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Abstract

Inspired by nature, curriculum learning (CL) has been shown to be a promising approach to increase the
performance and sample efficiency of a reinforcement learning (RL) agent on difficult tasks. In combination
with transfer learning it enables the agent to leverage previous experience on a series of task variants with
increasing difficulty, allowing for a more guided training process and a more versatile agent. Often, these
curricula are represented as series of distributions, from which concrete tasks can be sampled and trained
on. Although this representation allows for a lot of flexibility when generating curricula, the nature of distri-
butions lead to some inefficiencies during the sampling and training process. Depending on the task, newly
sampled tasks might end up in regions already covered by previous curriculum distributions, leading to less
informative agent runs and training. In this thesis, we propose the usage of particle-based variational in-
ference methods (ParVIs) to more effectively sample new tasks from less covered areas of the task space.
The agent is only evaluated on these new tasks but is trained on both previous and new experiences. We
specifically investigate two methods in the space of ParVIs called Stein variational gradient descent (SVGD)
and Stein points (SP) and develop new sampling algorithms based on them to use for curriculum learning.
These algorithms are later investigated on both pedagogical examples and also on a RL task using self-paced
reinforcement learning (SPRL) for generating curricula. These experiments allow us to gain some insights
into the inner workings of curriculum learning in the space of RL and how ParVIs can be used in the future
to improve sampling in curriculum learning.
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1. Introduction

Although the field of reinforcement learning (RL) has evolved considerably over the last years, especially with
the application of deep learning (DL) based approaches, some fundamental problems still remain. Current
approaches require great amounts of interactions with the environment to learn the complex and multi-step
tasks encountered in the real world. Not only does this lead to long training times but the resulting agents
are often not able to generalize to variations in the tasks.

There are many approaches to alleviate such problems one of which is curriculum learning (CL). Although
this technique has its roots in supervised learning [1], its adoption in RL has been quite successful with many
applications in a variety of different environments [2].

Curriculum learning takes its inspiration from nature, where both humans and animals have shown far better
learning performance when presented with tasks in an increasing order of difficulty [1]. This can be modeled
using probability distributions from which tasks are drawn. By choosing the series of distributions carefully,
the agent can be guided in its learning process without the need of specifying every single task. While this
formulation has been used with a lot of success in the past [1, 3, 4], it might not be as efficient as it could be
due to the sequential nature of the sampling distributions.

To adequately cover the task space, some overlap between the curriculum distributions will necessarily occur
over the course of training. In practice, this will lead to later task samples being close to previous ones.
Although usually not a problem in the space of supervised machine learning where inference only takes
a small amount of time, this can introduce difficulties in RL settings. Here, a full trajectory rollout on a
task sample might take a considerable amount of time due to factors such as the simulation complexity of
the environment. Therefore, rollouts should ideally be limited to cases where truly new experiences can
be collected while previous recorded experiences can be used to prevent catastrophic forgetting [5]. This,
however, raises the question how to determine when (and where) to use new task samples and when previous
experience can be reused. In this thesis we propose to answer this questions be recasting it as a sampling
problem, where we want to add new samples and remove old ones such that the resulting sample set more
closely matches the current curriculum distribution.

One approach to this problem of sampling lies in the field of variational inference (VI), which provides several
methods to match a posterior distribution using an often simpler proposal distribution by iteratively mini-
mizing a statistical discrepancy between them [6]. Classically, this is often done by minimizing the Kullback-
Leibler (KL) divergence between the a parametric proposal and a target distribution, however, a new subfield
has recently gained the attention of the variational inference (VI) community: Particle-based variational in-
ference methods (ParVIs) [7]. These methods provide the means of generating or moving a set of samples
(often called particles) so that they closely match the target posterior distribution. Using these methods to
generate (and remove) samples from the series of curriculum distributions is the main contribution of this
thesis.
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We focus on two specific approaches called Stein variational gradient descent (SVGD) and Stein points (SP),
which both derive their main intuition from Stein’s method. We show the necessary changes required to use
these two ParVIs as curriculum learning samplers, which can fit an existing set of samples (such as previous
task samples) to a target distribution proposed by a curriculum learning algorithm by adding or moving a set
of proposal samples.

The rest of this thesis is structured as follows: We start with a description of our problem functioning as
a motivation for the rest of the thesis in chapter 2 In chapter 3, the necessary fundamental methods and
equations behind particle-based variational inference methods and curriculum learning are explained, which
we then contextualize by presenting related work in chapter 4. We explain the two investigated methods for
ParVIs in chapter 5 together with the necessary changes to fit them into a curriculum learning framework.
Afterwards, we show some strengths and weaknesses of our new samplers, first on synthetic experiments
in chapter 6 and afterwards on a reinforcement learning baseline in chapter 7. Finally, we conclude with a
summary of our findings and outline potential prospects of our work in chapter 8.

Our contributions to the state-of-the-art are: First, we identify an inefficiency in current curriculum learning
approaches and identify it as a problem of sequential sampling. Second, we propose a solution for this
problem by adapting particle-based variational inference methods to be used as samplers for curriculum
learning. Third, we evaluate our new samplers on pedagogical and CL problems in reinforcement learning.
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2. Problem Statement

We start with a description of our investigated problem, which serves as amotivation for the following chapters
detailing ourmethods. We also provide an example of a curriculum learning task in the space of reinforcement
learning, which acts as a running example and will later be investigated as part of our RL experiments.

2.1. Inefficient Sampling in Curriculum Learning for Reinforcement Learning

The motivation for this thesis is derived from observations made in the training process of a curriculum
learning algorithm for reinforcement learning called self-paced reinforcement learning [3, 8], although they
generalize to other CL algorithms which model there curricula using a series of distributions [1, 4, 9]. These
formulations tend to generate similar task samples due to the overlap of distributions and the sampling
process, which leads to increased training times.

As a means to make the problem more intuitive, we are now defining a running example for this chapter,
which is inspired by Klink et al. [3]. Assume that we want to train an agent to push a ball from a fixed starting
point to a goal in a two dimensional space. The agent controls the position of the ball by applying a force
to it, which can come from either spatial dimensions. To increase task complexity, we add a wall the agent
must not touch between the ball and the goal position, only containing a small gap. We now want to train
an agent, such that it can solve the task in the configuration shown on the right in Figure 2.1.

Figure 2.1.: The example environment with the two parameters x,w is depicted on the left, while a working
trajectory is shown for a less trivial setting of x and w on the right.

While it is most likely possible to directly train an agent in this environment, it might require many attempts
for the agent to just discover the gate and move through it without touching the walls. It is, however, possible
to use curriculum learning to first learn a simpler variant of the task and gradually increase complexity until
the targeted configuration is reached. We can do this by parametrizing the environment and specifically the
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position x and width w of the gap. This allows us to use a simpler initial configuration as shown on the left
in Figure 2.1, before gradually moving towards the final configuration shown on the right.

We do so by defining an initial normal bivariate distribution q(θ0, c), from which we can sample the parame-
ters c = (x,w). Then, according to a CL algorithm of our choosing, we update θi after every training iteration
i of the agent. A visualization of this process is provided in Figure 2.2.
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(d) Updated CL distribution with previous samples q(θ1, c)

Figure 2.2.: One step in the curriculum learning process. Observe how the overlap between the distribution
leads to “duplicate” samples.

If we look at the last step in the provided example Figure 2.2d, we can identify a potential inefficiency
when using distributions to model curricula: Due to the nature of the sampling process, some of the new
task samples drawn are close to already explored samples from the previous iteration. Training the agent
on these new samples will most likely not yield any significant insights into the task (assuming a smooth
value function as in our example) and therefore unnecessarily increases training time. This is especially
true for off-policy RL algorithms such as soft actor critic (SAC) [10] and certain implementations of relative
entropy policy search (REPS) [11], which use some form of experience buffer where previously generated
trajectories or action-step-reward tuples are saved and re-used in the training process. While these buffers by
design “forget” older experiences by removing samples the oldest samples when they fill up, it might not be
sufficient in the case of CL where significant overlap can occur between two iterations as seen in Figure 2.2.

However, it is possible to leverage the experience buffer as a countermeasure against the aforementioned
problem of duplicate samples. This requires a small extension of the buffer, where not only previous experi-
ences are saved but also their associated task sample fromwhich they were generated. Using this information,
we can now take these older task samples into account when sampling from a new task distribution by only
running the agent on samples which are distinct enough from previous experiences, however, the agent is
still trained on the union of the new and old experiences. We show an example of such a set of samples in
Figure 2.3.
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Figure 2.3.: Visualization of the combination of experience buffer and newly acquired samples. Here, we
only evaluate the agent on the new samples (in orange) but perform the final training on the
joint set. Compare this to the joint set shown in Figure 2.2d.

This leaves us with two main questions:

(1) How dowe determine and acquire samples which are distinct enough from previous experiences to require
runs of the agent?

(2) How do we remove older stale samples from the buffer according to the training process?

For the first question, we ideally want to adapt the sampling procedure to only produce samples in the non-
covered part of the distribution. While we already saw a heuristic for the second question, i.e. removing the
oldest samples when the buffer is full, its underlying assumption (that older samples are less relevant than
newer ones) does not always hold: For example, we might want to start with a wide distribution covering
large spaces of the task space and subsequently narrow down the variance until the target distribution size
is reached. It might be beneficial in that case to not uniformly remove samples from the distribution by
dropping the oldest samples, but concentrate on unlikely areas far from the target distribution first.

The proposal of this thesis is to cast both questions as a single variational inference problem. That is, our
goal is to minimize the statistical distance between the empirical distribution of the experience buffer q̂ and
the current distribution produced by the curriculum learning algorithm. Since q̂ consists solely of samples,
we propose the usage of Particle-based variational inference methods, which are a recent development in
the space of variational inference. They naturally use samples, which are often referred to as particles, to
approximate a target distribution and do not rely on q̂ to have a parametric form [7].

We can formalize this notion as follows: Given an experience buffer {q̂i}
n
i=1 containing task samples from

previous iterations of the training process, a set of proposal samples {xi}mi=1 and a target distribution p

generated by a curriculum learning algorithm. Our goal is it to find a subset of both {q̂i}
t
i=1, {xi}

k
i=1 such

that their union q∗ is close to p, i.e. by having a minimal statistical distance D(q∗, p).
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This leaves us with the task of finding a method to select the subsets of both old task samples and proposal
samples and to find a statistical discrepancy which can be calculated between a set of samples and a paramet-
ric distribution. For the latter problem, we will see in the next chapter that we can derive such a discrepancy
using Stein’s method. Combining this method with techniques from variational inference, as we describe in
chapter 5, will then allow us to tackle the former problem of selecting a fitting set of proposal samples x.
There we also present our adaptions to extend these techniques such that they also select an appropriate
subset of q̂, allowing us to use the final samplers in our intended domain of curriculum learning.
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3. Background

We provide some background into the underlying methods of curriculum learning and particle-based varia-
tional inference methods in this chapter. Starting with curriculum learning in section 3.1, we give an overview
over the field and its application for reinforcement learning. We then continue with an account of variational
inference methods before moving on to Stein’s method, which together form the theoretical base for particle-
based variational inference methods.

3.1. Curriculum Learning

Although initial attempts at using curriculum learning to train machine learning agents date back to the
early 1990s [2], it received new attention due to the formalization by Bengio et al. for the space of supervised
learning in 2009 [1]. They model the curriculum as a series of probability distributions (q0, . . . , qn) where
the samples x ∼ qi represent the different tasks the agent encounters. Depending on the context, the samples
x can represent different things such as images from a dataset or simulation parameters. While the weights
of the distributions are initially set to include a subset of the task space which can be considered “simple”1,
they are updated over the course of training until they match the weights of a target distribution. While
this update can occur in fixed intervals (e.g. to encourage more exploration of the space), it can also be
conditional on the agent’s performance. However, designing such an algorithm has proven non-trivial, due
to the difficulties involved in choosing an appropriate challenge for the agent that aids in learning but does
not inhibit it. There are some attempts of this, especially in the supervised domain, which use approaches
such as multi-armed bandits [9] or train a support vector machine to predict model performance and focus
on low performance samples [9].

3.1.1. Curriculum Learning for Reinforcement Learning

While the generation of a curriculum already poses some challenges in the domains of supervised learning,
additional hurdles need to be overcome to use curriculum learning in the space of reinforcement learning.
Although generating a variety of tasks is often easier compared to supervised approaches due to the wide
availability of parametrized environments, this is often counter-balanced by the difficulties involved in clas-
sifying different parts of the induced task space as challenging or easy to a constantly evolving agent [2].
Nevertheless, a number of methods have been developed in the recent years covering a wide variety of po-
tential applications (see [2] for a comprehensive review of the field).

1Depending on the overall task the meaning of simple might differ. For example, it can mean that the selected subset of tasks is
small such that the intra-set variance is bounded. Alternatively, a simple subset might refer to a region in the task space with the
highest initial performance of the agent preceding any training.
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For this thesis, we focus on a subfield of these efforts which are based on two closely connected fields of the
general reinforcement learning research: contextual reinforcement learning and transfer learning. In trans-
fer learning, the agent is not immediately trained on a target task but on a set of subtasks with the goal
of transferring the acquired knowledge to the target task. Depending on the task setting, this might entail
transferring different parts of the RL training such as previous experiences [12] or policies [8, 13]. It is pos-
sible to connect transfer learning with contextual reinforcement learning by interpreting c as a task variable
encoding a specific subtask.

In comparison to “regular” RL, the goal of contextual reinforcement learning is to learn a viable policy over a
set of Markov decision processs, where the dynamics and the rewards depend on a context parameter c [14].
The standard formulation of the Markov decision process (MDP) can easily be extended to this additional
parameter: A contextual Markov decision process (CMDP) is a parametrized MDP M(c) = (S,A, pcrc, p0,c),
where the state-action space S,A are shared between the instances, while the reward rc, initial state distri-
bution p0,c and the conditional transition probability pc are dependent on a contextual variable c ∈ C. Given
a distribution over contexts µ(c) and a conditional policy π(a|s, c, ω) with parameters ω, the contextual RL
objective is

J(ω, µ) = max
ω

Ec∼µ [J(ω, c)] = max
ω

Ec∼µ,s∼p0,c [Vω(s, c)] ,

where Vω(s, c) is the contextual value function

Vω(s, c) = Ea∼π(·|s,c,ω)
[︁
rc(s, a) + γEs′∼pc(·|s,a)

[︁
Vω(s′, c)

]︁]︁
.

Returning to the topic of CL, we will use the aforementioned formulation and specifically investigate appli-
cations [3, 8] where the curriculum is modeled using a series of parametrized distributions µ(θi, c), where
the parameter θi is updated according to the performance of the agent at iteration i. Compared to other
approaches which just vary initial or terminal states [15, 16] or only modify the reward function [17], this
formulation is less restrictive regarding the particular choice of MDP. Incidentally, this is quite similar to the
approach by Bengio et al. in their application of curriculum learning to the supervised learning setting.

As we have discussed in chapter 2, this choice of modeling can lead to inefficiencies in the training when
the curriculum distributions overlap. Our proposal in this thesis is to use methods of variational inference
to sample from the current curriculum distribution while taking previous samples into account. For this, we
need a basic notion of variational inference, which we will present in the next section.

3.2. Variational Inference

In variational inference (VI), the task is to approximate a target distribution p(x) by finding a closely matching
proposal distribution from a predefined set q∗(x) ∈ Q, which is often chosen such that sampling from its
members is simple. While there exist a number of methods to determine the most fitting distribution q∗(x)
(see [6] for a literature review), a common way is based on minimizing the KL divergence between q and p,

argminq∈QDKL (q(x)∥p(x)) (3.1)

While this formulation is intuitive, it is often not feasible to optimize directly due to the proposal distribution
q usually not being able to capture the full complexity of the target p. Instead, using Jensen’s inequality a
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lower bound can be derived from (3.1):

L := Ex∼q

[︃
log

p(x)

q(x)

]︃
. (3.2)

In the literature, L is often referred to as the evidence lower bound or the variational lower bound [18]. There
are multiple methods for optimizing the evidence lower bound (ELBO), however success heavily depends on
the choice of the set Q and the target p.

Since we want to fit our set of samples q∗ to our curriculum distribution p as described in our problem state-
ment, we have less flexibility in our choice of Q. Fortunately, the impact of choosing a specific set Q can
be alleviated with a number of techniques [6]; one of which being normalizing flow [19, 20] as suggested
by Rezende and Mohamed [21]. A normalizing flow is a series of (invertible) transformations applied to a
probability density. As the name suggests, the final product after the density “flowed” through these map-
pings is a valid probability distribution, hopefully one potentially closer to the target distribution. Given an
invertible transformation f : Rd → Rd, we get the distribution of a random variable z with distribution q(z)
after applying the transformation z′ = f(z) as follows:

q(z′) = q(z)

⃓⃓⃓⃓
det

∂f−1

∂z′

⃓⃓⃓⃓
= q(z)

⃓⃓⃓⃓
∂f

∂z

⃓⃓⃓⃓−1

,

where the last equality follows from the chain rule.

One of the main challenge of normalizing flow is finding the right transformations. Although it is theoretically
always possible to find a transformation for two distributions (under some reasonable assumptions, see [22,
A 3.4.3]), a large set of transformation candidates might make the optimization of the ELBO infeasible in
practical applications. We will investigate Stein variational gradient descent (SVGD) in section 5.1, which
is able to create such transformations on a step-by-step basis, therefore iteratively generating a normalizing
flow.

Since variational inference methods often rely on the KL divergence as a measure between the target and
proposal distribution, it is difficult to apply them to situations where one of the distributions is only available
as a set of samples. To overcome this problem, we will investigate the adapted variational inference methods
known as particle-based variational inference methods, which use the kernelized Stein discrepancy instead
of the KL divergence as a statistical discrepancy, which can be calculated between a set of samples and a
distribution. To get a better understanding for this discrepancy, we will now look into its derivation from
Stein’s discrepancy in the next section.

3.3. Stein’s Method and Stein’s Discrepancy

In its original formulation by Stein, Stein’s method was presented as a bound between the distribution of
a sum of random variables and the normal distribution [23]. However, its usage as a computable sample
quality measure and as a statistical discrepancy, was first established by Gorham and Mackey [24].

Consider a target distribution P with (continuously differentiable) density p over a measurable spaceX ∈ Rn.
Assuming a set of samples x1, . . . , xi ∈X, which induce the distributionQ, we want to calculate the quality of
these samples according to our target P . An intuitive first step for this would be comparing the expectations
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between these two distributions under some function h : X → R. If we can calculate Ex∼P [h(x)] =
∫︁
h(x)dP

and Ex∼Q[h(x)] =
∑︁n

i=1 q(xi)h(xi), we can define a discrepancy between Q and P as:

DH(Q,P ) = sup
h∈H
|Ex∼Q[h(x)]− Ex∼P [h(x)]| .

The intuition here is that we want to find the function which highlights the differences between the two
distributions the most in terms of their expectation. Therefore, if our set of functions is sufficiently large and
DH(Q,P ) = 0, we can assume that Q = P . Depending on the choice of H some common discrepancies can
be recovered, such as the Wasserstein distance, where

H := {h : X → R| ∥h∥L ≤ 1}

is the set of 1-Lipschitz continuous functions.

This formulation is limited to cases where calculating the expectation over P is possible, i.e. integration under
P is tractable. However, by limiting H such that Ex∼P [h(x)] = 0, the problem of intractable expectation
calculation is side-stepped and DH(Q,P ) is only dependent on the expectation of Q. We can formalize this
constraint by defining a functional operator T, which for a set of functions H yields

Ex∼P [(Th)(x)] = 0 for all h ∈ H.

The operator T is called the Stein Operator, as it was first described by Stein [23]. Together with the set of
functions H (which is also sometimes called the Stein set) it forms the Stein discrepancy

ST,H(P,Q) := sup
h∈H
|Ex∼Q[(Th)(x)]| = sup

h∈H
|Ex∼Q[(Th)(x)]− Ex∼P [(Th)(x)]| . (3.3)

There exist infinitely many Stein operators which depend on the choice of distribution. To give a short
example here, using Stein’s lemma

Ex∼P [f(x)(x− µ)] = σ2 Ex∼P (f
′(x)) (3.4)

we can derive a Stein operator for the standard normal distribution N(0, 1) quite easily, since it follows
from (3.4) that Ex∼P [f

′(x)−xf(x)] = 0 and therefore we can setT such that (Tf)(x) = f ′(x)−xf(x). Other
methods such as the one presented by Barbour [25] exist, which yield usable Stein operators. While these
allow the practical usage of Stein’s discrepancy as a quality measure as shown by Gorham and Mackey [24],
the problem of evaluating the supremum in (3.3) over a necessarily large set of functions remains. However,
through a particular choice of the function set, a closed form solution can be derived, which leads to the
formulation of the Kernelized Stein Discrepancy.

3.4. Kernelized Stein Discrepancy

Building on the works of Gorham and Mackey, both Chwialkowski et al. and Liu et al. proposed an extension
of the method using kernels to circumvent the problems described in the previous section.

Consider a reproducing kernel hilbert space (RKHS) F consisting of functions on Rd together with a repro-
ducing kernel k and an inner product ⟨f, g⟩Fd =

∑︁d
i=1⟨fi, gi⟩F, whereFd is the product RKHS, with elements
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f := (f1, . . . , fd); fi ∈ F. Inspired by Gorham and Mackey, we can now define a Stein operator T, which
acts on the elements of the product RKHS as follows2,

Tf :=

d∑︂
i=1

(︃
∂ log p(x)

∂xi
fi(x) +

∂fi(x)

∂xi

)︃
.

This choice has the benefit that it only requires the calculation of ∇ log p(x) = ∇p(x)/p(x) of the target
density p, which does not require a tractable normalization constant. We further define the function

ξp(x, ·) := [∇ log p(x)k(x, ·) +∇k(x, ·)], (3.5)

such that the inner product between f and ξp results in the expected value of the stein operator

Ex∼P [(Tf)(x)] = ⟨f,Ex∼P [ξp(x, ·)]⟩Fd =
d∑︂

i=1

⟨fi,Ex∼P,i[ξp(x, ·)]⟩F.

Under the given choice T and together with ξp we can now return to (3.3),

ST(P,Q) := sup
∥f∥<1

Ex∼Q[(Tf)(x)]

= sup
∥f∥<1

⟨f,Ex∼P [ξp(x, ·)]⟩Fd

= ∥Ex∼P [ξp(x, ·)]∥Fd ,

where we limit our set of functions to the unit ball in the RKHS, since it allows us to circumvent the calculation
of the supremum.

Finally, we can calculate a closed form solution for ST(P,Q). As shown by Chwialkowski et al., ξp(x, ·) is
Bochner integrable3, therefore the following inequality holds

Ex∼P [∥ξp(x, ·)∥Fd ] ≤ Ex∼P [∥ξp(x, ·)∥2Fd ]

Based on this observation, we can now calculate a closed-form solution for ST(P,Q)2:

ST(P,Q)2 = ⟨Ex∼P [ξp(x, ·)],Ex∼Q[ξp(x, ·)]⟩
= Ex∼Q,y∼Q[⟨ξp(x, ·), ξp(y, ·)⟩]

2For a full proof by intergration of the validity of this operator choice, we defer to the works of Chwialkowski et al. [26] and Liu et
al. [27].

3See Steinwart and Christmann: Support Vector Machines, Definition A.5.20
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and since

⟨ξp(x, ·), ξp(y, ·)⟩ = ∇ log p(x)⊤∇ log p(x)k(x, y)
+∇ log p(x)∇xk(x, y)

+∇ log p(x)⊤∇yk(x, y)

+ ⟨∇xk(x, ·),∇yk(·, y)⟩
:= k0(x, y), (3.6)

we have the Kernelized Stein Discrepancy

ST(P,Q) = Ex,y∼Q[
√︁
k0(x, y)].

For the full proof that ST(P,Q) is a valid discrepancy between probability distributions, we refer to [26].

We can now derive an empirical version of this discrepancy by calculating the expectation over the samples,
such that

ST,p({xi}ni=1) =

⌜⃓⃓⎷ 1

n2

n∑︂
i,j

k0(xi, xj), (3.7)

for which k0 is defined as in (3.6). This allows us to use the kernelized Stein discrepancy (KSD) as a discrep-
ancy between a distribution and a set of samples, which we will leverage in chapter 5 as the foundation of
our investigated ParVIs.

Before we continue with our main contribution, we will look at similar work to ours in the upcoming related
work chapter.
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4. Related Work

Although still a relatively new field, particle-based variational inference methods have seen a strong uptick
in publications in the past two years with many papers focusing on both new methods and applications.
Similarly, many new and interesting methods and investigations into the application of curriculum learning
in the space of RL have been published in recent years, indicating a strong interest in this field of research.
Since our work draws from both of these research domains, we will investigate similar and related work in
this chapter, starting with ParVIs in section 4.1 before moving on to the field of curriculum learning for RL
in section 4.2. However, since our investigated problem of efficient adaptive sampling is, to the best of our
knowledge, a novel contribution, we will focus on showing potential connections to other work.

4.1. Particle-Based Variational Inference Methods

Although SVGD is one of themore popular methods in the space of ParVIs, it is far from the only one developed
in the recent years. For example, Wang et al. [29] derive a gradient update rule for particles based on the
principles of energy dissipation in physical systems. Drawing from the insight that the KL-divergence can
be viewed as the Helmholtz free energy, they present a gradient for the KL-divergence, which only slightly
differs from the one presented by Liu andWang for SVGD [30]. While the authors report a better performance
compared to SVGD on their empirical benchmarks, the core algorithm still relies on the same gradient descent
steps. Therefore, we expect the same problems we observed with our modification of SVGD to also occur with
this method. For similar methods which use different derivations for the gradient updates such as Wasserstein
variational gradient descent [31], DPVI [32] or Message Passing Stein Variational Gradient Descent [33] the
same logic applies.

There have been some applications of SVGD in the space of reinforcement learning and control. Lambert
and Boots use SVGD to sample trajectories as part of Gaussian process motion planing [34]. Their presented
inference procedure called Stein variational motion planning allows for a smooth optimization of the proposal
distribution compared to other methods such as Markov Chain Monte Carlo, which simplifies the process of
trajectory optimization. The paper shows promising results, albeit the authors defer a detailed comparison of
their algorithm to similar approaches to potential future work. A more thorough review is done by Barcelos et
al. in their presentation of their usage of Stein variational inference for model predictive control [35]. Here,
SVGD is used to perform sampling on the joint distribution over actions and dynamics model parameters in
an online fashion, which not only results in a continuing refinement of the agents actions but also makes
recovery from sudden changes in the environment possible. While the investigated domain of this work is
quite similar to the one in our work, the general approach differs from the methods presented in this thesis.
More specifically, the authors do not selectively move certain particles as it is required for our application.
This is also true for other work in the field of RL, such as Stein variational policy gradient [36] or deep
energy-based policies [37].

14



4.2. Curriculum Learning for Reinforcement Learning

We will now look at different curriculum learning methods in reinforcement learning to investigate their
approaches to reduce sample inefficiency.

One method of generating a curriculum in reinforcement learning is performing the training in “reverse”, as
proposed by Florensa et al. [15]. That is, the agent is initially placed close to the goal state and the curriculum
consists of further and further removed start states over the course of training until the intended initial state
is reached. On an algorithm level these new states are generated from previous iterations by predicting the
attained reward and removing all start sample above or below a certain treshold, therefore ensuring the right
amount of challenge for the agent. Using sampled actions, these states are then updated by performing small
rollouts, which generate the next set of start states. An “forward” version of this method was later provided
by the authors using generative adverserial networks (GAN)s to generate goal states as part of a min-max
game. In both cases sample efficiency is ensured using the aforementioned pruning method, where samples
with a high predicted reward are removed from the buffer. However, this requires a good approximation of
the expected return for a given starting state, which might not always be available.

Narvekar et al. propose to create curricula by casting the generation process as a meta MDP, which they call
curriculum MDP [38]. The states of the MDP represent different policies, with the action space consisting
of the tasks the agent can train on next. The training process updates the policy, leading to a transition
in the state space of the curriculum MDP. This process is repeated until the final policy “state” is reached,
which is defined as the policy being able to solve the target task as fast as possible while still reaching some
performance threshold; this metric is also used as the reward function of the curriculum MDP. However, in its
original formulation this algorithm requires that the policy is trained on every potential task, since the authors
propose policy change in addition to attained reward as metrics to determine whether a certain task should
be added to the curriculum. While this process is potentially feasible in the simple grid worlds investigated
by the authors, it can not be used in continuous domains. Furthermore, while the resulting curriculum only
contains the minimum amount of task samples required to learn the task efficiently, the goal of this thesis is
to reduce the amount of unnecessary evaluations, which should also ideally lead to a minimal curriculum but
with less required rollouts.
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5. Adaptive Sampling Using Stein’s Method

In this chapter two sampling methods are presented, which use the KSD to draw samples from a proposal
set such that they fit a target distribution. In both cases, the approaches utilise the KSD, however in two
different ways: While the first method, Stein variational gradient descent, is a gradient-based approach
iteratively moving the particles towards the target distribution according to the KSD, the second one, Stein
points, directly selects samples from a proposal distribution according to the KSD between them and the
target distribution. We also present the required changes and adaptions necessary to use both methods for
our problem of effective curriculum sampling.

5.1. Stein Variational Gradient Descent

In their paper “Stein Variational Gradient Descent” [30], Liu and Wang draw a connection between the
KSD and the derivative of the KL-divergence, which allows them to derive a gradient estimator for usage in
variational inference.

As in section 3.2, let p be the density of a target distribution with Q being a set of of proposal distributions
generated by applying a transformation z = T (x) to a reference distribution q0(x). As per the change of
variables formula (see section 3.2 for more details), the resulting density q[T ](z) is

q[T ](z) = q(T−1(z))

⃓⃓⃓⃓
det

∂T−1

∂z

⃓⃓⃓⃓
. (5.1)

As discussed in section 3.2, selecting a good set of transformations {T} is not trivial. However, as shown
by Liu and Wang [30], it is possible to side-step this problem by defining T as a identity map with a small
perturbation T (x) = x + ϵf(x), where f(x) is a smooth function used as the perturbation direction and ϵ is
a scalar functioning as the perturbation magnitude. It follows from change of variable that

DKL(q[T ]∥p) = DKL(q∥p[T−1]),

which now allows us to take the derivative of the KL-divergence with respect to the perturbation factor ϵ
using (3.2) and (5.1):

∇ϵDKL(q[T ]∥p) = ∇ϵDKL(q∥p[T−1]) = −Ex∼q[∇ϵ log p[T−1](x)].

We can now calculate log p[T−1](x) using the same schema as in (5.1), yielding

∇ϵ log p[T−1](x) = ∇xlog p(T (x))⊤∇ϵT (x) + trace(∇xT (x)
−1 · ∇ϵ∇xT (x)).
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An interesting connection to the Stein operator emerges for the particular choice of ϵ = 0, for which follows

∇ϵ log p[T−1](x)|ϵ=0 = −Ex∼q[trace(Tf(x))], (5.2)

where the Stein operator is defined as (Tf(x)) = ∇x log p(x)f(x)⊤ +∇xf(x). We already saw the benefits
for this particular choice for the Stein operator in section 3.4 (see equation (3.5)), which makes the following
connection to the KSD quite intuitive: If we choose f ∈ Fd, where Fd is a reproducing kernel hilbert space
following the definition in section 3.4, we know that the function f∗ which maximizes (5.2) is

f∗
q,p(·) = Ex∼q[∇x log p(x)k(x, ·) +∇xk(x, ·)], (5.3)

from which follows that
∇ϵ log p[T−1](x)|ϵ=0 = −ST(P,Q)2.

Given the above insight, it is now possible to iteratively construct a one-step normalizing flow between a
starting distribution q0 and a target distribution p, where at every step l we can calculate ql+1 via

ql+1 = ql[T ∗
l
], where T ∗

l (x) = x+ ϵlf
∗
ql,p

(x).

Given enough iterations and a sufficiently small step-size ϵl this will converge to the target distribution p,
such that f∗

q∞,p = 0, resulting in T ∗
∞ being the identity map. Note that f∗

q∞,p = 0 if and only if q∞ = p.

If we want to apply this procedure in practice, it would be necessary to calculate (or at least approximate) the
expectation in (5.3) for all intermediate distributions ql. This can be circumvented, however, by sampling
from the initial distribution q0 and subsequently apply the iterative procedure on the samples as outlined
in algorithm 1. In this case, the expectation of the empirical distribution of the particles1 can be calculated
using the empirical mean.

Algorithm 1: Iterative Stein Variational Gradient Descend
Input: Target distribution p(x), an initial set of particles {x0i }

n
i=1 and an amount of iterations L

Output: A set of particles {xi}ni=1, which approximates p(x)
for l ← 1 to L do

for i← 1 to n do
xl+1
i ← xli + ϵlf

∗(xli) where f∗(xlj) =
1
n

∑︁n
j=1[k(x

l
j , x)∇xx

l
j log p(xlj) +∇xl

j
k(xlj , x)]

end
end

A closer look at the dynamics of the gradient update f∗(x) in algorithm 1 reveals some intuitive insights into
the inner workings of SVGD. The first term, k(xlj , x)∇xx

l
j log p(xlj), acts as a kernel-weighted driving force,

which moves the particles towards the high-density areas of p(x), while the second term, ∇xl
j
k(xlj , x), acts as

a repulsive force, which drives particles away from each other and avoiding the collapse of all particles into
the modes of p.

1We refer to these samples from the proposal distribution as particles to avoid confusion later when describing the RL experiments.
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5.1.1. Bandwidth Selection

The final step to apply SVGD in practice is the choice of an appropriate kernel, which might also require a se-
lection of kernel parameters. For example, the well-known radial basis function kernel k(x, y) = exp{− 1

h∥x−
y∥2} has a bandwidth parameter h. While the choice of kernel is important, it has been shown that for a vari-
ety of domains the radial basis function (RBF) kernel performs quite well [24, 30, 39]. This leaves the choice
of the bandwidth, which not only can be difficult to tune depending on the task but is often crucial to the
performance of the algorithm (see [40] for an example in the domain of support vector machines).

In the case of SVGD, Liu and Wang [30] choose the RBF kernel for all their experiments together with a
heuristic to estimate the bandwidth h. Based on the intuition that the gradient contribution of every parti-
cle xi should be balanced with the contributions from all other particles, i.e. by using the median such as∑︁

j k(xi, xj) ≈ n exp{− 1
hmed2} = 1, they select the bandwidth at every step as h = med2/ logn [30]. Note

that with this choice the bandwidth is not fixed but rather changes between iterations.

While this choice of bandwidth selection has been adopted withminor changes by a wide range of publications
in the space of SVGD [36, 41, 42], it might not be the best option given all circumstances [7, 43]. An
alternative heuristic was suggested by Liu et al., which they derived as part of their investigations into the
gradient flow nature of particle-based variational inference methods. They point out that SVGD follows
the same gradient flow as Langevin dynamics, which can be used to sample from unnormalized density
functions [44], since those describe the gradient flow of the KL divergence. Because these dynamics arise in
physics in the form of Brownian motion, which is describes the movement of heated particles, they use this
equivalency to derive a new method for selecting the bandwidth h:

argmin
h

1

hD+2

∑︂
k

λ(x(k))
2

where λ(x) := ∆q̃({xi}ni=1) +
∑︂
j

∇xj q̃({xi}
n
i=1) · ∇ log q̃({xi}ni=1) (5.4)

and q̃(x) :=
1

n

∑︂
j

k(xi, xj),

where ∆q̃ denotes the second derivative of q̃. As with the median-based method, the bandwidth is not fixed
but might change in every iteration.

A visual comparison between the twomethods can be found in Figure 5.1. Note how the change in bandwidth
selection affects the placement of the particles. With the HE method, samples are placed almost exclusively
in the high probability regions of the distribution and are also distributed much more evenly. Compare this to
the median method, which generated samples are much more clustered together with more samples outside
the high density regions of the distributions.

In the rest of this thesis, we will refer to the first method as the median method and the second one as the
heat equation or HE method for short.

5.2. Adapting SVGD for Partial Variational Inference

Our first approach is based on SVGD, which is one of the first particle-based variational inference methods.
As presented in section 5.1, SVGD makes it possible to calculate the steepest gradient direction for a set of
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Figure 5.1.: Comparison between themedianmethod (left) and the HEmethod (right) for selecting the band-
width in SVGD. Taken from [7].

particles to better fit a given target distribution. We can apply this to the task of efficiently sampling from the
curriculum distribution as follows:

1. Take the task samples {xi}ni=1 from the experience buffer.

2. Add new proposal task samples {yi}mi=1.

3. Perform SVGD on the union of these two sets using the CL distribution as the target.

The key difference to the original formulation [30] can be found in the third step: Here, we only perform gra-
dient descend on the set of samples {yi}mi=1 generated in step two but keep the particles from the experience
buffer {xi}ni=1 fixed; however, the gradient is still calculated using the full set of particles (see algorithm 2
for the modified algorithm). Intuitively, while this approach should lead to a less effective coverage of the
target distribution (since the fixed samples will stay in non-optimal positions), it nevertheless reduces the KL-
divergence between the particle and target distribution by moving the proposal particles towards less covered
areas of the target distribution. We will evaluate this hypothesis in section 6.3.

Since we have access to the target distribution p, we can sample our proposal samples {yi}mi=1 directly from
it. Note that while in this case {yi}mi=1 would already match p to some extent, the union of proposal and
experience buffer samples {zi}n+m

i=1 = {xi}ni=1 ∪ {yi}
m
i=1 would not due to the overlap. This allows us to

still use SVGD and result in non-zero gradient values for the samples in {zi}n+m
i=1 which are also in {yi}mi=1.

5.3. Stein Points

While SVGD uses a gradient-based approach to minimize the KL-divergence between two distribution using
the KSD as an intermediate stepping stone, it is also possible to directly optimize the KSD between a set of
samples and a distribution through selection using a method called Stein points [45].
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Algorithm 2: Partial Iterative Stein Variational Gradient Descent
Input: Target distribution p(x), set of fixed particles {xi}ni=1, set of proposal particles {yi}

m
i=1 and

amount of iterations L
Output: A set of particles {zi}n+m

i=1, which approximates p(x)
{zi}n+m

i=1 = {xi}
n
i=1 ∪ {yi}

m
i=1, for l ← 1 to L do

for i← 1 to n+m do
if zi ∈ {yi}mi=1 then

zl+1
i ← zli + ϵlf

∗(zli ) where f∗(zlj) =
1
n

∑︁n+m
j=1 [k(zlj , z)∇zz

l
j log p(zlj) +∇zlj

k(zlj , z)]

else
Continue

end
end

end

We already presented an empirical formulation for the KSD in (3.7). We can use this formulation to sample
from a distribution p by leveraging the weak convergence of the KSD; that is that ST,p({xi}ni=1) ≈ 0 implies
that the set {xi}ni=1 has the same distribution as p. Therefore, given a set of proposal samples {xi}mi=1 we can
“sample” from p by selecting a subset {xi}ni=1 for which the KSD is minimal. Unfortunately, it is usually not
possible to perform this optimization directly: Such problems are known in the literature as mixed-integer
quadratically constrained programming problem (MIQCP) and are known to be NP-hard [46].2 However,
Chen et al. show that a full optimization is not necessary: Instead by proving that first ST,p({xi}ni=1)→ 0 for
n → ∞ and second that ST,p({xi}ni=1) → 0 implies that the empirical distribution of the samples converges
to p.

Using these results we can now formulate an algorithm that iteratively optimizes the KSD. We select the first
sample x1 as the global maximum of p. At every iteration the sample xn from the proposal setX is added, for
which ST,p({xi}ni=1) is minimal; the already selected samples {xi}n−1

i=1 are kept fixed. Therefore, at iteration
n, xn is selected as follows

xn = argmin
x∈X

k0(x, x)

2
+

n−1∑︂
i=1

k0(xi, x),

where the first part is the KSD of the set with single element x and the second part is a reduced calculation
of the KSD, which only calculates the change after adding x.3

This algorithm is referred to by the original authors as Stein Greedy-n, due to its nature of selecting the n
points with the lowest KSD. An alternative variant can be derived from the concept of kernel herding proposed
by Chen et al. [47]. In this variant, at iteration n, xn is selected as follows

xn = argmin
x∈X

n−1∑︂
i=1

k0(xi, x),

which the authors call Stein Herding-n. Comparing it to the previous algorithm it can be seen that Stein
Greedy-n is a regularized variant of Stein Herding-n with regularizer 0.5 k0(x, x). While both versions pro-
duce similar results, Stein Herding-n generally produces samples with a slightly higher variance compared

2We show this objective and a reduced version in subsection 5.4.1.
3Since k0 is strictly positive, we can omit the square root.
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to the greedy variant, which generally shows less outlier samples in its output. We will see in our RL experi-
ments in chapter 7 that additional variance in the samples proves to be beneficial to the agents performance.
For this reason, we choose the herding version as our used method for the rest of this thesis. The general
Stein points procedure for both greedy and non-greedy variants can be found in algorithm 3.

It is possible to further refine the results of the algorithm by repeated application, which the authors refer
to as block coordinate descent. Here, after generating an initial set of points {xi}ni=1 using the Stein points
algorithm is further adapted by iteratively calculating

for j = 1, . . . , n xj = argmin
x∈X

ST,p({xi}ni=1,i ̸=j ∪ {x}).

Algorithm 3: Stein Points
Input: Target distribution p(x), proposal set of samples X, and target amount of samples N
Output: A set of particles {xi}ni=1, approximating p(x)
x1 = argmaxx∈X p(x) for n← 2 to N do

if greedy then
xn = argminx∈X

k0(x,x)
2 +

∑︁n−1
i=1 k0(xi, x)

else
xn = argminx∈X

∑︁n−1
i=1 k0(xi, x)

end
{xi}ni=1 = {xi}

n−1
i=1 ∪ {xn}

end

5.4. Sampling From the Target Distribution Using Stein Points

The second approach investigated as part of this thesis is based on Stein points [45]. Compared to SVGD no
major changes are required to the inner workings of the algorithm itself; however, some minor differences
do exist due to the specific requirements of CL.

As described in section 5.3, the Stein points algorithm iteratively builds a set of samples {xi}ni=1 by selecting
the sample from a proposal set xn ∈ X which minimizes the KSD between the target distribution and the
set of samples previously selected {xi}n−1

i=1 ∪ xn. While in the original publication [45] the initial sample is
selected as themaximum of the target distribution p, in this thesis we use the task samples from the experience
buffer as the initial selection of samples. Later iterations then proceed according to the original formulation
as described in algorithm 3 until the total amount of samples reaches the desired threshold after which the
RL policy is solely evaluated on the newly added samples.

As it is the case with SVGD, we can again use the target distribution p as the source of the proposal samples
X. However, we discuss the choice of proposal distribution in section 7.1 and show that it can be beneficial
to use a slightly modified distribution p̂ as opposed to p.
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5.4.1. Pruning the Experience Buffer With Stein Points

While in most applications including the initial presentation Stein points are used to add samples, we propose
to use them as a method to remove samples as well. This will allow us to prune the experience buffer more
effectively according to the current curriculum distribution, removing less relevant samples instead of just a
percentage of the oldest ones.

For this approach, we calculate the union of the proposal sample and experience buffer as done in SVGD. We
then proceed according to algorithm 3 until we have enough samples to fully fill the buffer. Since samples
where chosen from the union of proposal and previous task samples, the resulting set will consist of a mix
between these two sets4. However, due to the iterative nature of the algorithm, it is difficult to enforce some
balance between the selection of new samples and the retainment of old ones.

To circumvent this problem, it would be beneficial to view the process of Stein points as a global optimization
problem instead of an iterative one. While we have seen in section 5.3 that the global optimization is NP-hard
(due to it being a MIQCP), it might be possible in this case to use a heuristic to simplify the optimization.

The objective of the global optimization of Stein points can be written as

minxTCx, (5.5)

where x ∈ {0, 1}n is the binary selection vector and C ∈ Rn×n
>0 is the symmetric matrix of all KSD values with

Cij = k0(xi, xj). This can be rewritten as

xTCx =

n∑︂
i=1

n∑︂
j=1

xiCijxj =
∑︂

i,j∈A(x)

Cij ,

where A(x) = {k|xk = 1, k ∈ [0, n]} is the set of “active” indices. This sum can be factorized∑︂
i,j∈A(x)

Cij =
∑︂

i∈A(x)

Cii +
∑︂

i,j∈A(x),i ̸=j

Cij .

Since Cij > 0, it follows that ∑︂
i,j∈A(x),i ̸=j

Cij ≤
∑︂

i∈A(x)

Cii

n∑︂
i,j∈A(x),i ̸=j

Cij .

We therefore conclude that
n∑︂

j=1

(xTC)j =
n∑︂

i=1

n∑︂
j=1

xiCij =
∑︂

i∈A(x)

Cii +
∑︂

i∈A(x)

Cii

n∑︂
i,j∈A(x),i ̸=j

Cij

≥
∑︂

i∈A(x)

Cii +
∑︂

i,j∈A(x),i ̸=j

Cij = xTCx

Based on this derivation, we propose to use the reduced objective instead

min
∑︂

xTC. (5.6)

4Given that there is some overlap between the distribution of the task samples from the experience buffer and the current target
distribution.
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The optimization problem with (5.6) is linear (in its objective), which modern optimizers can solve com-
paratively fast using heuristics. Since deriving an upper error bound for this problem is out of the scope of
this thesis, we will content ourselves with an empirical analysis of this objective (for our specific use case)
in section 6.3. We expect that the impact of our reduced objective changes according to the ratio between
unselected to selected samples, with higher amount of proposal samples leading to less accurate estimations
of the optimal sample set. This is caused by the higher chance of outlier selection due to the noise added by
the additional sum terms from the unselected samples.

Using (5.6) it is now possible to solve the global Stein points optimization problem approximately using
modern optimizers such as Gurobi. This makes the application of Stein points (SP) more flexible, since it
allows for the usage of different constraints on the optimization process. For example, if we now add the
constraint

∑︁n
i xi = r, assuming that the first n entries of x represent the values from the experience buffer,

we can now define some constant r, which stands for the amount of samples from the experience buffer we
want to retain.

5.4.2. Selecting a Proposal Distribution

So far we have not talked about the source of proposal samples for our SP samplers. While the original
presentation [45] evaluated multiple sources, such as a grid over the whole space or a continuously optimized
proposal distribution using methods such as Monte Carlo sampling or similar numerical methods, we do have
access to the target distribution in curriculum learning. However, directly using samples from this distribution
can introduce a bias which is amplified by the usage of SP samplers, since selected samples will tend to be
close to the modes of the curriculum distribution. While this bias vanishes in the limit as more proposal
samples are used, we investigate a method to combat this problem by artificially increasing the variance of
the curriculum distribution.

The distribution is stretched by calculating the eigendecomposition of the covariance matrix

Σ = QΛQ−1,

where Q is a square matrix with columns corresponding to the eigenvectors of Σ and Λ is a diagonal matrix,
where the diagonal elements are the eigenvalues associated with the eigenvectors in Q. We then multiply
Λ with the stretch factor, creating a new target distribution Σ∗ which is subsequently used for the sample
process. This increases the lower sample variance encountered when using Stein points based samplers. The
stretching parameter is a hyper parameter of our samplers in the RL experiments, as shown in section 7.1.

We now investigate several pedagogical examples to highlight the behavior and shortcomings of the three
presented methods.
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6. Empirical Comparison of Methods

In this chapter we investigate our proposed modifications of self-paced reinforcement learning (SPRL) and SP
on a set of specifically crafted examples with the goal of highlighting the advantages and problems introduced
by our changes. Additionally, we perform an empirical evaluation of our proposed reduced optimization
objective for the Stein points sampler.

6.1. Sample Movement With Fixed Samples

We test the impact of the changes outlined in section 5.2 on a set of pedagogical examples. Specifically, we
want to estimate the impact of the fixed particles on the movement of the movable particles for both SVGD
and SP based approaches.

For this we use a simple bivariate normal distribution N(0, I) as the target distribution, where 0 is the zero
vector and I is the identity matrix. We surround the distribution with three different patterns of samples
(depicted in Figure 6.1), which will be set as fixed during the run of SVGD. While these patterns are highly
unlikely to occur during a normal curriculum learning run (except for the random distribution samples in
Figure 6.1c), they nevertheless highlight the behavior with the proposed modifications.

For SVGD, to better visualize the impact of the fixed samples, we consider a grid over the space fromwhich we
take the proposal samples one-by-one and execute SVGD on. This allows us to compare how different initial
sample positions are affected by the fixed samples and how they end up relative to each other after running
SVGD. We perform the SVGD runs using the RBF kernel, where the bandwidth is set either by the HE or the
median method presented in subsection 5.1.1. Compared to the original publication [30], we use Adam [48]
for the step size instead of AdaGrad due to its wide spread adoption in other SVGD implementations.

To compare the Stein points approach to the one based on SVGD, we use a similar technique to visualize the
inner workings of the algorithm. However, since Stein points do not rely on gradient descend to generate
new samples, we will instead calculate the KSD for a grid of samples. This is equivalent to a single step in
the Stein points algorithm and visualizes where new samples would be placed.

Additionally, we will show how different kernels affect the selection of new samples. The additional kernels
(besides the RBF kernel) are:

1. Inverse Log Kernel: k(x, y) = (α+ log(1 + ∥x− y∥22))
−1

2. Mahalanobis Kernel: k(x, y) = exp
(︂
− (x−y)⊤Σ−1(x−y)

h

)︂
,
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Figure 6.1.: Differently arranged sample patterns used in the SVGD experiments. While the circular and the
rectangular placements are clearly artificial, the random distribution samples could stem from
a previous curriculum distribution.

where the parametersα, h are kernel parameters. In the case of theMahalanobis kernel, we use the covariance
of the target distribution as Σ. Finally, all experiments were performed using the iterative formulation of SP,
since it allows for a better insight into the one-step execution of the algorithm. To show the differences
between the RBF and the Mahalanobis kernel, we use a normal distribution with a non-diagonal covariance
and where the dimension differ in their order of magnitude. For N(0,Σ), with 0 being the zero vector and
Σ =

(︁
2 0.8
0.8 0.5

)︁
we present our results in the upcoming sections.

6.1.1. Results

We start with SVGD before moving on to Stein points. To better differentiate between the fixed and movable
samples, we will refer to the first ones as samples and to the second ones as particles.

SVGD

First, we look at the circular arranged fixed samples (Figure 6.1a) to investigate, whether the fixed samples
prevent the movable samples to reach the high-density area of the distribution. If the median method is
employed, we can see in Figure 6.2a that all samples converge to the mode of the distribution. Conversely, if
the HE method is employed as its done in Figure 6.2b, the final positions are more distributed over the high
density regions of the distribution. However, the final position of any particle is heavily dependent on the
starting position, such that distant particles rarely manage to enter the high density regions.

Moving on to the rectangularly distributed samples as shown in Figure 6.1b, we can observe stronger rejec-
tion behavior when the fixed samples are more clustered together. While the median method shows only a
moderate impact (Figure 6.3a) on the final positions, we can see a strong rejection force from the clustered
samples when using the HE method in Figure 6.3a. Even particles which are relatively far away from the
sample cluster still get affected and move further away from the distribution.

Finally, we take a look at the random distribution samples. While the previous examples served as extreme
cases to highlight the shortcomings of either bandwidth estimation method and are highly unlikely to occur
in a real world setting, we chose this example to be closer to our targeted application of curriculum learning.
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Figure 6.2.: Particle movement after the running SVGD on hundred samples arranged around a bivariate
normal distribution.

Here, the samples stem from a distribution with different variance and mean compared to the target distri-
bution, with the latter potential being the product of a CL algorithm. After the application of SVGD, we can
see in Figure 6.4a that the influence of the fixed samples on the particles is quite pronounced when using
the median method compared to the previous two examples. However, most particles are still collapsed into
the same small area. With the HE method we observe a similar albeit shifted pattern in particle movement
in Figure 6.4b compared to the rectangular pattern from before.

Comparing the different outcomes of the SVGD experiments a general pattern can easily be identified: While
the usage of the median method tends to lead to clustered end positions for the particles not strongly affected
by the fixed samples, the HE method seems to lead to a the opposite result, with the fixed samples having
a strong impact on the final positions of the particles. In terms of the output, the median method seems
to propose lower bandwidth values, while the HE method suggests very high values for the kernel hyper
parameter.

Although its magnitude is much smaller, this behavior can already be observed in the vanilla comparison
of the two methods shown in Figure 5.1. Here, the particles are also much more evenly spread out when
using the HE method compared to the median method, leading to a more uniformly looking final distribution
coverage.

Discussion of Gradient Descent Dynamic
The reason for the stronger response in our application of SVGD can be traced back to how the modification
of having fixed samples affects the general calculation of the gradient update. As described in section 5.1, the
equation to calculate the gradient (see algorithm 1) can be split in two parts, the driving and the repulsive
term. If we look at the repulsive term, we can see that it is symmetric such that for every particle pair
x, y x is pushed in the opposite direction from y but by the same distance; that is ∇xk(x, y) = −∇yk(y, x).
Therefore, by keeping some particles fixed, the repulsive force is significantly reduced. Although this explains
the behavior of SVGD when using the median method (which already creates less repulsive force between
the particles due to its lower bandwidth estimate), it does not explain the behavior of the particles when the
HE method is employed.

For this algorithm, the reason for the diverging behavior can be found in (5.4). Here, the first term∆q̃({xi}ni=1)
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Figure 6.3.: Particle movement after the running SVGD on hundred samples arranged in a rectangle next to
a bivariate normal distribution.

is sensitive to the variances in the distance between particles (compared to the more temperate second part
of the equation). We can see this in the visualizations, where particles starting closer to the fixed samples
end up at more sensible locations compared to particles starting farther away. This is in line with the assump-
tions being made by the authors of the HE method [7], who assume that the particles in the approximating
distribution are reasonably close.

In summary, both investigated methods show shortcomings when being applied to the modified version of
SVGD. Specifically, the final result seems to heavily correspond to the initial movable particle positions in
relation to the fixed ones. Determining the right initial particle positions is therefore crucial, albeit quite
difficult as can be estimated when looking at the viable starting points visible in our experiments. Further
complexity is introduced when not one (as done in the experiments) but multiple movable particles should be
fitted to a target distribution, since this would require that intra-particle effects have to be accounted for when
setting their initial position. While it might be possible to side-step some of these problems by introducing a
particle-dependent step size, it lies outside the scope of this thesis to formulate the necessary fundamental
changes to the theory. Instead, we investigate a gradient-free approach in the form of Stein points and apply
it to an RL task.

Stein Points

We now present the results of applying the Stein points based sampling on the pedagogical examples shown in
Figure 6.1 to compare their performance to SVGD. Note that we do not calculate the true KSD but rely on the
same approximation used in the iterative Stein point sampler. This is due to the lower variance between two
different points when the true KSD is calculated, which can be attributed to the square root and averaging
terms in the formulation. However, as discussed in section 5.3, this does not affect the final result of the
optimization and is only employed here to make the visualizations more distinctive.

Starting with the circular arrangement of samples (as shown in Figure 6.1a), we visualize the results in
Figure 6.5. Note that the kernel choice is only marginally important in terms of sample placement. We
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Figure 6.4.: Particle movement after the running SVGD on hundred samples sampled from a distribution
with slightly different means and variance than the targeted distribution.

further present the results of the rectangular arrangement in Figure 6.6 and for the random distribution in
Figure 6.7.

We begin our discussion with the initial baselines to discuss the effects of the kernel choice on the final result.
Observing the inverse-log kernel, we can see that the performance differs a lot from the RBF kernel. While
the inverse-log kernel show strong changes in the KSD around the locations of the fixed samples as seen in
Figure 6.8b, the RBF kernel result in a more smoothed end result. A similar sensitivity can be observed in the
kernel hyper parameters, where the inverse-log kernel required a manual tuning of its α parameter for almost
every experiment compared to the RBF kernel, which used the same value for all experiments. This need
for precise kernel parameter adjustment based on the current distribution of samples makes the inverse-log
kernel a suboptimal choice for our intended application in curriculum learning. We therefore focus on the
two other kernels, which seem to be more robust in terms of their parameters, although a downside of the
vanilla RBF kernel appears when the distributions variance is not diagonal.

We investigated the differences in KSD estimation for the RBF and the Mahalanobis kernel in Figure 6.9,
where the target distribution has a non-diagonal covariance and differs in its output dimensions in the order
of magnitude. Here, we see that the Mahalanobis kernel captures this difference quite well compared to the
RBF kernel. This result can be related back to the fixed bandwidth h employed in the kernel. In modern
applications of kernels, such as Gaussian processes, a different bandwidth per dimension is often used which
is set during training using techniques such as automatic relevance determination (ARD) [49]. However, since
we have access to the target distribution and its covariance we can directly employ it as theΣ parameter of the
Mahalanobis kernel. As we will see in chapter 7, where we encounter the exact problem of having differences
in the orders of magnitude in the dimensions, this greatly improves the performance of Stein points-based
methods without the needs for tuning the bandwidth over the course of training.

Comparing the results from the Stein points-based approach to our SVGD-based sampler we can see that
many of the problems involving the fixed samples simply do not occur when direct sampling instead of
moving particles is used. Compared to SVGD, the SP-based samplers are less affected by adversely placed
samples. Since no particle movement is involved, “barriers” like in the circle or rectangle example pose no
problem to the sampler when placing new samples, especially if the more smoothing kernels as the RBF or
the Mahalanobis kernel are used. Additionally, Stein points are more resilient against non-optimal proposal
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Figure 6.5.: KSD using different kernels with a circularly arranged fixed samples (shown in Figure 6.1a). The
bandwidth for the RBF-based kernelswas set to 2, while theα parameter of the inverse-log kernel
was set to 0.4.
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Figure 6.6.: KSD using different kernels with a rectangularly arranged fixed samples (shown in Figure 6.1b).
The bandwidth for the RBF-based kernels was set to 2, while the α parameter of the inverse-log
kernel was set to 0.02.
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Figure 6.7.: KSD using different kernels with fixed samples from a simple distribution (shown in Figure 6.1c).
The bandwidth for the RBF-based kernels was set to 2, while the α parameter of the inverse-log
kernel was set to 0.05.

sample sets, which do not lead to catastrophic failures as it is the case with SVGD-based approaches. The
gradient fields, especially for the RBF-based kernels, are relatively smooth, which makes a less ideal set
of proposal samples degrade the final output gracefully instead of collapsing into the highly noisy results
observed in Figure 6.2. Since our changes to the core formulation are much less severe for the SP based
samplers in the sense of changing core parts of the associated math, this matches our initial expectation
regarding the performance of both methods.

In summary, Stein points based samplers overcome some of the challenges which can occur when trying
to sample from a curriculum learning distribution. While the kernel choice is important depending on the
targeted problem, we found a good candidate in the form of the Mahalanobis kernel. We therefore will
continue by applying the Stein points samplers on an reinforcement learning problem together with the CL
algorithm self-paced reinforcement learning. Before we focus our attention on these experiments however,
we will discuss our particular kernel choice in the upcoming section.

6.2. Kernel Choices for Stein Points

We show how the different kernel affect the sample placement on a standard normal distribution with a
small amount of fixed samples. As can be seen in Figure 6.8, the RBF (Figure 6.8c) and the Mahalanobis
kernel (Figure 6.8c) are quite similar in their output, especially when compared to the inverse log kernel
(Figure 6.8b).

6.3. Stein Points Optimization With Approximate Objective

To verify that the proposed objective (5.6) is comparable to the original objective (5.5) (at least for our use
case), we perform an empirical evaluation of the two variants.
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Figure 6.8.: KSD for different kernel choices with 20 fixed samples. The KSD is visualized as the gradient
background, where darker areas symbolize lower values compared to lighter areas. The band-
width for the RBF-based kernels was set to 2, while α = 0.4 in the case of the inverse-log kernel.

For this, we simulate a curriculum by transforming an initial normal distribution to a target distribution by
means of simple interpolation of the parameters (see Figure 6.10 for a visualization). Starting from an initial
set of samples directly sampled from the distribution we update this set at every iteration using one of four
methods:

1. Iterative Stein point sampler

2. Full optimization Stein point sampler

3. Reduced optimization Stein point sampler

4. Random sampling from the distribution

In the full optimization Stein point sampler variant we use the full quadratic objective (5.5) but limit com-
putation time in addition to tuning some other parameters of the sampler, which we report in Table A.1.
We compare this to the reduced optimization Stein point sampler, which uses the reduced objective (5.6)
and the iterative Stein point sampler. Additionally, we use the same technique as done in SPRL where new
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Figure 6.9.: Kernelized Stein discrepancy for the RBF and the Mahalanobis kernel on a normal distribution
with a non-diagonal covariance.

samples are added to experience buffer by sampling from the current curriculum distribution. In the case
of the iterative Stein point sampler (ISPS) and the random sampling, we remove ten percent of the oldest
samples compared to both optimization Stein point sampler (OSPS) variants where a constraint is given to
the optimizer requiring that exactly ninety percent of the previous samples have to be used. We also test
a variant of the random sampling technique where ten percent of the sample set are randomly replaced at
every iteration (instead of the oldest ten percent).

We perform our tests on different amounts of proposal samples provided to the Stein points samplers, and
calculate the KSD between the samples and the current curriculum distribution. We keep the total amount
of samples fixed at 100 due to computational constraints.

6.3.1. Results

We show our results in Figure 6.11, where we compare the Stein points based samplers to random sampling
with two different sample removal methods.

We described the negative impact of the reduced objective in subsection 5.4.1 and our experimental results in
Figure 6.11 show the impact of this approximation in practice. We first note that samplingwith replacement of
the oldest samples, which is themethod employed by vanilla SPRL, consistently achieves a high KSD, meaning
the distribution is not matched well, compared to almost all other samplers. It is also close in performance
to the random replacement sampler which further shows the relative inefficiency of this approach.

Both the full optimization and ISPS perform very well in terms of achieved KSD and are not affected by
changes in the amount of proposal samples. We especially want to highlight how similar the performance of
ISPS is compared to its full optimization counterpart, since it shows the effectiveness of the iterative process
compared to the true optimization (which takes considerably more time to calculate).

As for the performance of the reduced OSPS, it always achieves a better KSD compared to its random sampling
counterparts. While the effects of higher amounts of proposal samples are visible, they only become a problem
if the amount becomes very high. Even in that case, the OSPS still performs better compared to the sampling
method employed in vanilla SPRL.

We also have to consider the run time required to calculate the new sets of samplers, which differs a lot.
This is especially a problem with the full optimization sampler, which takes over fifty minutes to perform a
single step on a Intel Core i5-8250U CPU from 2016. While the execution time can be lowered significantly
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Figure 6.10.: A simulated curriculum, with the distribution changing its mean and variance over a fixed time
frame. Later distributions are shown with increasing levels of transparency.

with stronger hardware the required computational power is still relatively higher compared to the reduced
objective variant, which takes less than twenty seconds on the same hardware for a single step.

To summarize, our proposed reduced optimization Stein point sampler outperforms both random sampling
methods, at least for reasonable proposal sample sizes between one to five times the amount of removed
samples. While the final performance of the reduced OSPS is not on-par with its full or iterative counterparts,
it nevertheless has its uses, since it allows additional constraints on the optimization problem to be used
without sacrificing too much run time performance. Since vanilla SPRL employs the same technique as the
“remove oldest” random sampling strategy to add and remove samples and the aforementioned ratios are not
exceeded in our RL experiments, we will therefore test both of our Stein points-based samplers, ISPS and
OSPS, on the RL task.
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Figure 6.11.: KSD per sample method over a hundred step mock curriculum. We compare full and reduced
optimization Stein points samplers with the iterative Stein point sampler and random sampling,
where we either remove ten percent of the oldest samples (RO) or a random ten percent of the
samples (RR) before sampling anew.
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7. RL Experiments

In this chapter we present the application of our Stein points based samplers on an reinforcement learn-
ing experiment. We describe our experimental setup in section 7.1 and present and discuss our results in
section 7.2.

7.1. Setup

We apply the Stein points algorithm to curriculum learning for RL using the self-paced reinforcement learning
framework [8] and specifically the presented gate environment. This environment is very similar to the one
presented in chapter 2, however instead of directly controlling the movement of the point-mass the policy
generates the parameters for two PD-controllers. The first controller is used to move the point-mass towards
the gate, while the second controller takes over as soon as the gate is passed. The dynamic system is linear
with a small amount of Gaussian noises added to increase the overall difficulty. As the reward function, the
distance to the goal position in addition to an L2-Regularization on the actions is used. The task is considered
solved if the point-mass reaches the goal within some margin of error.

The reasoning for this specific choice of environment is the relative simplicity of SPRL together with the
high sample usage of 100 newly added samples per iteration in the original presentation. As in the original
paper [8], we use a buffer containing the task samples including the associated trajectories from the last
ten iterations. However, we vary the amount of added samples per iteration between fifty and twenty to
verify that our approach is indeed more sample efficient. This range is chosen since vanilla SPRL can still
reliably learn the given task with about forty to fifty samples per iterations but starts to break down below
this number.

We compare the performance of vanilla SPRL with our modified variant, which uses a Stein points sampler
to sample from the curriculum distribution. Two variants of the Stein points algorithm are evaluated, which
we call iterative Stein point sampler and optimization Stein point sampler: While the ISPS follows closely to
the original iterative approach outlined in section 5.4, the OSPS is based on the hypothesis presented in
Equation 5.6. In either case, the target distribution is set to the current task distribution as calculated by
SPRL.

Both the ISPS and OSPS have two hyper parameters which influence the behavior of the sampler. They are:

• Auxiliary Sample Factor

• Proposal Distribution Stretch Factor
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The first parameter controls the amount of proposal samples provided to the sampler as a ratio to the kept
samples, while the second parameter functions as a stretching factor for the target distribution as described in
subsection 5.4.2. Both hyper parameters where refined from an initial estimate using the Ax hyper parameter
optimizer [50].

7.2. Results

We now investigate the gate task by replacing the sampling procedure from the original formulation of self-
paced reinforcement learning with both our iterative Stein point sampler and optimization Stein point sam-
pler (with the reduced objective) and comparing their performance with the baseline.

We start by comparing the received rewards for different sample sizes per iteration i = [50, 40, 30, 20] in Fig-
ure 7.1. Although both the unmodified variant of SPRL and our version using the ISPS perform quite similar
in terms of median reward, with the vanilla SPRL having a better peak performance, the OSPS performs
consistently worse in terms of reward over iterations. It never reaches a median return of over one hundred,
which is achieved for every sample count by the other two samplers. However, as seen by the 75 and 25
quantiles the OSPS has a very low variance, especially when compared to the ISPS.

Given the relatively low reward achieved by the OSPS it is unsurprising that its performance when judged
by the successes attained is zero, as seen in Figure 7.2. Here, the impact of the lower sample count is clearly
visible with both the iterative Stein point and the vanilla SPRL samplers struggling to reach the final goal
state. However, the vanilla sampler still reaches a median success rate of 0.5 in the lowest sample setting
(Figure 7.2d), which is higher than the median success rate of the ISPS sampler in the second lowest setting.

To get a better insight into the training process we look at the KSD after every iteration for both the 50 and
the 20 samples per iteration experiments. We calculated the KSD between all samples in the buffer and the
current target in every iteration after sampling using the Mahalanobis kernel with a bandwidth of two. As we
can see in Figure 7.3, the OSPS has the highest median KSD (therefore not fitting the target distribution well)
but is comparable to the vanilla sampler in lower sample settings. The lowest KSD is consistently achieved
by the ISPS, both in the 20 and the 50 samples per iteration experiments.

We start our discussion by first investigating potential shortcomings of our proposed sampling method before
moving on to problems with SPRL and the RL environment under investigation.

We first focus on the OSPS which performs significantly worse than the ISPS. This performance can most
likely be attributed to two effects, sample reuse and the general shape and quality of samples. Starting with
sample reuse, we investigated OSPS in the hopes of a more effective method to replace older task samples
according to how well they fit the current curriculum distribution. However when compared to the original
version of SPRL, which just replaced a percentage of the oldest samples, this can lead to samples being
reused over many iterations. Especially in scenarios like the gate environment, which either start or end on
a distribution with high variance this scenario can occur frequently where early samples close to the modes
of the distribution are not replaced until much later into the training. There are multiple ways to avoid this
problem, either by employing the same sample replacement strategy as SPRL, incorporating the age of a
sample as a constraint to be minimized or simply by choosing less overlapping start and end distributions for
the curriculum.

This leaves us with the second effect, the shape and quality of the samples, which is more difficult to address
since it is rooted in the core formulation of the OSPS. Samples generated by OSPS tend to clumped together
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Figure 7.1.: Median reward per task sample on the gate task for twenty experiments. The shaded areas
show the 25 and 75 quantiles.

compared to samples generated by ISPS. We provide an example of this behavior in Appendix B which also
shows how the OSPS removes outlier samples and decreases the variance of the final sample distribution.
While this behavior itself might still yield useful samples in some cases, it does lead to some problems when
used in conjunction with SPRL.

One problem occurring in the original formulation of SPRL as presented by Klink et al. [8] is the collapse of the
curriculum distribution variance. While this was already pointed out by the original authors and fixed in later
iterations [51] by amending the curriculum calculation, it still a problem in the initial formulation which we
base our experiment on. We initially focus on this specific version of SPRL since it uses episodic reinforcement
learning for the policies and optimizes both the policy parameters and the parameters of the curriculum
distribution jointly. While this approach allows us to apply our ParVIs methods to this joined distribution and
sample both tasks and corresponding policies using our Stein points based samplers, we chose to focus first
on the task distribution first before attempting a joint optimization. However, the variance collapse problem
persisted, leading us to artificially increase the variance of the curriculum distribution before setting it as the
target distribution for our samplers. We outlined this procedure in section 7.1, which reduced the variance
collapse and lead to better results in terms of achieved reward and success. However, while it was not possible
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Figure 7.2.: Median success rate per task sample on the gate task for twenty experiments. The shaded
areas show the 25 and 75 quantiles.

to do so in this thesis due to time constraints, we think that incorporating the later improvements done in
the aforementioned paper could be even more beneficial.

We observed the positive impact of an increased variance in the target distribution also with the ISPS. Com-
bined with a higher amount of proposal samples, which the ISPS can handle compared to the OSPS, this
lead to the ISPS achieving a much higher median return compared to the OSPS. To explain why the vanilla
SPRL still outperformed the ISPS in we take a look at the KSD per iteration and compare it to the reward
received by both variants. Judging from Figure 7.1 and Figure 7.2, we can see that a local optimum in the
RL training process occurs at about a reward of 100. This was already observed in the original paper [8] and
is usually overcome by SPRL after a few iterations. Our hypothesis why this behavior is not reflected when
using the ISPS is based on the lower KSD of the samples returned by this sampler as seen in Figure 7.3: Since
these samples “match” the target distribution much better, the regularizing effect of the more varied samples
produced by the original sampler is lost. This leads to the agent temporarily overfitting on the current sample
selection, which prompts the curriculum generating part of SPRL to step faster through the curriculum for
some iterations (which in this experiment decreases in variance). This in turn makes it more difficult for the
agent to exit the local optima, slowing down the curriculum process until the end. We provide a visualization
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Figure 7.3.: Median and 25/75 quantiles for the KSD after every sample iteration.

of this behavior in Figure C.1.

In total, we believe that these effects hinder the agent to overcome the local optima and reduce the attainable
reward if the ISPS is used. Potential future work to alleviate these problems include using the higher variance
distribution not only for the proposal samples but also as the target distribution. Additionally, different RL
algorithms should be investigated, since these problems might be related to the usage of REPS as the method
of choice in this experiment for finding the optimal policy.
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8. Conclusion

In this thesis, we proposed a new method to sample from a curriculum distribution based on recent de-
velopments in the particle-based variational inference methods space. We validated our new samplers on
both pedagogical and RL experiments, giving us both insights into our methods as well as the investigated
curriculum learning algorithm.

Not only did our experiments show promising results, they also allowed us some deeper insights into the
assumptions underlying SPRL. The initial hypothesis was that SPRL would benefit from a better coverage
of the target distribution, but even though our proposed solution achieved this goal we did not observe
performance gains in the low sample curriculum settings. This leads us to the conclusion, that the proposed
target distributions are not optimal and that the design choices involving the experience buffer are more
crucial than previously assumed. We can therefore offer some promising avenues which can pursued as part
of future work.

8.1. Future Work

While the performance of our iterative Stein point sampler was at least comparable to the vanilla samplers
used in SVGD, they still achieved a lower reward in the RL experiments compared to their unmodified version.
One potential improvement for this could be found in a recent version of SPRL [51], which putsmore emphasis
on the agents performance when updating the current curriculum distribution. Since we observed some
situations, where the distribution was changed to fast leaving the agent stuck in a local optima, switching to
the newer variant might prove beneficial in such cases.

Some simpler changes to SPRL, which were out of scope of this thesis, involve the settings of the target
distribution. We observed in our experiment that the ISPS was consistently achieving a lower KSD compared
to all other investigated samplers; however, we pointed out that this might not be beneficial for the targeted
environment. It would therefore be interesting to test different target distributions for the sampler to match,
such that sample variance (and therefore the KSD) is increased. Another potential alleviation might be
possible by changing the targeted task and environment, since it was shown by the original authors [8] to be
difficult to solve for all agents except vanilla SPRL.

Another interesting avenue is the usage of deep learning methods for reinforcement learning such as soft
actor critic (SAC) [10]. These methods might be able to better incorporate the different dynamics observed
throughout the curriculum, therefore leading to a more stable learning process. In the case of the gate
environment investigated in this thesis it was also shown that the deep learning version of SPRL performs
better compared to its episodic counterpart [51]. Another interesting research direction in this space would
be the incorporation of the policies experience buffer into the curriculum learning process. These buffers are
part of some off-policy methods such as the aforementioned SAC and store previously made steps instead
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of full trajectories. Using our presented methods, an intelligent pruning and resampling of these buffers
could be added to the training process, which would favor relevant experience over newer one, which might
positively affect the efficiency of these methods. Finally, deep learning methods take much longer to run
and train compared to their episodic counter parts. Their relative benefit from an more effective curriculum
sampling process would therefore be higher.

Finally, more investigations into the behavior of OSPS might lead to some potential solutions for the problems
observed in our RL experiments. While we already tested one option by increasing the variance of our proposal
distribution samples, other options are also available. For example, instead of sampling from the target
distribution it might turn out more beneficial to sample from a grid overlaying the space or use some other
form of proposal sample generation. Another way of improving performance could be found by investigating
the differences between samples produced by the OSPS and the vanilla sampler in SPRL. Using these insights
might also reveal some hidden “dependencies” of SPRL on the nature of the task samples, which is not satisfied
by the samples produced using the OSPS.

8.2. Summary

Although still a relatively new subfield of variational inference, particle-based variational inference methods
has already shown some promising new applications and future research opportunities. So does the usage
of curriculum learning methods in the space of reinforcement learning open new and interesting avenues
to train agents in a more versatile and potentially more effective manner. However, we have seen that the
core formulation of such methods can lead to inefficiencies when there is not enough difference between
tasks in these curricula, leading to superfluous and expensive agent evaluations. In this thesis we proposed
to use ParVIs methods to reduce the amount of uninformative task rollouts by recasting sampling from the
curriculum distribution as a problem of variational inference.

We investigated two ParVIs methods, Stein variational gradient descent and Stein points and proposed the
necessary adaptions required for their application on curriculum learning problems. Validating our adapta-
tions, we experimentally showed that an SVGD sampler introduces difficulties when applied to CL.

For the Stein points based approach, we presented two samplers, iterative Stein point sampler and optimiza-
tion Stein point sampler, which directly optimize the kernelized Stein discrepancy by adding and removing
samples according to our curriculum distribution. We were able to show that these samplers do not suf-
fer from the same problems as the SVGD based approach and integrated them into an curriculum learning
for reinforcement learning algorithm called self-paced reinforcement learning. While the application of this
modified SPRL did not yield the expected results, we pointed out a few shortcomings of our method and
proposed some future work, which could lead to improved results and a more efficient sample process for
curriculum learning.
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A. Gurobi Parameters for the Constrained Stein points
sampler

Parameter Value

NumericFocus 1

MIPFocus 3

MIPGap 0.30

WorkLimit 120

Table A.1.: Gurobi Parameters
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B. Iterative vs Optimization Stein Points Sampler
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Figure B.1.: Comparing the final sample placement of ISPS and OSPS. Both samplers received the same
100 initial and 100 proposal samples as inputs and used the RBF kernel with a bandwidth set to
one. Target sample size was 100, with samples being selected from the joined set of initial and
proposal samples until the target size was reached.
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C. Curriculum for SPRL and ISPS
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(a) SPRL

−4 −2 0 2 4
Gate Position

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

G
at
e
W
id
th

0

50

150

249

(b) ISPS

Figure C.1.: Comparing the curricula generated using vanilla SPRL to the ones created when ISPS is used.
The curriculum distribution are visualized at different iterations with the target highlighted with
a dashed line. Compared to the vanilla variant, the distributions for shrink faster when the ISPS
is used but take longer to reach the final position.
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D. Technical Details

We implemented all samplers from scratch using the jax library [52]. For the optimization-based samplers,
we use the proprietary Gurobi sampler [53]. All of our code is open-source and can be found on Github1.

For the RL experiments, we use a modified version of the original code for the SPRL paper [8], with the added
Stein points sampler. The code can be found on Github2 as well.

1https://github.com/miterion/adaptive-sampler-baselines
2https://github.com/miterion/self-paced-rl/
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