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I. INTRODUCTION

Machine Learning methods applied to decision making
problems with real robots usually suffer from slow conver-
gence due to the dimensionality of the search and difficulties
in the reward design. Interactive Machine Learning (IML)
or Learning from Demonstrations (LfD) methods are usually
simple and relatively fast for improving a policy but have the
drawback of being sensitive to the inherent occasional erro-
neous feedback from human teachers. Reinforcement Learning
(RL) methods may converge to optimal solutions according to
the encoded reward function, but they become inefficient as
the dimensionality of the state-action space grows.

Thus, this paper exploits the synergistic combination of RL
with IML strategies. Human knowledge on the task is used
to speed up the RL process, at the same time RL is used to
provide more stability and robustness to the sporadic erroneous
human feedback (humans are not perfect and prone to fail in
repetitive tasks). Existing work on the combination of RL with
human reinforcements [1]–[3] has shown benefits of the user’s
knowledge for speeding up the learning process while keeping
the convergence properties of RL algorithms.

Policy Search RL has shown more appropriate for tackling
high-dimensional robotic problems than value based RL [4].
Therefore, this work proposes the use of learning methods
based on Policy Search (PS) techniques that additionally makes
use of available human knowledge for reducing the number of
trials, which is one of the main constraints of robot learning
in the real-world. Here, corrective feedback in the action
domain advised by human teachers is used instead of human
reinforcements. In the proposed approach, human knowledge is
provided to the PS learning agents with corrective advice using
the COACH algorithm [5], which has shown to outperform
pure autonomous RL agents and pure interactive learning
agents based on human reinforcements.

This hybrid scheme of learning is applied to learn tasks
modeled as Markov Decision Processes (MDP), and also
problems with robot arms using policies represented by motor
primitives.

II. BACKGROUND

The proposed learning approach is a simultaneous com-
bination of PS and the IML framework COACH, which are
briefly described below.

A. Policy Search

PS is a branch of RL where parametrized policies are learnt
directly in the parameter space, based on the cost given by
the reward function, without a value function. The general
structure of a PS method is presented in Algorithm 1, which
includes three main steps: First, the exploration step creates
samples of the current policy for executing each roll-out or
episode. Second, the evaluation step quantifies the quality of
the executed roll-outs according to the reward/cost function.
Finally, the update step uses the evaluation of the roll-outs
to compute the new parameters of the policy. This update
can be based on policy gradients, expectation-maximization,
information theoretic, or stochastic optimization approaches.

B. Learning from Human Corrective Advice

COrrective Advice Communicated by Humans (COACH)
was proposed for training agents interactively during task
execution [5]. In this framework, human teachers suggest
corrections for the performed actions immediately after their
execution with vague binary signals. The advice is a relative
change of the action’s magnitude, which is used for updating
the policy with stochastic gradient descent. The binary signals
are “to increase” or “to decrease” the executed action and could
be independently given for each of the degrees of freedom that
compose the action vector.

III. POLICY SEARCH GUIDED WITH SIMULTANEOUS
HUMAN CORRECTIVE ADVICE

In this work, we combine PS with human advice, where
the human teacher is able to correct the policy at each time
step, whereas the PS only updates the policy model after each
iteration of M trials based on the performance measurements
of every roll-out. This combination, illustrated in Fig.1, can be
seen as a regular PS algorithm with modified exploration, in
which COACH is run every roll-out and the human corrections
are incorporated as exploration noise. The set of M roll-outs,
where some include human corrections, are then evaluated and
used in the update step of the PS procedure.



Fig. 1. Learning Simultaneously with COACH+PS.

Fig. 2. Learning curves of the experiments for the inverted pendulum swing-
up problem with the simulated system (normal lines) and the real system
(dashed)

IV. EXPERIMENTS AND RESULTS

Our approach has been tested in several tasks, some of
them are briefly presented in this work. First, an experiment
for learning a task in an MDP setting on an inverted pendulum
is presented, followed by experiments in learning movement
primitives of a robot arm.

A. Learning with MDP: Inverted Pendulum Swing-Up case

We compared different instances of our approach on this
well-known nonlinear control problem in the RL literature:
(i) using only a pure PS agent, (ii) a controller using only
human feedback under the original COACH formulation, (iii)
a controller where COACH is used to derive the initial policy
which is subsequently refined using PS (namely, Sequential
COACH+PS); and (iv) the Simultaneous COACH+PS pre-
sented in the previous section where the human has direct
access to provide feedback on the roll-outs of PS. The results
in Fig.2 show that the PS convergence was the slowest, while
COACH had the fastest improvement in the early stage of the
process. The proposed, simultaneous hybrid scheme showed
the best balance in terms of velocity of convergence and final
cost obtained.

B. Learning Movement Primitives

The validation of the hybrid approach for learning move-
ment primitives was carried out by replicating the experiments
of the original PI2 paper [6]. The experiment consisted of
learning robot arm reaching movements (similar to human
reaching movements) with a total duration of 0.5 seconds.
The task had the condition of reaching a specific via-point

Fig. 3. Case of 10 DoF robot arm: a) movement through the via-point, b)
learning curve

at t = 0.3s, and was evaluated for arms with 1, 2, 10, and
50 degrees-of-freedom (DoF). The experiments were executed
first with the original PS algorithm PI2, and followed by our
hybrid approach combining PI2 and COACH.

The results in Fig.3 show the 10 DoF arm case. Note that
the use of the human corrective advice in the PI2 algorithm
speeds up the learning process more than 10 times when
converging towards the lowest policy cost.

V. CONCLUSION

Vague corrections provided by human teachers usually
result in fast, but sub-optimal learning, whereas PS relies on
the definition of cost functions that are not very explicit or
intuitive to the users’ understanding. Therefore, this paper
proposed the combination of human support to PS learning.
From the point of view of interactive machine learning, these
hybrid strategies provide more robustness to the convergence,
since the sensibility to noisy or mistaken human corrections is
diminished. Moreover, the quality of the policies is improved
with the cost based corrections of PS which perform fine tuning
of the policies taught by the users. The experiments with
the swing-up task (MDP), and with the arm movement task
(motor primitives) showed that the hybrid learning scheme can
benefit from the advantages of both kinds of learning strategies.
Experiments showed that the combination was capable of
speeding up the convergence of a PS learner up to 30 times.
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