
Air Hockey Challenge 2023: Air-HocKIT Team Report

Mustafa Enes Batur3 Vincent de Bakker3Atalay Donat3 Ömer Erdinç Yagmurlu 3

Marcus Fiedler3 Zeqi Jin3 Dongxu Yang3 Hongyi Zhou2,3 Xiaogang Jia1,2,3 Onur Celik1,3,4

Fabian Otto1,3 Rudolf Lioutikov2,3 Gerhard Neumann1,3,4

1Autonomous Learning Robots, KIT, Germany
2Intuitive Robots Lab, KIT, Germany

3Karlsruhe Institute of Technology, Germany
4FZI Research Center for Information Technology

Abstract

This work shows how we deploy deep reinforcement learning (RL) methods in
a challenging air-hockey environment. We analyze the sub-tasks present in the
environment and propose a composite agent that consists of five learning-based
sub-agents governed by a hand-crafted state machine. Additionally, we analyze the
physical constraints and suggest careful reward-shaping to overcome those. Finally,
we show the techniques that we used to reduce the sim-to-real gap challenges
modeled in the evaluation environment.

1 Introduction

The Robot Air Hockey Challenge 2023, a competition under the NeurIPS competition track, is primar-
ily organized by TU Darmstadt with a focus on bridging the sim-to-real gap in learning-based robotic
control. The challenge offers a unique platform to test and refine robotic systems in an air-hockey
environment that closely replicates real-world perturbations, including observation noise, intermittent
puck tracking loss, and imperfect controller responses, all of which add layers of complexity akin to
real-life scenarios. Our participation in this challenge centers around the deployment of advanced
reinforcement learning (RL) methods to develop a proficient air-hockey playing agent. This paper
outlines our journey through the challenge, detailing the strategies we employed and the obstacles we
overcame. Our approach, which hinges on the principles of reinforcement learning, showcases the
potential of RL in navigating and mastering the dynamic and unpredictable nature of the air-hockey
game. We delve into the specifics of our methodology, the design of our RL agents, the design of an
agent-selecting state machine, and the techniques used to reduce the sim-to-real gap.

2 Reinforcement Learning Methods for Continuous Control

In addressing the challenges presented by the challenge, we focused on the application of the deep
RL algorithm. Central to our approach is the Proximal Policy Optimization (1). PPO is renowned for
its simplicity and effectiveness in on-policy learning of continuous control tasks. In implementing
PPO, we leveraged the robust and widely-used framework provided by Stable-Baselines 3 (2).

2.1 State-Action Space Modifications

State Space. The provided observations of the air-hockey environment include joint angles q and
velocities q̇, puck positions pp = [xpuck, ypuck] and velocities ṗp = [ẋpuck, ẏpuck] in the x-y plane,
and the yaw angle ψ and radial velocity ψ̇ of the puck, as well as the opponent agent’s end-effector
position. We extend the observations by end effector Cartesian positions pee = [xee, yee, zee] = f(q)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

where f is the forward kinematics, such that the agent does not have to learn the mapping by itself.
Furthermore, we include the joint acceleration q̈ in the observation, which affects the interpolated
torque at each step because of the third-order interpolation (which we will discuss later). Lastly, we
remove the yaw angle ψ, radial velocity ψ̇ of the puck, and the opponent end-effector position from
the observation.

Action Space. The challenge setup involves differing control and simulation frequencies. While
the high-level control actions provided by the agent are limited to 50Hz, the lower-level control
operates at 1000Hz. Consequently, interpolation of 20 sub-actions between successive control actions
is necessary. We interpolate the agent with cubic splines to match the frequency discrepancy.

As a natural first step, we initially experimented with directly predicting both the desired joint
positions and velocities. However, our empirical results suggest that it is difficult for the PPO agent
to correctly capture the correlation between position and velocity predictions, even after 100 million
environment interactions, and this inconsistency leads to compromised performance and severe
constraints violation. Subsequently, we restrict the agent to predict a scalar value per joint and then
use numerical integration to obtain the desired joint positions and velocities. We tried using the
RL agents to predict the joint velocity, acceleration, and jerk. Our experiments have revealed that
predicting the desired joint acceleration results in the best performance among other representations
that we tested. Another worth-noting observation is that through our experiment, we did not observe
an advantage in controlling the last joint of the robot, which is responsible for the rotation of the
end-effector. Therefore we fixed this joint to reduce the search space for RL policy.

2.2 Composite Agent

The composite agent was constructed by integrating five independent PPO models, each specialized
in handling specific scenarios: hit, fast defend, slow defend, close prepare, and far prepare. Governed
by a hand-crafted state machine (see Appendix A), the selection of an agent at each time step was
dictated by the current observation. An issue surfaced during model transitions: switching from
one model to another after the robot had moved resulted in notably decreased performance. We
attribute this to the shift of the initial state distribution. To mitigate the initial state distribution gap,
we implemented a Jacobian-based reset agent to recover the robot to its original joint configuration
before switching to a new agent. This adjustment alleviated the performance degradation observed
during transitions. Each sub-agent was trained separately with a customized reward function. In the
following, the main ideas behind each reward function are outlined.

Hit Task. The reward function for the hitting model consists of three separate stages. Before the robot
hits the puck, moving the end effector towards the puck’s position is rewarded. Following contact
between the end effector and the puck, a larger reward, linearly scaled with the puck’s x-velocity, is
provided. Lastly, a substantial reward is granted for scoring a goal, multiplied by the puck’s velocity
and an additional base reward. The scoring reward is several magnitudes larger than all the previous
step rewards, which becomes the main objective of the model after sufficient training time. The
reward for the hitting agent is defined as

rhit =

max(0,

pp−pee

|pp−pee| · vee) if |vp| < 0.25 and pp,x < 0,

10 · |vp| if hit,
2000 + 5000 · |vp| if scored,

(1)

where pp and vp represent the puck position and velocity, respectively, the pee and vee states the
end-effector position and velocity.

Defend Task. The two defend scenarios are separated by the incoming puck’s velocity. The reward
calculation for the slow defend strategy involves two parts. In the first part of the reward in eq. (2),
a modest positive reward is granted when the end-effector contacts the puck for the first time. The
value consists of a constant term and an exponential bonus term to encourage smaller puck velocity
after contact. The reward for the slow defend agent is defined as

rdefend_slow =

30 + 1001−0.25|vp| if vp > −0.2 and ee touches puck for the first time,
· · ·+ 70 if |vp| < 0.1 and − 0.7 < pp,x < −0.2 and t = T,

0.01 otherwise.
(2)

2

We used a binary reward for the fast-defend agent. The algorithm receives a negative reward with a
value of −100 for being scored by the opponent. The reward remains 0 for all the other cases.

Prepare Task. The two preparation scenarios are distinguished by the puck’s proximity to our
goal along the x-direction. For the close preparation, the agent is rewarded for moving the puck
to a pre-defined target position, e.g., (−0.5, 0) in our case, plus a small reward for moving the
end-effector towards the puck. Additionally, a large reward of 2000 is granted when the success
criterion is fulfilled. The reward for close preparation is defined as

rproximity =

{
max(0,

pp−pee

|pp−pee| · vee) if |vp| < 0.25 and pp,x < 0,

0 otherwise,
(3)

rbonus =

{
2000 if |vp| < 0.5, −0.65 < pp,x < −0.35 and −0.4 < pp,y < 0.4,

0 otherwise,
(4)

rclose_prepare = rproximity + rbonus + 10max(0,min(0.5,
(−0.5, 0)T − pp
|(−0.5, 0)T − pp|

· vp)). (5)

In contrast, the far prepare agent aims solely to return the puck to the opponent while avoiding
faults. This approach stems from our observation that the PPO algorithm encounters challenges when
exploring action sequences requiring the end effector to first maneuver to the puck’s back-side for
preparation. As a result, the reward function eq. (6) is identical to the hit reward with the caveat that
the large reward is bound to getting the puck far enough into opponent territory without any puck
velocity bonus, upon which the episode ends. The reward function for far preparation is given as

rfar_prepare =

max(0,

pp−pee

|pp−pee| · vee) if |vp| < 0.25 and pp,x < 0,

3000 if pp,x > 0.2,

10 · |vp| otherwise.
(6)

2.3 Dealing with the Challenge Constraints

The challenge imposes several constraints on the robot to ensure that the agents operate within the
limitations of the real hardwares. The agent needs to respect limits on the joint angles and velocities
(7), and the robot should not intersect the table (8). Additionally, the end-effector should stay inside
the table’s boundaries (9) and close to the table surface (10).

ql < q < qr, q̇l < q̇ < q̇r (7)
zelbow > 0.25, zwrist > 0.25 (8)
lx < xee, ly < yee < uy (9)

htable − htolerance < zee < htable + htolerance (10)

The evaluation criteria heavily weigh the extent to which agents comply with the established con-
straints. Given this, strict adherence to these constraints becomes important, even at the cost of
potential performance reductions. In light of these considerations, we dedicated considerable time
to fine-tuning the model to ensure that it consistently produces violation-free actions. Our initial
approach involved straightforwardly penalizing the agent with a substantial negative reward for
any steps that violated the constraints. However, this approach revealed a significant flaw during
experiments. We observed that once the agent entered a state of constraint violation, it became
exceedingly difficult for the agent to recover, leading to a series of negative rewards for the remainder
of the episode. As a result, the agents tended to learn a counter-productive policy of always staying
idle, as remaining stationary was more rewarding than attempting to act.

To tackle the challenge of constraint violations while keeping the policy from being "lazy," our
approach involves terminating an episode immediately if the agent commits any violation. This
method effectively addresses the issue of accumulating penalties due to the agent’s inability to recover
from a violating state. Furthermore, this approach does more than prevent the accrual of penalties;
it actively promotes the generation of actions that adhere to the constraints. This is achieved by
assigning positive rewards to each step where the agent successfully operates within the set constraints,
encouraging the agent to engage in violation-free behavior consistently.

3

(a) (b) (c)

Figure 1: (a) Leraning curve of the PPO agent. Reduction of (b) observation noise and (c) model
and controller mismatch. (b) shows the observed (blue), true (orange), and corrected (green) puck y
position of one episode during evaluation. The red bands indicate loss of tracking events. Similarly,
(c) shows the observed (blue), simulated (orange), and corrected (green) end effector z position.

2.4 Dealing with the Sim-to-Real Gap

The challenge models a sim-to-real gap by modifying the observations, model dynamics, and
controller characteristics during evaluation. The evaluation environment is not accessible to the users.
We investigate these modifications by analyzing the observations during the evaluation and adjusting
our training environments to improve the agent’s robustness against unseen changes.

Observation Noise. The observation noise during evaluation consists of additive noise on the puck
positions and velocities and loss of puck tracking. The latter means that the observed puck position
stays constant and hence, the observed puck velocity is zero. This is a major change for the agent as
this case does not appear during training at all. Both effects are shown in Figure 1b. We replicate both
the additive noise and loss of tracking in our training environment. We approximate the additive noise
component with a Gaussian distribution that is estimated with maximum likelihood from observed
and smoothed puck trajectories. Additionally, we apply the Kalman filter to the observations (3)
and provide the estimated mean position as observation to the agent. Additionally, we discard the
observed puck position and provide the estimated positions in case tracking of the puck is lost. We
estimate the puck’s velocity with finite differences of the estimated puck position. Our resulting
correction in Figure 1b is shown in green.

Model dynamics and controller characteristics. For the same initial conditions, the observed
robot movements during evaluation differ from the movement during the training environment (see
Figure 1c). In our recorded data, this difference can be up to 1cm, which is critical for tight constraints
such as staying within 2cm of the table surface. This mismatch can be explained by differences in
the model and controller parameters, including masses, friction coefficients, damping coefficients,
and proportional and differential gains of the controller. We aim to estimate the correct values of
these entities by framing it as a black-box optimization problem. The objective is to minimize the
differences between observed and simulated joint movements. We solve this problem using the
Covariance Matrix Adaptation Evolution Strategy algorithm (4). Figure 1c (green curve) shows the
movement after updating the model and controller parameters, which achieves a reduction of the
root-mean-squared error of the end-effector position by 80.5% .

3 Conclusion

In this work, we have shown how we can train RL agents to solve the different tasks in the robot
air hockey game. A key aspect of our approach was the selection of the state and action spaces,
coupled with carefully crafting stage-specific reward functions. These adaptations proved essential
for simultaneously accomplishing the game’s targets and adhering to its inherent physical constraints.
Additionally, we have presented how we dealt with the sim-to-real gap. Interesting future work would
include training policies that can learn highly multi-modal policies such that the agent can choose
between different strategies and therefore be less predictable to the opponent.

4

References
[1] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization

algorithms,” 2017.

[2] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3:
Reliable reinforcement learning implementations,” Journal of Machine Learning Research,
vol. 22, no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-1364.html

[3] R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.

[4] N. Hansen, “The cma evolution strategy: A tutorial,” 2023.

5

http://jmlr.org/papers/v22/20-1364.html

A State Machine Definition

hit ik

defend

prepare

1
2

3 4

5

6

Figure 2: State Machine of the composite agent. The figure visualizes the different states of the
the composite agent. In states hit, defend, prepare the hitting, defending and preparation agent is
activated respectively. In the ik state the agent is supposed to go back to the initial joint position from
which it can transition to the different states. The conditions for transitioning are shown in Table 1.

Condition Expression
1 ∆pp,x = pp,x − 1.51

(∆pp,x > −0.2) ∨ (∆pp,x + 1
2vp,x > −0.2) ∨ (pp,x ≤

pee,x) ∨ (|pp,y| > m) ∨ |pp,y + 0.75vp,y| > m
2 (vp,x > −0.2) ∨ (pp,x < pee,x)
3 |pp,y| < 0.41 ∨ pp,x > −0.2

4 [(∆pp,x < −0.2) ∧ (max(|vp,x|, |vp,y|) < 0.05)] ∧
[(∆pp,x ≤ −0.8) ∨ |pp,y| > m]

5 [((∆pp,x < 0.3) ∧ (vp,x < −0.5)) ∨ (vp,x < −1.5)] ∧ (pee,x < pp,x)

6 [(∆pp,x < −0.2) ∧ (∆pp,x + vp,x < −0.2)] ∧ (vp,x <
0.5) ∧ (|vp,y| < 0.5)
∧¬ [(|pp,y| > m) ∨ (|pp,y + 0.75vp,y| > m)] ∧ (∆pp,x + 0.75vp,x >
−0.8)

Table 1: State transition conditions for the state machine in Fig. 2.

B List of Hyperparameters

The hyperparameters that we have set during training are listed in table 2.

Hyperparameter Value
Number of environments 40

Number of steps 512
Batch size 512

Learning rate 5 · 10−5

Gamma [Defend] 1
Gamma [Hit, Prepare] 0.99

Number of epochs 10
Network architecture [64, 64]
Table 2: List of hyperparameters.

6

	Introduction
	Reinforcement Learning Methods for Continuous Control
	State-Action Space Modifications
	Composite Agent
	Dealing with the Challenge Constraints
	Dealing with the Sim-to-Real Gap

	Conclusion
	State Machine Definition
	List of Hyperparameters

