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1 Introduction

In this document, we present the applied approach in applying Reinforcement Learning (RL) for the
development of the robotic AirHockeyAgent. In particular, we address the problem by employing
Deep RL techniques and RL Optimized Rule-Based Controllers. Indeed, we train several low-level
agents to perform some basic tasks in the game, and combine them via a rule-based controller to play
the whole game.

In what follows, we present how we map the AirHockey environment to a Markov Decision Process
(MDP) the employed Deep RL techniques, the developed Rule-Based controllers optimized via RL,
and how we treat the noise in the evaluation environment.

2 AirHockey as an MDP

In this section, we present how we model the AirHockey environment as an MDP by defining the
state-action space and reward functions employed.

State Space: We slightly modify the observation provided by the original environment. Indeed, we
decided to discard the rotation-axis elements of the original observation, add the x and y component
of the end effector computed with forward kinematics and add a flag indicating whether a collision
happened between the end-effector and the puck. The resulting state space is then scaled between -1
and 1.

s = [ppuck ṗpuck q q̇ pee ṗee collision_flag]
To smooth out the noise in the puck position and velocity observation, we employed a simplified
Kalman Filter [Welch, 2020]. In order to deal noise in the joint positions and velocities, we directly
use the agents actions in the previous step and ensure the requested robot poses are valid.

Action Space: We employ a high-level control setting where the agent controls either acceleration of
the joints or directly the end-effector position which are then converted to joint position and velocities.

Reward function:: The designed reward is task-dependent, given that we train low level policies for
each low level task. Moreover, we shape the reward function instead of providing a sparse reward
for the completion of these tasks. Being that this reward shaping greatly affects the performance of
the learning algorithm, we devise different reward functions for the DeepRL and Rule-based agents.
Nevertheless, in each case, the reward function follows the following general structure:

r(s, a) = rt(s, a) + rc(s, a),

where rt(s, a) is the task depended reward and rc(s, a) is the penalty for violating the constraints.
We describe each specific form of rt in Section 3 and Section 4

3 AirHockey via Deep RL

We employ a DeepRL approach to train agents for the defend and counter-attack tasks. Both agents
were trained employing the Soft Actor-Critic [SAC, Haarnoja et al., 2018] algorithm in combination
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with ATACOM Liu et al. [2022]. This agent controls desired joint accelerations, which are then
converted via ATACOM to joint position and velocities. In this setting, we opted for the control
of acceleration as it was difficult to train an agent that directly controls the joint positions while
respecting the constraints, especially when it was transferred to the evaluation environment.

In order to comply with the constraints, the single integration mode of ATACOM proved insufficient
as it consistently violated joint velocity limits. Despite encountering challenges in implementing the
double integration setting of ATACOM, we achieved success in ensuring that the agent adhered to the
specified constraints. This was achieved by constraining joint accelerations within the range of -1 to
1.

3.1 Reward Structure

Defend and Counter-attack We train two agents for the defend and counter-attack tasks. In these
tasks the episode starts with the puck moving towards our goal. In the both cases, the agent receives a
high penalty (-100) when the puck breaches our goal. When the agent successfully interacts with the
puck, a reward (+10) is granted, coupled with reward proportional to the norm of the puck’s velocity,
with a negative sign while defending and positive sign while counter-attacking. This incentivizes the
agent to interact with the puck and lower its velocity while also protecting the goal in the defend task,
while pushing back the puck in the counter-attack. Moreover, in the counter-attack, the agent can also
score in the opponent’s goal, for which he receiver an additional large bonus of 1000.

Return Home We define an additional task to train an agent to return to the initial position of the
robot. At each step of the training process, the agent incurs a penalty based on the distance to the
home configuration, r = −∥q− qhome∥.

3.2 Training via Curriculum Learning

To train each agent for the aforementioned task, we applied curriculum Learning [CL, Narvekar et al.,
2020]. Indeed, we devise manual curriculums across three levels of complexity—easy, medium, and
hard tasks. These levels differ in the initial configuration of the puck, considering its position and
velocity. In the easy task, we constrained the velocity along the y-axis and kept the velocity in the
x-axis low. Additionally, we positioned the puck at the end of the table, allowing the agent more
reaction time. For the hard task, both x-axis and y-axis velocities were increased, and the puck’s
initial position was set in the middle of the table. The medium task served as an intermediary between
the hard and easy tasks.

We trained the agents for a total of 8000 epochs, where each epoch consists in 30 episodes of
experience. The first 3000 epochs the agent was trained with the easy defend tasks. After these initial
epochs, we perform a soft switch to the medium task over the next 1000 epochs by increasing the
proportion of the episodes drawn from the medium task. Between epoch 4000 to 6000, we exclusively
train on the Medium task. From epoch 6000 to 7000 we progressively switch to the hard task, and
then exclusively train on experience generated on the Hard task.

To train an agent to return to the home configuration from any arbitrary position, we curated a dataset
of configurations obtained from various simulations of the other tasks. These configurations serve as
initial states for each training episode. The episode terminates only after a certain number of steps in
order to teach the agent to remain in the home configuration once it reaches it. For this particular task
the state space includes only the joints positions and velocities.

4 RL-Optimized Rule-based Controllers
For the hit and prepare tasks, we developed a Rule-Based Controllers to be optimized via Policy Gradient
Parameter-based Exploration [PGPE, Sehnke et al., 2008] following the approach in Likmeta et al. [2020]. In
this case, we directly control the position of the end-effector. We transformed the actions from the task space
into the joint space, combining inverse kinematics and Anchored Quadratic Programming [AQP, Liu et al., 2021].
We divided the policy set into 2 main branches that resemble the challenge tasks: hit and prepare. Each policy is
further divided into phases, common to both of them:

• Adjustment: move the end-effector on (i) the line linking the puck and the goal for the hit; (ii) the vertical line
parallel to the short side, passing through the puck, for the prepare;
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(a) Coordinates used to find the next desired
position of the end-effector. the puck is the
red circle, the grey circle is the mallet and the
blue circle is the next desired position of the
mallet.
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(b) Finite state machine for controlling task changes

Figure 1: Components of the rule-based controllers: (a) definitions of dβ and ds, (b) representation
of the Finite State Machine

• Acceleration: accelerate the end-effector and hit the puck. The hit policy hits the puck to score a goal, while
the prepare one makes a more soft bump, in order to re-adjust the puck’s position;

• Final: this phase only applies to the hit policy. Here, the agent keeps hitting the puck making it reach a desired
acceleration, then slowly stops the end-effector following a curved trajectory.

In particular, the hit policy computes two quantities, dβ and ds in the following way:

dβ =


(θ0 + θ1 · tphase · dt) · correction
correction

2

(θ0 + θ1 · dt) · correction
, ds =


θ2 adjustment phase
dst−1+θ3·tphase·dt

radius+rmallet
acceleration phase

constant slow-down phase
,

where radius is the distance between the center of the puck and the end-effector, while correction is always
defined as:

correction =

{
180− β ypuck ≤ table_width

2

β − 180 ypuck > table_width
2

.

For what concern the prepare policy, the quantities dβ and ds are computed as:

dβ =

{
θ0 · tphase + θ1 · correction
correction

, ds =

{
5 · 10−3 adjustment phase
θ2 acceleration phase

,

where correction is defined as:

correction =

{
β − 90 ypuck ≤ 0

270− β ypuck > 0
.

All the quantities appearing in the computation of dβ and ds are explained graphically in Figure 1a.

The major issue we faced while developing this solution was the extreme sensitivity of the parameters w.r.t. the
constraints as the return landscape for our rule-based policies was highly non-smooth.

In particular, for what concerns the hit task, the reward function is based on the construction of a triangle with
the opponent’s area and the puck as vertices (Figure 2). If the puck, after the hit, lies inside the triangle, a reward
is assigned, proportional to the puck’s velocity; if the puck is outside the triangle, a penalty is assigned. The
more the puck is outside the polygon, the bigger the penalty.

reward_before_hit =


− ||eepos−puckpos||

0.5·table_diag no hit

A+B · (1−(2·α
π
)2)·||vee||

max_vel hit the puck
1

1−γ
goal

, (1)
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(a) Triangle computation at step t. (b) Puck moving and reward assign-
ment at step t+ 1.

Figure 2: Triangle construction for assigning reward after the mallet hit the puck.

Where A and B are constant values, respectively equal to 100 and 10, table_diag is the diagonal of the table,
while α = arctan 2(eey_vel,eex_vel). Finally max_vel is a constant value equal to the maximum velocity
observable in the environment.

If the agent hits the puck, it receives an instantaneous reward and, after that, the triangle approach is applied.

reward_after_hit =

{
B + ||vpuck|| puck inside the triangle
−diff_angle puck outside the triangle

, (2)

where B is a constant equal to 10 and

diff_angle = arctan 2(vypuck , vxpuck )− angle_border, (3)

where angle_border is the angle between the puck velocity vector and the closest triangle border.

5 Hierarchical agent
Finally, we combined the described solutions into a single agent which operates at a higher level, dynamically
selecting the most appropriate task during the game. To select the task, this agent relied on two components:
the Switcher and the Finite State Machine. The switcher is the component developed to select a new task when
the current one is completed. It consists in a simple rule-based controller which decides the task to employ
via geometric considerations. After its last action, each task sends a signal to the high-level agent, notifying
its completion. The switcher will select another task, which can potentially be also the same as before. The
Finite State Machine (FSM) is added as a second layer of safety to mitigate possible constraints violations while
switching tasks. It forces the agent, at the end of each task, to go back to the Home and start selecting a new task
from there. The structure of the FSM can be observed in Figure 1b. The agent always starts a match in the Home
state, it is possible to remain in the same state but not switching from a task to another without passing from the
Home state.

6 Conclusion
In this paper, we describe the approach developed by the RL3 Polimi team for the control of the AirHockey
agent during the Robot Air Hockey Challenge 2023. We propose a two-level approach, where low-level policies
are trained to perform base tasks in the game like hitting, defending and counter-attacking, while a high-level
rule-based controller is employed to decide which low-level policy to employ in each step. The low-level
policies were trained via DeepRL or Rule-based RL optimization according to the task. The final proposed agent
achieved a 50% win-rate in the final phase of the competition, mostly respecting the robot-constraints even under
noisy observations and displaying a satisfactory game-playing ability.
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