σlb of the context distribution
of SPRL. This lower bound needs to be respected until
the KL divergence w.r.t. µ(c) falls below a threshold DKL,
as otherwise, the variance of the context distribution may
collapse too early, causing the KL divergence constraint on
subsequent distributions to only allow for minimal changes
to the context distribution. This detail again highlights the
benefit of Wasserstein distances, as they are not subject to
such subtleties due to their reliance on a chosen metric.
Table 2 shows the parameters of CURROT, GRADIENT, and
SPRL for the different environments.
For ALP-GMM, the relevant hyperparameters are the per-
centage of random samples drawn from the context space
prand, the number of completed learning episodes between
the update of the context distribution nrollout, and the max-
imum buffer size of past trajectories to keep sbuffer. Simi-
lar to Klink et al. [17], we chose them by a grid-search
over (prand, nrollout, sbuffer) ∈ {0.1, 0.2, 0.3}×{50, 100, 200}×
{500, 1000, 2000}.
For GOALGAN, we tuned the amount of random noise that is
added on top of each sample �noise, the number of policy roll-
outs between the update of the context distribution nrollout

as well as the percentage of samples drawn from the success

buffer psuccess via a grid search over (�noise, nrollout, psuccess) ∈
{0.025, 0.05, 0.1}× {50, 100, 200}× {0.1, 0.2, 0.3}.
For ACL, the continuous context spaces of the environments
need to be discretized, as the algorithm is formulated as a
bandit problem. The Exp3.S bandit algorithm that ultimately
realizes the curriculum requires two hyperparameters to be
chosen: the scale factor for updating the arm probabilities
⌘ and the ✏ parameter of the ✏-greedy exploration strategy.
We combine ACL with the absolute learning progress (ALP)
metric also used in ALP-GMM and conducted a hyperparam-
eter search over (⌘, ✏) ∈ {0.05, 0.1, 0.2}×{0.01, 0.025, 0.05}.
Hence, contrasting ACL and ALP-GMM sheds light on the
importance of exploiting the continuity of the context space.
For ACL, the absolute learning progress in a context c can
be estimated by keeping track of the last reward obtained in
the bin of c (note that we discretize the context space) and
then computing the absolute difference between the return
obtained from the current policy execution and the stored
last reward. We had numerical issues when implementing
the ACL algorithm by Graves et al. [66] due to the normaliza-
tion of the ALPs via quantiles. Consequently, we normalized
via the maximum and minimum ALP seen over the entire
history of tasks.
For PLR, the staleness coefficient ⇢, the score temperature �,
and the replay probability p need to be chosen. We did a grid
search over (⇢,�, p) ∈ {0.15, 0.3, 0.45}× {0.15, 0.3, 0.45}×
{0.55, 0.7, 0.85} and chose the best configuration for each
environment.
For VDS, the parameters for the training of the Q-function
ensemble, i.e., the learning rate lr, the number of epochs

ALP-GMM GOALGAN ACL

ENV. pRAND nROLLOUT sBUFFER �NOISE nROLLOUT pSUCCESS ⌘ ✏

SPARSE GOAL-REACHING .2 200 500 .1 200 .2 0.05 0.2
POINT MASS .1 100 500 .1 200 .2 0.025 0.2
UNLOCK-PICKUP - - - - - - 0.025 0.1

PLR VDS

ENV. ⇢ � p LR nEP nBATCH

SPARSE GOAL-REACHING .45 .15 .55 5×10−4 10 80
POINT MASS .15 .45 .85 10−3 3 20
UNLOCK-PICKUP .45 .45 .55 10−3 5 20

TABLE 3: Hyperparameters of the investigated baseline algorithms in the different learning environments, as described in
Appendix C.
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nep and the number of mini-batches nbatch, need to be
chosen. Just as for PLR, we conducted a grid search
over (lr, nep, nbatch) ∈ {10−4, 5×10−4, 10−3} × {3, 5, 10} ×

{20, 40, 80}. The parameters of all employed baselines are
given in Table 3. We now continue with the description of
experimental details for each environment.

C.2 E-Maze Environment

The xy-coordinates of the representatives

r(c)=[x, y, z]T ∈ R
3

of a context c form a grid on [−1, 1]× [−1, 1] and, as
mentioned in the main article, z=200 for walls and z=0
for all other cells. The four actions {up,down, left, right}
lead to a transition to the corresponding neighboring cell
with a probability of 0.9, if the neighboring cell has the
same height, and 0 if not. Upon reaching the desired state
(controlled by the context c), the agent observes a reward of
value one, and the episode terminates. In this environment,
we use PPO with λ = 0.99 and all other parameters left to
the implementation defaults of the Stable Baselines 3

library.
For solving objectives (8) and (9), we make use of the
linprog function from the SciPy library [70].
Current Agent Performance as a Distance: In the main text,
we have investigated the pseudo-distance

dP∗(c1, c2) = |J(π∗, c1)− J(π∗, c2)| (15)

that defines the similarity of contexts based on the absolute
performance difference of the optimal policy in the contexts
c1 and c2. While dP∗ only performed slightly worse than
the more informed distance dS for GRADIENT, it could only
provide meaningful performance for CURROT if combined
with entropy regularization. However, Huang et al. [22] also
investigated a pseudo-distance function that computes the
similarity of two contexts based on the current policy π

dP(c1, c2) = |J(π, c1)− J(π, c2)|, (16)

leading to a distance function that changes in each iteration.
As we show in Figure 16, this distance, while still leading to
slower learning for CURROT compared to dS, leads to stable
learning across different levels of entropy regularization
without any prior environment knowledge. Figure 17 shows
multiple curricula that have been generated by CURROT

and GRADIENT. Particularly for CURROT, we can see fairly
diverse curricula, which sometimes target all three corridors
at once (top middle) and sometimes even back track out of
the right-most corridor into the remaining two (top right).
We see the good performance and the diverse behavior
as indicators for the potential of general purpose distance
metrics that encode some form of implicit exploration,
calling for future investigations to better understand their
mechanics. Furthermore, computational aspects arise with
the use of such metrics, since for the case of dP, robust and
efficient versions for estimating J(π, c) need to be devised.
Entropy-Regularized CURROT and GRADIENT: As dis-
cussed in Section 6.1, we benchmark versions of GRADI-
ENT and CURROT in which we introduce different forms
of entropy regularization. For GRADIENT, we recreate the
implementation by Huang et al. [22] by using optimal
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gradient(dP, λ=10−8)

Fig. 16: Expected return on the target task distribution
µ(c) in the E-Maze environment achieved by CURROT and
GRADIENT under varying entropy regularizations for the
current performance-based distance dP. The shaded area
corresponds to two times the standard error (computed
from 20 seeds). The red dotted line represents the maximum
possible reward achievable on µ(c).

transport formulations that regularize the entropy of the
transport plan φ [77, 78]

Wp,λ(p1, p2)=

✓

inf
φ∈Φ(p1,p2)

Eφ [d(c1, c2)
p]− λH(φ)

◆1/p

,

(17)

with the constraint set Φ(p1, p2) defined as in Section 3.3
and the entropy H(p) of a distribution p over a sample
space X defined as H(p) = −

R

x∈X
p(x) log(p(x)). Note

that Huang et al. [22] chose these formulations for com-
putational speed rather than curriculum performance. This
formulation allows for a straightforward adaptation of the
GRADIENT objective to incorporate entropy-regularization

max
α∈[0,1]

α s.t. J(π, pα,λ) ≥ δ (18)

pα,λ(c) = argmin
p

αW2,λ(p, µ) + (1− α)W2,λ(p, p0). (19)

For the CURROT algorithm, we choose a more direct form
of regularization and directly constrain the entropy of the

currot(dP) currot(dP) currot(dP)

gradient(dP) gradient(dP) gradient(dP)

Fig. 17: Interpolations generated by CURROT and GRADIENT

in different runs for the current performance-based distance
dP(c1, c2). Brighter colors indicate later iterations.
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interpolating distribution p

min
p

W2(p, µ) (20)

s.t. p(V(π, δ)) = 1 H(p) � HLB.

The above entropy regularized objectives are not linear pro-
grams anymore, and we hence solve the (convex) objectives
with the CVXPY library [79].

C.3 Unlock-Pickup Environment

We use the Unlock-Pickup environment from the Mini-
grid library [67]. We do not change the behavior of the
environment and only remove the additional discounting
that occurs within the environment, as the environment
does not reveal the current timestep to the agent, which,
combined with an internally discounted reward, leads to
non-Markovian behavior. As stated in the main article, the
context c controls the initial state of the environment by
specifying the position of the agent, key, and box as well
as the position and state of the door (i.e., open or closed).
We use the DQN algorithm since the extremely sparse nature
of the environment favors RL algorithms with a replay
buffer. Compared to the default parameters of the DQN

algorithm, we only increase the exploration rate from 0.05
to 0.1 and also increase the batch size to 256. We train the
Q-network every fourth step, updating the target network
with a Polyak update with τ = 0.005 in each step.
The Q-network is realized by encoding the image obser-
vation with a convolutional neural network with three
convolutions of kernel size (2, 2), ReLU activations after
each convolution, and a max-pool operation with kernel size
(2, 2) after the first convolution and ReLU operation. We
do not use information about the agent orientation or the
textual task description, as both are not strictly necessary
for our environment. The convolutional network has 32-
dimensional hidden layers. The output of the convolutional
encoder is 64-dimensional, which is then further processed
by two fully connected layers with 64 dimensions and ReLU
activations before being reduced to the Q-values for the
seven actions available in the environment.
As briefly mentioned in the main article, the target distribu-
tion µ(c) is a uniform distribution over all those contexts in
which the agent is in the left room with a closed door and
does not hold the key. The initial state distribution contains
one context for each box position in the right room in which
the agent is positioned directly next to the box.
Distance Function As discussed in Section 6.2, a context
c controls the starting state of the environment, which is
defined by

• the agent position ap : C 7! [1, 9]⇥ [1, 4]
• the key position kp : C 7! [1, 9]⇥ [1, 4]
• the box position bp : C 7! [6, 9]⇥ [1, 4]
• the position of the door in the wall dp : C 7! [1, 4]
• the state of the door ds : C 7! {open, closed}.

The images of the individual functions that access the state
information of a context are motivated by the two rooms
R1 = [1, 4]⇥ [1, 4] and R2 = [6, 9]⇥ [1, 4] that make up the
environment. Consequently, the agent and the key can be
placed in both rooms, whereas the box can only be placed
in R2. The wall that separates the rooms occupies tiles in

W (c) = {(5, y) | y2[1, 4], y 6=dp(c)}. Due to this wall, we
restrict the context space C such that it does not contain
contexts in which the agent or key is located in the wall,
i.e., ap(c) /2 W (c) and kp(c) /2 W (c). Additionally, we
only allow placing the agent and key in R2 if the door is
open. Formally, this requires ap(c)�4 ) ds(c)=open and
kp(c)�4 ) ds(c)=open. Finally, neither key nor agent can
be at the same position as the box, i.e., ap(c) 6= bp(c) and
kp(c) 6= bp(c). With these restrictions, we arrive at the
81.920 individual contexts mentioned in Section 6.2.
Note that the distance function between contexts reasons
both about state changes that can be achieved in an episode,
such as moving between agent positions, and ones that
can’t, such as moving the box. Moving boxes is impossible
since the episode terminates successfully when the agent
picks up the box. Hence, a distance function that is purely
based on state transitions would neglect certain similarities
between contexts in this environment.
We define the distance function dbase(c1, c2) function via
representatives r(c), i.e.

d(c1, c2)=

8

>

<

>

:

dbase(c1, r(c1))+dbase(r(c1), r(c2))

+dbase(r(c2), c2), if ds(c1) 6=ds(c2)

dbase(c1, c2), else.

(21)

Such distances are also known as highway distances [68].
The mapping r : C 7! C from a context c to its rep-
resentative r(c) ensures that the agent is standing right
in front of the open door with the key in its hand, i.e.,
ds(r(c))=open, and ap(r(c))=kp(r(c))=[4,dp(c)], while
ensuring that dp(r(c))=dp(c) and bp(r(c))=bp(c).
The base distance dbase(c1, c2) encodes the cost of moving
both key and agent from their positions in c1 to those in c2
(via dka) as well as the cost of equalizing the box positions
between the contexts (via the L1 distance)

dbase(c1, c2) =

8

>

<

>

:

dka(c1, c2) + kbp(c1)� bp(c2)k1,

if dp(c1)=dp(c2)

1, else.

(22)

We see that we render contexts with different door positions
incomparable to ease the definition of the distance function.
The key-agent distance is defined on top of an object dis-
tance dobj,dp that is conditioned on a door position dp

dka(c1, c2) =

8

>

>

>

<

>

>

>

:

dobj,dp(c1)(ap(c1), ap(c2)), if kp(c1)=kp(c2)

dobj,dp(c1)(ap(c1), kp(c1))

+dobj,dp(c1)(kp(c1), kp(c2))

+dobj,dp(c1)(ap(c2), kp(c2)), else.

(23)

Note that we can simply take dp(c1) since we know that
dp(c1)=dp(c2). The object distance is defined as the L1 dis-
tance between the two objects if they are in the same room
and incorporates the detour caused by passing through the
door in the wall if not

dobj,dp(p1,p2) =

(

kp1 � p2k1, if p1,04 , p2,04

kp1 � [5,dp]k1 + k[5,dp]� p2k1, else.

(24)

We ensured that the resulting distance d(c1, c2) fulfills all
axioms of a valid distance function, i.e. d(c1, c2) � 0,
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Fig. 18: Statistics of the PLR curricula in the unlock-pickup
environment over training progress. The top left plot shows
the fraction of contexts sampled by PLR that are also sam-
pled by the target context distribution µ(c). The red dashed
line indicates the fraction of target samples generated by a
random curriculum. The top right plot shows the number of
unique contexts (solid lines), unique target contexts (dashed
lines), and unique solved target contexts (dotted lines) sam-
pled by PLR at least once. The bottom left plot indicates
the performance on the PLR curriculum. The performance
in those contexts of the curriculum, which are also sampled
by the target context distribution µ(c) (i.e., on the fraction
indicated in the top left), are shown in the bottom right.

d(c1, c2)=0 ⇔ c1=c2, d(c1, c2) = d(c2, c1), and d(c1, c3) ≤

d(c1, c2) + d(c2, c3) via brute-force computations. Note that
the in-comparability of contexts with different door posi-
tions effectively splits the context space into four disjoint
sets (for the four different door positions) that cannot be
compared. Hence, we must only ensure these axioms within
the four disjoint sets separately.
PLR Performance: As mentioned in Section 6.2, Figure
18 shows statistics of the PLR curricula. We can see that
throughout most PLR curricula, the chance of sampling a
target context stays relatively constant, even though the
number of distinct sampled contexts and the number of
distinct sampled target contexts continuously grows. We
also see that the agent receives a positive learning signal
on p(c) in all runs of PLR. Additionally, we see that the
prioritization by PLR suppresses contexts from µ(c) since a
purely random curriculum would sample a target context
18.75% of the time. In about half of the runs (orange
lines), the agent learned to solve some of the target tasks,
although this fraction is rather low (there are 15.360 target
tasks). Interestingly, this increase in proficiency on tasks
from µ(c) does not go hand-in-hand with a consistently
increased sampling rate of target tasks. However, as we
see in Figure 19 there seems to be a tendency of PLR runs
that are more successful on µ(c) to sample more contexts in
which the agent is located in the left room at the beginning
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Fig. 19: Fraction of contexts in the PLR curricula in which
the agent is placed in the left room (left) and in which the
door is closed (right) at the start of the episode. A closed
door implies that the agent is located in the left room,
hence a more strict condition. Note that the color coding
corresponds to the one in Figure 18, indicating runs with
high- (orange) and low performance (blue) on p(c).

of the episode. Generally speaking, Figures 18 and 19 show
that PLR prioritized specific contexts over others. However,
either due to the missing notion of a target distribution or
the dependence of PLR on the agent’s internal value function
(which may be biased and incorrect), the generated curricula
did not consistently progress to the most challenging, long-
sequence tasks encoded by µ(c).

C.4 Point-Mass Environment

The environment setup is the same as the one investigated
by Klink et al. [17, 19] with the only difference in the target
context distributions, which is now defined as a Gaussian
mixture

µ(c) =
1

2
N

�

c1, 10
−4

I
�

+
1

2
N

�

c2, 10
−4

I
�

c1 = [−3 0.5]T , c2 = [3 0.5]T .

In this environment, we use PPO with 4.096 steps per
policy update, a batch size of 128, and λ=0.99. All other
parameters are left to the implementation defaults of the
Stable Baselines 3 implementation.
Figure 20 shows trajectories generated by agents trained
with different curricula in the point-mass environment. We
see that directly learning on the two target tasks (Default)
prevents the agent from finding the gates in the wall to
pass through. Consequently, the agent minimizes the dis-
tance to the goal by moving right in front of the wall
(but not crashing into it) to accumulate reward over time.
We see that random learning indeed generates meaningful
behavior. This behavior is, however, not precise enough to
pass reliably through the wall. As mentioned in the main
article, SPRL only learns to pass through one of the gates, as
its uni-modal Gaussian distribution can only encode one
of the modes of µ(c) (see Figure 21 for a visualization).
CURROT and GRADIENT learn policies that can pass through
both gates reliably, showing that the gradual interpolation
towards both target tasks allowed the agent to learn both.
ALP-GMM and PLR also learn good policies. The generated
trajectories are, however, not as precise as the ones learned
with CURROT and GRADIENT and sometimes only solve one
of the two tasks reliably. ACL, GOALGAN, and VDS partly
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(a) Default (b) Random (c) SPRL (d) CURROT (e) GRADIENT

(f) ALP-GMM (g) GOALGAN (h) ACL (i) PLR (j) VDS

Fig. 20: Final trajectories generated by the different investigated curricula in the point mass environment. The color encodes
the context: Blue represents gates positioned at the left and red at the right.

create meaningful behavior. However, this behavior is un-
reliable, leading to low returns due to the agent frequently
crashing into the wall.

C.5 Sparse Goal-Reaching Environment

For the sparse goal-reaching task, the goal can be chosen
within [�9, 9] ⇥ [�9, 9], and the allowed tolerance can be
chosen from [0.05, 18]. Hence, the context space is a three-
dimensional cube C = [�9, 9] ⇥ [�9, 9] ⇥ [0.05, 18]. The
actually reachable space of positions (and with that goals)
is a subset of [�7, 7] ⇥ [�7, 7] due to the “hole” caused
by the inner walls of the environment. The target context
distribution is a uniform distribution over tasks with a
tolerance of 0.05

µ(c) /

(

1, if c3 = 0.05,

0, else.

The state s of the environment is given by the agent’s x-
and y-position. The reward is sparse, only rewarding the
agent if the goal is reached. A goal is considered reached if

the Euclidean distance between the goal and position of the
point mass falls below the tolerance

ks� [c1 c2]
T k2  c3.

The two-dimensional action of the agent corresponds to its
displacement in the x� and y� direction. The action is
clipped such that the Euclidean displacement per step is
no larger than 0.3.
Given the sparse reward of the task, we again use an RL
algorithm that utilizes a replay buffer. Since the actions
are continuous in this environment, we use SAC instead
of DQN. Compared to the default algorithm parameters of
Stable Baselines 3, we only changed the policy up-
date frequency to 5 environment steps, increased the batch
size to 512, and reduced the buffer size to 200.000 steps.
Figure 21 visualizes the behavior of SPRL in the sparse goal-
reaching (SGR). We see that for the SGR environment, SPRL

increases the variance of the Gaussian context distribution
to assign probability density to the target contexts while
fulfilling the expected performance constraint by encoding
trivial tasks with high tolerance (Figures 21a and 21b).
The inferior performance of an agent trained with SPRL
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Fig. 21: a) Visualization of the sampling distribution of SPRL in the sparse goal-reaching (SGR) task. The color of the dots
encodes the tolerance of the corresponding contexts, and the position represents the goal to be reached under that tolerance.
The walls are shown in black, and the red area visualizes the starting area of the agent. b) 10-, 50- and 90-percentile of
the standard deviation of SPRL’s sampling distribution on the sparse goal-reaching task. The statistics have been computed
from 20 seeds. c) Sampling distribution of SPRL in the point mass environment for a given seed. The color indicates the
iteration, where brighter colors correspond to later iterations.
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Fig. 22: Comparison of Hindsight Experience Replay (HER,
solid lines) and SAC (dotted lines). Across all curricula,
pairing HER and SAC achieves similar or better final success
rate compared to SAC alone. The final success rate improves
the most when training on random tasks with the target
tolerance of 0.05 (Random-LT). When training on random
tasks with randomized tolerance (Random), performance
improvements are less pronounced. Mean and two-times
standard error intervals are computed from 20 seeds.

compared to one trained with a random curriculum shows
that the Gaussian approximation to a uniform distribution is
a poor choice for this environment. While it may be possible
to find other parametric distributions that are better suited
to the particular problem, CURROT flexibly adapts the shape
of the distribution without requiring any prior choices.

Hindsight Experience Replay (HER): Given the success of
HER for sparse-reward goal-reaching tasks, we evaluated its
performance in our sparse goal-reaching environment. A
difference to the environments evaluated by Andrychowicz
et al. [11] is the varying tolerance encoded by the contexts
c∈C ⊆ R

3. Andrychowicz et al. [11] assumed a fixed
tolerance for their investigations of HER. We consequently
train HER by uniformly sampling C, corresponding to the
Random strategy in Figure 13, and sampling from µ(c),
i.e., only sampling high-precision tasks. We refer to the
latter sampling strategy as Random-LT, where LT is short
for low tolerance. HER only influences experience replay
and can be easily combined with arbitrary task sampling
strategies. Figure 22 shows the results of training HER with
the aforementioned task-sampling strategies and in com-
bination with GRADIENT and CURROT. We used the HER

implementation in the Stable Baselines 3 library [76]
with the future strategy. We tuned the number of additional
goals to maximize HER’s performance, finding that k=2
additional goals for each real goal delivered the best results.
Looking at Figure 22, we see that HER is well-compatible
with all curricula, either matching or improving upon the
success rate of SAC alone. HER drastically improves the
performance when directly sampling high-precision tasks
of µ(c). Training on random tasks of C and with GRADIENT

benefit from HER, whereas the performance of CURROT does
not improve with the replay of hindsight goals. Finally,
when training only on the feasible tasks of µ(c) (Ora-
cle), HER significantly improves learning speed. The results
indicate that for this task, HER’s implicit curriculum has
a somewhat orthogonal effect than the explicit curricula
realized by the different investigated sampling strategies.

C.6 Teach My Agent

As mentioned in the main text, we used the environment
and SAC learning agent implementation provided by Romac
et al. [21]. We only interfaced CURROT and GRADIENT to
the setup they provided, allowing us to reuse the baseline
evaluations provided by Romac et al. [21]. The two settings
(mostly infeasible and mostly trivial) differ in the boundaries of
their respective context spaces. The mostly infeasible setting
encodes tasks with a stump height in [0, 9] and -spacing in
[0, 6]. The mostly trivial setting keeps the same boundaries
for the stump spacing while encoding stumps with a height
in [−3, 3]. Since a stump with negative height is considered
not present, half of the context space of the mostly trivial
setting does not encode any obstacles for the bipedal walker
to master. The initial- and target context distribution µ(c)
is uniform over the respective context space C for both
settings.

APPENDIX D

HIGHER DIMENSIONAL CONTEXT EXPERIMENTS

In addition to the low-dimensional context parametriza-
tions of the tasks in the main article, we create a higher-
dimensional version of the point-mass environment in
which we essentially over-parameterize the environment.
We do this by keeping the position of the gate pg ∈ [−4, 4]
as a parameter but splitting the gate width into a left- and
right width parameter wg,l ∈ [0.25, 4] and wg,r ∈ [0.25, 4].
Note that we multiplied the range of two width parameters
by a factor of 0.5 compared to the regular point mass
environment from the main article. The actual context for
this environment consists of multiple instances of these
three parameters, i.e.

c= [pg1 . . . pgN wg1,l . . . wgN ,l wg1,r . . . wgN ,r] ∈ C⊆R
3N .

We instantiate the point-mass environment from this over-
parameterized context using two different reductions

cmin =



pgn∗
min

n∈[1,N ]
wgn,l min

n∈[1,N ]
wgn,r

�

(25)

cmax =



pgn∗
max

n∈[1,N ]
wgn,l max

n∈[1,N ]
wgn,r

�

n∗ = argmax
n∈[1,N ]

|pgn | .

The only difference between the environment in Section 6.3
and the one investigated in this section is that we separately
parameterize the width of the left- and right gate half. We
chose these two reductions to highlight that not only the
dimensionality of the context space C is important but also
its underlying structure. When using cmin, the chance of
sampling tasks with a narrow gate far away from the center
increases with N . For cmax, the chance of sampling wide
gates increases. Most importantly, the learning task does not
get more complex with an increasing value of N since the
agent always faces the same learning task and observation
space. We can hence be sure that observed performance
drops are not due to an inherently more complex learning-
or approximation task on the level of the RL agent but
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Fig. 23: Performance of CURROT and GRADIENT in high-dimensional context space versions of the point mass environment.
The two left plots show the final agent performance when training for the low-entropy target distribution µl(c) (Eq. 26)
for different reductions cmax and cmin. The two right plots shows the same results when training for the high-entropy
target distribution µh(c). Note that the performance of ALP-GMM is not affected by a change in target distribution since
it generates the curriculum without this information. The green line indicates the average final performance of regular
training on µ(c). Means (thick lines) and two-times standard errors (shaded areas) are computed from 20 seeds. CURROT∗

and GRADIENT∗ refer to versions of CURROT and GRADIENT that use the less adversarial initial task distribution for the
cmin reduction (please see Appendix D for a description).

are due to the curriculum generation. We first investigate
a narrow Gaussian mixture model as the target distribution

µl(c) =
1

2
N

�
c1, 10

−4
I
�
+

1

2
N

�
c2, 10

−4
I
�

(26)

c1 = [−3 . . .−3
| {z }

N−times

0.25 . . . 0.25
| {z }

N−times

0.25 . . . 0.25
| {z }

N−times

] (27)

c2 = [ 3 . . . 3
| {z }

N−times

0.25 . . . 0.25
| {z }

N−times

0.25 . . . 0.25
| {z }

N−times

].

We benchmarked CURROT, GRADIENT, and ALP-GMM in
this task, keeping all algorithm parameters the same as in
the point-mass environment from the main article and only
adjusting the trust region parameter ✏ of CURROT according
to the rule described in Appendix C since the effective
distances between points in C increase with N . Importantly,
we always represent the curricula for CURROT and GRA-
DIENT using 100 particles. Figure 23 shows the obtained
results. As we see, CURROT and GRADIENT generate good
curricula even for high-dimensional context spaces when
using the cmax reduction but fail for higher-dimensional
scenarios when using cmin. However, this failure does not
arise from a failing interpolation but due to the increasing
likeliness of sampling complex tasks under the initial uni-
form distribution over C, leading to CURROT and GRADIENT

not reaching the performance threshold � on the initial
distribution p0(c). We first tested the feasible context search
from the TeachMyAgent benchmark to remedy this issue.
However, this search also failed since, just like for uniform
noise, uninformed Gaussian noise increases the chance of
sampling small gates for cmin in high dimensions. To bench-
mark the algorithms for the cmin reduction, we consequently
generate an initial distribution with the same distribution of
gate positions and -widths as for N=1, regardless of the
choice of N . We do this by sampling contexts for N=1 and
then projecting them to the required dimension by sampling
appropriate random values for the remaining entries in
c. Starting from this initial distribution makes the agent
proficient on µ(c) across all dimensions, as shown in Figure
23 (we denote the resulting approaches as CURROT∗ and
GRADIENT∗).
We additionally investigate a setting where µh(c) en-

codes all high-dimensional contexts c that result in
the same reduced target contexts c1=[−3 0.25 0.25] and
c2=[3 0.25 0.25]. When evaluating the CURROT method in
this scenario, we saw that our approximate optimization
of Objective (14) via uniform samples in a half-sphere did
not lead to good progression to the target samples. Adding
samples along the direction cµ,φ(n)−cp,n was enough to
solve this issue in our approximate optimization and ensure
good progression. While performing these experiments, we
saw that our rule of choosing the ✏ parameter for CURROT,
i.e., setting it to 0.05 of the maximum distance dmax between
any two contexts in C, can prevent Objective (14) from
sampling high-dimensional high-entropy distributions. This
problem occurs if the Wasserstein distance between two
particle-based representations µ̂1(c) and µ̂2(c) of the target
distribution µ(c) is larger than ✏=0.05dmax. Consequently,
we adapted our rule of choosing the trust region size
for CURROT to ✏=max(0.05dmax, 1.2W2(µ̂1, µ̂2)). Figure 23
shows the results for the high-entropy target distributions,
where we again see that both CURROT and GRADIENT can
solve these tasks.
Choosing Particles in Higher Dimensions: The findings in
this section provided a better understanding of the role of
the number of particles to represent p̂(c) that we would like
to summarize here.
For CURROT and GRADIENT, the particles serve two objec-
tives: Approximating the sampling- and target distribution
and estimating the agent performance. By restricting the
curriculum to the barycentric interpolation, GRADIENT can
provide unbiased samples from the interpolation and the
target distribution even when using a few particles in high
dimensions. Consequently, the need for more particles in
higher dimensions only arises from counteracting a poten-
tially higher variance of the expected performance estimate.
However, the effect of more noisy expected performance
estimates can also be counteracted by smaller step sizes ✏

with which to advance the Barycentric interpolation.
For CURROT, we saw that a small number of particles in
combination with a too-small trust region ✏ can lead to
biased sampling of the target distribution. However, we
also saw that setting ✏=max(0.05dmax, 1.2W2(µ̂1, µ̂2)) for
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a given number of particles N ensures good sampling of
the target distribution. With this automated choice of ✏,
the appropriate number of N should, as for the GRADIENT

algorithm, be guided by the complexity of the performance
estimate. If the performance estimate is not of sufficient
quality, increasing the number of particles will decrease the
minimum required trust region to sample unbiasedly from
µ(c) and yield more samples for the kernel regression. It is
also possible to only increase the number of particles in the
buffers for the kernel regression while keeping the number
of particles representing the context distribution fixed.
Finally, a more specific feature of CURROT is the optimiza-
tion of Objective (14), which may become more delicate
in higher dimensions and require more sophisticated ap-
proaches than the simple sampling scheme used in this arti-
cle. One option could be to use parallelized gradient-based
optimization schemes, which should be easy to implement
given the rather simple nature of the constraints.
Initial Distribution in Higher Dimensions: We also saw
that using a uniform initial distribution p0(c) for GRADIENT

and CURROT can be problematic if easy tasks are unlikely
under this distribution. In this case, CURROT and GRADI-
ENT will not achieve the expected performance threshold
to progress the curriculum. Furthermore, simple search
approaches for feasible contexts like the one detailed in
Appendix B may fail. At this point, it may either be required
to implement a more problem-specific search for feasible
contexts or provide a more informed initial distribution
p0(c) that does not require a search for feasible contexts.
Both of these approaches can be used for GRADIENT and
CURROT.
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