
Self-Paced Contextual Reinforcement Learning

Pascal Klink
Intelligent Autonomous Systems
Technische Universität Darmstadt

Germany
klink@ias.tu-darmstadt.de

Hany Abdulsamad
Intelligent Autonomous Systems
Technische Universität Darmstadt

Germany
abdulsamad@ias.tu-darmstadt.de

Boris Belousov
Intelligent Autonomous Systems
Technische Universität Darmstadt

Germany
belousov@ias.tu-darmstadt.de

Jan Peters
Intelligent Autonomous Systems
Technische Universität Darmstadt

Germany
peters@ias.tu-darmstadt.de

Abstract: Generalization and adaptation of learned skills to novel situations is a
core requirement for intelligent autonomous robots. Although contextual reinforce-
ment learning provides a principled framework for learning and generalization
of behaviors across related tasks, it generally relies on uninformed sampling of
environments from an unknown, uncontrolled context distribution, thus missing the
benefits of structured, sequential learning. We introduce a novel relative entropy
reinforcement learning algorithm that gives the agent the freedom to control the
intermediate task distribution, allowing for its gradual progression towards the tar-
get context distribution. Empirical evaluation shows that the proposed curriculum
learning scheme drastically improves sample efficiency and enables learning in
scenarios with both broad and sharp target context distributions in which classical
approaches perform sub-optimally.

Keywords: Reinforcement Learning, Curriculum Learning, Robotics

1 Introduction

Reinforcement learning (RL) techniques underpinned the recent successes in decision making [1, 2]
and robot learning [3, 4]. While most impressive results were achieved in the classical single-
task RL setting with a static environment and a fixed reward function, contextual reinforcement
learning holds the promise of driving the next wave of breakthroughs by leveraging similarities
between environments and tasks [5, 6, 7]. Such a high-level abstraction of shared task structure
permits simultaneous multi-task policy optimization and generalization to novel scenarios through
interpolation and extrapolation [8, 9, 10, 11].

A crucial limitation of the contextual RL framework is the assumption that the task distribution is not
known beforehand and not controlled by the agent. Despite being effective in the contextual bandit
setting [12], where the context is chosen by an underlying unknown (adversarial) stochastic process,
this assumption is rather limiting in robotics from a practical and an algorithmic point of view. On one
hand, the target context distribution is usually known to the designer of the system, and contextual
learning is purposefully applied to generalize a skill over a set of target contexts, be it the whole
context space or a specific part of it [13]. On the other hand, not exploiting the freedom in adjusting
the context distribution to the skill level of the agent can only deteriorate the performance of the
learning algorithm. Indeed, advances in gradual and sequential learning, exemplified by shaping [14]
and curriculum learning [15], which are loosely based on the insights from behavioral psychology
[16] and continuation methods in optimization [17], demonstrate significant improvements in the
speed of learning and resilience to local optima.

Defining an appropriate curriculum is crucial for the success of gradual learning approaches. For
contextual RL, this means repeatedly choosing a batch of tasks that result in the greatest improvement

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.

in the direction of the target contexts. Unfortunately, finding an optimal curriculum is an intractable
sequential decision making problem. In this paper, we instead construct a curriculum as a series
of intermediate context distributions that we gradually optimize based on a trade-off between local
reward maximization and the expected progress towards the target context distribution. This allows an
agent to pace its learning process autonomously based solely on the interactions with the environment.

Our formulation of the one-step optimal curriculum selection problem is instantiated in the framework
of contextual relative entropy policy search (C-REPS) [10, 11], offering a principled way of imposing
constraints through the Lagrangian dual formulation. Nonetheless the proposed approach can be
adapted to enhance other contextual RL solvers too. In the following sections, we introduce our
algorithm and empirically investigate its performance and sample efficiency on three robotics tasks,
among them an especially challenging sparse Ball-in-a-Cup task on a Barrett WAM, demonstrating
that a self-paced curriculum facilitates learning by drastically reducing sample complexity in compar-
ison to the baseline methods. Finally, we highlight and discuss related RL and curriculum learning
approaches, pointing out promising directions for future work.

2 Contextual Reinforcement Learning

We formulate classical contextual RL as a stochastic search problem in a continuous space of contexts
c ∈ C, that define the configuration of an environment, and a space of policy parameters θ ∈ Θ,
which dictate the agent’s behavior. A reward function R(θ, c) maps every point of the product space
to a real number,R : C×Θ→ R. The context c is assumed to be drawn from an unknown distribution
µ(c), while the policy parameters are sampled from a conditional search distribution π(θ|c). Our
definition motivates the stochastic search objective J(π) =

∫
C
µ(c)

∫
Θ
π(θ|c)R(θ, c)dθdc.

Contextual relative entropy policy search (C-REPS) frames the search problem as an iterative entropy-
regularized optimization under the distribution p(θ, c) = µ(c)π(θ|c),

arg max
p(θ,c)

∫
C,Θ

R(θ, c)p(θ, c)dcdθ, s.t. DKL (p(θ, c)||q(θ, c)) ≤ ε,∫
C,Θ

p(θ, c)dcdθ = 1,

∫
Θ

p(θ, c)dθ = µ(c), ∀c ∈ C,

where DKL (p(.)||q(.)) is the Kullback-Leibler (KL) divergence between the distribution p being
optimized and the previously found joint distribution q. This constraint controls the exploration-
exploitation trade-off via the hyperparameter ε and limits information loss between iterations. The
remaining constraints are necessary to ensure distribution normalization and marginalization proper-
ties. This constrained optimization problem is tackled by formulating the Lagrangian function and
solving the primal problem, which yields the following optimality condition for p(θ, c)

p∗(θ, c) ∝ q(θ, c) exp

(
A(θ, c)

η

)
, (1)

which can be interpreted as soft-max re-weighting of the joint distribution q by the advantage function
A (θ, c) = R(θ, c)− V (c). The parameters η and V (c) are the Lagrangian variables corresponding
to the KL and marginalization constraints respectively. Those parameters can be optimized by
minimizing the corresponding dual objective, which is derived by plugging the optimal distribution
p∗(θ, c) back into the primal problem,

G(η, V) = ηε+ η log

(
Eq
[
exp

(
A(θ, c)

η

)])
.

Given that neither the sampling distribution q(θ, c) nor the advantage A (θ, c) are known analytically,
the dual objective can only be approximated under samples from q(θ, c). By assuming a certain
function class for the optimal policy π∗(θ|c), for example a Gaussian process or an RBF network,
the optimality condition in Equation 1 can be satisfied by performing a maximum a posteriori fit
under samples drawn from q(θ|c) and µ(c).

2

Algorithm 1 Self-Paced Reinforcement Learning
Input: Relative entropy bound ε, offsetKα (after which α becomes non-zero), KL-penalty fraction
ζ, initial policy q0(θ|c), initial sampling distribution q0(c), number of iterations K.
for k = 1 to K do

Collect Data:
Sample contexts: ci ∼ qk−1(c), i = 1, . . . ,M
Sample and execute actions: θi ∼ qk−1(θ|ci)
Observe reward: Ri = R (θi, ci)

Update Policy and Context Distributions:
Update schedule: αk = 0, if k ≤ Kα, else ζ

∑M
i=1 Ri

MDKL(qk−1‖µ)

Optimize dual function:
[
η∗µ, η

∗
p, V

∗]← arg maxG(ηµ, ηp, V)

Calculate sample weights:
[
wπi , w

µ̃
i

]
←
[
exp

(
A(θi,ci)
η∗p

)
, exp

(
β(ci)
αk+η∗µ

)]
Infer policy and context distributions: [π∗k, µ̃

∗
k]← D =

{
(wπi , w

µ̃
i ,θi, ci)|i ∈ [1,M]

}
Assign policy and context distributions: qk(θ|c)← π∗k(θ|c), qk(c)← µ̃∗k(c)

end for

3 Self-Paced Reinforcement Learning

Following our line of argument in Section 1, we want to transform the contextual stochastic search
problem presented in Section 2 from a passive optimization under an unknown distribution µ(c)
into one that allows the learning agent to actively optimize an intermediate context distribution µ̃(c)
and initially focus on “easy” tasks and gradually progress towards the target distribution µ(c) by
bootstrapping the optimal policy from the previous iterations.

This progression is to be understood as a trade-off between maximizing the objective J =
Eπ,µ̃ [R(θ, c)] by exploiting local information and minimizing the distance to the context distri-
bution of interest µ(c). A connection to numerical continuation methods [17] can be drawn by
viewing the intermediate distribution µ̃(c) as a parameter of the main objective J(π, µ̃). Under this
view, the distribution µ̃(c) gradually morphs the function J(π) to improve convergence when a good
initial guess of π is not available.

In the following, we present our self-paced contextual RL (SPRL) algorithm, which incorporates
such intermediate distributions into the framework of C-REPS and allows an agent to optimize its
own learning process, under the assumption of a known target context distribution.

We formulate a new constrained optimization problem that takes into consideration a “local” objective
of maximizing the expected reward and a “global” objective seeking to move µ̃(c) towards µ(c) by
minimizing DKL (µ̃||µ),

arg max
p,µ̃

∫
C,Θ

R(θ, c)p(θ, c)dcdθ − αDKL (µ̃||µ) (2)

s.t. DKL (p(θ, c)||q(θ, c)) ≤ ε, (3)∫
C,Θ

p(θ, c)dcdθ = 1, (4)∫
Θ

p(θ, c)dθ = µ̃(c), ∀c ∈ C, (5)

where the joint distributions p(.) and q(.) are defined as p(θ, c) = π(θ|c)µ̃(c) and q(θ, c) =
q(θ|c)q(c), respectively. It follows that in every iteration the learning agent is able to optimize both
its policy π(θ|c) and sampling distribution µ̃(c), starting from the uninformative Gaussian priors
q(c) and q(θ|c), while following a schedule of α.

3.1 Optimality Conditions and Dual Optimization

By constructing the Lagrangian function of the above described optimization problem, we can derive
the optimality conditions for p∗(θ, c) and µ̃∗(c). However, during experiments we observed that the

3

0 100 200 300

60

80

100

R
ew

ar
d

SPRL C-REPS
CMA-ES GoalGAN
SAGG-RIAC

0 200 400 600

60

80

100

Iterations

R
ew

ar
d

SPRL C-REPS
GoalGAN SAGG-RIAC

−4 −2 0 2 4
0.1

0.2

0.3

0.4

0.5

G
at

e
W

id
th

20

80

130

210

320

−4 −2 0 2 4
0.1

0.2

0.3

0.4

0.5

Gate Position

G
at

e
W

id
th

50

150

250

400

Figure 1: The left plots show the reward achieved by the algorithms on the “precision” (top row)
and “global” setting (bottom row) on the target context distributions in the gate environment. Thick
lines represent the 50%-quantiles and shaded areas the intervals from 10%- to 90%-quantile of 40
algorithm executions. One iteration consists of 100 policy rollouts. The right plot shows the evolution
of the sampling distribution µ̃ (c) (colored areas) of one run together with the target distribution µ (c)
(black line). The small images on the right visualize the task for different gate positions and widths.
The crosses mark the corresponding positions in the context space.

resulting expressions and the dual objective are numerically unstable for small values of α. A more
detailed treatment of those problems can be found in the supplementary material. We can avoid such
numerical issues by over-defining the original problem and adding the following conditions, which
are implicitly satisfied when the constraints in Equations (3-5) hold,∫

C

µ̃ (c) dc = 1 (6), DKL (µ̃(c)||q(c)) ≤ ε. (7)

Solving the new augmented primal problem results in an optimality condition p∗(θ, c) which is
equivalent to that in Equation (1), while the optimal point µ̃∗(c) is given by

µ̃∗(c) ∝ q(c) exp

α log

(
µ(c)
q(c)

)
+ V (c)

α+ ηµ

 = q(c) exp

(
β(c)

α+ ηµ

)
, (8)

where ηp, ηµ and V (c) are the Lagrangian multipliers corresponding to Equations (3, 7, 5) respec-
tively, and are optimized by minimizing the dual objective

G = (ηp + ηµ)ε+ ηp log

(
Eq
[
exp

(
A(θ, c)

ηp

)])
+ (α+ ηµ) log

(
Eq
[
exp

(
β(c)

α+ ηµ

)])
. (9)

Equation (9) underscores the contributions of Equations (6,7) to numerical robustness, as they
introduce the logarithmic function and the temperature ηµ to the second expectation, consequently
reducing the severity of numerical overflow issues. Algorithm 1 depicts a general sketch of the overall
learning procedure.

3.2 Interpretation of the Dual Variable V (c)

As already highlighted in [13], V (c) can be interpreted as a context-value function, representing a
soft-max operator over the expected reward under the policy q(θ|c). For the case α = 0, we obtain

µ̃∗(c) ∝ q(c) exp

(
V (c)

ηµ

)
,

which reveals that µ̃∗(c) shifts the contextual variable’s modes of density from areas in the context
space with lower expected reward to areas with higher expected reward according to V (c), while
constraints (3) and (7) limit the rate of such shifts, in order to limit the information loss compared to
previous iterations. This insight motivates a slowly increasing schedule of α-values, that allows the
agent to concentrate on easier tasks at first before guiding it towards harder tasks.

4

0 100 200 300 400

0

10

Iterations

R
ew

ar
d

SPRL C-REPS
CMA-ES GoalGAN
SAGG-RIAC

2 4 6 8
·10−2

2

4

6

8

·10−2

Size #1

Si
ze

#2

10

50

110

180

300

Figure 2: The left plots show the 50%-quantiles (thick lines) and the intervals from 10%- to 90%-
quantile (shaded areas) of the reward achieved by the investigated algorithms on the target context
distribution in the Reacher environment. The quantiles are computed from 40 algorithm executions.
One iteration consists of 50 policy rollouts. Colored areas in the right plot show the sampling
distribution µ̃ (c) at different iterations of one SPRL run together with the target distribution (black
line). The legend on the right shows the iteration that corresponds to a specific color. Small images
on the right visualize different contexts with black crosses marking the corresponding positions in
context space.

3.3 Practical Aspects

Our approach requires to choose a class of (Bayesian) function approximators for representing the
value function V (c) and policy π(θ|c). Moreover, the distributions µ(c) and µ̃(c) need to be pinned
down by a parametric form to allow the sample-weighted updates.

We define the following data-set needed to perform the updates in Equations (1) and (8)

D =

{(
wπi , w

µ̃
i ,θi, ci

)
|wπi = exp

(
A(ci)

ηp

)
, wµ̃i = exp

(
β(ci)

α+ ηµ

)
, i ∈ [1,M]

}
.

Another important aspect is the choice of α, which penalizes the divergence between µ̃ and µ. While
experimenting with the algorithm, choosing α such that the KL-Divergence between current- and
target context distribution makes up a certain fraction ζ of the current average reward demonstrated
promising performance by automatically adapting to the performance of the algorithm while requiring
only one parameter to be tuned. Finally, the hyperparameter ε may require task-dependent tuning.

4 Empirical Evaluation

In this section, we demonstrate the benefit of our algorithm by comparing it to C-REPS, CMA-ES [18],
GoalGAN [19] and SAGG-RIAC [20]. With CMA-ES being a non-contextual algorithm, we only use
it in experiments with narrow target distributions, where we then train and evaluate only on the mean
of the target context distributions. We will start with a simple point-mass problem, where we evaluate
the benefit of our algorithm for broad and narrow target distributions. We then turn towards more
challenging tasks, such as a modified version of the reaching task implemented in the OpenAI Gym
simulation environment [21] and a sparse Ball-in-a-Cup task. Given that GoalGAN and SAGG-RIAC
are algorithm agnostic curriculum generation approaches, we combine them with C-REPS to make
the results as comparable as possible.

In all experiments, we use radial basis function (RBF) features to approximate the value function
V (c), while the policy π(θ|c) = N (θ|Aφ(c),Σθ) uses linear features φ(c). SPRL and C-REPS
always use the same number of RBF features for a given environment. In the case of SPRL, we learn
the Gaussian context distribution µ̃(c) and policy π(θ|c) jointly from the sample set D while limiting
the change in KL-Divergence. For C-REPS, we use the same scheme but only learn the policy from
D. The approach is outlined in the supplementary material.

In our experiments, SPRL always starts with a wide initial sampling distribution µ̃ (c) that, in
combination with setting α = 0 for the first Kα iterations, allows the algorithm to automatically
choose the initial tasks on which learning should take place. After the first Kα iterations, we then

5

0 100 200 300

0

0.5

1

Iterations
Su

cc
es

s
R

at
e SPRL

C-REPS
CMA-ES
GoalGAN
SAGG-RIAC

0 200 400 600

0

0.5

1

Iterations

Su
cc

es
s

R
at

e SPRL
C-REPS
GoalGAN
SAGG-RIAC

Figure 3: Success rates achieved by the algorithms on the “precision” (left) and “global” setting
(right) of the gate environment. Thick lines represent the 50%-quantiles and shaded areas show the
intervals from 10%- to 90%-quantile. The quantiles are computed using 40 algorithm executions.
One iteration consists of 100 policy rollouts. A policy execution is said to be successful if the final
position is sufficiently close to the goal.

choose α following the scheme outlined in the previous section. Experimental details that cannot be
mentioned due to space limitations can be found in the supplementary material. 1

4.1 Gate Environment

In the first environment, the agent needs to steer a point-mass in two-dimensional space from the
starting position [0 5] to the goal position at the origin. The dynamics of the point mass are described
by a simple linear system subject to a small amount of Gaussian noise. Complexity is introduced by
a wall at height y = 2.5, which can only be traversed through a gate. The x-position and width of
the gate together define a task c. If the point-mass crashes into the wall, the experiment is stopped
and the reward computed based on the current position. The reward function is an exponential of
the distance to the goal position with additional L2-Regularization on the generated actions. The
point-mass is controlled by two PD-controllers, whose parameters need to be tuned by the agent. The
controllers are switched as soon as the point mass reaches the height of the gate, which is why the
the desired y-position of the controllers are fixed to 2.5 (the height of the gate) and 0, while all other
parameters are controlled by the policy π, making θ a 14-dimensional vector.

We evaluate two setups in this gate environment, which differ in their target context distribution:
In the first one, the agent needs to be able to steer through a very small gate far from the origin
(“precision”) and in the second it is required to steer through gates with a variety of positions and
widths (“global”). The two target context distributions are shown in Figure 1.

Figure 1 visualizes the obtained rewards for the investigated algorithms, the evolution of the sampling
distribution µ̃ (c) as well as sample tasks from the environment. In the “global” setting, we can see
that SPRL converges significantly faster to the optimum while in the “precision” setting, SPRL avoids
a local optimum to which C-REPS and CMA-ES converge and which, as can be seen in Figure 3,
does not encode desirable behavior. The visualized sampling distributions in Figure 1 indicate that
tasks with wide gates positioned at the origin seem to be easier to solve starting from the initially
zero-mean Gaussian policy, as in both settings the algorithm first focuses on these kinds of tasks and
then subsequently changes the sampling distributions to match the target distribution. Interestingly,
the search distribution of CMA-ES did not always converge in the “precision” setting, as can be seen
in Figure 1. This behavior persisted across various hyperparameters and population sizes.

4.2 Reacher Environment

For the next evaluation, we modify the three-dimensional Reacher environment of the OpenAI Gym
toolkit. In this modified version, the goal is to move the end-effector along the surface of a table
towards the goal position while avoiding obstacles that are placed on the table. With the obstacles
becoming larger, the robot needs to introduce a more pronounced curve movement in order to reach
the goal without collisions. To simplify the visualization of the task distribution, we only allow
two of the four obstacles to vary in size. The sizes of those two obstacles make up a task c in this
environment. Just as in the first environment, the robot should not crash into the obstacles and hence
the movement is stopped if one of the four obstacles is touched. The policy π encodes a ProMP [22],
from which movements are sampled during training. In this task, θ is a 40-dimensional vector.

1Code is publicly available under https://github.com/psclklnk/self-paced-rl

6

https://github.com/psclklnk/self-paced-rl

SPRL
C-REPS
GoalGAN

CMA-ES
PPO
SAGG-RIAC

Figure 4: Trajectories generated by the final policies learned with SPRL, C-REPS, CMA-ES, Goal-
GAN, SAGG-RIAC and PPO in the reacher environment. The trajectories should reach the red dot
while avoiding the cyan boxes. Please note that the visualization is not completely accurate, as we
did not account for the viewpoint of the simulation camera when plotting the trajectories.

Looking at Figure 2, we can see that C-REPS and CMA-ES find a worse optimum compared to SPRL.
This local optimum does – just as in the previous experiment – not encode optimal behavior, as we can
see in Figure 4. GoalGAN and SAGG-RIAC tend to find the same optimum as SPRL, however with
slower convergence and more variance. The sampling distributions visualized in Figure 2 indicate
that SPRL focuses on easier tasks with smaller obstacle sizes first and then moves on to the harder,
desired tasks. This also explains the initially lower performance of SPRL on the target task compared
to C-REPS and CMA-ES. Figure 4 also shows that PPO [23], a step-based reinforcement learning
algorithm, is not able to solve the task after the same amount of interaction with the environment,
emphasizing the complexity of the learning task.

Sparse Ball-in-a-Cup

We conclude the experimental evaluation with a Ball-in-a-Cup task, in which the reward function
exhibits a significant amount of sparsity by only returning a reward of 1 minus an L2 regularization
term on the policy parameters, if the ball is in the cup after the policy execution, and 0 otherwise.
The robotic platform is a Barrett WAM, which we simulate using the MuJoCo physics engine [24].
The policy again represents a ProMP encoding the desired position of the first, third and fifth joint
of the robot. Obviously, achieving the desired task with a poor initial policy is an unlikely event,
leading to mostly uninformative rewards and hence a poor learning progress. However, as can be
seen in Figure 5, giving the learning agent control over the diameter of the cup significantly improves
the learning progress by first training with larger cups and only progressively increasing the precision
of the movement. Having access to only 16 samples per iteration, the algorithms did not always learn
to achieve the task. However, the final policies learned by SPRL clearly outperform the ones learned
by C-REPS, CMA-ES, GoalGAN and SAGG-RIAC. The movements learned in simulation could
finally be applied to the robot with a small amount of fine-tuning.

5 Related Work

The idea of co-evolving the task together with the learner was explored under different names in
various contexts. In evolutionary robotics, simulation parameters describing a robot were gradually
evolved to match the observations from the real system, while intermediate controllers were learned
entirely in simulation [25]. Recently, this idea got into the spotlight of reinforcement learning under
the name ‘sim-to-real transfer’ [26]. In behavioral psychology, a similar concept is known as shaping
[16], and it has direct links to homotopic-continuation methods [17] and computational reinforcement
learning [27]. In supervised learning, the paradigm of self-paced curriculum learning [28, 29] was
successfully applied to automatically determine a sequence of training sets with increasing complexity.
Conceptually closest to ours is the approach that tackles a much harder problem of learning the
optimal curriculum [30], which turns out to be computationally harder than learning the entire task
from scratch at once, whereas we propose local auxiliary optimization instead as a surrogate for
global optimization that significantly improves sample efficiency of learning.

The process of adaptive task selection can be seen as a form of active learning [31] since the agent
learns how to solve harder tasks by eliciting information from the simpler ones. Active learning
in turn is closely related to curiosity-driven learning [32], which introduced such approaches as
intelligent adaptive curiosity [33] and intrinsic motivation [34] that suggest focusing learning on
tasks that promise high change in reward based on the recent history of experiences [20]. Curiosity-

7

0 100 200

0.0

0.2

0.4

0.6

0.8

1.0

Iterations

Su
cc

es
s

R
at

e

SPRL
C-REPS
CMA-ES
GoalGAN
SAGG-RIAC

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.0

0.2

0.4

0.6

0.8

1.0

Scale

PD
F

5

30

80

120

Figure 5: The left plots show the 50%-quantiles (thick lines) and intervals from 10%- to 90%-quantile
(shaded areas) of the success rate of the investigated algorithms for the sparse Ball-in-a-Cup task.
The quantiles were computed from the 10 best runs out of 20. One iteration consists of 16 policy
rollouts. Colored areas in the right plot show the sampling distribution µ̃ (c) at different iterations
of one SPRL run together with the target distribution (black line). The small images on the right
visualize the task on the real robot (upper) and in simulation with a scale of 2.5 (lower).

driven learning was combined with multi-armed bandit algorithms for automatic task selection in
reinforcement learning problems [35] and was applied in robotics to learn goal-reaching movements
with sparse rewards [36].

The idea of reusing knowledge across related tasks is at the heart of transfer learning in general
[37] and transfer in RL in particular [38, 39]. Prioritization of tasks for which the agent obtains
rewards falling into a certain interval of values combined with additional reversibility assumptions
was shown to enable learning of high-dimensional object manipulation and maze navigation tasks
[19, 40]. Assuming shared dynamics between tasks and knowledge about the functional form of
the reward function allowed to solve a variety of tasks in the classical computer game Doom [41].
Enhanced with universal value function approximators [5], reward-based transfer was extremely
successful in robotics applications with sparse reward functions [6].

Finally, the investigation of smoothness assumptions on contextual MDPs [42] is highly relevant
to our work, as our algorithm implicitly applies such assumptions to restrict the search space by
postulating a linear dependency of the policy mean on the context features.

6 Conclusion

We proposed a novel approach for generating learning curricula in reinforcement learning problems
and developed a practical procedure for simultaneous policy optimization and task sampling distribu-
tion adjustment based on an existing information-theoretic contextual policy search algorithm. The
progression from ‘easy’ tasks towards the target distribution of ‘hard’ tasks allows to solve problems
in which classical contextual policy search algorithms cannot find a satisfying solution.

Although our heuristic of choosing α that controls the trade-off between local improvement and
progression towards the desired tasks worked sufficiently well in our experiments, we want to
find a more rigorous way of choosing α by e.g. maximizing the learning speed towards the target
distribution.

Extensions to step-based policy search algorithms, such as [43, 44, 23], are conceptually straight-
forward and are expected to further improve the performance by leveraging information from every
transition in the environment. Adding a constraint on the lower bound of the policy entropy could
furthermore increase the robustness of the algorithm by preserving variance during training on
intermediate tasks.

Acknowledgments

Calculations for this research were conducted on the Lichtenberg high performance computer of the
TU Darmstadt. This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 640554 (SKILLS4ROBOTS) and from DFG
project PA3179/1-1 (ROBOLEAP).

8

References

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. Nature, 550
(7676):354, 2017.

[3] J. Kober and J. Peters. Policy search for motor primitives in robotics. In NIPS, 2009.
[4] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.

JMLR, 17(1):1334–1373, 2016.
[5] T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. In

ICML, 2015.
[6] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,

O. P. Abbeel, and W. Zaremba. Hindsight experience replay. In NIPS, 2017.
[7] V. Pong, S. Gu, M. Dalal, and S. Levine. Temporal difference models: Model-free deep rl for

model-based control. In ICLR, 2018.
[8] G. Neumann. Variational inference for policy search in changing situations. In ICML, 2011.
[9] H. B. Ammar, E. Eaton, P. Ruvolo, and M. Taylor. Online multi-task learning for policy gradient

methods. In ICML, 2014.
[10] A. G. Kupcsik, M. P. Deisenroth, J. Peters, G. Neumann, et al. Data-efficient generalization of

robot skills with contextual policy search. In AAAI, 2013.
[11] S. Parisi, H. Abdulsamad, A. Paraschos, C. Daniel, and J. Peters. Reinforcement learning vs

human programming in tetherball robot games. In IROS, 2015.
[12] T. Lattimore and C. Szepesvári. Bandit Algorithms (pre-print). Cambridge University Press,

2019.
[13] M. P. Deisenroth, G. Neumann, and J. Peters. A survey on policy search for robotics. Founda-

tions and Trends R© in Robotics, 2(1–2):1–142, 2013.
[14] K. A. Krueger and P. Dayan. Flexible shaping: How learning in small steps helps. Cognition,

110(3):380–394, 2009.
[15] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, 2009.
[16] B. F. Skinner. The behavior of organisms: An experimental analysis. BF Skinner Foundation,

1990.
[17] E. L. Allgower and K. Georg. Numerical continuation methods: An introduction, volume 13.

Springer Science & Business Media, 2012.
[18] N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complexity of the derandom-

ized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary computation,
11(1):1–18, 2003.

[19] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement
learning agents. In ICML, 2018.

[20] A. Baranes and P.-Y. Oudeyer. Intrinsically motivated goal exploration for active motor learning
in robots: A case study. In IROS, 2010.

[21] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[22] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann. Probabilistic movement primitives. In
NIPS, 2013.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[24] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In IROS,
2012.

[25] J. Bongard and H. Lipson. Once more unto the breach: Co-evolving a robot and its simulator.
In ALIFE, 2004.

9

[26] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Closing
the sim-to-real loop: Adapting simulation randomization with real world experience. arXiv
preprint arXiv:1810.05687, 2018.

[27] T. Erez and W. D. Smart. What does shaping mean for computational reinforcement learning?
In ICDL, 2008.

[28] M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS,
2010.

[29] L. Jiang, D. Meng, Q. Zhao, S. Shan, and A. G. Hauptmann. Self-paced curriculum learning. In
AAAI, 2015.

[30] S. Narvekar and P. Stone. Learning curriculum policies for reinforcement learning. In AAMAS,
2019.

[31] B. Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning,
6(1):1–114, 2012.

[32] P.-Y. Oudeyer. Computational theories of curiosity-driven learning. arXiv preprint
arXiv:1802.10546, 2018.

[33] P.-Y. Oudeyer. Intelligent adaptive curiosity: A source of self-development. In Proceedings
of the 4th International Workshop on Epigenetic Robotics, volume 117, pages 127–130. Lund
University Cognitive Studies, 2004.

[34] A. G. Barto, S. Singh, and N. Chentanez. Intrinsically motivated learning of hierarchical
collections of skills. In ICDL, 2004.

[35] A. Fabisch and J. H. Metzen. Active contextual policy search. JMLR, 15(1):3371–3399, 2014.
[36] P. Fournier, O. Sigaud, M. Chetouani, and P.-Y. Oudeyer. Accuracy-based curriculum learning

in deep reinforcement learning. arXiv preprint arXiv:1806.09614, 2018.
[37] S. J. Pan, Q. Yang, et al. A survey on transfer learning. IEEE Transactions on knowledge and

data engineering, 22(10):1345–1359, 2010.
[38] M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A survey.

JMLR, 10(Jul):1633–1685, 2009.
[39] A. Lazaric. Transfer in reinforcement learning: a framework and a survey. In Reinforcement

Learning, pages 143–173. Springer, 2012.
[40] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel. Reverse curriculum generation

for reinforcement learning. In CoRL, 2017.
[41] A. Dosovitskiy and V. Koltun. Learning to act by predicting the future. arXiv preprint

arXiv:1611.01779, 2016.
[42] A. Modi, N. Jiang, S. Singh, and A. Tewari. Markov decision processes with continuous side

information. In ALT, 2018.
[43] J. Peters, K. Mülling, and Y. Altun. Relative entropy policy search. In AAAI, 2010.
[44] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.

In ICML, 2015.
[45] N. Hansen, Y. Akimoto, and P. Baudis. CMA-ES/pycma on Github, Feb. 2019. URL https:

//github.com/CMA-ES/pycma.
[46] A. Hill, A. Raffin, M. Ernestus, A. Gleave, R. Traore, P. Dhariwal, C. Hesse, O. Klimov,

A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable baselines.
https://github.com/hill-a/stable-baselines, 2018.

10

https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://github.com/hill-a/stable-baselines

A Numerical Stabilization

We already mentioned that the following optimization problem

arg max
p,µ̃

∫
C,Θ

R(θ, c)p (θ, c) dcdθ − αDKL (µ̃||µ)

s.t. DKL (p (θ, c) ||q (θ, c)) ≤ ε∫
C,Θ

p (θ, c) dcdθ = 1∫
Θ

p (θ, c) dθ = µ̃ (c) , ∀c ∈ C

poses numerical difficulties, especially for small values of α. We want to discuss this issue in more
detail now by looking at the resulting optimal joint- and context distribution

p∗ (θ, c) ∝ q (θ, c) exp

(
A(θ, c)

η

)
µ̃∗ (c) ∝ µ (c) exp

(
V (c)

α

)
=
q (c)

q (c)
µ (c) exp

(
V (c)

α

)
= q (c) exp

(
log

(
µ (c)

q (c)

)
+
V (c)

α

)
.

Note that the expression for µ̃∗ was re-written to depend on the current sampling distribution q rather
than the target distribution µ. This is necessary as the context samples result from sampling q.

As already pointed out in the main text, V (c) is divided by α in above expression, prohibiting the
use of α close to 0, since the resulting exponential term quickly exceeds the largest number that can
be represented using double precision floating point numbers. However, especially these values are
crucial for allowing the algorithm to select easy tasks in the first iterations of the algorithm.

Furthermore, the log-term in above expression can also result in large negative numbers if the target
distribution µ (c) only assigns negligible probability mass to samples from the current sampling
distribution q (c), further amplifying numerical problems.

The dual formulation of the considered optimization problem is

G (η, V) = ηε+ η log

(
Eq
[
exp

(
A(θ, c)

η

)])
+

α

exp (1)
Eq
[
exp

(
log

(
µ (c)

q (c)

)
+
V (c)

α

)]
.

We see that both problematic terms reappear in this dual, making a numerical optimization very hard
for small values of α or target distributions that only assign negligible probability mass to the samples
of the current sampling distribution.

As already outlined in the main text, adding the two constraints∫
C

µ̃ (c) dc = 1, DKL (µ̃(c)||q(c)) ≤ ε

numerically stabilizes the optimization objective by introducing an additional temperature term in
the exponential. It can be shown, however, that these additional constraints actually do not further
constrain the solution. For this we first note that for the optimal joint- and context distribution p∗ and
µ̃∗ it holds that∫

C,Θ

p∗(θ, c)dθdc = 1⇔
∫
C

(∫
Θ

p∗(θ, c)dθ

)
dc = 1⇔

∫
C

µ̃∗(c)dc = 1.

11

Furthermore, the following reformulation yields

DKL(p∗(θ, c)‖q(θ, c)) ≤ ε

⇔
∫

Θ,C

p∗(θ, c) log

(
p∗(θ, c)

q(θ, c)

)
dθdc ≤ ε

⇔
∫

Θ,C

p∗(θ, c) log

(
µ̃∗(c)

q(c)

)
dθdc+

∫
Θ,C

p∗(θ, c) log

(
π∗(θ|c)
q(θ|c)

)
dθdc ≤ ε

⇔
∫
C

(∫
Θ

p∗(θ, c)dθ

)
log

(
µ̃∗(c)

q(c)

)
dc ≤ ε−

∫
Θ,C

p∗(θ, c) log

(
π∗(θ|c)
q(θ|c)

)
dθdc

⇔
∫
C

µ̃∗(c) log

(
µ̃∗(c)

q(c)

)
dc ≤ ε− Eµ̃∗

[∫
Θ

π∗(θ|c) log

(
π∗(θ|c)
q(θ|c)

)
dθ

]
⇔DKL(µ̃∗(c)‖q(c)) ≤ ε− Eµ̃∗ [DKL(π∗(θ|c)‖q(θ|c))] ,

from which follows that DKL(µ̃∗(c)‖q(c)) ≤ ε, as Eµ̃∗ [DKL(π∗(θ|c)‖q(θ|c))] ≥ 0.

Another aspect of numerical stabilization are the sample weights that are computed after optimizing
the dual function. In C-REPS, the weights wπ are derived from

p∗ (θ, c) ∝ q (θ, c) exp

(
A(θ, c)

ηp

)
⇔ π∗ (θ|c) q (c) ∝ q (θ|c) q (c) exp

(
A(θ, c)

ηp

)
⇔ π∗ (θ|c) ∝ q (θ|c) exp

(
A(θ, c)

ηp

)
.

In SPRL, the weights wπ would slightly differ, as now p∗ (θ, c) = π∗ (θ|c) µ̃∗ (c) and hence it holds
that

π∗ (θ|c) ∝ q (θ|c) q (c)

µ̃∗ (c)
exp

(
A(θ, c)

ηp

)
∝ q (θ|c) exp

(
A(θ, c)

ηp
− β (c)

α+ ηµ

)
.

However, the second term in the exponential had significantly larger magnitudes in our experiments,
in turn leading to poor policy updates. Because of this, we decided to use the same policy update as
for the regular C-REPS algorithm. Further investigation of this problem and how to regularize it may
allow to use the derived weights instead of the ones from the C-REPS algorithm.

B Regularized Policy Updates

In order to enforce the KL-Bound DKL (p(θ, c)||q(θ, c)) ≤ ε on the policy and context distribution
not only during the computation of the weights but also during the actual inference of the new policy
and context distribution, the default weighted linear regression and weighted maximum likelihood
objectives need to be regularized.

Given a dataset of N weighted samples

D = {(wxi , w
y
i ,xi,yi)|i = 1, . . . , N} ,

with xi ∈ Rdx ,yi ∈ Rdy , the task of fitting a joint-distribution

p(x,y) = py(y|x)px(x) = N (y|Aφ(x),Σy)N (x|µx,Σx)

to D while limiting the change with regards to a reference distribution

q(x,y) = qy(y|x)qx(x) = N (y|Ãφ(x), Σ̃y)N (x|µ̃x, Σ̃x),

12

with feature function φ : Rdx 7→ Ro, can be expressed as a constrained optimization problem

max
A,Σy,µx,Σx

N∑
i=1

(wxi log(px(xi)) + wyi log(py(yi|xi)))

s.t. DKL(q‖p) ≤ ε

= max
A,Σy,µx,Σx

N∑
i=1

(wxi log(px(xi)) + wyi log(py(yi|xi)))

s.t. Eqx [DKL(qy‖py)] +DKL(qx‖px) ≤ ε

≈ max
A,Σy,µx,Σx

N∑
i=1

(wxi log(px(xi)) + wyi log(py(yi|xi)))

s.t.
1

N

N∑
i=1

DKL(qy(·|xi)‖py(·|xi)) +DKL(qx‖px) ≤ ε.

Since the distributions px, py, qx and qy are Gaussians, the KL-Divergences can be expressed
analytically. Setting the derivative of the Lagrangian with respect to the optimization variables to
zero yields to following expressions of the optimization variables in terms of the multiplier η and the
samples from D

A =

[
N∑
i=1

(
wiyi +

η

N
Ãφ(xi)

)
φ(xi)

T

][
N∑
i=1

(
wi +

η

N

)
φ(xi)φ(xi)

T

]−1

,

Σy =

∑N
i=1 wi∆yi∆y

T
i + ηΣ̃y + η

N∆A
∑N
i=1 φ(xi)φ(xi)

T∆AT∑N
i=1 wi + η

,

µx =

∑N
i=1 wixi + ηµ̃x∑N

i=1 wi + η
,

Σx =

∑N
i=1 wi(xi − µx)(xi − µx)T + η

(
Σ̃x + (µx − µ̃x)(µx − µ̃x)T

)
∑N
i=1 wi + η

,

with ∆yi = yi −Aφ(xi) and ∆A = A− Ã. Above equations yield a simple way of enforcing the
KL-Bound on the joint distribution: Since η is zero if the constraint on the allowed KL-Divergence
is not active, A, Σy, µx and Σx can be first computed with η = 0 and only if the allowed KL-
Divergence is exceeded, η needs to be found by searching the root of

f(η) = ε− 1

N

N∑
i=1

DKL(qy(·|xi)‖py(·|xi)) +DKL(qx‖px),

where py and px are expressed as given by above formulas and hence implicitly depend on η. As this
is a one-dimensional root finding problem, simple algorithms can be used for this task.

C Further Experimental Details

This section is composed of further relevant details on the experiments, which could not be included
in the main text due to space limitations. The first part of this section contains general aspects that
appeal to more than one experiment as well as tables with important parameters of SPRL, C-REPS,
GoalGAN and SAGG-RIAC for the different environments. The remaining parts introduce and
discuss details specific to the individual experiments.

13

General Aspects

For the gate and the Reacher experiment, the reward function is given by

R(θ, c) = κ exp
(
−‖xf (θ)− xg (c)‖2

)
− ν

N∑
i=0

ui (θ)
T
ui (θ) ,

where xf (θ) is the position of the point-mass or end-effector at the end of the policy execution,
xg (c) the desired final position, ui (θ) the action applied at time-step i and κ and ν two multipliers
that are chosen for each experiment individually. For the visualization of the success rate as well as
the computation of the success indicator for the GoalGAN algorithm, the following definition is used:
An experiment is considered to be successful, if the distance between final- and desired state is less
than a given threshold τ

Success (θ, c) =

{
1, if ‖xf (θ)− xg (c)‖2 < τ,

0, else.

For the Gate and Reacher environment, the threshold is fixed to 0.05, while for the Ball-in-a-Cup
environment, the threshold depends on the scale of the cup and the goal is set to be the center of the
bottom plate of the cup.

The policies are chosen to be conditional Gaussian distributions N (θ|Aφ(c),Σθ), where φ(c) is a
feature function. SPRL and C-REPS both use linear policy features in all environments.

In the Reacher and the Ball-in-a-Cup environment, the parameters θ encode a feed-forward policy by
weighting several Gaussian basis functions over time

ui (θ) = θTψ (ti) , ψj (ti) =
bj (ti)∑L
l=1 bl (ti)

, bj (ti) = exp

(
(ti − cj)2

2L

)
,

where the centers cj and length L of the basis functions are chosen individually for the experiments.
With that, the policy represents a Probabilistic Movement Primitive [22], whose mean and co-variance
matrix are progressively shaped by the learning algorithm to encode movements with high reward.

In order to increase the robustness of SPRL and C-REPS while reducing the sample complexity, an
experience buffer storing samples of recent iterations is used. The “size” of this buffer dictates the
number of past iterations, whose samples are kept. Hence, in every iteration, C-REPS and SPRL
work with NSAMPLES × BUFFER SIZE samples, from which only NSAMPLES are generated by the
policy of the current iteration.

We use the CMA-ES implementation given by [45]. As it only allows to specify one initial variance
for all dimensions of the search distribution, this variance is set to the maximum of the variances
contained in the initial co-variance matrices used by SPRL and C-REPS.

For the GoalGAN algorithm, the percentage of samples that are drawn from the buffer containing
already solved tasks is fixed to 20%. Since GoalGAN generates the learning curriculum using “Goals
of Intermediate Difficulty”, it is necessary to execute the policy at least twice in each context. Hence,
for 30% of the contexts (after subtracting the previously mentioned 20% of ”old“ samples), the policy
is executed twice. For 10% of the contexts, the policy is executed four times. The noise added to the
samples of the GAN εNOISE and the number of iterations that pass between the training of the GAN
∆TRAIN are chosen individually for the experiments.

Table 1: Important parameters of SPRL and C-REPS in the conducted experiments. The meaning of
the symbols correspond to those presented in the algorithm from the main text and introduced in this
appendix.

ε nSAMPLES BUFFER SIZE ζ Kα κ ν

GATE “GLOBAL” 0.25 100 10 0.002 140 10 10−4

GATE “PRECISION” 0.4 100 10 0.02 140 10 10−4

REACHER 0.5 50 10 0.15 90 20 10−1

BALL-IN-A-CUP 0.35 16 5 3.0 15 − −

14

x
y

x1
des

r
(θ

,c
1
)

x

y
x1
des

r
(θ

,c
2
)

x

y

x1
des

r
(θ

,c
3
)

Figure 6: The columns show visualizations of the point-mass trajectories (upper plots) as well as the
obtained rewards (lower plots) in the gate task, when the desired position of the first PD-controller is
varied while all other parameters are kept fixed such that a stable control law is obtained. In every
column, the gate is positioned at x = 4.0 while the size of it varies from 20 (left), over 3 (middle) to
0.1 (right).

The SAGG-RIAC algorithm requires, besides the probabilities for the sampling modes which are
kept as in the original paper, two hyperparameters to be chosen: The maximum number of samples to
keep in each region nGOALS as well as the maximum number of recent samples for the competence
computation nHIST.

Tables 1 and 2 show the aforementioned hyperparameters for the different algorithms as well as
reward function parameters for the different environments.

Gate Experiment

The linear system that describes the behavior of the point-mass is given by[
ẋ
ẏ

]
=

[
5
−1

]
+ u+ δ, δ ∼ N

(
0, 2.5× 10−3I

)
.

The point-mass is controlled by two PD-controllers

PDi (x, y) = Ki

[
xi − x
yi − y

]
+ ki, i ∈ [1, 2] , K1,K2 ∈ R2×2, k1,k2 ∈ R2, x1, x2, y1, y2 ∈ R,

where x is the x-position of the point mass and y its position on the y-axis. In initial iterations of the
algorithm, the sampled PD-controller parameters sometimes make the control law unstable, leading
to very large penalties from the L2-regularization of the applied actions and hence to numerical
instabilities in SPRL and C-REPS because of very large negative rewards. Because of this, the reward
is clipped to always be above 0.

Table 2: Important parameters of GoalGAN and SAGG-RIAC in the conducted experiments. The
meaning of the symbols correspond to those introduced in this appendix.

εNOISE ∆TRAIN nGOALS nHIST

GATE “GLOBAL” 0.05 5 100 500
GATE “PRECISION” 0.05 5 100 200
REACHER 0.1 5 80 300
BALL-IN-A-CUP 0.05 3 50 120

15

Table 1 shows that a large number of samples per iteration for both the “global” and “precision”
setting are used. This is purposefully done to keep the influence of the sample size on the algorithm
performance as low as possible, as both of these settings serve as a first conceptual benchmark of our
algorithm.

Figure 6 helps in understanding, why SPRL drastically improves upon C-REPS especially in the
“precision” setting, even with this large amount of samples. For narrow gates, the reward function has
a local maximum which tends to attract both C-REPS and CMA-ES, as the chance of sampling a
reward close to the true maximum is very unlikely. By first training on contexts in which the global
maximum is more likely to be observed and only gradually moving towards the desired contexts,
SPRL avoids this sub-optimal solution.

Reacher Experiment

In the Reacher experiment, the ProMP encoded by the policy π has 20 basis functions of width
L = 0.03. The centers are evenly spread in the interval [−0.2, 1.2] and the time interval of the
movement is normalized to lie in the interval [0, 1] when computing the activations of the basis
functions. Since the robot can only move within the xy-plane, θ is a 40-dimensional vector. As we
can see in Table 1, the number of samples in each iteration was decreased to 50, which in combination
with the increased dimensionality of θ makes the task more challenging. As a side-effect, this reduced
the training time, as less simulations need to be executed during training.

While working on the Reacher experiment, we realized that ensuring a minimum amount of variance
of the intermediate context distributions of SPRL stabilizes the learning, as for very narrow context
distributions, the progression of the algorithm towards the target context distribution becomes very
slow. As soon as the current context distribution is sufficiently close to the target one, which in
the Reacher experiment is considered to be the case if the KL-Divergence between intermediate-
and target context distribution drops below a value of 20, the context distribution is allowed to
contract without restrictions. Before that happens, the variance is each dimension is lower-bounded
by 3× 10−5.

The PPO results are obtained using the version from [46], for which a step-based version of the
Reacher experiment is used, in which the reward function is given by

r(s,a) = exp

(
−2.5

√
(x− xg)2 + (y − yg)2

)
,

where s = (x ẋ y ẏ) is the position and velocity of the end-effector, a = (ax ay) the desired
displacement of the end-effector (just as in the regular Reacher task from the OpenAI Gym simulation
environment) and xg and yg is the x− and y− position of the goal. When an obstacle is touched, the
agent is reset to the initial position. This setup led to the best performance of PPO, while resembling
the structure of the episodic learning task used by the other algorithms (a version in which the episode
ends as soon as an obstacle is touched led to a lower performance of PPO).

To ensure that the poor performance of PPO is not caused by an inadequate choice of hyperparameters,
PPO was run on an easy version of the task in which the two obstacle sizes were set to 0.01, where it
encountered no problems in solving the task.

Every iteration of PPO uses 3600 environment steps, which corresponds to 24 trajectory executions
in the episodic setting. PPO uses an entropy coefficient of 10−3, γ = 0.999 and λ = 1. The neural
network that learns the value function as well as the policy has two dense hidden layers with 164
neurons and tanh activation functions. The number of minibatches is set to 5 while the number of
optimization epochs is set to 15. The standard deviation in each action dimension is initialized to 1,
giving the algorithm enough initial variance, as the actions are clipped to the interval [−1, 1] before
being applied to the robot.

Ball-in-a-Cup Experiment

For the Ball-in-a-Cup environment, the 9 basis functions of the ProMP are spread over the interval
[−0.01, 1.01] and have width L = 0.0035. Again, the time interval of the movement is normalized
to lie in the interval [0, 1] when computing the basis function activations. The ProMP encodes the
offset of the desired position from the initial position. By setting the first and last two basis functions

16

to 0 in each of the three dimensions, the movement always starts in the initial position and returns to
it after the movement execution. All in all, θ is a 15-dimensional vector.

The reward function is defined as

R(θ, c) =

{
1− 0.07θTθ , if successful
0 , else

,

encoding a preference over movements that deviate as less as possible from the initial position while
still solving the task.

Looking back at Table 1, the value of ζ stands out, as it is significantly higher than in the other
experiments. We suppose that such a large value of ζ is needed because of the shape of the reward
function, which creates a large drop in reward if the policy is sub-optimal. Because of this, the
incentive required to encourage the algorithm to shift probability mass towards contexts in which the
current policy is sub-optimal needs to be significantly higher than in the other experiments.

Just as for the Reacher experiment, we also lower-bound the variance of the intermediate context
distributions to 0.01 until the KL-Divergence between intermediate and target distribution falls below
a value of 200.

After learning the movements in simulation, the successful runs were executed on the real robot. Due
to simulation bias, just replaying the trajectories did not work satisfyingly. At this stage, we could
have increased the variance of the movement primitive and re-trained on the real robot. As sim-to-real
transfer is, however, not the focus of this paper, we decided to manually adjust the execution speed of
the movement primitive by a few percent, which yielded the desired result.

17

	Introduction
	Contextual Reinforcement Learning
	Self-Paced Reinforcement Learning
	Optimality Conditions and Dual Optimization
	Interpretation of the Dual Variable V(bold0mu mumu ccfootskipcccc)
	Practical Aspects

	Empirical Evaluation
	Gate Environment
	Reacher Environment

	Related Work
	Conclusion
	Numerical Stabilization
	Regularized Policy Updates
	Further Experimental Details

