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Abstract

Learning directly from natural human move-
ments provides an alternative to inefficient
and sometimes infeasible kinesthetic teach-
ing. In particular, in the field of robotic co-
workers, flexible approaches to obtain collab-
orative trajectories becomes important, not
only to avoid disruptions in the production
cycle, but also because of the repetitive and
abundant number of human movements that
occur, for example, during an assembly task.
This project aims to find such collaborative
trajectories by using an inverse kinematics
based approach. The solution must be op-
timal with respect to accuracy at which the
original demonstration can be reproduced,
joint limits and efficiency in human robot
collaboration. Furthermore, the flexibility
of the algorithm with respect to different
workspaces is evaluated. The results indicate
that the algorithm is capable to adapt natu-
ral human demonstrations that take place in
arbitrary locations, to the embodiment of a 7-
DoF robotic arm in different types of tasks.

1 Introduction

Developments in the fields of mechanical engineering,
mechatronics and safe control enable us to consider
the use of robots for a growing field of applications.
In particular, the use of robotic co-workers is a chal-
lenging part of this development towards collabora-
tion between humans and supportive machines. A
main issue in the case of human-robot collaboration is
how to teach robots the required abilities for a certain
task. While methods such as kinesthetic teaching can
be both, time consuming and sometimes even infea-
sible for inexperienced workers and non-backdriveable

robots, a very natural and intuitive way of teaching is
learning directly from natural human demonstrations,
that is, demonstrations where the human movement is
not influenced or constrained in any sense by the exis-
tence of a robot learner. As human apprentices learn
their part of a task by watching experienced workers,
it seems sensible to let a robot learn from watching
humans executing a specific task.

A requirement for the demonstration process is sim-
plicity in the setup and in a generalizable form. In the
specific case of humanoid robots, joint to joint map-
ping using optical markers is a widely used technique.
However, multiple marker tracking in assembly tasks
are prone to occlusion and the required setup for each
demonstration can become a disruptive and time con-
suming process. An alternative to this problem is pro-
vided by recording only the hand or wrist position of
the human demonstrator and subsequently using in-
verse kinematics to obtain the robots joint positions.
Moreover, this approach provides the robot the oppor-
tunity to execute the movement in its own way (e.g.
movements the favor the robot rest posture) rather
than to blindly follow human motion schemes, as they
are provided by joint to joint mapping.

In order to keep the learning process as general as pos-
sible and to provide solutions for arbitrary workspaces,
it is additionally desirable to decouple the learning sce-
nario from the real robot application. In this case the
algorithm must address the case where human demon-
strations occur in arbitrary locations and later mapped
into the actual workspace of the robot.

This mapping, however, requires a search for the ap-
propriate location of the reference frame of the origi-
nal demonstration in relation to the robot’s reference
frame. This project proposes an algorithm to search
for such a transformation of a given demonstration into
the robots workspace while at the same time trying to
ensure optimal human-robot collaboration during the
execution of the task.
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2 Related Work on Natural Human
Demonstration

According to Argall, et al. [2], learning from demon-
strations can be categorized by two main criteria:
record mapping and embodiment mapping. The first
regards the recording of the teacher’s execution, and
the second regards how the student, i.e. the robot, ex-
ecutes the recorded motion with its own embodiment.
The choice of the record mapping determines how the
motion of the demonstrator is captured during his/her
demonstration and which information is handed to the
robot later. In the case of humanoid robots the ques-
tion often boils down to the number of joints to track
and how to extract them from the given demonstra-
tion. Several approaches such as Luo [9] use a Kinect
camera and skeleton tracking in order to perform joint
to joint mapping afterwards. While using the Kinect
provides disadvantages in viewpoint dependent skele-
ton tracking, Lee, Ott and Nakamura propose a 3-D
marker controlled approach for robot joint control [g].
They use a virtual spring model for each joint to let
the robot follow a desired trajectory in joint space.
However, one remaining problem with joint to joint
mapping is that it constrains the robots solution to
only imitate the human. Moreover in certain tasks, it
is not even important to imitate the whole movement
but to reach or track a certain end-effector position
during the execution.

An alternative approach is given by recording only the
human end-effector position during the demonstration.
In this field of inverse kinematics (IK), the aim is to
find a mapping from task to joint space. Due to re-
dundancy, a variety of solutions and approaches exist
such as robust inverse kinematics [3], style based in-
verse kinematics [0] and null space control [5].

The second big issue in learning from demonstrations
is the embodiment mapping, also referred to as the cor-
respondence problem [I0]. It tries to resolve the parts
of the demonstrator which match certain parts of the
robot. Several approaches exist such as the ALICE
algorithm[I] by Nehaniv, Alissandrakis and Dauten-
hahn. In this case a library of correspondences be-
tween the teacher an the imitator [I] is build and sub-
sequently used to resolve the correspondence problem
during demonstrations.

In this project an anthropomorphic robot arm was
used and the correspondence problem was avoided by
only recording the end-effector position and obtaining
the joint positions through inverse kinematics. Within
this approach an additional focus was set on optimal
human-robot collaboration as well as on the decou-
pling of the demonstration location from the actual
robot workspace.

3 A Location-free Inverse Kinematics
Algorithm

To obtain optimal human-robot collaboration out of
a human demonstration the algorithm is structured
in three main sections. As a preprocessing step,
the human trajectories when working in the robot’s
workspace are captured and a Gaussian mixture model
is fit into it. This mixture model is used as a sur-
rogate for the preferred locations of the human when
working with the robot. Subsequently, the end-effector
movements of two humans accomplishing a collabora-
tive task are recorded by a motion capture camera
system. These demonstration can happen in any arbi-
trary place and need not necessarily be connected to
the final robot application workspace. As the goal is to
replace one of the human demonstrators by the robot,
one of the trajectories is labeled as human-trajectory
7, and the second as robot-trajectory 7,.. Currently,
this choice is made manually.

Figure[T]illustrates this main structure and reveals how
human demonstration and work-space extraction be-
come part of the optimization to achieve a collabo-
rative pair of trajectories. The algorithm computes
a transformation of the recorded trajectories into the
robots workspace 7(6) using gradient descent with
respect to the sufficient accuracy in the robots mo-
tion, represented by the error of the IK-solution el*,
and comfortable working conditions for the human,
represented by the Gaussian mixture model of the
workspace extraction. As shown in figure [I} this op-
timization runs until the convergence of the transfor-
mation, leading to the optimized parameters 6.

In the following, the workspace extraction, as well as
the transformation 6 and the cost function ¢ of the
optimization are described in more detail.

3.1 Encoding Preferences of Human Location

To adapt a collaborative trajectory 7 = (7p,7,) to
the final robot workspace, as a preprocessing step, a
trajectory s = (x1,22,...,2,) of a human working
in this workspace is recorded. A Gaussian mixture
model N (z,|u,0) is fitted into this trajectory to
ensure that the following optimization tends to let
the human stand in places that are more natural
and not restrictive to him. To obtain the Gaussian
mixture model, expectation maximization [4] is used
by iterating till convergence, where in the E-step the
posterior distributions for each mixture component
and for all data points a,; = p(j|z,) are computed
and in the M-step the parameters of the Gaussian
mixture model as well as the weighting terms m; are
updated by using weighted estimates.
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Figure 1: Main structure of the algorithm

Figure 2: Gaussian mixture model from human workspace extraction
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An example for a trajectory 7,s and the resulting
Gaussian mixture model with three clusters is given
in figure [2a), where the covariance is shown as the
ellipse.

3.2 Inverse Kinematics for optimal Human
robot collaboration

During a collaborative task the end-effector positions
of two human co-workers are captured using an opti-
track system. The resulting collaborative trajectory
T = (Th, Tr) consists of the human trajectory and
the matching counter part that should be performed

by the robot. Given this collaborative trajectory 7 a
transformation into the robots workspace should ide-
ally satisfy two main requirements. First, it should al-
low the robot to follow the required trajectory 7, with
sufficient accuracy while avoiding joint limits as well
as unnecessary movements. Second, it should consider
the human role in the collaborative task such that the
human is not forced to stand in an uncomfortable or
infeasible location in the robot’s workspace after the
transformation. Such an uncomfortable spot can be
given by obstacles such as tables or chairs as well as
locations that force the human to stand too close to
the robot.

The robot trajectory in task space is given by its posi-
tion and orientation 7,=(x, q), where x stands for
the three dimensional Cartesian coordinates, and q
the corresponding quaternion. During the optimiza-
tion, the position of this trajectory is changed us-
ing a translation in x- and y-direction and a rotation
around the z axis 8 = (z,y, ¢). Currently, we decided
for not optimizing the height and roll and pitch of
the demonstrated trajectories as they do not lead to
changes of interest for human-robot collaboration. We
assume the height at which demonstrations were exe-
cuted should not be modified in relation to the orig-
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inal human-human demonstrations. The mentioned
requirements are incorporated in a cost function ¢,
which consists of three parts. The first part ¢q.. en-
sures a sufficient accurate performance on the task, the
second part ¢p.m pays attention to a good feasibility
of the human part in the task and the last part ¢;;m
takes care of limitations such as the robots joint limits
or its workspace boundaries. The cost function ¢ is
given by

¢ = ¢acc + ¢hum + ¢lim~ (3)

To obtain the optimal transformation of the collabo-
rative trajectory gradient decent with random restarts
is performed on this cost function until convergence of
0. The next sections explain the single parts of this
cost function more detailed.

3.2.1 Accuracy

In this work, an important factor in the optimization
process is the accuracy that the robot can achieve
while following the demonstrated trajectory. Given
a trajectory 7, in task space the inverse kinematic of
the robot are used to obtain a configuration in joint
space . Whenever the robot is not capable to follow
a trajectory outside his reach the inverse kinematics
will give no solution, or one that deviates significantly
from the desired end-effector positions in 7,., when put
through the forward kinematics. Therefore the differ-
ences between the desired positions in 7, and the po-
sitions reached by the forward kinematics 7, are com-
puted and used to assess the accuracy of the robots
motion. The error between 7, and 7, is computed by
using the sum of squared distances between the po-
sitions and the orientations between the quaternions

N

_ v )2
¢accc Qacc ;(Xn Xn) (4)

+ Qorient (008_1(Qn : qn))g

In this equation a,.. denotes a factor to tune the im-
portance of accuracy in the optimization and arjens
provides a weighting for correct orientation compared
to position accuracy. Moreover the inverse kinemat-
ics provides the possibility of incorporating a desired
rest posture to ensure, for example, pleasant looking
movements or energy efficient solutions.

3.2.2 Human factor

A second factor during the optimization of the col-
laborative trajectory is the resulting position for the
human co-worker. It is neither desirable to obtain a
trajectory where he is forced to stand at an infeasible
location nor should he be moved too far from his natu-
ral working area. Therefore a human factor in the cost

function is computed considering the Gaussian mix-
ture model, where each i-th component N (x|u;, o)
is created from the human workspace extraction. This
ensures that the human part of the trajectory ends up
close to one of his most desired locations, extracted
during previous observations. As it is assumed to be
close to the human location the starting point of the
human trajectory =* is used to compute the cost func-
tion term @, for the optimization

M
¢hum = —Ohum Z WZN(:B* |ll’jv o-j) (5)
=1

To provide the possibility of tuning the importance of
a comfortable or feasible working spot for the human,
Qhum 18 used as a weighting factor.

3.2.3 Robot limits

To avoid damage on the hardware as well as to ensure
a smooth movement it is important to stay away from
the joint limits and to avoid stretched out robot posi-
tions. Those requirements are met by the limit term
®1im in the cost function that cares for both joint lim-
its and the distance to the workspace boundaries.

To avoid a violation of the joint limits €2,,,, a force
similar to a spring is computed out of the distance to
the joint limits Ag. Additionally the distance to the
workspace boundary is computed by using the sum
of squared distances between the points of the robot
trajectory 7, and the center of the robots workspace

Xcenter-
N N
(blim = ajoints Z(Qmax_AQ)2+aws Z(Xn_xcenter)2
n=1 n=1

(6)
The weighting factors aoints and a,s are used to tune
the importance of the limit terms with respects to ac-
curacy and human factor.

3.2.4 Optimization

Given a pair of collaborative trajectories T = (74, 7),
a parametrization is used to map these trajectories into
the optimal position in the robot’s workspace. This
parametrization is given by translating and rotating
the reference frame of the demonstration in the x-y-
plane 8 = (x,y, ¢). The algorithm aims to find the op-
timal transformation with respect to the defined cost
function

6" = argmin,

() (7)

The optimal parameters are obtained using gradient
descent with random restarts, to gain efficient compu-
tation time while avoiding local optima.
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4 Evaluation in Real Human-Robot
Handovers with a 7-DoF Arm

The performance of the proposed algorithm was tested
in different simulated and experimental settings. In
this project, a robot setup consisting of a 7-DoF
KUKA lightweight arm equipped with a 5-finger hand
was used as shown in [3(a).

4.1 Simulation

A reliable simulation environment provides the advan-
tage of avoiding damage on hardware and also ensures
efficient offline testing. The Robot Operating Sys-
tem (ROS) and the Unified Robot Description For-
mat (URDF) were implemented to obtain a kinematic
model of this robot. Figure 3| displays both, the robot
and the URDF model used for simulation. To also ob-
tain a better insight of the algorithm, the ROS rviz
was used together with a ROS node to visualize the
robots movement as well as the optimization of the
given trajectories. The simulation was used to evalu-
ate first toy examples, such as a simple line following,
or basic circle movements. In particular, in the case
of three dimensional trajectories, visualization of the
process also provides the advantage of deeper under-
standing of the optimization evolution. A screenshot
of the simulation environment is shown irf3] (b).

4.2 Experiments

To test the algorithm two main types of experiments
were performed. The first was given by a simple imita-
tion of a human movement. The second set of experi-
ments focused on optimal human-robot collaboration.

4.2.1 Imitation of human movement

For humans, imitation is a very natural way to learn
a new task. Also a robotic co-worker might face se-
quences where he is supposed to perform a specific
movement that was shown to him before by an expe-
rienced worker. Therefore in the first experiments a
human demonstrator performed a specific movement,
such as a circle with his arm, and the robot was sup-
posed to repeat this movement while only using the
recording of the human end-effector. This recording
was obtained using the motion capture system Opti-
track and tracked marker on the wrist of the demon-
strator. To test the algorithms capability to transfer
demonstrations from arbitrary locations to the robot’s
workspace, the demonstrator changed his position and
orientation during the experiments.

4.2.2 Optimal human-robot collaboration

To acquire human-robot collaborative trajectories it
is sensible to make use of demonstrations of humans
performing a collaborative task. Due to the applica-
bility in multiple working scenarios, a simple handover
was chosen. In this setup two humans performed the
handover while again their end-effector positions were
tracked by a motion capturing system. The demon-
stration happened outside the robots workspace and
could be performed in any arbitrary location. The
demonstration is illustrated in figure [ and the robot
was supposed to take over the part of the right human.
To enable the robot to replace this human worker sub-
sequently also a workspace extraction of the robots
workspace was performed. For this extraction we con-
sidered two different workspace settings to test the ca-
pability of the algorithm to reuse a single demonstra-
tion for multiple applications. In the first setting a
table was placed on the left side of the robot blocking
this part of his workspace and in the second case, the
table was placed on the right side.

4.3 Results

The first experiments revealed the algorithms ability
to find a feasible trajectory for the robot to imitate
a simple human movement, without a need for kines-
thetic teaching. They also indicated the advantage
of being independent from the exact location of the
demonstration.

In the case of the collaborative task, Figure [5] illus-
trates the robot performing the co-worker part. The
robot was capable to perform the handover while
avoiding the workspace limits. Also the human was
not forced to stand at a restricted or dangerous lo-
cation which ensured efficient human-robot collabora-
tion.

Figure [f] indicates that the results of the optimiza-
tion could adapt to the given workspace constraints of
the robot. The collaborative handover could be per-
formed in different directions depending on the prior
workspace extraction, that considered the different po-
sitions of the table. In the case of a robotic co-worker
this provides advantages due to the decoupling from
the demonstration and the actual application area.
The experiments also revealed that the solution re-
spects the joint limits while avoiding undesired config-
urations of the robot.

5 Conclusion and Future Work

This project introduced an algorithm to obtain
optimal pairs of trajectories for human-robot collab-
oration out of recorded end-effector positions only.
The demonstrations avoided kinesthetic teaching and
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Figure 4: Demonstration of a handover task. Right human should be replaced by the robotic co-worker subsequently

could be recorded in arbitrary spaces. The algorithm
was not only capable to map given trajectories into
the robot workspace but also found the optimal
location with respect to constraints such as joint
limits or workspace requirements and preferences.
The experiments have shown basic capabilities to im-
itate human movement as well as to replace a human
in a co-worker setup such as a simple handover task.
As an advantage over other approaches such as joint
to joint mapping is the reuse of the demonstrations
to different workspace settings and to robots with
different kinematics.

Currently, the algorithm presents two limitations.
First, it the shape of the movements are fixed and
during the optimization, the collaborative trajectory
can be only translated or rotated, but it can not be
modified. In particular, in the case of dynamic obsta-
cle avoidance such a modification might become neces-
sary. An possible approach for not only modifying the
trajectory with respect to an obstacle, but also keeping
start and end point fixed is given by trajectory based
motion planning methods [7].

Second, the trajectories do not encode any form of cor-
relation such that adaptation of the robot movement
in relation to the human is not possible once the op-
timization is finished. Ideally, it would be possible to
react in multiple ways to a certain movement. In this
case an approach similar to [11] to learn not only from
a single demonstration, but to use multiple demon-
strations to condition over an obtained distribution is
under consideration.

In both cases, knowledge provided by the robot sen-
sors to react on dynamic changing environments must
be incorporated as they might occur in a real world
co-working scenario.

Future work should mainly concentrate on overcoming
these shortages as well as further evaluate the algo-
rithm quantitatively on additional experiments.
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