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Fig. 1: Top: Sequence of real-world human-robot interaction. The human casually looks over the phone ignoring the robot that tries to deliver safely a
cup of water. While the human reaches for an orange, the robot smoothly avoids collisions, maintaining the glass in an upward position. Bottom: The
simulated digital twin of the real scene that illustrates the signed distance fields of 0.1m (red points) of the human, the robot, and the table, that are used
as constraint models in our Safe Reinforcement Learning algorithm.

Abstract— Safety is a fundamental property for the real-
world deployment of robotic platforms. Any control policy
should avoid dangerous actions that could harm the environ-
ment, humans, or the robot itself. In reinforcement learning
(RL), safety is crucial when exploring a new environment to
learn a new skill. This paper introduces a new formulation of
safe exploration for robotic RL in the tangent space of the
constraint manifold that effectively transforms the action space
of the RL agent for always respecting safety constraints locally.
We show how to apply this approach to a wide range of robotic
platforms and how to define safety constraints that represent
dynamic articulated objects like humans in the context of
robotic RL. Our proposed approach achieves state-of-the-art
performance in simulated high-dimensional and dynamic tasks
while avoiding collisions with the environment. We show safe
real-world deployment of our learned controller on a TIAGo++
robot, achieving remarkable performance in manipulation and
human-robot interaction tasks.

I. INTRODUCTION

Safe deployment of general-purpose robotic systems in
the real world is an overarching goal of safe learning
methods [1]. We envision robots learning complex high-
dimensional tasks in dynamic, unstructured environments
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following the paradigm of Deep Reinforcement Learning
(RL) [2]. In the standard RL setting, the agent interacts with
an environment of unknown dynamics, collecting experience
for learning a suitable behavior (policy). The exploration of
a Markov Decision Process (MDP) for collecting experience
can lead to hazardous situations that can damage the robot
or the environment [3]. In this work, we investigate the
problem of safe exploration in Deep RL for different robotic
tasks with high-dimensional state and action spaces, such as
robotic manipulation. We also focus on environments that
can dynamically change, e.g., due to the dynamic behavior
of a human in a Human-Robot Interaction (HRI) setting.

Safe learning for control and RL is a field of increasing
interest in light of the different application areas where
autonomous systems should operate [4]–[7]. Three main
approaches for SafeRL are particularly relevant to our work.
First is the Safe set approach, whose objective is to keep the
agent in the set of states considered safe [3], [8]–[13]. The
Safe set approaches rely either on a predefined safety set
and backup policies or, starting from an initial safe policy,
expand the safe set during learning. The second line of work
formalizes the problem as a Constrained Markov Decision
Processes (CMDP) [4]. The objective of CMDP is to learn an
optimal policy where the expected (discounted) cumulative
constraint violation does not exceed a threshold. To solve the
problem under this formulation, many different approaches
have been developed based on Lagrangian optimization [14]–
[18], or using an additional reward signal to penalize con-
straint violations [19], [20]. More recent approaches [21],
[22] use state augmentation, which transforms the CMDP
problem into an unconstrained one by incorporating the
constraint information into the policy.



Safe exploration methods address the safety problem at
each step when interacting with the environment [23]. In this
setting, we define as safe the behavior of an agent that com-
plies with a set of constraints. These constraints are usually
predefined, approximated, learned, or inferred from an initial
safe policy. The algorithm directly samples a safe action
or modifies one to enforce constraint satisfaction. These
approaches are based on either Lyapunov functions [7],
[24], [25], Hamilton-Jacobi reachability [26], Control Barrier
Functions [27], [28], constraint linearization [29], [30] or
planning [31], [32]. While some of these methods have
already proven to be effective in some controlled tasks [26],
[28], the objective of this work is to lay the foundations for
extending the applicability of safe exploration techniques to
the complexity of real-world constraints for safe robotic RL.

One of the most promising ways to impose safe learning is
by Acting on the TAngent Space of the COnstraint Manifold
(ATACOM) [30], a method that effectively maps the action
space of an RL agent to the tangent space of the constraints,
i.e., ensuring local constraint satisfaction. To allow such
approach to be effectively used for safe exploration in RL
of high-dimensional robotic tasks of different complexity,
like navigation, manipulation, HRI, we extend ATACOM
towards three key directions. (a) We generalize ATACOM
to nonlinear affine control systems, describing a wide range
of robotic systems. (b) We show how to define complex
constraints that involve the uncontrollable environmental
state in ATACOM to allow the agent to explore safely even
with dynamic objects in the domain. (c) We provide an in-
depth discussion about the tangent space of the constraint
manifold and show how to increase numerical stability.

Thanks to the generalized formulation of ATACOM, we
can transform the action space of RL agents for acting on
the constraint manifold of both hand-designed (e.g., joint
limits) and learned constraints (e.g., for avoiding contact with
humans), resolving various classes of constraints for different
tasks (e.g., differential drive constraint), while ensuring the
deployability of the learned policy at test time, since ATA-
COM is always active. We provide experimental evaluations
on different robotic simulated tasks for learning navigation,
manipulation, and HRI, and we show the superior perfor-
mance of the generalized ATACOM agent in terms of safety
and task success-rate against representative baselines from
the safe exploration literature. Crucially, we demonstrate
the real-world applicability of ATACOM in manipulation
and HRI tasks with complex learned constraint manifolds
(e.g., human manifold in Fig. 1), showcasing the ability to
preserve local safety during deployment without significant
performance losses due to sim-to-real gaps.
Related Work in Safe Learning for Robotics
Both safety and adaptability concern all robotic tasks, from
manipulation [33], [34], & navigation [35], [36], to loco-
motion [37] & HRI [38]–[41]. These two requirements are
the main focus of the vast literature on SafeRL [1]. Many
different formulations and solutions have been proposed to
face this problem, e.g., uncertainty-aware model-based RL in
robot navigation tasks [42]–[44], offline learning for finding

unsafe zones and recovery policy for a surgical robot is
proposed in [45] and for locomotion in [46]. Many works
adopt the idea of adding a safety layer on the RL-policy,
that can adapt an unsafe action to a safe one in conjunction
with reachability analysis [32], [47]. An optimization layer
was used in [48] to train a robot-reaching task in the real
world. An ensemble of policies is used in [49], from which
the most likely safe policy is transferred to a real robot
playing air hockey through episodic interaction. An RL
framework that filters suboptimal actions in the domain of
HRI is introduced in [50], but was not demonstrated on a
real-world task. In this paper, we introduce a generalized
framework for safe exploration in RL of robotic tasks that
operates on the tangent space of the constraint manifold [30]
satisfying both handcrafted and learned constraints [30]. We
showcase real-world performance in challenging tasks, like
HRI, demonstrating that our framework can enable safe robot
learning of various tasks across different application areas.
Problem Statement
Safe Reinforcement Learning (SafeRL) applies to prob-
lems modeled as a CMDP [4] defined by the tuple <
S,A, P, γ,R, C >, where S is the state space, A is the
action space, P : S × A × S → [0, 1] is the transition
kernel, γ ∈ (0, 1] is the discount factor, R : S × A → R
is the reward function, and C := {ci : S → R|i ∈ N}
is a set of constraint functions. We approach the problem
of safety in RL through the glance of safe exploration
that prevents constraint violations throughout the learning
process. Therefore, we formalize our problem as follows,

max
π

Eτ∼π

[
T∑
t

γtr(st,at)

]
s.t. ci(st) ≤ 0, i ∈ {1, 2, ..., N}, t ∈ {0, 1, · · · , T}

where τ = {s0,a0, · · · , sT ,aT } is the trajectory under
policy π, and at ∼ π(·, st) is the action sampled from policy
π. The objective is to maximize the discounted cumulative
reward, while satisfying all constraints at each step.

II. NOVEL FORMULATION OF ATACOM FOR MOBILE
ROBOTS AND MANIPULATORS

In this section, we provide a novel and more general for-
mulation of the ATACOM method. Our proposed formulation
allows applying ATACOM for learning a wide variety of
mobile robotics and manipulation tasks. Moreover, we handle
some critical aspects of the original ATACOM, improving
its numerical stability, learning performance, and safe-space
structure. Finally, we show how to model complex real-
world collision-avoidance constraints using learned Signed
Distance Function (SDF)s, that allow safe learning of com-
plex tasks, as in the domain of HRI. We first introduce
the original design of ATACOM. Then, we introduce our
reformulation to it that allows its generalization to a broader
class of problems.

A. Original ATACOM Formulation

ATACOM [30] is a method for safe exploration in the
tangent space of the constraints’ manifold. It converts the



constrained RL problem to a typical unconstrained one,
while handling both equality and inequality constraints. This
method allows us to utilize any model-free RL algorithm,
while maintaining the constraints below a designated tol-
erance. In ATACOM, the state space S is separated into
two sets, the controllable state space Q ⊂ Rn and the
uncontrollable state space X ⊂ Rm, i.e., s = [q⊺ x⊺]⊺ ∈
Rn+m. ATACOM prescribes that all k constraints are defined
on the controllable variable c(q) ≤ 0, where c : Rn → Rk

is differentiable. ATACOM constructs a constraint manifold
by introducing the slack variable µ ∈ Rk into the constraint

M =

{
(q,µ) : c̄(q,µ) = c(q) +

1

2
µ2 = 0, q ∈ Q,µ ∈ Rk

}
(1)

The tangent-space bases of the constraint manifold are deter-
mined by computing the null space N(q,µ) ∈ R(n+k)×n of
the Jacobian matrix J(q,µ) =

[
∂
∂q c̄(q,µ)

⊺, ∂
∂µ c̄(q,µ)

⊺
]
∈

Rk×(n+k). To simplify the notation, we use c̄, N , and J ,
without explicitly writing the dependency on the input. The
velocity of the controllable state can be determined by[

q̇
µ̇

]
= Nα−KcJ

†c̄ (2)

with the action α ∼ π(·|q,x) sampled from the policy. The
second term on the right-hand side, with the pseudoinverse
of the Jacobian J† and the gain Kc, is the error correction
term that forces the agent to stay on the manifold, and it is
necessary when using time discretization.

B. Safe Exploration with Generalized ATACOM on Nonlin-
ear Affine Control Systems

The original formulation of ATACOM assumes a holo-
nomic system, i.e., it assumes that we can set an arbi-
trary derivative of each generalized coordinate describing
the mechanical system. However, many robotics systems of
interest are subject to non-holonomic constraints, i.e., non-
integrable constraints, such as the differential drive and the
bicycle model, which prevent imposing arbitrary velocities
or accelerations on the system’s state variables.

To extend the applicability of ATACOM to a broader class
of systems, we reformulate it for nonlinear affine control
systems [51]. In this setting, we assume that the system’s
velocity of the generalized coordinates can be expressed as

q̇ = f(q) +G(q)a, (3)

with the control action vector a, and two arbitrary (nonlinear)
vector functions of the current state variable f(q),G(q).

Following the original ATACOM derivation, we consider
the constraint with uncontrollable state, c(q,x) ≤ 0. The
constraint manifold can be defined as M = {(q,x,µ) :
c̄(q,x,µ) = 0}. Assuming that the velocity of the state
variables x involved in the constraints are known or esti-
mated, and using the dynamical system in Eq. (3), we write
the time derivative of the constraint function c̄(q,x,µ) as

d

dt
c̄(q,x,µ)= Jqq̇ + Jxẋ+ Jµµ̇

= Jqf(q) + JqG(q)a+ Jxẋ+ Jµµ̇

= F (q,x, ẋ,µ) + JGa+ Jµµ̇, (4)

with Jq = ∂
∂q c̄(q,x, ẋ,µ), Jx = ∂

∂x c̄(q,x,µ), and Jµ =
∂
∂µ c̄(q,x,µ) the Jacobian matrices w.r.t. the q, x, and µ
variables respectively, F (q,x, ẋ,µ) = Jqf(q) + Jxẋ, and
JG = JqG(q). Again, we drop the explicit dependency of
the variables q, µ and x to simplify the notation.

We can now compute the safe action by imposing zero
velocity of constraint violation. Setting the right-hand side
of Eq. (4) to 0 and solving for a and µ̇ we obtain[

a
µ̇

]
= N[G,µ]α− J†

[G,µ]F (q,x, ẋ,µ), (5)

where J[G,µ] is the concatenation of the JG and Jµ matrices,
and N[G,µ] is the null space of J[G,µ]. As done in ATACOM,
it is also possible to add an error correction term −KcJ

†c̄ to
the applied control action computed in (5): this term makes
the system more responsive and able to deal with equality
constraints. By the special choice of slack variable function
discussed in Section II-C, we can ensure J[G,µ] is full rank
and invertible when µ is well-defined. We will introduce how
the null space matrix is obtained in Section II-C.

With the extended formulation in Eq. (5), we can compute
the control action for a wide variety of common robotics
kinematics. As an example, we will consider the differential
drive kinematics, for which the mobile robot can only move
forward/backward along the heading direction and rotate
around its center axis. The differential drive kinematics can
be cast as a nonlinear affine control system as follows

q =

xy
θ

 f(q) =

00
0

 G(q) =

cos θ 0
sin θ 0
0 1

 a =

[
v
ω

]
(6)

with the Cartesian coordinates x and y, the current yaw angle
θ, the angular velocity ω, and the speed v along heading
direction. Given this definitions, it is easy to derive a safe
control action using Eq. (5). A similar derivation holds for
other kinematics models, e.g. the bicycle kinematics.

Our newly proposed formulation presents a clean and
general way to handle systems controlled in veloc-
ity/acceleration/jerk or any other arbitrary derivative: this
objective can be easily achieved by adding all non-controlled
derivatives as state variable q and defining appropriately the
f(q) and G(q) functions.

C. Robust Tangent Space Bases

An ATACOM agent explores the tangent space of the con-
straint manifold. Therefore, obtaining smooth and consistent
bases of the tangent space is essential for training the RL
policy. The original method [30] constructs the constraint
manifold by introducing the slack variables in quadratic
form and determines the unique tangent space bases by QR
decomposition of the Jacobian matrix and Reduced Row
Echlon Form (RREF). However, this approach may derive
inconsistent bases and suffers numerical stability issues. In
this work, we further investigate the numerical problems
and introduce a new type of slack variable and a new
way of determining the tangent space bases that keep the
consistency.



a) Projected Tangent Space Bases: The tangent space
bases are usually determined by computing the null space
of the Jacobian matrix using QR [52] or SVD [53] de-
composition. One desired property is to have continuously
varying tangent space bases. However, there is no continuous
function that generates the null space [54]. QR/SVD-based
methods use the Householder transformation, which applies
a sign function sgn(·) during the Tridiagonalization. The
null space bases can flip the direction when a diagonal
element changes sign. However, [54] proved the continuity of
the projection-based method to generate tangent space bases
under certain conditions. Following their idea, the projected
null space of the Jacobian matrix is determined by

N = (I − J⊺(JJ⊺)−1J)Z (7)

where J is the Jacobian of the constraint manifold, Z =
[In 0k]

⊺ ∈ R(n+k)×n are the augmented bases that combine
the normalized action-space bases In ∈ Rn×n with 0n ∈
Rn×k. Eq. (7) projects the action bases onto the tangent
space of the constraint manifold. Notice that the first n
dimensions of the augmented state correspond to the original
action space, and that the project bases are not orthogonal.

b) The SoftCorner Slack Variable: In the original man-
ifold construction, the mapping between the constraint c(q)
and µ in Eq. (1) is not unique, causing an ambiguity in the
tangent space bases. As an example, Fig. 2 (right) illustrates
the constraint manifold q + µ2 = 0 for the inequality
constraint q < 0, where the arrow shows the tangent space
basis. The basis of the tangent space at configuration q0
leads to an opposite direction along the q-axis because
the slack variable µ is different, as shown by the points
(q0, µ1) and (q0, µ2). However, as the slack variable is not
observed by the agent, this inconsistency of the basis will
cause failures during training. Instead, We can formulate a
bijective mapping between the original constraint and the
slack variable, such as the exponential form exp (βµ). Here,
β is a positive scalar controlling how strong the original
action space shrinks as the constraint function approaches the
limit: lowering the β parameter makes the action space more
sensitive to the value of the constraint, as the green curve
shown in Fig. 2 (left). However, this formulation morphs the

q

µ

q0

(q0, µ1)

(q0, µ2)
State q

A
ct

io
n
a

=
q̇

SoftCorner Quadratic Exponential

Fig. 2: Comparison of different types of slack variables. Left: The constraint
manifold defined by different type of slack variables for q < 0. The
quadratic slack variable suffers ambiguity issues at point (q0, µ1) and
(q0, µ2). The tangent space bases (orange arrow) leads to opposite direc-
tions along q-axis. Right: The morphing of the action space with different
slacks. The red dashed lines define the original action limits −1 < a < 1
and black dashed lines are constraints −1 < q < 0. The shaded area defines
the projected action space for each state q following Eq. (7)

action space even in states that are far away from constraint
violations, as shown in Fig. 2 (right). To avoid this issue, we
introduce the SoftCorner slack variable parametrization

c(q,x) +
1

β
log (1− exp(βµ)) = 0, (8)

where β here has the same interpretation as in the exponential
parametrization. In addition, the SoftCorner slack variable
maintains the original action space when the states are far
from violating the constraint. This slack definition is not
sensitive to the metric spaces in which the constraints are
defined, such as the combination of the joint space and
Cartesian space constraints.

D. Collision Avoidance with Learned SDFs

Collision avoidance constraints are formulated as main-
taining a sufficient distance margin between two ob-
jects. Typical approach approximate obstacle with primitive
shapes, such as spheres. However, this approach is not
feasible for complex or dynamic shapes, such as a shelf or a
human, as the computation load grows quadratically with the
number of primitives. The SDF is a prominent representation
for expressing distance w.r.t. a given surface by defining a
function that precomputes the distance of an arbitrary query
point in the Cartesian space. As SDFs provide a smooth
differentiable function, we will discuss how to employ them
together with ATACOM.

We rely on Regularized Deep Signed Distance Fields
(ReDSDF) [55], which approximates the distance fields of
objects with complex shapes or even articulations, such as
humans or robots, and provides distances in a regularized
form. ReDSDF uses a neural network to approximate the
distance of a query point p w.r.t the center of the articu-
lated object, specified by the joint configuration qo. Unlike
DeepSDF [56] that focuses on reconstructing the object’s
surface as close as possible to the zero level-set, the training
in ReDSDF integrates an intuitive distance inductive bias,
allowing the learning of distance fields at any scale.

The ReDSDF approximates the closest distance of a query
point p ∈ R3 in Cartesian space w.r.t the object. To integrate
the collision avoidance constraints in ATACOM, we define
multiple Point of Interest (PoI) located at relevant positions
of the robot. We can compute the Cartesian position of
the PoIs pi given a robot configuration q using forward
kinematics pi = FKi(q), i ∈ [1, 2, ..., N ]. We formulate
the collision avoidance constraints as

ci(q, qo) : δi − d(pi(q), qo) ≤ 0, i ∈ (0, 1, ..., N), (9)

where δi are thresholds assigned for each PoI and
d(pi(q), qo) is the distance computed by the ReDSDF
model. A key advantage of using ReDSDF is that we can
compute the gradient w.r.t the robot configuration q as
∇qci = −∇pi

d · ∇qpi, with ∇pi
d the gradient of the

distance field and ∇qpi the Jacobian of the PoI w.r.t the robot
configuration, which can be computed based on the adjoint
matrix [57]. Note that we don’t include the velocity for the
distance constraint in (9) as the velocity of the obstacles is
considered in (5).



Fig. 3: RL environments, from left to right: TableEnv, ShelfEnvSim, ShelfEnvReal, NavEnv

III. EXPERIMENTAL EVALUATION

To evaluate the performance of generalized ATACOM, we
designed a series of tasks with different complexity. First,
we designed static goal-reaching tasks in which the robot
has to avoid collisions with objects of different geometric
complexity, e.g., a table and a shelf, as shown in Fig. 3. We
then designed two dynamic tasks for navigation and for HRI.
In the robot navigation scenario, we assume a differential-
drive mobile robot and test the performance of ATACOM in
respecting the control constraints while avoiding collisions
with a blindly moving mobile robot. In the HRI task, we
consider a shared-workspace scenario in which a human
moves dynamically while the robot attempts to deliver a cup
appropriately to the desired goal location without colliding
with the human or “spilling” the content of the cup. In
the following, we provide our empirical evaluation against
baselines. All algorithms and environments are implemented
within the MushroomRL framework [58]; technical and
implementation details can be found on the website https:
//irosalab.com/saferobotrl/.

A. Manipulation Tasks

The first two experiments are goal-reaching tasks in the
proximity of the obstacles, defined as a table TableEnv or
a shelf ShelfEnvSim (Fig. 3). To ensure safety, we define
9 query-PoI distributed along the links of the moving arm
for computing the distance constraints with ReDSDF w.r.t.
the tables or shelf. We also define distance constraints for
avoiding the ground, self-collisions, and joint limits. Both the
TableEnv and the ShelfEnvSim contain 34 constraints.
The reward is defined as r(st,at) = −ρddgoal − ρ∠d∠ −
ρa∥at∥ + Is, with the distance to the goal position dgoal
and orientation d∠, the action penalty ∥at∥, the scaling
factor ρd, ρ∠, ρa, and a task indicator Is. The task indicator
encourages the robot to stay on top of the table or inside the
shelf. For the manipulation task, we apply velocity control
u = q̇ on the joints with control frequency 30 Hz. Each
episode contains 500 steps. Each episode terminates if a
collision is detected, with a penalty of rterm = −1000.

We compare our approach with three baselines, i.e., vanilla
SAC [59], SafeLayer [29], and a hard-coded Linear Attractor
(LA). LA-ATACOM applies ATACOM on top of the action
computed by LA. Learning the constraint as proposed in
[29] is very challenging; thus, we use the constraint functions
defined by our approach for a fair comparison. We conducted
a hyperparameter search for each task on the learning rates
with 5 random seeds, and then, ran 25 seeds with the
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(b) ShelfEnvSim
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(c) NavEnv
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Fig. 4: Experimental comparison of ATACOM and baseline methods in
different tasks. We report discounted reward, the final distance reached
across evaluations, the number of early terminations due to damage events
(collision or violation of joint limits), and the average steps per episode
(higher means agent living longer through a training episode).

best hyperparameters. We report the final discounted reward
and the distance to the target before episode termination.
We also compare the total number of episodes with early
terminations due to damage events (collisions or violation of
joint limits) and average episode steps throughout 2 million
training steps, as shown in Fig. 4a and Fig. 4b. Training is
not required in LA and LA-ATACOM, and only the final
performance is reported. From the boxplots it is clear that
learning with ATACOM high-dimensional manipulation tasks
achieves better performance, as LA-ATACOM gets stuck in
local minima due to joint limits and complex obstacle shapes.

B. Navigation: Differential-Drive Robot

In the NavEnv, we designed a navigation task for the
differential-drive TIAGo++ robot (white) that moves in a
room while avoiding the Fetch robot (Blue), as shown in
Fig. 3. The Fetch robot moves to its randomly assigned target
goal, using a hand-crafted policy that ignores TIAGo, and
serves as a dynamic obstacle. We aim to train TIAGo to
reach its randomly generated goal while avoiding collisions
with the Fetch and the walls. The control actions are the

https://irosalab.com/saferobotrl/
https://irosalab.com/saferobotrl/


linear and angular velocities of the robot base. We follow a
reward structure similar to the one in Section III-A. However,
the orientation reward is defined as −sigmoid(30(|d|−0.2))·
|∠goal−θ|

π , with the heading angle of the robot θ and the yaw
angle to the goal ∠goal. As shown in Fig. 4c, the ATACOM-
TIAGo can reach the goal with lower error while experienc-
ing significantly fewer collisions. Notably, the performance
of SafeLayer in NavEnv is significantly lower compared
to the static TableEnv and ShelfEnvSim. Indeed, the
SafeLayer approach only corrects the actions when the
constraints are violated. To ensure safety in a dynamic task,
SafeLayer requires a larger safety threshold, limiting task
performance. Instead, ATACOM reduces the feasible action
space when approaching the constraint’s boundary. In this
task, LA-ATACOM outperforms the learned policy as the
moving obstacle prevents local minima and the hard-coded
policy is a strong and efficient bias to reach a fixed target.

C. Human Robot Interaction

In the last task, we test our approach in a HRI-Sim envi-
ronment (Fig. 1) with reward function similar to Section III-
A. TIAGo should deliver a cup of water vertically to a target
point while the human operates in a shared workspace. Like
in TableEnv, we define constraints for avoiding collisions
w.r.t the table, the robot, the ground, and the human using
the pre-trained ReDSDF. To simulate human motion, we
record a human using a motion capture system (∼18.000
data points). During the recording, the human moves near
the table arbitrarily without considering the robot. We convert
the human motion to the SMPL representation [60]. To train
a robust policy, we randomly initialize the human motion at
the beginning of each episode. Note that given the inferior
performance of the baselines in the previous tasks, we do
not compare against them in this far more challenging task
to save computational and energy resources. We evaluate
the final policy with 10000 steps, the converged ATACOM
policy achieves a final distance to target 0.14 ± 0.02m and
the number of episodes in which a spill happens is 4±3.16.
Throughout the training process (2 million steps), the total
number of collisions were 9.2± 8.11. The small number of
constraint violation during training confirm the effectiveness
of the safe exploration strategy of ATACOM, that ends up
learning a safe interaction policy.

D. Real Robot Validation

Given the encouraging results of ATACOM in our simu-
lated results, we transfer our safe policies to the real world*.
We create the ShelfEnvReal, in which we place two
objects on the shelves of a bookcase (Fig. 3). We use motion
capture to perceive the objects’ poses. The robot starts from
a random configuration and reaches the two targets sequen-
tially. The maximum reaching time for each target is 16.67s.
Once the distance between the robot grasping frame and the
object is smaller than 10cm for 2s, we count the task as a
success. We conduct 25 trials with different combinations of

*Videos of the real-world experiments can be found in:
https://irosalab.com/saferobotrl/

TABLE I: ShelfEnvReal Experiments

Target Final Error (m) Suc. Rate # Collisions Time (s)
1 0.038 ± 0.010 90% 0 6.58 ± 1.01
2 0.047 ± 0.024 90% 0 6.47 ± 1.73

object placements and initial arm configuration. As seen in
our results in Table I, our policy is 100% safe.

We also conduct real HRI experiments (Fig. 1). We rely on
a motion capture system to get an accurate human pose esti-
mate for querying the human-ReDSDF. In our experimental
scenario, the human is instructed to ignore the robot (i.e.,
the subject looks at the phone) while reaching for an object.
The robot, in the meantime, delivers a cup of water while
avoiding all possible collisions smoothly, exactly as in the
simulated task. We conducted 25 trials in which the human
behaved differently. The experiment resulted in a minimum
distance of (0.185 ± 0.021) m a success rate of 96% and 0
collisions. Note that a task is considered successful when the
episode ends with no spills (here, we used granulated sugar
instead of water). Our ATACOM-agent trades off a small
percentage of task failure to ensure 100% safety.
Limitations While, in principle, it would be possible to
use ATACOM to train real robots from scratch, it is still
problematic for various reasons. First, the high computational
complexity of RL algorithms for solving challenging robotic
tasks would require an impractical amount of time to operate
the real robot. Moreover, the complexity of resetting the
state of a real robot at the end of each episode renders
learning from scratch impractical. Additionally, the Gaussian
exploration model may be problematic for robotic actuators.
Our approach also has some other practical limitations.
To ensure safety, we require a high-performance tracking
controller and perfect perception e.g., from motion capture.
Furthermore, the computational requirements can become
an issue if we use multiple ReDSDF networks to compute
the constraints. Finally, in this work, we use a simplified
model for HRI i.e., a simulated human unaware of the robot’s
existence. In reality, the human can behave very differently
and would probably try to avoid the robot while interacting
with it, at least to some extent.

IV. CONCLUSIONS

This paper introduces a novel and more general for-
mulation of Safe Exploration in RL by Acting on the
TAngent Space of the COnstraint Manifold (ATACOM), i.e.,
by transforming the agent’s action space by mapping it
on the nullspace of the constraints. We extend the original
approach to non-linear control affine systems, hence, treating
various robotic platforms and a wide variety of tasks, such
as manipulation and navigation. Furthermore, we show how
to integrate learned constraints with ReDSDF: this allows
imposing arbitrary shapes and articulated structures as safety
constraints. This flexibility in the constraint definition makes
learning safe interactions with humans possible, even when
deploying the learned policies in the real world, without
sacrificing performance. The proposed method paves the way
for possible breakthroughs in the deployment of RL methods
in dynamic real-world tasks.

https://irosalab.com/saferobotrl/


REFERENCES

[1] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati,
and A. P. Schoellig, “Safe learning in robotics: From learning-based
control to safe reinforcement learning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 5, pp. 411–444, 2022.

[2] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons
we have learned,” The International Journal of Robotics Research,
vol. 40, no. 4-5, pp. 698–721, 2021.

[3] M. Pecka, K. Zimmermann, and T. Svoboda, “Safe exploration for
reinforcement learning in real unstructured environments,” in Proc. of
the Computer Vision Winter Workshop, 2015.

[4] E. Altman, Constrained Markov decision processes: stochastic mod-
eling. Routledge, 1999.

[5] T. M. Moldovan and P. Abbeel, “Safe exploration in markov decision
processes,” in International Conference on Machine Learning (ICML),
2012, pp. 1711–1718.

[6] H. B. Ammar, R. Tutunov, and E. Eaton, “Safe policy search for
lifelong reinforcement learning with sublinear regret,” in International
Conference on Machine Learning. PMLR, 2015.

[7] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe
Model-based Reinforcement Learning with Stability Guarantees,” in
Conference on Neural Information Processing Systems (NIPS), 2017.

[8] A. Hans, D. Schneegaß, A. M. Schäfer, and S. Udluft, “Safe Ex-
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