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I. INTRODUCTION AND PRELIMINARIES

Reinforcement Learning is a popular technique that enables
machines to autonomously learn how to solve challenging tasks
such as playing video games [1], [2] or robotic grasping [3]. For
learning effective policies reinforcement learning relies on reward
functions that assess the quality of the current behavior. However,
designing reward functions that induce the correct behavior
is difficult even for expert. In contrast, inverse reinforcement
learning (IRL [4]) enables non-expert users to program machines
(such as robots) by demonstrating the desired behavior. IRL aims
to infer a reward function that explains the demonstrations and
that can subsequently be optimized by the machine to solve the
task. In this paper we focus on three major challenges of current
IRL methods that are related to efficiency, generalizability and
applicability.
Many early methods for IRL [5], [6], [7] required to iteratively
solve a reinforcement learning problem and were therefore only
applicable to low-dimensional and discrete Markov Decision
Processes (MDPs). Instead, modern methods [8], [9], [10], which
relate to Generative Adversarial Networks (GANs [11]) interleave
inverse reinforcement learning and reinforcement learning. These
methods can solve the inverse reinforcement learning problem
with similar computational costs compared to reinforcement
learning and are applicable to high-dimensional problems and
complex function approximators–such as neural networks–for
policy and reward function. However, these methods have only
been applied in combination with on-policy reinforcement learn-
ing methods such as TRPO [12] or PPO [13] that require a
large amount of system interactions and are, thus, not applicable
to robotic applications. An imitation learning method that is
similar to the aforementioned methods, GAIL [14], was recently
successfully applied to off-policy methods [15]. However, based
on our preliminary experiments combining existing IRL methods
such as AIRL [10], with off-policy reinforcement learning is
not straightforward. In this work, we propose an IRL method
that interleaves IRL with the off-policy reinforcement learning
algorithm SAC [16] thereby achieving higher sample efficiency
than existing IRL methods.
An additional challenge for modern IRL methods is to learn a
reward function that correctly encodes the goal of the task in
order to generalize to changes in the environment. Indeed, a
reward function may not contain any more information than a
policy. For example, in a maximum entropy RL [7], [16] setting
a reward function defined by r(s,a) = log π(a|s) will induce the
policy π(a|s). Such reward function rewards the agent for closely
following the reference policy π(a|s) which may fail to solve the
task in case of changes in the environment. AIRL addresses this
problem by enforcing a state-only reward function such that

r(s)− V (s) + γV (s′) = log π(a|s), (1)

where s′ denotes the state that was reached after applying action
a in state s, V (s) denotes the value in state s and γ corresponds
to the discount factor. Although Equation 1 is only sensible for
deterministic MDPs, AIRL showed that it may recover meaning-
ful reward functions also for stochastic MDPs. However, AIRL
depends on a specific form of the discriminator which is only
applicable if the demonstrations include direct observations of
states and actions. Our method also uses Equation 1 to learn a
robust reward function, but it does not pose any constraints on
the discriminator making it applicable to arbitrary observations.

II. IRL BY INFORMATION PROJECTION

Similar to MaxCausalEnt-IRL [7] our inverse reinforcement
method is derived from an imitation learning problem, i.e., we
aim to learn a policy that behaves similar to the demonstra-
tions. However, in contrast to MaxCausalEnt-IRL which can
be shown to minimize the forward Kullback-Leibler divergence,
KL(pexpert(o)||pπ(o)), between the observation-distribution of
the expert, pexpert(o), and the distribution induced by the
agent’s policy pπ(o), we aim to minimize the reverse KL,
KL(pπ(o)||pexpert(o)), that is,

argmaxπ(a|s)

∫
o

pπ(o) log
pexpert(o)

pπ(o)
do+ αH(π(a|s)), (2)

where α ≥ 0 can be used for regularization by increasing the
policy’s entropy H(π(a|s)). Compared to minimizing the forward
KL, minimizing the reverse KL can be especially beneficial
when multi-modal demonstrations are to be matched by a uni-
modal (e.g. Gaussian) policy [17]. A similar, yet constraint-
based formulation was used by Arenz et al. [18], where they
showed that their Lagrangian multiplier can be regarded as reward
function with its optimum at ropt(s,a) ∝ log pexpert(o(s,a)) −
log pπopt(o(s,a)), resulting in a mutual dependency between the
optimal reward function and the policy that optimizes their
objective function. Our method (as well as AIRL) use a similar
reward function. However, whereas the work by Arenz et al. [18]
involved iteratively solving the reinforcement learning problem,
our work directly optimizes Equation 2 based on a lower bound
decomposition making it applicable to more complex MDPs and
function approximators. More specifically, we iteratively increase
a lower bound of Equation 2,

argmaxπ(a|s)

∫
o

pπ(s,a) log
pexpert(o)

pπref(o)
do

+ Eπ [log πref(a|s)] + (1 + α)H(π(a|s)),

and tighten it by setting πref = π. For increasing the lower
bound we can use any reinforcement learning algorithm that can
use entropy regularization, e.g. SAC or TRPO, and perform few
policy updates optimizing a reward function of the form

r(s,a) = σ(o(s,a)) + rπref(s)− Vπref(s) + γVπref(s
′). (3)

Here rπref and Vπref are trained via supervised learning to ap-
proximate log πref by means of Equation 1; σ corresponds to
the logit produced by a discriminator that is trained via binary
cross-entropy loss to classify between samples that were collected
from the expert and samples that were collected using the policy
πref. As shown by Sugiyama et al. [19] these logits approximate
the log density-ratio, σ(o) ≈ log(pexpert(o)/pπref(o)). By using a
discriminator, our method closely connects to AIRL. However,
our method is non-adversarial and we do not need to solve a
min-max game. Instead, optimizing the function approximators
in Equation 3 corresponds to tightening a lower-bound objective
which does not depend on the agent’s policy π. For a policy that
matches the expert demonstrations, the log density-ratio should
become zero and–as shown by Ng et al. [20]–rπref(s) would
induce the same optimal behavior as r(s,a) on deterministic
systems. In practice, the discriminator might still produce large
values especially on areas with few samples and the system
dynamics are often stochastic. However, preliminary experiments
on the Maze [10] experiment show that rπref(s) still induces the
desired behavior even after changes in the environment.
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