
Learning Geometric
Constraints for Safe Robot
Interactions
Lernen geometrischer Beschränkungen für sichere Roboterinteraktion
Master thesis in the field of study “Computational Engineering” by Kuo Zhang
Date of submission: July 13, 2022

1. Review: M.Sc Puze Liu
2. Review: Ph.D Davide Tateo
3. Review: Prof. Ph.D Georgia Chalvatzaki
Darmstadt

Erklärung zur Abschlussarbeit
gemäß §22 Abs. 7 und §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Kuo Zhang, die vorliegende Masterarbeit ohne Hilfe Dritter und
nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat
in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
Mir ist bekannt, dass im Fall eines Plagiats (§38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.
Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung gemäß §23 Abs. 7 APB überein.
Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 13. Juli 2022
K. Zhang

Abstract

The safety of robot is becoming increasingly important, especially in human-robot inter-
action workspace. The issue of robot collisions is also a hot topic in the field of robot
safety. Many methods are now available for collision avoidance control through reactive
controller. For Reinforcement Learning (RL), some approaches have achieved collision
avoidance by establishing geometric constraints during exploration. However, there is no
method that can accurately represent the distance field or geometric constraints for both
static and dynamic objects throughout the workspace. In this work, we propose a novel
type of Signed Distance Field (SDF): Regularized Deep Signed Distance Field (ReDSDF),
which is a single neural implicit function and can compute smooth distance field and
define dynamic geometric constraints at any scale.
Nowadays, there are also many methods that compute distance fields by using neural
networks, but these methods can only estimate the area near the object and fail for long
distance. Moreover, there is no method to calculate the distance field for dynamical
articulated objects. Therefore, the author proposes the approach of data generation,
network architecture and training methods to remedy these shortcomings.
The ReDSDF can be applied not only as repulsive potential function in reactive motion
generation, but also as constraints in RL. In the reactive controller, the ReDSDF of each
object can be directly used as an Artificial Potential Field (APF) to control the robot to
avoid collisions. And the gradient of the APF can be calculated by deriving the neural
network. In RL, ReDSDF can be applied as implicit equations to define the constraints
through determining the safe distance between the robot and the object. The application
of ReDSDF in robotics is not limited to this. It can be employed by any constrained planner,
both as a differentiable constraint and as an energy function. To sum up, ReDSDF can
achieve great efficacy in the field of robot safety.

Zusammenfassung

Die Sicherheit von Robotern wird immer wichtiger, vor allem im Bereich der Mensch-
Roboter-Interaktion am Arbeitsplatz. Das Problem der Roboterkollisionen ist auch ein
heißes Thema im Bereich der Robotersicherheit. Es gibt inzwischen viele Methoden
zur Kollisionsvermeidung durch reaktive Reglung. Beim Reinforcement Learning (RL)
erreichen viele Methoden die Kollisionsvermeidung durch die Festlegung geometrischer
Nebenbedingungen während der Exploration. Es gibt jedoch keine Methode, die das
Abstandsfeld oder geometrische Beschränkungen für beide statische und dynamische
Objekte im gesamten Arbeitsraum genau darstellen kann. In dieser Arbeit schlagen wir
eine neue Art von Signed Distance Field (SDF) vor: Regularized Deep Signed Distance Field
(ReDSDF), das eine einzige neuronale implizite Funktion ist, verwendet ein neuronales
Netzwerk, um den Abstand zur Oberfläche eines Objekts zu schätzen.
Heutzutage gibt es auch viele Methoden, die neuronale Netze zur Berechnung von Ab-
standsfeldern verwenden, aber diese Methoden können nur den Bereich in der Nähe
des Objekts schätzen und versagen bei großen Entfernungen. Außerdem gibt es keine
Methode zur Berechnung des Entfernungsfeldes für dynamische, gelenkige Objekte. Daher
schlagen wir einen eigenen Ansatz zur Datengenerierung, eine Netzwerkarchitektur und
eine Trainingsmethode vor, um diese Mängel zu beheben.
Die ReDSDF kann nicht nur als repulsive Potentialfunktion in der reaktiven Bewegungs-
generierung, sondern auch als Beschränkung im RL eingesetzt werden. In der reaktiven
Steuerung kann die ReDSDF jedes Objekts direkt als künstliches Potentialfeld (APF) ver-
wendet werden, um den Roboter zur Vermeidung von Kollisionen zu steuern. Und der
Gradient des APF kann durch die Ableitung des neuronalen Netzes berechnet werden. In
RL können wir den sicheren Abstand zwischen dem Roboter und dem Objekt bestimmen,
indem wir ReDSDF als implizite Gleichungen zur Definition der Nebenbedingungen ver-
wenden. Die Anwendung von ReDSDF in der Robotik ist nicht darauf beschränkt. Sie kann
von jedem Planer mit Nebenbedingungen verwendet werden, sowohl als differenzierbare
Nebenbedingung als auch als Energiefunktion.

Contents

1. Introduction 2

2. Related Work 5
2.1. Safe Human-Robot Interaction . 5
2.2. 3D Human Body Reconstruction . 6
2.3. Reactive Motion Generation . 7
2.4. Distance Fields and Manifold . 8
2.5. Safe Robot Reinforcement Learning . 9

3. Preliminaries 11
3.1. Implicit Function and Signed Distance Field 11
3.2. Artificial Potential Field . 12
3.3. Fundamentals of Reinforcement Learning 14
3.4. Acting on the Tangent Space of the Constraint Manifold 15

4. Regularized Deep Signed Distance Fields 17
4.1. Generation of Dataset . 17

4.1.1. Sampling Points and Estimating Normal Direction 18
4.1.2. Filtering out Outliers and Data Rejection 19
4.1.3. Generating Augmented Data and Down Sampling 20
4.1.4. Data Generation for Dynamic Articulated Objects 21

4.2. Architecture of the Network . 23
4.3. Training of the Network . 26

5. Application of Geometric Constrains 28
5.1. Robot Motion Control with ReDSDF . 28

5.1.1. Construction of Artificial Potential Fields 28
5.1.2. Applying Distance Field and APF on Robot 30

5.2. Safe Exploration with Learned Constraints 31
5.2.1. Pipeline of Safe Reinforcement Learning 32
5.2.2. Applying Constraints on Robots to Avoid Collisions 33
5.2.3. Define Actions on the Constraints 35

6. Experiments and Results 37
6.1. Results of ReDSDF . 37

6.1.1. Results of Human Model . 37
6.1.2. Results of TIAGo with Single Arm 40
6.1.3. Results of Static Models . 41

6.2. Whole Body Control . 45
6.3. Reaching Target Point with a Shelf . 47
6.4. Human Robot Interaction . 49

6.4.1. Reactive Motion Generation in Shared Human-Robot Workspace . . 50
6.4.2. Reinforcement Learning in Human Robot Interaction Environment 51

7. Conclusion 55
7.1. Summary . 55
7.2. Future Work . 56

A. Appendix 65
A.1. Recording of Training Process of ReDSDF 65
A.2. Hyperparameters for RL . 67

Preface

List of Figures

3.1. An Example of SDF that Represents a Ball 12
3.2. An Example of APF Visualization . 13
3.3. The Framework of RL . 15

4.1. Pipeline of Generating the Datasets . 17
4.2. Demonstration of Sampling Points . 18
4.3. The Process of Removing Outliers . 19
4.4. The augmented points are generated along the normal direction. The red

arrow is the normal direction, the blue point is the original point. When the
nearest original point to the augmented point is not the original point that
generated it, the point will be rejected. The orange sphere is the accepted
augmented point, and the orange fork is the rejected augmented point . . 20

4.5. Demonstration of Weight Assignment . 21
4.6. Articulated Object with Different Poses . 21
4.7. Example of Data Augmentation of Human with Different Levels: 0, 0.05,

0.12 and 0.25 . 22
4.8. Architecture of ReDSDF . 24

4.9. The parameters of Sigmoid function defines the transition area between
close area and far region. The distance field in close area is determined by
neural network, and the distance field in far region is determined by the
distance to the center of object. 25

4.10.Three Examples of ReDSDF with Different Parameters of Sigmoid Function. 26

5.1. Explanation of the Repulsive Velocity . 29
5.2. PoI of Robot and its Distance Field with Mirroring 30
5.3. Sphere-Based Method . 31
5.4. Pipeline of SafeRL . 32
5.5. Two Methods to Define the Constraints on Robot 33
5.6. Using Spheres to Define Constraints . 34

6.1. Visualization of Human Model . 39
6.2. Human Models with Different Levels . 40
6.3. Visualization of TIAGo Model . 41
6.4. Comparison of the Static Models with Baselines 42
6.5. Comparison of the Table Distance Functions in Detail 43
6.6. Comparison of the Sofa Distance Functions in Detail 44
6.7. Comparison of the Human Distance Functions in Detail 45
6.8. Experiment Screenshot of Whole Body Control 47
6.9. Demonstration of Robot-Shelf Experiment 48
6.10.Shared Human-Robot Workspace . 50
6.11.Scene of Human-Robot Interaction . 52

A.1. Loss Curve during Training . 66
A.2. Results of RL-Experiment with Shelf . 69
A.3. Results of RL-Experiment in Human-Robot Interaction 70

List of Tables

4.1. Contents of the Final Dataset . 23

6.1. Quantitative Results of Human Model . 38
6.2. Quantitative Results of TIAGo++ . 40
6.3. Quantitative Comparison of the Results of Static Models 42
6.4. Results of Whole Body Control Experiment 46
6.5. Results of RL-Experiment with Shelf . 49
6.6. Results of Shared Workspace Experiments 51
6.7. Results of RL-Experiment in Human-Robot Interaction 53

A.1. Hyperparameters for Training ReDSDF . 65
A.2. Hyperparameters for RL . 68

Abbreviations

Notation Description

RL Reinforcement Learning
APF Artificial Potential Field
SafeExp Safe Exploration
VAE Variational Autoencoder
SMPL Skinned Multi-Person Linear Model
GA Graph Aggregation
SDF Signed Distance Field
TSDF Truncated Signed Distance Function
ECoMaNN Equality Constraint Manifold Neural Network
CMDP Constrained Markov Decision Process
MDP Markov Decision Process
CPO Constrained Policy Optimization
ATACOM Acting on the Tangent Space of the Constraint Manifold
ReDSDF Regularized Deep Signed Distance Field
SafeRL Safe Reinforcement Learning
RMP Riemanniean Motion Policies
CEP Composable Energy Policies
PoI Points of Interest
SAC Soft Actor-Critic Algorithms

Symbols

Notation Description

x = [x, y, z]⊺ Vector of three dimension coordinates
d Distance to the surface of object
γ Discount factor for RL or a hyperparameter to balance

regularisation term during learning ReDSDF
τ Trajectory of robot
T Time horizon
s Observed states of MDP
a Actions on MDP
r(s,a) Reward of the state s with action a

q Direct controllable state
ϵ(µ) Function of slack variable
µ Vector of slack variable
β Hyperparameter of slack variable
c Implicit function of constraints
J Jacobian matrix
N Tangent-space
Kc Error correction factor
α Original actions drawn by the policy network
n Normal direction of object surface
ω Weight for training SDF
qo Pose of object or pose input of SDF
p Center position of object
d̃ Output of SDF

θ Learnable parameters of network
r Radius of bounding sphere of object
ñ Gradient of SDF
v̄ Repulsive velocity coefficient
κ Threshold to activate repulsive velocity
v Joint velocity or linear velocity
δ Safe distance

1

1. Introduction

Benefiting from big data, powerful computing, new algorithmic techniques, mature soft-
ware packages and architectures, and strong financial support, Reinforcement Learning
(RL) has grown rapidly and is widely used in many fields [1], especially in robotics. Thanks
to application of RL, robots can also perform increasingly complex tasks. But at the same
time, the safety of robots has always been an issue that cannot be ignored. Robots may
collide with surrounding objects during their work, and some may even collide with them-
selves. If a collision occurs it can cause damage to the robot and corresponding economic
losses. In many occasions, robot and human work together in the same workspace with
complementary advantages, which raises higher requirements for the safety of the robot,
because any collision can cause significant damage and even personal safety issues. What’s
more, applying RL in the real world remains a challenging task [2]. Most of the RL in
robots nowadays is done in simulated environments, as the damage caused by unsafe
exploration in real world is tremendous. So far, there are many safety features that have
been proposed, including limiting torque output through impedance control, collaborative
robot detection of abnormal forces and so on.
But there are still many challenges in the field of robotics in terms of safety. As robots
work in more complex environments, the scene of cooperation with people becomes
more frequent, which requires robots to be able to adapt to more unstructured and
dynamic environments. In the human-robot interaction environment, the security of
human has to be always guaranteed [3], so the robot should detect the state of the
human in real time. Therefore, distance-based constraints are essential to allow the robot
to leave the structured laboratory and evaluate collisions with surrounding static and
dynamic obstacles online. But constraint functions can be difficult to design manually,
and unspecified constraints may often make the robot challenging to plan, optimize, learn
or act reactively [2, 4, 5, 6, 7]. This problem can be well solved by Signed Distance
Field (SDF), which is a mathematical function that can be easily converted to an implicit
equation defining the constraints. The SDF allows us to easily check the distance to the

2

obstacle. Through determining the safety distance, we can achieve safety control for the
robot.
However, different applications currently require different distance resolutions, which
has led to various heuristics to measure distance fields. There are also methods to learn
distance fields through neural networks. These methods are either computationally
expensive and cannot estimate distance in any scale, or cannot be applied to the distance
calculation for dynamic obstacles. Therefore, we propose a novel type of SDF: Regularized
Deep Signed Distance Field (ReDSDF), which is a single neural implicit function, and can
compute smooth distance field in any scale even for dynamic articulated object.
ReDSDF is learned through neural network, where we add the dimension of pose at
the input so that it can represent different poses of dynamical articulated objects, and
regularize at the output so that it can generate distance fields at any scale. We propose
our own data generation approach, network architecture and training method to enable
better performance of distance fields.
This kind of distance field can be used in many methods of robot collision avoidance
control. One of the more popular methods used in robot collision avoidance is reactive
motion generation. Reactive motion generation provides a good framework for controlling
robots to avoid collisions through field functions. ReDSDF, as an implicit neural network,
can easily calculate its gradient, so it can be applied as a field function in any methods with
reactive motion generation. In RL, there are also many approaches to achieve collision-free
exploration of robots by imposing constraints. We refer to this kind of exploration as
Safe Exploration (SafeExp), i.e., the safe collection of experiences without violating task
and geometric constraints when training robot strategies. The constraints need to be
expressed in terms of implicit equations. ReDSDF as a mathematical function, can be
easily converted to an implicit equation and define the constraints. Aiming at the above
two applications: reactive motion control and SafeExp, we designed four experiments to
validate our approach and also the performance of ReDSDF. Both these applications have
been experimented in static and dynamic environments, i.e. human-robot interaction
environment. We demonstrate the performance of ReDSDF qualitatively and quantitatively
by comparing with two baselines. And we also demonstrate the capabilities of ReDSDF
when employed in reactive motion generation and SafeExp task. The results of these tasks
are also in comparison with the baseline methods.
The structure of this thesis is as follows. Firstly, in Chapter 2, the current related work is
presented in five aspects which contains the safe human-robot interaction, three-dimension
human body reconstruction, reactive motion generation, manifolds to define constraints
and SafeRL. Next, Chapter 3 presents four preliminaries used in this thesis. Chapter 4

3

focuses on ReDSDF. In this chapter, the data generation approach, the network architecture
and the training method of ReDSDF will be presented. Two methods of applying ReDSDF
will be introduced in Chapter 5, including reactive motion generation and SafeRL. In
this part, we will describe, how the ReDSDF can be used as potential field in reactive
controller and as constraints in SafeExp. In Chapter 6, four kinds of experiments will
be performed. These experiments include two experiments applying ReDSDF in reactive
controller and two experiments on SafeExp. Both static and dynamic environments are
used here including human-robot interaction workspace. Finally, in Chapter 6, the results
of the thesis work and experiments are summarized and future work is presented.

4

2. Related Work

In this chapter, some of the work related to this thesis will be presented. All thesis-related
work will be divided into five categories as follows. Section 2.1 is a discussion of current
approaches regarding safe human-robot interaction. Section 2.2 is about some methods
of 3D human reconstruction in virtual environments. In section 2.3, some methods of
reactive motion generation in robot control will be covered. Section 2.4 introduces some
of recent distance networks, and how authors of other papers have used these manifolds
to express some of the robot’s constraint spaces. Finally, section 2.5 describes some of the
existing safe reinforcement learning algorithms.

2.1. Safe Human-Robot Interaction

Robots and humans can complement each other’s capabilities when executing a common
task. The advantage of robots is that they can perform repetitive and hazardous works.
People can benefit from this advantage and perform more intellectually demanding tasks.
However, detecting human poses and understanding the effective safe workspace of the
human is essential. The human-robot interaction scenarios are human-centered, and the
effective space of human is designated firstly [8]. During human-robot interaction, the
robot must ensure the safety of the human.
Corrales et al. [3] proposed sphere-swept lines (SSLs) as bounding volumes to make sure
the safe human-robot interaction. The method envelops each link of the human body
and robot with a cylinder. The diameter of the cylinder can be changed according to the
speed of the link. The most common method of preventing robot collisions today is to
use spheres to model humans and robots. This approach is described in [9]. The safety
constraints of the robot can be defined by designing the radius of the sphere so that the
sphere space can envelop the human or robot. Papadakis et al. [10] proposed a method
for training a social map based on human social behavior and thus to study the safety of

5

human-robot interaction. In [8], all the workspace is voxelized and analyzed by traversal.
All locations of the workspace will be evaluated based on two aspects: local dexterity of
the human arm and energy consumption of arm postures. Vogt et al. [11] presented an
approach for robots to learn human-robot interaction by imitating through human-human
Demonstrations.
There are still many approaches to ensure safe human-robot interaction. The experimental
part of this thesis will also use sphere-based approach that described in [9] as a baseline
for comparison with the method of this thesis.

2.2. 3D Human Body Reconstruction

In order to enable neural networks to dynamically represent the constraints in human-
robot interaction, 3D reconstruction of the human body is also essential. Details about
building human models can be found in the book [12]. The reach volumes of body links
are also measured in [13]. Reconstructing high quality human shapes is a challenge due
to non-rigid body deformation, low quality input data and joint articulation [14]. Skinned
Multi-Person Linear Model (SMPL) in [15] has solved these problems. It uses pose and
shape parameters to reconstruct human body with many vertices. The dataset to train the
network in this thesis is also generated by SMPL. What’s more, there are now many other
ways to generate human body from pointcloud or pictures.
Jiang et al. [14] designed and trained a neural network to reconstruct SMPL from point-
cloud. The network allows online, real-time detection of point clouds and 3D reconstruction
of the human body. The authors use PointNet++ and Graph Aggregation (GA) to extract
features from pointcloud. These features will be fed into a skeleton diagram module that
estimates the pose and shape parameters of the SMPL. Bhatnager et al. [16] proposed
a method to combine implicit function learning and parametric models to reconstruct
human body. They used the SMPL to generate the dataset and added classifiers to the
network to classify the points in different body parts to train the implicit function. Li et
al. [17] presented an approach to reconstruct human body with multi-view images. In
this approach, the authors also use implicit functions to represent the human body. They
designed a multiple convolutional network with pooling in parallel to gradually extract
detailed features. A method of real-time human model reconstruction is mentioned in
the [18]. This method can estimate the human pose from the picture information and
generate SMPL models. The authors first use the yolo network to detect the human in
the picture, determine the position of the human in space based on the position of the

6

bounding box, and estimate the pose of the human body through the network. Choutas et
al. [19] proposed an approach to regress body shape from an image of a person by using
metric and semantic attributes. However, these methods have limitations in human-robot
interaction, as it is difficult to accurately estimate the position of a person through pictures.

2.3. Reactive Motion Generation

Reactive motion generation is a common method of obstacle avoidance in robot control.
The robot generates the corresponding motion directly based on the current state and
the surrounding environment. The most commonly used method for reactive motion
generation is to obtain the gradient from the Artificial Potential Field (APF) [20] to obtain
the corresponding robot control motion. This method has low computational cost, but it
tends to fall into local optima. To compensate for these shortcomings, other methods of
reactive motion generation are introduced.
Ratliff et al. [6] proposed a motion policy on Riemannian Manifold. This policy is referred
to Riemannian Motion Policy (RMP) that is a second-order dynamical system coupled with
a corresponding Riemannian metric. The method can combine the motions generated by
various policies and steadily transform the motion from one space to another. Through
a combination of these policies, the robot is able to perform obstacle avoidance while
completing tasks. Urain et al. [21] proposed a novel framework for modular reactive
motion generation: Composable Energy Policies (CEP), which computes control actions by
optimizing the product of a set of stochastic policies. The method can combine different
policies to eventually generate an action that maximizes the satisfaction of all objectives.
In [22], Beik-Mohammadi et al investigated the robot motion learning paradigm from a
Riemannian manifold perspective. They used geodesics to generate a learned Riemannian
metric produced by a novel variational autoencoder (VAE). The geodesics are natural
motion skills and the VAE is used to recover full-pose end-effector states and joint space
configurations.
There are many other ways to control robots through reactive motion generation. Each
of these methods requires the definition of field functions to allow the robot to perform
the appropriate tasks and avoid obstacles. We will describe the construction of these field
functions in the following section.

7

2.4. Distance Fields and Manifold

The usage of Signed Distance Fields (SDFs) is to reconstruct the network of surrounding
objects and has been widely studied in the field of computer graphics [23]. With a
given value, the SDF can represent a manifold. Many robot motion planning and control,
collision checking and obstacle avoidance problems can be solved by SDF. The SDFs are
locally accurate because of the truncation effects. However, it is challenging when the
entire shape of an object cannot be determined from a single viewpoint. An approach of
volumetric integration was proposed in [23]. The method improves the local update based
on partial observations by sacrificing the full coverage of space. This field obtained by
truncation is called Truncated Signed Distance Function (TSDF), which realizes a better
modeling for sensor noise [24]. In contrast, an alternative Euclidean Signed Distance
Function (ESDF) provides an approach to evaluate free space rather than fine obstacle
areas. This approach is widely used in aerial robot mapping and planning [25].
With the development of deep learning, SDFs can be represented in a better way. The
fields can be trained to approximately mesh with the dataset in form of pointcloud, which
is generated by the object meshes [26]. Park et al. [27] proposed DeepSDF that uses the
deep neural network to learn the SDF. They generate pointcloud as dataset from mesh
models and then define areas not covered by the dataset by truncation. The input of
this network contains not only the position of the 3D point, but also the codes of several
dimensions, and these codes can be used to represent different objects. Sutanto et al. [28]
proposed an approach called Equality Constraint Manifold Neural Network (ECoMaNN)
to restrict robot motion planning on manifold. The training set of this network contains
not only the 3D position of the pointcloud, but also the normal direction of the point in the
distance field. Many augmented points are also generated uniformly through this normal
direction to train the network. The authors also proposed a method for aligning the local
tangent and normal space. The manifold is also suitable for some high-dimensional cases.
The robot performs motion planning in a high-dimensional space on the manifold and
ensure an equality constraint. The two distance networks mentioned above will also be
compared with the distance network proposed in this thesis as baselines in the subsequent
parts.
In addition to the SDF, there are also many approaches to establish the manifolds and
to perform controlling on the manifolds. Mescheder et al. [29] proposed an occupancy
networks to realize 3D reconstruction in function space. The network is similar to a
classification network, except that the boundary of the classification is used as the surface
of the 3D-object. Holden et al. [30] learned a motion manifold with convolutional

8

autoencoders. The manifold can be used as a priori probability distribution to eliminate
errors, compute similarity, and interpolate. In [31], the manifold was applied in the
optimization problem of motion planning. In the work of this thesis, the manifold is also
added to the robot as constraints so that the robot can perform safe work.

2.5. Safe Robot Reinforcement Learning

In recent years, the artificial intelligence has grown by leaps and bounds. At the same time,
we must ensure that their ability to be safe is similarly increased, because the tremendous
positive impact of these applications comes with an increased need for security measures,
as the failure of any of these intelligent systems can be catastrophic [32]. Therefore, Safe
Reinforcement Learning (SafeRL) has been a topic of great interest for a long time and
many different ways to achieve SafeRL were proposed.
Some methods use safe states set to specify safe states. This safe states set is either
predefined before training or extended during training. Hans et al. [33] proposed an
approach to evaluate the safety degree of the state and define a backup policy. The backup
policy can lead the system from critical state back to safe under control. Garcia et al. [34]
defined a risk function and a baseline agent. During the learning, control actions will be
sampled according to the evaluation of risk. Akametalu et al. [35] proposed a method
to learn the system’s unknown dynamics based on a gaussian process model. The safe
set will be extended in training iteratively and approximated to the maximal safe set.
Pecka et al. [36] combined two basic concepts: safe function and classifier. The classifier
determines whether the current state is safe through the evaluation of the safe function.
Another way to achieve SafeRL is to formalize the problem to Constrained Markov Decision
Processes (CMDP). CMDP adds constraints to the Markov Decision Process (MDP) and
learns the optimal policy. Altman et al. [37] investigated the Lagrangian approach and a
related Linear Programming that appear in CMDP to obtain better learning results. Achiam
et al. [38] proposed the first general-purpose policy search algorithm for constrained
reinforcement learning called Constrained Policy Optimization (CPO). This method can
guarantee that each iteration has a near-bounded satisfaction. There are also many other
approaches that train the CMDP based on Lagrangian optimization [39, 40, 41]. And
some algorithms penalize the actions that break the constraints [42, 43]. There are also
many approaches to transfer the action to the safe constraints at each step, and each of
these methods has its own way of defining constraints, for example, the Hamilton-Jacobi
[44, 45], Control Barrier Function [46, 47]

9

There are another two methods that are the focus of this thesis. The first approach is
to adjust the action to the safe constraints at each step and this adjustment process is
formulized as a constrained optimization problem (safe explorer) [48]. The method will
be used as a baseline for comparison with the method applied in this thesis. The second
method is Acting on the Tangent Space of the Constraint Manifold (ATACOM) [2]. This
method will be applied as the focus of this thesis.

10

3. Preliminaries

In this chapter, all the preliminaries used in the thesis will be introduced, namely, implicit
function that represents the SDFs, APF, fundamentals of RL and ATACOM. These four
approaches will be presented in four separate sections.

3.1. Implicit Function and Signed Distance Field

An implicit function is a function that is defined by an implicit equation that relates one
of the variables, considered as the value of the function, with the others considered as the
arguments [49]. In constrained optimization problems, the constraints are generally given
in the form of implicit functions. The position constraint problem on three-dimensional
space is also a type of constraint problem. Meanwhile, many of today’s 3D reconstruction
methods are achieved by applying the implicit funtions. The most intuitive mathematical
expression of the implicit equation takes the form:

f(x) = 0, (3.1)

where x can be a multidimensional vector or a scalar. The variables in the implicit equation
can also be derived. In the 3D reconstruction, x is a vector with three dimensions. The set
of all points that satisfy the implicit equation forms a surface. This surface can also be
called 3D manifold. This manifold is also the surface of the object we want to reconstruct.
SDFs are also a type of implicit equation, but with more requirements for implicit equations
in 3D reconstruction. The implicit equation expresses not only the surface of the object,
but also the distance between any point in space and the object. So the implicit equation
of SDF becomes the following form:

f(x, y, z) = d. (3.2)

11

−1.5 −1.0 −0.5 0.0 0.5 1.0
x

−1.5

−1.0

−0.5

0.0

0.5

1.0

z −0.6
−0.4−0

.2

0.00.2

0.4

0.6 0.6

0.6 0.6

Figure 3.1.: An Example of SDF that Represents a Ball

The formula expresses the meaning that the minimum distance of the point at position
(x, y, z) from the surface of the object is d. The value of d is negative if the point is inside
the surface of the object, and positive if it is outside the surface of the object. So the
different value of d can represent different manifold. For example, the implicit equation
of SDF for a ball of radius 1 is: √︁

x2 + y2 + z2 − 1 = d. (3.3)

The surface of this ball is shown on the left side of Figure 3.1. If we observe only the
xz-plane with y-value of 0, the SDF looks like the field shown on the right side of the
figure. From the figure, we can see that the fields inside the ball are all negative and
the fields outside the ball are all positive. The direction of the gradient of the field is the
direction of manifold normal. This theory is proven in the book [50]. Therefore, if the
objects around the robot can be converted into mathematical representation of SDFs. we
can define constraints in 3D space with SDF to keep the robot away from collisions. Also
we can define the safety distance arbitrarily to improve the reliability of the system.

3.2. Artificial Potential Field

The Artificial Potential Field (APF) [20] method is a classical robot path planning algorithm.
The algorithm regards the target and the obstacle as objects that have attractive and
repulsive forces on the robot, respectively, and the robot moves along the combined forces
of attraction and repulsion. APF is also one of the core ideas of reactive motion generation.

12

Attractive potential Repulsive potential Summarized

Figure 3.2.: An Example of APF Visualization

The attractive potential function can be constructed as follows:
fa(x) = ξ(||x− xg||2), (3.4)

where ξ is a constant scaling parameter, x is the position of robot and xg is the target
position. The position can be either a location in the task space or a higher dimensional
location in the joint space.
In addition to enabling the robot to reach the target point, we also want the robot to
be able to avoid obstacles in the environment. Therefore, a repulsive field function is
designed as follows:

fr(x) =

⎧⎪⎨⎪⎩
0 ρ(x) > d0

η

(︃
1

ρ(x)
− 1

d0

)︃2

ρ(x) ≤ d0
, (3.5)

where η is a constant scaling parameter and d0 is a parameter that controls the influence of
the repulsive potential. ρ(x) is a function that returns the distance to the closest obstacle
from the given point x. There are also many ways to construct smooth repulsive functions
to lead the robot away from obstacles. The repulsive functions of different obstacles can
be superposed on each other. With these potential field functions, we can find the gradient
on them to obtain the direction of the robot action. Here the action we express in terms
of velocity.

v ∝ −∇f(x) = −∇

(︄
fa(x) +

N∑︂
i=i

fr,i(x)

)︄
(3.6)

An example of APF visualization can be seen in Figure 3.2. The left figure shows the
attractive potential field generated by the target point, and the middle figure shows the

13

repulsive field generated by the obstacle. The final APF can be obtained by superimposing
these two fields, and the direction of control can be found by finding the gradient of the
APF. The motion of the robot is only related to the current position, so it is particularly
fast to find the motion. In this thesis, we use the repulsive fields that are different from
the ones described above.

3.3. Fundamentals of Reinforcement Learning

Reinforcement Learning (RL) is the process by which an agent learns through trial and
error by observing the system environment in order to maximize the expectation of
long-term rewards [51]. From the definition of RL, it can be seen that RL has two key
attributes:

• Learning through trial and error
• Maximizing long-term returns

And the framework of RL generally consists of 5 components: environment, agent, obser-
vation, action and reward. The demonstration of RL framework can be seen in Figure 3.3.
The RL problem can be defined as policy search in a Markov decision process (MDP),
defined by a tuple (S,A, p, r), where p is transition function that represents the probability
density of the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A. The
definition of reinforcement learning can also be expressed as a mathematical formula:

max
π

Eτ∼π

[︄
T∑︂
t=0

γtr(st,at)

]︄
, (3.7)

where γ is the discount factor and π is the policy. This discount factor weighs the value
of long-term returns against short-term returns. The environment returns a reward r
for a state s with an action a. The reward function can be defined by the tasks that
the robot needs to complete. The observation of the system state by the agent can be
divided into two cases: full observable and partial observable. Depending on the agent’s
knowledge of the environment, RL can be divided into model-based RL and model-free
RL. The RL methods used in this thesis are all fully observable and model-free. We will
address learning the policies in continuous action space. There are now many algorithms
to learn the policy. The algorithm that used in this thesis is Soft Actor-Critic (SAC) [52],
a deep RL algorithm. The SafeExp approach in this thesis is also applicable to other RL

14

Agent

Environment

Action: 𝒂Observation: 𝒔 Reward: 𝑟

Figure 3.3.: The Framework of RL

algorithms, which will not be described here. SAC is an off-policy actor-critic algorithm
based on the maximum entropy RL framework. With this framework, actors can act as
randomly as possible while achieving their tasks.

3.4. Acting on the Tangent Space of the Constraint Manifold

The role of ATACOM is to keep the state of MDP in the constraints in RL. The problem of
RL with constraints can be formulized as follows:

max
π

Eτ∼π

[︄
T∑︂
t=0

γtr(st,at)

]︄
,

s.t. f(qt) = 0, g(qt) ≤ 0

st = [qt,xt]
⊺, t ∈ {0, 1, · · · , T},

(3.8)

where f(·) is equality constraints and g(·) is inquality constraints. In this equation, τ =
{s0,a0, · · · , sT ,aT } is the trajectory under the policy π. q and x are directly controllable
states and uncontrollable states respectively [2].
In order to put the inequality constraint on the manifold as well for restriction, the slack
veriables µ are added to transform the original inequality into equality constraints. Thus,
all the constraints can be summarized together:

c(q,µ) = [f(q) g(q) + ϵ(µ)]⊺ = 0, (3.9)

15

where ϵ(µ) is designed that it is always positive, for example we can use quadratic slack
variable:

ϵ(µ) =
1

2
µ2, (3.10)

or exponential slack variable:
ϵ(µ) = exp(βµ). (3.11)

In the Equation 3.11, the hyperparameter β can be adjusted that how close to the constraint
boundary the robot should decelerate. Therefore, we can consider the constraints as a
manifold and let the state motion on the manifold. If the action is in the tangent space of
the manifold, then the current state is guaranteed to remain on the manifold. Then we
need to solve for the Jacobian of constraints to obtain the tangent space of the manifold:

J(q,µ) = [∇qc(q,µ)
⊺ ∇µc(q,µ)

⊺], (3.12)

where the tangent-space N(q, s) is the nullspace of the Jacobian. With nullspace, we can
project the action into tangent space:

[q̇⊺ µ̇⊺]⊺ = Nα−KcJ
†c. (3.13)

In this equation, α is the action sampled from the policy, and the second term is the
error correction term, which forces the state on the manifold. The hyperparameter Kc

affects this error correction term: how fast the agent will return to the constraint if the
present state breaks the constraint. Through ATACOM we can not only verify whether the
constraints learned in this thesis meet the application requirements, but also validate the
reliability and performance of SafeExp through experimental results.

16

4. Regularized Deep Signed Distance Fields

In this chapter, we will describe how ReDSDF is implemented to be able to compute smooth
distance fields for static and articulated objects at any scale. At the beginning of this
chapter, the method for constructing the dataset used to train the network is described
in Section 4.1. And then Section 4.2 introduces the architecture of ReDSDF. Later in
Section 4.3, we will talk about how to train this network.

4.1. Generation of Dataset

If the network is used as a constraint, the smoothness and accuracy of the field must
be guaranteed, otherwise the robot will experience vibrations and unplanned collisions.
So the generated data must be accurate. As SDF, the input of the neural network is a
coordinate of point x in three dimensions and the output is a scalar d representing the
distance. Therefore, our dataset is a 3D pointcloud with labels, the distance from the point
to the surface of the object. To enable the network to represent dynamical articulated
objects, we add the dimension of pose to the input. To make the trained distance field
smoother and the gradient direction more accurate, we add the normal direction of the
object in the dataset just like [28]. To enable the network to represent some details of the
object surface, we use the method of non-uniform generation of augmented points and
introduce weights. Figure 4.1 shows the pipeline of generating the datasets for one pose.
Each step will be described in detail below.

Sampling Points

on the Surface

of Objects

Estimating Normal

Direction of each

Point on Surface

Filtering out the

Points with Wrong

Normal Direction

Generate Augmented

Data along the

Normal Direction

Down Sampling

Figure 4.1.: Pipeline of Generating the Datasets

17

4.1.1. Sampling Points and Estimating Normal Direction

The initial object model to be trained is a mesh model, or a point cloud model. If the object
is already represented by a point cloud, there is no need to sample it. For files represented
in mesh form, the sampling here is performed only on the surface of the object, and no
consideration is given to the internal structure. If too many points are sampled, it will
cause problems of slow data generation and training, but if too few points are sampled,
the normal direction is not estimated correctly. Empirically, it is generally appropriate to
take 10000 data points for each pose. To better predict the normal direction, for complex
objects, the number of sampling points should be larger and the detailed parts should
be sampled more. Here we use depth camera to capture multi-view pointcloud, and
Figure 4.2 illustrates this process. We can adjust the angle and parameters of the camera
to adjust the sparsity of the point cloud on each part of the object surface. If there are
too many points in the end, they can be downsampled once to make the total number of
points close to 10,000.
For many objects represented in mesh form, the normal direction of the mesh is already
stored in a file or the normal direction can be calculated directly, e.g. SMPL. These objects
do not need to predict the normal direction or filter out the points with wrong normal
direction. For other objects, the normal direction will be estimated through the method
proposed in [28, 53]. And we use the normal estimation method in the Open3D library
[54].

Figure 4.2.: Demonstration of Sampling Points

18

Points on surface and
estimated normals

Move the points
by as distance Delete the outliers

Figure 4.3.: The Process of Removing Outliers

4.1.2. Filtering out Outliers and Data Rejection

The normal direction estimated by the pointcloud is not particularly accurate. Because
what we need to train is the distance field with sign, the direction of the normal must
point out of the object. Any opposite normal direction can cause outliers of augmented
data, which makes the quality of the distance network very poor. Therefore, the point
with wrong normal direction should be deleted. The method of deletion here is to use the
kd-tree. The process of filtering out the outliers is shown in Figure 4.3. First the original
point will be moved by a distance in the opposite direction of the estimated normal. And
then the closest original point will be found in the kd-tree for each point after the move. If
the closest original point is not where it was before it moved, exclude this point. Then, look
for the outlier in the remaining moved points. Finally, find the outlier in the remaining
moved points and delete the original points of these outliers from the dataset, because
these outliers will influence the quality of the SDF.
The SDF predicts the distance closest to the surface of the object. Therefore, for some
augmented points, if the nearest original point is not the one that generated it, these
augmented points will be rejected. The demonstration of this process can be seen in
Figure 4.4. This rejection process is also implemented through the kd-tree. All the
original data points are saved into the kd-tree before the augmented points are generated.
Whenever an augmented point is generated, the nearest original point from the kd-tree
is queried, and if the original point is not the one from which this augmented point is
generated, this augmented point is rejected.

19

Augmented data

Rejected data

Figure 4.4.: The augmented points are generated along the normal direction. The red
arrow is the normal direction, the blue point is the original point. When the
nearest original point to the augmented point is not the original point that
generated it, the point will be rejected. The orange sphere is the accepted
augmented point, and the orange fork is the rejected augmented point

4.1.3. Generating Augmented Data and Down Sampling

Next, the augmented data are generated along the positive and negative normal directions.
The data augmentation is visualized in Figure 4.4, where the red arrow is the normal
of purple point, and the orange point is augmented data in the direction of normal. In
practice, many layers of augmented data are generated in different levels. In order for the
SDF to have better quality close to the surface of the object, there are more augmented
points near the object and fewer augmented points at position far away from the object
such as in level [−0.10,−0.05,−0.02,−0.01, 0.00, 0.01, 0.02, 0.05, 0.10, 0.20, 0.50]. In order
to have the same training effect at every position on the surface of the object, weights are
used here, those with fewer augmented points correspond to higher weights and those
with more augmented points correspond to lower weights. The demonstration of weight
assignment can be found in Figure 4.5. Eventually sum of the weights of each original
point and the augmented points it generates are equal. The Figure 4.7 shows an example
of data augmentation of human with the levels: 0, 0.05, 0.12 and 0.25.
For dynamic articulated models, if all the generated data is used for training, the dataset
will be particularly large. In order to improve the training efficiency, we should downsam-
ple the generated dataset. Downsampling is performed for all original points as well as

20

Details: one augmented data

𝜔 =
5

2

Surface: three augmented data

𝜔 = 1

In total 5 levels

Figure 4.5.: Demonstration of Weight Assignment

augmented points of each pose, and finally get 80,000 points of each pose for training.
Up to this, data generation is finished with respect to static objects. But for dynamical
articulated objects, the above processes are repeated for each pose to generate the dataset.

4.1.4. Data Generation for Dynamic Articulated Objects

For static objects, we do not need the dimension of pose. So the above process only needs
to be performed once. But for different articulated objects, there is different number of
dimension for the pose. We also need to sample the different poses of the object, and

Figure 4.6.: Articulated Object with Different Poses

21

Figure 4.7.: Example of Data Augmentation of Human with Different Levels: 0, 0.05, 0.12
and 0.25

then repeat the process for each pose. In this thesis, we trained in total two dynamic
articulated objects, namely the human body and the robot: TIAGo++. These two objects
with different poses are shown in Figure 4.6. The subsequent paragraphs describe how to
obtain pose information in the dataset.
This thesis uses SMPL as ground truth of human body. We use SMPL to generate dataset.
The first row in Figure 4.6 shows the SMPL models with different poses. These specific
postures and actions of the human body are taken from the dataset AMASS [55]. This
dataset contains most of the daily human behaviors and actions by using the SMPL model.
We came up with a total of 10,000 such different poses and constructed the final dataset
in AMASS to train the ReDSDF. Since we do not need to consider the root rotation or
model the finger, the dimension of the pose in the generated dataset is 63 dimensions (72
dimensions in total with 3 dimension of root and 6 dimension of fingers). The meaning of
each dimension is the same as the meaning of pose parameter in SMPL. We then perform
the above process of generating data points for each of the 10,000 selected poses to form
the final dataset, which is used to train ReDSDF.
The other articulated object that was trained in this thesis is robot: TIAGo. In order to
represent the distance field of the robot with fewer dimensions and to make the training
efficient, we simplified the mesh model of the robot. The simplified robot is shown in the
second row of Figure 4.6, with only a single arm. If we want to obtain the distance field

22

Contents Dimension Mathematical
notation

Position 3 x

Normal direction 3 n

Distance to the surface 1 d

Weight 1 ω

Pose nq qo

Table 4.1.: Contents of the Final Dataset

of the other arm, we only need to mirror the distance field. So the robot has a total of 8
pose dimensions (1 dimension for torso and 7 dimension for single arm). We randomly
selected 10,000 poses in the robot’s joint-limited space without collision. We randomly
selected 10,000 poses in the joint-limited space of robot in the collision-free case. For each
pose we perform the process of generating data points as described above to construct the
final dataset.
We eventually obtain a dataset for training ReDSDF as shown in Table 4.1. Static objects
have no pose dimension. The pose dimension of dynamic articulated object is determined
by the type of object. In this thesis, the pose dimension of human body is 63, and the
pose dimension of robot is 8.

4.2. Architecture of the Network

In order to apply SDF to robot control as well as RL, the distance field must provide
precise distances anywhere in workspace. The input of the network should include the
pose of articulated, like human. For the area near the object, the details of the object are
of interest. But for regions far from the object, the scale of the distance becomes larger
and the details of the object are no longer important. So we only need to consider the
object as a point. Based on these requirements, we propose a distance network across all
regions: ReDSDF. The structure of ReDSDF is shown in Figure 4.8. Here we assume that
the network has 5 hidden layers.

23

...

𝐟

𝛒
𝛂

𝒙
𝐲
𝐳
𝒒𝟏
𝒒𝟐

෩𝒅

Position

Pose

Hidden layers

Distance

𝒑𝒙𝒑𝒚
+

-
∙ 𝟐𝒑𝒛

-
+

Sigmoid

1

-
+

𝝈𝜽

Center position

of object

+

+

Figure 4.8.: Architecture of ReDSDF

The idea of using a distance field to express a distant in the region that the augmented data
doesn’t cover is to consider the object as a point, and we find a threshold as a transition
from the near area (where the augmented points cover) to distant region (where the
augmented data don’t cover). Assumed that an object with its center at position p can be
wrapped in a bounding sphere with radius r. If we observe the object at a great distance
with ∥x− p∥2 ≫ r, the distance to the surface of the object is approximately equal to the
distance to the center of the object. So we have the distance:

d ≈ ∥x− p∥2. (4.14)
On top of this, we add a transition from near area to far region, and this transition function
is Sigmoid function:

d̃(x, q) =
(︁
1− σθ(x, q)

)︁
fθ(x, q) + σθ(x, q)∥x− p∥2, (4.15)

where d̃ is the estimated distance, θ represents the learnable parameters of network
and fθ(x, q) is the neural network approximator. The transition of σθ(x, q) is defined as
follows:

σθ(x, q) = sigmoid
(︁
αθ(x, q)(∥x− p∥2 − ρθ(x, q))

)︁
, (4.16)

where αθ and ρθ are shaping functions, implemented as neural networks, and the features
are extracted from the hidden layer. Here, ρθ determines the threshold from the close

24

||x− p||2

σθ

ρθ

Close Area Far Region

αθ ∈ [3, 15]

Figure 4.9.: The parameters of Sigmoid function defines the transition area between
close area and far region. The distance field in close area is determined
by neural network, and the distance field in far region is determined by the
distance to the center of object.

area to far region and αθ determines the Smoothness of the transition. We can see in the
Figure 4.9 the shape of Sigmoid function with different value of these two parameters.
Figure 4.10 shows how the parameters αθ and ρθ of Sigmoid function affect the transition
between the close area and far region.
The main part of the network of ReDSDF that calculates fθ is consists of 4 fully-connected
hidden layers for static models, 5 fully-connected hidden layers for dynamic articulated
models. There are 512 elements in each hidden layer. The activation function is ReLU and
the last layer is linear connected without activation function. The hidden layer to calculate
αθ and ρθ composed of 32 elements. The output of αθ is constrained to be positive by
using a Softplus function, and the output of ρθ is limited between 0.5 and 1.5 by a Sigmoid
function with a bias. Batch normalization and drop out are not included in the network.

25

0.
0

0.
1

0.2

0.3

0.4 0.5

0.
6

0.7

0.8

0.
9

1.0
1.1

1.2

1.3 1.4

1.51.6 1.7

1.8

1.9

2.0

2.1

2.1

2.
1

2.1

2.2 2.2

2.2
2.2

2.3

2.3

2.3 2.3

2.4

2.4

2.4

2.4

2.5

2.5

2.5
2.5

2.6 2.6

2.6

2.6

2.7 2.7

2.7

2.7

0.0

0.1

0.2
0.3

0.4
0.5

0.6

0.7

0.8
0.9

1.0
1.1

1.2

1.3

1.4 1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.1

2.
1

2.1

2.2 2.2

2.2
2.2

2.3

2.3

2.3 2.3

2.4

2.4

2.4

2.4

2.5
2.5

2.5
2.5

2.6 2.6

2.6

2.6

2.7 2.7

2.7

2.7

0.0

0.
1

0.2

0.3

0.4

0.5 0.6

0.7

0.8

0.9

1.01.1

1.2

1.3

1.4

1.5
1.6

1.
7

1.8
1.9

2.0

2.1

2.
1

2.1

2.1

2.2

2.2

2.2

2.2

2.3

2.3

2.3

2.3

2.4

2.4

2.4

2.4

2.5
2.5

2.5 2.5

2.6 2.6

2.6
2.6

2.7 2.7

2.7

2.7

(a)α = 16, ρ = 1 (b)α = 16, ρ = 1.5 (c)α = 6, ρ = 1.5

Figure 4.10.: Three Examples of ReDSDF with Different Parameters of Sigmoid Function.

4.3. Training of the Network

Before training, all datasets are divided into training set, validation set and test set in
the ratio of 0.8, 0.1, 0.1, where the training set is used to train the neural network,
the validation set is used to evaluate the performance of the network and select the
hyperparameters, and the test set is used for the final results presentation. In the training
process, the network will be trained by optimizing the following loss function. The loss
function can be divided into three sections:

L(D) = L1(D) + L2(D) + L3(D), (4.17)

where
L1(D) =

∑︂
i∈D

ωi

(︂
d̃θ(xi, qi)− di

)︂2
, (4.18)

L2(D) =
∑︂
i∈D

(︂
∥Niñθ(xi, qi)∥22 + ∥Ñθ(xi, qi)ni∥22

)︂
, (4.19)

L3(D) =
∑︂
i∈D

γρθ(xi, qi)
2. (4.20)

The loss of the first item represents the weighted MSE-loss between the target value and
estimated results. And the second item of loss is similar to the one proposed in [28],

26

where Ni is the null-space of the normal ni and ñθ is the gradient of the network. The
gradient is only calculated in three dimensions:

ñθ(xi, qi) = ∇xi d̃θ(xi, qi) =
∂d̃θ(xi, qi)

∂xi
. (4.21)

And Ñθ is the null-space of ñθ. This loss term expresses: The normal direction of the
training point is orthogonal to the tangent plane of the distance field, and the normal
direction of the distance field is orthogonal to the null space of the normal direction of
the training point. The last item of loss function is a regularization term, where γ is a
regularization coefficient. Here we use the value of 0.02 for regularization coefficient. This
item makes the transition position as close to the object as possible. Otherwise, without
this item, the transition region will be pushed particularly far, which causes overfitting.
Through several trials, the Adam optimizer was finally chosen. The learning rate is 10−4.
Batch size is 4096 for dynamic models and 2048 for static models. The result of training
and comparison with baseline can be find in 6.1.

27

5. Application of Geometric Constrains

This chapter concentrates on the two applications of ReDSDF: reactive motion generation
and SafeRL. The reactive motion generation will be discussed in Section 5.1 and SafeRL
will be discussed in Section 5.2. The SafeRL method will be divided into three sub-section
for detailed introduction.

5.1. Robot Motion Control with ReDSDF

ReDSDF can be used for real-time control of robots to avoid collisions and it can be
integrated to any other type of reactive motion generation, such as Riemannian Motion
Policies (RMP) [6] and Composable Energy Policies (CEP) [21]. Here the whole-body
motion control based on Artificial Potential Fields (APF) [20] will be used. The controlled
robot is TIAGo++. As introduced in Section 3.2, ReDSDF as distance field can be directly
constructed as repulsive field in APF.

5.1.1. Construction of Artificial Potential Fields

First of all, we define a PID controller to control the robot end-effector to target position.
Further on this basis, we define a velocity signal determined according to the direction
of the gradient of the distance field. This velocity signal can help the robot to avoid the
obstacles. Since the distance field is a neural network, we can directly find the gradient of
the distance field. Before doing robot control, we will define some points on the robot
that need to be queried for collision. When any of these points is less than the threshold

28

𝒗𝑐

𝒗𝒐

𝒗

Figure 5.1.: Explanation of the Repulsive Velocity

κ, the control of obstacle avoidance will be turned on. For each obstacle, the energy for
obstacle avoidance is defined as follows:

Eo(x) =

⎧⎨⎩0 d̃θ(x, qo) > κ
v̄

2κ

(︂
d̃θ(x, qo)− κ

)︂2
0 ≤ d̃θ(x, qo) ≤ κ

, (5.22)

where v̄ is the repulsive velocity coefficient. This is the repulsive field in APF. From this
we can obtain the velocity of avoiding the obstacle by calculate the gradient of the field:

vo = −∇xEo(x) =
v̄

κ

(︂
d̃θ(x, qo)− κ

)︂
ñθ(x, qo). (5.23)

The Figure 5.1 shows, how the repulsive velocity works. vc is the original control velocity.
In this example, Only one point needs to be controlled. If the point is close to the obstacle, a
repulsive velocity in the same direction as the distance field gradient will be superimposed
on the original control velocity. The resulted velocity will naturally dodge obstacles.
If there are multiple points on a control object that require obstacle avoidance, we call
these points: Points of Interest (PoI). If there are multiple obstacles O in the environment,
the repulsive velocity can be vector summed for each point in the PoI:

vi =
1

|O|
∑︂
o∈O

vi,o, (5.24)

where index i represents the i-th point in the PoI. In the robot control, the velocity in
task-space needs to be translated into joint-space with qr through Inverse Kinematics (IK).

29

Recently, there are many ways to achieve IK. In this thesis, the Jacobian transpose method
[56] is used:

q̇r,i = JT
i (qr)vi (5.25)

Eventually, we can summarize the control velocity and all the repulsive velocity in the
robot joint-space:

q̇ = JT
c (q)vc +

N∑︂
i

q̇r,i, (5.26)

where N is the number of PoI and Jc is the Jacobian matrix calculated in the end-effector
frame. The experiments and results on reactive motion generation will be described in
detail in Section 6.2.

5.1.2. Applying Distance Field and APF on Robot

The distance field can only query the distance for a certain point. If we want to control
the whole robot for obstacle avoidance, we must select some points on the critical area
of the robot surface for calculation. These points are mentioned in Section 5.1.1 and
called PoI. We have here an example of taking PoI on TIAGo. The example is shown in the
middle of Figure 5.2. In this figure, the green points are PoI. The example experiment is a
self-collision prevention experiment with only one robot controlling the whole body, so in
robot work, only the arm can collide with the rest part of the robot. Therefore, the critical
area of the robot is the arm surface, and all the PoI are taken from the arm surface. The
arm will only collide with the other arm, and the robot is symmetric, so we only need to

0.10 0.
05

0.00

0.00

0.00

0.
05

0.10
0.15

0.20

0.25

0.30

0.
300.35

0.35

0.40

0.4
0

0.
40

0.45

0.45

0.
450.

50

0.5
0

0.50

0.55

0.55

0.55

0.
60

0.60

0.10

0.05

0.00

0.00

0.05
0.10

0.15

0.15

0.20

0.
25

0.
25

0.30

0.
30

0.30

0.35

0.35

0.35

0.40

0.
40

0.45

0.
45

0.
50

0.
50

0.
55

0.5
5

0.6
0

0.6
5

Figure 5.2.: PoI of Robot and its Distance Field with Mirroring

30

Figure 5.3.: Sphere-Based Method

train the simplified robot with only a single arm as shown in Figure 4.6. While we only
train distance field of robot with left arm, we can calculate the distance field of the right
arm by mirroring. Left and right image of Figure 5.2 shows the distance fields with left
arm and right arm respectively. In this example, the PoI on the right arm only needs to
query the distance field with the left arm, and similarly, the PoI on the left arm only needs
to query the distance field with the right arm. For other robots, the this approach can also
be used to train distance fields and define poi in critical surface for obstacle avoidance
control.
There is also a popular method of modeling objects with spheres [9]. In the control of
the robot, the relationship between the position of each part of the robot is calculated by
finding the distance between the two centers of the spheres. The method is shown as an
example of TIAGo in Figure 5.3, where different groups of spheres are shown in different
colors.Each sphere only needs to query the distance from other groups of spheres. These
two methods will be compared with each other in Section 6.2 and Section 6.4.2.

5.2. Safe Exploration with Learned Constraints

Now that we have the distance field, we’ll go into detail on how to apply the RedSDF to
SafeExp as constraints. In Section 3.4, we introduced Atacom, which is the theoretical
premise for SafeExp in this thesis. The method views the constraint as a manifold and

31

Object Model

Generate

Datasets

Distance Pointclouds Signed Distance Field (NN)

Train the

Network

Constraint Manifold

Construct

Constraints

Action

Acting on

Tangent Space

Environment Agent

State

SDF Learning

Safe Exploration

Figure 5.4.: Pipeline of SafeRL

all exploration is performed on the manifold. Discussed in this section is the SafeExp of
robots in RL. Therefore, the problem we should be concerned now is how to translate the
task-space manifold into the joint-space of robot. Here we use the state constraints in
ATACOM and the control value of robot is joint velocity.

5.2.1. Pipeline of Safe Reinforcement Learning

The aim of SafeRL is to allow robots to achieve SafeExp without breaking task and
geometric constraints in the process of learning. Then SafeExp can be summarized into
two main problems: how to define the constraints and how to calculate the action so that
the state of the MDP is always on the constraint.
The task-oriented constraints are easy to define, such as joint limits that can be defined
directly. But for the geometric constraints, it is complex. As introduced in Section 3.4, the
approach to SafeRL applied in this case is to define collision-free region through implicit
equations, while real-world objects are represented by SDF and converted into constraints.

32

So the main idea to construct the geometric constraints is training the neural network as
SDF of object. The object can be either dynamic or static. The datasets used to train the
network are generated from the object-models. Once we have the constraints, we can use
ATACOM, mentioned in Section 3.2, to project the actions onto the manifold. The pipeline
of SafeExp can be found in Figure 5.4.
The top half of the figure shows the process of learning the geometric constraints. This part
was discussed in Chapter 4. Once we have the SDF, we can define the constraints according
to the corresponding safe distance to allow the robot to avoid collisions. The derivation
of constraints and Jacobian will be described in detail in the next two sub-sections. The
actions drawn by the agent will be projected into the tangent space by means of ATACOM,
and then applied to the environment, so that all states at the time of exploration can
be satisfied with safety requirements. It is worth mentioning that these constraints can
also be dynamic constraints. RL experiments for dynamic scenes will be presented in the
Section 6.3.

5.2.2. Applying Constraints on Robots to Avoid Collisions

The method of obstacle avoidance for the robot is to keep a sufficient distance between
the robot and the obstacle.However, when the robot is close to an obstacle, the shape of
the robot cannot be ignored.In this case, the distance to the obstacle is no longer reliable if
we use the robot’s center point to calculate. From this, we proposed two ways to keep the

Figure 5.5.: Two Methods to Define the Constraints on Robot

33

𝑟

ሚ𝑑

Figure 5.6.: Using Spheres to Define Constraints

robot at a safe distance from the obstacle. These two methods are shown in the Figure 5.5.
The first method is to define some query points on critical parts of the robot surface. This
method is same as PoI. We will constrain these points to maintain a sufficient distance
from the obstacle. By applying the distance network, we can express the constraints by
the following equation:

ci(q) = δi − d̃(xp,i(q), qo) ≤ 0, ∀i ∈ (0, 1, ..., N) (5.27)

where xp,i(q) is forward kinematics to compute the position of query points, d̃(·) is
the function of ReDSDF, which output the distance to the obstacle surface, the index i
represents the point in PoI, and δ is the minimal distance that the robot should keep from
the obstacle. However, the number of constraints with this method is same as the number
of PoI, and when there are especially many points, the computation slows down. What’s
more, these points do not wrap the entire robot arm. Therefore we propose the method
shown on the right side of the Figure 5.5.
The idea of this method to define the constraints is using spheres to wrap the robot and
query the center position of spheres. The illustration can be seen in the Figure 5.6. Here we
constrain the distance between the position of the center of the sphere and the surface of
the obstacle. The position of the sphere’s center can be determined by forward kinematics.
By subtracting the radius of the ball from the distance obtained we can obtain the distance
to be constrained:

gi(q) = δi − d̃(xp,i(q), qo) + ri ≤ 0, ∀i ∈ (0, 1, ..., N) (5.28)

34

where ri is the radius of the constraint sphere. And we use forward kinematics xp,i(q) to
calculate the position of sphere center on the robot arm. We thus constrain the position
of these points to allow the robot to avoid collisions. If we use spheres as constraints,
the number of spheres is much smaller than the number of PoI in the previous method.
Therefore, this method is more computationally efficient than PoI.

5.2.3. Define Actions on the Constraints

Now that we have the constraint, we need to convert the constraint to the manifold in
joint-space. According to the ATACOM introduced in Section 3.4, we can convert the
inequality constraint of Equation 5.28 into an equation constraint by using slack variable:

ci(q, µi) = δi − d̃i(xp,i(q), qo) + ri + ϵi(µi) = 0, ∀i ∈ (0, 1, ..., N). (5.29)

The control of the robot is carried out in discrete time. So we assume that the obstacle is
stationary in one time step. So we derive Equation 5.29 for time:

ċi(q, q̇, µi, µi̇) = −ñi(xp,i(q), qo)JFK(q)q̇ + ϵ′i(µi)µi̇ . (5.30)

Assume that the state of the environment doesn’t break the constraints at the previous
moment, so ċi(q, q̇, µi, µi̇) should be equal to 0. And then we write the formula in the
form of a matrix:

ċ(q, q̇,µ, µ̇) =

⎡⎢⎢⎢⎢⎢⎢⎣
−ñ1(xp,1(q), qo)JFK(q) ϵ′1(µ1) 0 · · · 0

−ñ2(xp,2(q), qo)JFK(q) 0 ϵ′2(µ2) · · · 0
...

−ñN (xp,N (q), qo)JFK(q) 0 0 · · · ϵ′N (µN)

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣q̇
µ̇

⎤⎦ ,

(5.31)

ċ(q, q̇,µ, µ̇) = Jc(q,µ)

⎡⎣q̇
µ̇

⎤⎦ = 0. (5.32)

In order to solve the Equation 5.32, we need to obtain the null-space of Jc. There are
now many ways to solve for the null-space of a matrix, such as SVD [57] and QR [58].

35

According to the idea in [59] that the null space bases generated by the projection-based
method has continuity, the projected null space of Jc is determined by:

Nc = (I − JT
c (JcJ

T
c)

−1Jc)Z, (5.33)

where the Z = [In 0]⊺ is the augmented bases that combines the original joint space bases
with a zero matrix. With zero-space of Jacobian, we can project the original action onto
the manifold and solve the Equation 5.32:⎡⎣q̇

µ̇

⎤⎦ = Ncα, (5.34)

whereα is the original action that draw from the network in RL. The above is the theoretical
part of the SafeExp. Some experiments and results of RL will be shown in the next chapter.

36

6. Experiments and Results

This chapter presents some of the designed experiments and results. These experiments
not only validate the performance of our proposed method, but also validate the quality
of ReDSDF at the same time. First in Section 6.1 some training results of ReDSDF will be
shown. In this section, not only static objects are shown here, but also dynamic articulated
objects such as human body. The Section 6.2 introduces the experiment that robot controls
the whole body to avoid self-collision. In Section 6.3, we use SafeExp proposed in this
thesis to make the robot arm grasp specific points. In the environment, there is a shelf
and the learned policy will be transformed on the real robot. The learned geometric
constraints will be used for reactive motion generation and RL in human-robot interaction
environment in Section 6.4.

6.1. Results of ReDSDF

In this section, the qualitative and quantitative results of ReDSDF will be shown. There
are two main dynamic models trained in this thesis: human body and TIAGo++. Some
comparisons between ReDSDF and other baselines will be made at the end of this section.
The training processes can be found in Appendix A.

6.1.1. Results of Human Model

In training the human model, we use the human pelvis as the base position; the top of the
person is the positive y-axis direction; the front is the positive z-axis direction; and the left
is the positive x-axis direction. The movement and rotation of the base are not considered
in the network. Removal of palm joints, the human pose has in total 63 dimensions.
Compared to training other objects, the dataset of human body is huge, so it takes a long

37

Training time 3d 1h 51m 38s
Number of Epochs 189

Minimal loss for training set 0.04597
Minimal loss for validation set 0.05164

Eventual loss for test set 0.05433
RMSE of SDF 0.00499

Table 6.1.: Quantitative Results of Human Model

time to train the human model. The quantitative results of the training are shown in
Table 6.1.
The dataset used to calculate RMSE here is a series of actions in AMASS that were not used
to generate points for any previous dataset. Here the RMSE is calculated as a comparison
between the distance output by the network and the real distance. The formula for
calculating RMSE is as follows:

RMSE =

√︄
1

|Dtest|
∑︂

i∈Dtest

(︂
d̃θ(xi, qi)− di

)︂2
, (6.35)

where di is the real minimal distance between object surface and the point xi. From the
results, we can see that the errors of the network are in the level of 10−3, so the network
is able to estimate the distance precisely.
Next, the results will be shown qualitatively. The method of visualizing the SDF is the
ray-marching algorithm [60]. This algorithm is widely used in graphics for rendering. This
algorithm is also used in this thesis to visualize surface at specific distances. Figure 6.1
shows the visualization of human in four different poses. These four postures are just
examples. The network can show all human actions in normal postures. The images
in the first row show the position at a distance of 0 (0-level) from the field using the
Ray-marching algorithm. The shape displayed in this position should be the same as the
original object. The picture in the second row show the contour of the distance field. This
contour shows only the cross section in the xy-plane at the position where the z-value is 0.
The third row of images shows the original object. From the figure, it can be seen that
the network can represent different poses of the same object, and it can also represent

38

0-
lev

el
of

Re
DS

DF
2D

-co
nt
ou

r

0.0
0.2

0.4 0.6

0.
8

0.
8

1.0

1.
0

1.
0

1.0

0.
0

0.2
0.4

0.6
0.8

0.8

1.0

1.0

1.
0

1.0

0.
0 0.2

0.4

0.
6

0.8

0.8 0.8
1.0

0.2

0.
4

0.6

0.8

1.0

1.0

1.0

1.0

Gr
ou

nd
tru

th

Figure 6.1.: Visualization of Human Model

objects with high-dimensional poses like the human body. The human body reconstructed
by the network is almost identical to the ground truth. And many details on the human
body are also expressed, such as fingers. Since this network is all capable of expressing a
dynamic model of the human body in such large pose dimensions, this also means that
ReDSDF can express other dynamic objects with high joint dimensions.
The above comparison is the different pose of the human body, and the following will
compare the different levels with the same pose. Figure 6.2 shows the result of ReDSDF
with different output value. The levels in the figure of the four shapes in the network
are: 0, 0.05, 0.2 and 0.7. It can also be seen from the figure that the network can give
good results for different values of distances. For close areas, the network can portray
the details of the human body, for distant areas, the network can roughly estimate the
distance to the human body. And as the distance gets larger, the shape presented gradually
approaches a sphere. This is consistent with the expression of Equation 4.14.

39

Figure 6.2.: Human Models with Different Levels

6.1.2. Results of TIAGo with Single Arm

For training the robot, the origin of the SDF is the center of the robot base and z-axis
facing up, x-axis pointing to the front of the robot, y-axis pointing to the left of the robot.
For a single arm, the robot was trained with a total of 8 joints. We randomly selected
10,000 poses to generate the dataset. The quantitative results of the training are shown
in Table 6.2.
Training the robot took a relatively short time. And the training results are shown in
Figure 6.3 qualitatively. The figure shows four different configurations of TIAGo. The
3D-reconstruction of robot and 2D-contour are visualized in the first and second rows in
the figure. It can be seen that ReDSDF can express the configurations in almost all joint
limits, and can give the distance to the robot surface with high quality. The model will

Training time 10h 11m 35s
Number of Epochs 58

Minimal loss for training set 0.01971
Minimal loss for validation set 0.01991

Eventual loss for test set 0.04258
RMSE of SDF 0.00414

Table 6.2.: Quantitative Results of TIAGo++

40

0-
lev

el
of

Re
DS

DF
2D

-co
nt
ou

r

0.0

0.2

0.4

0.6

0.8 0.8

1.0

1.
0

1.0

0.0
0.2

0.
4

0.6
0.8

0.8

1.0 1.0

1.0

0.0

0.2
0.4

0.60.8

0.8

1.0

1.0
1.0

0.0

0.2

0.
4

0.60.8

0.8

1.0

1.
0

1.0

1.2

Gr
ou

nd
tru

th

Figure 6.3.: Visualization of TIAGo Model

be used to do self-collision avoidance. In addition to these two dynamic models, we also
trained many static models.

6.1.3. Results of Static Models

The static models do not have the input dimension of the poses. So they only have three
input dimension of position. In this section, the results of static models will be shown.
And these models will be compared with two baselines: DeepSDF [27] and ECoMaNN
[28]. We use the datasets from ShapeNet [61], and train two models: table and sofa.
In addition, a static human body will be also trained through the baseline methods and
compared. The ReDSDF used here is a network with four hidden layer. And each hidden
layer has 512 elements. For the baseline approaches, we use the original method proposed
in the literature to generate training data. The quantitative comparison of the results can
be seen in the Table 6.3. This table gives a comparison of RMSE between the three objects

41

Network

RMSE Object
table sofa human

ECoMaNN 0.02423 0.01485 0.00832
DeepSDF 0.00632 0.00749 0.00592
ReDSDF 0.00503 0.00773 0.00499

Table 6.3.: Quantitative Comparison of the Results of Static Models

and the three networks. From the table we can see that the error difference between
DeepSDF and ReDSDF is not significant. But the error of ECoMaNN is relatively large.
This difference can also be seen from the qualitative comparison in Figure 6.4. The surface
of the object is reconstructed by ray-marching algorithm. According to this figure, we can
see that the difference of reconstructed surface quality between DeepSDF and ReDSDF is
not significant. However, the reconstructed surface by ECoMaNN is not flat. Further, we
can compare the details from the Figure 6.5, 6.6 and 6.7.

Ta
ble

So
fa

Hu
m
an

Ground truth ECoMaNN DeepSDF ReDSDF
Figure 6.4.: Comparison of the Static Models with Baselines

42

EC
oM

aN
N 0.9

1.7

2.5

2.5

3.3

3.
34.1 4.

1

0.1

0.9
1.7

2.5

2.5

3.3

3.
3

4.1

0.9
1.7

2.5

3.3 3.3

3.3

0.1
0.4

0.7

1.0

1.0

1.0
1.3

0.4

0.7

1.0

1.0
De

ep
SD

F

0.
5 0.5

0.
5 0.10.4

0.4

Re
DS

DF

0.
9

1.7

2.5

3.3

3.34.1

4.
1

4.
1

4.1

0.9

1.7

2.5
3.3

3.3

4.1 4.1

4.1

4.1

0.9
1.7

2.53.3

3.3

4.1
4.1

4.1 4.1
0.1

0.
4

0.71.0
1.3 1.3

0.4

0.
71.0

1.0

1.3

1.3

yz-plane xz-plane xy-plane xz-plane (zoom) xy-plane (zoom)

Figure 6.5.: Comparison of the Table Distance Functions in Detail

Figure 6.5 shows the distance field of table. To better show the area near the surface of
the object, the field is zoomed in on two planes: xz-plane and xy-plane. As we can see,
the distance field learned by ECoMaNN is not very smooth and there are some outliers in
the field. This is due to the outliers in dataset and missing of training data in the distant
region. DeepSDF can only estimate the distance near the object, while for distant distances
can only be obtained by truncation. ReDSDF not only computes the near distance with
the same high quality as DeepSDF, but also gives a rough estimate of the distant distance.
And at any position in space, ReDSDF gives the accurate normal direction of the distance
field. This feature is critical in the application of distance fields to robot control.
Figure 6.6 shows the distance field of sofa. This field is zoomed in on yz- and xy-plane.
From the figure can be seen that the contours of ReDSDF distribute nicely. Similarly,
ECoMaNN cannot give a smooth distance field. Although DeepSDF can estimate the
distance near the surface of an object very well, the distance cannot be estimated in
distant region. ReDSDF has the best performance, which can calculate smooth distance
fields at any scale.
The comparison of human model is shown in Figure 6.7. For the distance field computed
through ECoMaNN, the distance estimated for locations farther from the surface of the
object is no longer meaningful. All the other methods can only roughly reconstruct the
human body, but ReDSDF can reconstruct details, such as the face and hands. This is due

43

EC
oM

aN
N

0.9

1.7

2.5

3.
3

3.3

4.
1

0.9

1.
7

2.5

3.
3

3.34.
1

0.9

1.7

2.5

3.3

3.
3

0.1

0.40.7

1.
0
1.
3

1.3

0.
1

0.4

0.
7

1.0
1.3

1.
3

De
ep

SD
F

0.5

0.5

0.5 0.1
0.4

0.1

0.4

Re
DS

DF 0.9

1.7

2.5

3.3

3.34.1

4.
1

4.
1

4.1

0.9

1.7

2.5

3.3
3.3

4.1 4.1

4.
1

4.1

0.9

1.7

2.5

3.3
3.3

4.1 4.1

4.
1

4.1
0.1

0.4

0.7
1.0

1.
3 1.3

0.1

0.4

0.7
1.0

1.3

1.3

1.3

1.3

yz-plane xz-plane xy-plane yz-plane (zoom) xz-plane (zoom)

Figure 6.6.: Comparison of the Sofa Distance Functions in Detail

to the fact that we use weights and uneven expansion of augmented data to enhance the
training of detailed positions.
To sum up, ReDSDF compensates for the shortcoming that ECoMaNN cannot learn complex
manifolds on the one hand, and DeepSDF cannot express distances at a distant region
on the other hand. We use the Sigmoid-function to regularize the output of the network,
so that not only can the network estimate the distance at a distant region, where the
augmented data can’t reach, but also the calculated distance field becomes smooth. So we
don’t need to generate augmented data in the whole space, and the network can express
distance anywhere. For the purpose that the network can adapt the boundary between
near area and distant region, we use the learnable parameters and limit their scope, so that
the network can be used to learn many different models. In order to make the distance
field near the object surface more accurate, we produce more augmented points in the
area near the object surface. What’s more, we assign more weight to the training points
at locations with fewer augmented points. Therefore, the network can reconstruct more
details on the surface of the object. ReDSDF can also calculate the normal direction of
the distance field more precisely by computing the gradient, because we put the normal
direction into the training set. During training, the normal direction is also added to the
loss function as a metric for training the network.

44

EC
oM

aN
N

0.
1

0.9

1.7

2.53.
3

3.34.1
4.9

5.7
6.5

0.10.9
0.9

1.7

1.
7

1.7

2.5

2.53.3 3.3

0.1
0.9

1.7

1.7

2.5

2.5

3.3

0.1

0.4

0.4

0.4

0.7

0.
7

0.7 0.7

1.0

1.
0

De
ep

SD
F

0.
10.
9 0.1

0.
9

0.1
0.9 0.1

0.4 0.
4

0.7 0.7

0.7 0.7

1.0 1.
0

Re
DS

DF

0.
1

0.9

1.7 2.
5

3.3

3.3

4.1 4.
1

4.1 4.1

0.
1

0.9

1.7 2.
53.3

3.3

4.1

4.1
0.1

0.9
1.7

2.5

3.3 3.3

4.1 4.1

4.1

0.1
0.4

0.7

0.
7

0.7
0.7

1.0 1.0

yz-plane xz-plane xy-plane xz-plane (zoom) mesh (closeup)

Figure 6.7.: Comparison of the Human Distance Functions in Detail

6.2. Whole Body Control

In this section, we will describe the experiment of whole body control. The learned ReDSDF
is used in reactive motion generation to control robot. This method was mentioned in
Section 5.1 and the distance model was trained in Section 6.1.2. This experiment was
conducted in a virtual environment and the robot was TIAGo++. We control the robot’s
joints velocity on whole body with a total of 15 degrees of freedom to make the end-
effector reach the target point. The 15 degrees of freedom include the joints of both arms
and torso. The robot base is fixed.
The method to control robot was mentioned in Section 5.1. In this experiment, we take a
total of 124 points on the robot as PoI (of which 62 points per arm). Because the distance
field was only trained for the robot left arm, we use mirroring when querying the distance
of the right arm. The aim of this experiment is to achieve self-collision avoidance by
querying the distance of these points. Again, we did another experiment as a baseline.
This experiment uses the sphere to model the robot as mentioned in Section 5.1.2, and
achieves obstacle avoidance by querying the distance between the centers of each sphere.
There are in total 30 spheres and these spheres are grouped into 3 subgroups: body
with 18 spheres, left and right arm with 6 spheres respectively. When calculating the
distance, the spheres in each subgroup perform a distance query on the spheres in the

45

No avoidance Sphere-based (task-oriented) ReDSDF (task-oriented) Sphere-based (cautious) ReDSDF (cautious)

Success rate 44.8% 80.9% 82.8% 38.3% 72.9%
collisions 548/1000 49/1000 7/1000 0/1000 0/1000
Final err. (cm) 10.42 ± 0.59 1.42 ± 0.14 1.74 ± 0.15 7.21 ± 0.42 2.05 ± 0.17
Reach time (s) 6.17 ± 0.42 12.58 ± 0.58 13.95 ± 0.58 23.98 ± 0.55 15.86 ± 0.63
Smoothness 10.50 ± 0.06 811.88 ± 183.40 12.20 ± 0.25 3557.51 ± 284.15 13.10 ± 0.28
C. time (ms) 0.10 ± 5.49e-5 5.79 ± 6.28e-3 2.56 ± 2.45e-3 5.97 ± 5.68e-3 2.61 ± 2.42e-3

Table 6.4.: Results of Whole Body Control Experiment

other subgroups. By adjusting κ and v̄ we achieve two control modes: task-oriented
and cautious. For the task-oriented control, the robot will tend to complete tasks at the
expense of obstacle avoidance, and conversely, the robot will prefer obstacle avoidance in
cautious control mode. Figure 6.8 is a screenshot of experiment, which demonstrates how
the experiment was conducted.
A total of 1,000 experiments were performed for each method and each control mode.
Two targets in the robot workspace will be randomly selected for each experiment. These
targets will not be too close to the surface of the robot,
and the robot is controlled to bring the two end-effector to that targets. When the both
end-effectors is less than 3 cm from the target, it is marked as successful. If the robot
collides, the environment will be reset for next experiment. Each experiment is conducted
for a maximum of 30 seconds and the simulated environment is controlled at 60 Hz. The
results of the experiments can be found in Table 6.4. We finally report these items: success
rate, number of collisions, final error, time spent for reaching target, smoothness of the
generated trajectory and time spent for querying distance. The smoothness of trajectory τ
is defined by the following equation:

s(τ) =
∑︂

qr(i)∈τ

∥q̈r(i)∥2, (6.36)

where qr(i) is the robot joint position in i-th time step. The simulation was performed
on an AMD Ryzen 7 3700X 8-Core Processor with a graphics card of GeForce RTX 2080
SUPER. We used the graphics card to speed up the query distance process.
From the results, it can be seen that if no obstacle avoidance measures are used, the
robot will have multiple collisions and the success rate is very low. Comparing the two
methods, ReDSDF has a higher success rate than sphere-based, regardless of the control
mode. Although the final error of sphere-based is a little smaller in task-oriented control
mode, the number of collisions is much higher than that of ReDSDF. In cautious control

46

Figure 6.8.: Experiment Screenshot of Whole Body Control

mode, both methods achieve 0 collisions. However, the success rate of ReDSDF is much
higher than sphere-based, and the error is smaller than sphere-based. What’s more, the
trajectory generated by ReDSDF is smoother than by sphere-based and the computing
time of RedSDF is shorter than sphere-based. In general, ReDSDF has better control
performance than sphere-based, both for obstacle avoidance and reaching the target.

6.3. Reaching Target Point with a Shelf

This experiment is a RL experiment. The experiment includes a robot TIAGo++ and a
shelf. The robot learns to bring the end-effector to one specified position on the shelf in a
simulation environment. While reaching the target point, the robot has to avoid collision
with the shelf and itself. After learning the policy, we transform the agent onto the robot
in real world, and then observe whether the robot can achieve the specified function in
the real world. The scene of experiment can be seen in Figure 6.9 with the simulated
world on the left and the real world on the right.
In this experiment, we use the algorithm SAC [52] to learn the policy. And the method of
SafeExp mentioned in Section 5.2 and the robot distance model trained in Section 6.1.2
were used. What’s more, we also trained a distance model for the shelf as constrains. We
also use joints limitation and ground as the constrains. And the method will be compared

47

Figure 6.9.: Demonstration of Robot-Shelf Experiment

with the baselines: no constraint and safe-explorer [48]. We control the velocity of robot
joint. The degrees of freedom of the robot, in other words, the dimension of the action
space is 7, which includes the seven joints of the robot’s right arm. The base of robot is
fixed. The dimension of observation space is 10, which includes the state of joints and
the position of target. During the training, the position of target was selected on the shelf
randomly. We performed every experiment with 10 random seeds. The hyperparameters of
the training and the training process can be seen in the Appendix A. The final experimental
results can be seen in Table 6.5 and Figure A.2.
From the results, it can be seen that only ATACOM can learn the expected results among
the three methods. The final learned policy can keep the error below 0.1 mean throughout
the episode. Whether it’s a task specific constraints or a geometric constraints, the robot
barely breaks them by using our method during training. Even zeros collisions are possible
in some random seeds. If no SafeExp method is used, the robot will move away from the
target point in order to avoid collisions, which causes the robot not to learn the expected
policy. This conclusion can be seen in the first column of the table with trivial SAC. If
we use safe explorer, the number of collisions will be reduced accordingly. But still the
expected strategy cannot be learned. The learned policy also shows good results when we
transfer the experiment to the real robot. In the real world, robots can also avoid collisions
while grasping objects at target points.

48

Trivial SAC Safe Explorer ATACOM

Average error to target 0.7682 0.6034 0.09564
Minimal error to target 0.7472 0.5263 0.08251

Average cumulative reward -525.5 -493.2 1488
Maximal cumulative reward -280 -450.7 1682
Average discounted reward -213.2 -190.2 455.4
Maximal discounted reward -126.2 -177.5 535.2

Average collision during learning 3527.5 1417.6 3.4
Minimal collision during learning 2325 1100 0
Average breaking joint constraints 313.2 212.3 0
Minimal breaking joint constraints 261 174 0

Average maximal value of constraints / 0.08737 0.01818
Minimal maximal value of constraints / 0.07923 0.01359

Average number of steps 331.5 428.9 499.8
Maximal number of steps 340.8 443.8 500

Table 6.5.: Results of RL-Experiment with Shelf

6.4. Human Robot Interaction

In this section, two experiments on human-robot interaction will be presented. These
experiments were designed to demonstrate that the reactive motion generation and safeRL
approaches proposed in this thesis can also be applied in dynamic environments. In the
first experiment, a human and a robot work in a shared workspace, where the robot is
able to accomplish its own task while avoiding collisions with the human. The second
experiment applies SafeExp to a human-robot interaction environment.

49

Figure 6.10.: Shared Human-Robot Workspace

6.4.1. Reactive Motion Generation in Shared Human-Robot Workspace

The experiment was performed in a simulated environment and used a robot TIAGo++, a
human model and a cube. These objects were trained separately as distance networks: the
ReDSDF of robot in Section 6.1.2, human body in Section 6.1.1 and a newly trained cube.
In this experiment the human is completing his work and the robot’s end-effector needs
to reach the specified position without collision. It is like a sequential pick-and-place-like
actions. Because the human keeps moving, robots must also be able to evade human in
the shared workspace. We control joints velocity on the right arm and torso of robot with
a total of 8 degrees of freedom. The robot base is fixed and can’t move. The scene of
this experiment is shown in Figure 6.10. The green dot is the target, the place where
the end-effector of robot should arrive. When the end-effector is less than 3 cm from the
target, a new target point is refreshed. The red point cloud on the surface of the human
body is 10 cm from the surface of the human body generated by the ReDSDF. Once the
robot collides with any object, the experiment resets.
In this experiment, we use the same method as whole body control to perform obstacle
avoidance, and also compare with two baselines: trivial baseline and sphere-based baseline.
Two control modes are also used here: task-oriented and cautious. There are in total

50

No avoidance Sphere-based (task-oriented) ReDSDF (task-oriented) Sphere-based (cautious) ReDSDF (cautious)

collisions 935/1000 171/1000 95/1000 86/1000 27/1000
targets 2.172 ± 0.19 6.35 ± 0.18 5.78 ± 0.16 4.44 ± 0.14 4.73 ± 0.16
Smoothness 71.95 ± 0.85 2120.00 ± 198.35 135.56 ± 3.67 2286.69 ± 174.82 624.14 ± 43.50

Table 6.6.: Results of Shared Workspace Experiments

1,000 experiments that have been performed for each method and each control mode,
and each experiment will have 9 consecutive target points randomly generated. The
control frequency of the robot is 60 Hz. The experiments were performed on the computer
with AMD Ryzen 7 3700X 8-Core Processor and GeForce RTX 2080 SUPER graphics card.
And we use graphics card to accelerate the process of querying distance. The results of
experiment can be found in Table 6.6.
Here we evaluate a total of three items: number of collisions, error of targets and smooth-
ness of trajectory. The smoothness of trajectory is computed through the Equation 6.36.
From the results, it can be seen that the number of collisions of ReDSDF is less than other
methods regardless of the control mode used. Although the error of reaching the target
point is similar, the ReDSDF-controlled trajectory is smoother compared to sphere-based
one. In the course of the experiment, the robot was not only able to reach the target and
achieve obstacle avoidance, but also actively evade human by using ReDSDF. To sum up,
the obstacle avoidance control by using ReDSDF is on the one hand suitable for static
scenes, on the other hand for dynamic scenes, such as human-robot interaction.

6.4.2. Reinforcement Learning in Human Robot Interaction Environment

In this section, an experiment on SafeRL in human-robot interaction environment is
presented. This experiment is performed in simulation environment. There are four
objects in the environment: a robot TIAGO++, a human, a table and a cup. At the
beginning of each episode, the robot holds the cup, and then the robot learns to place
the cup in a designated location near the human and the water in the cup should not be
poured. The human keeps moving and working. The robot needs to avoid collisions with
the human, table and itself during the learning process. The scene of this experiment is
shown in Figure 6.11. In this figure the red point is the target position where the cup
should be placed.
In this experiment, we use the algorithm SAC [52] to learn the policy. And the method
of SafeExp mentioned in Section 5.2 and some distance fields trained in Section 6.1 are

51

Figure 6.11.: Scene of Human-Robot Interaction

used here. The ReDSDF of human is evaluated in Section 6.1.1, the ReDSDF of robot is
evaluated in Section 6.1.2 and the ReDSDF of table is evaluated in Section 6.1.3. These
distance fields are used as constraints for collision avoidance. We have also added joint
limits and ground positions to the constraints. The method mentioned in Section 5.2 is
compared with two baselines: the first is trivial learning without constraints, the second
is safe explorer [48]. In the original paper of safe explorer, the constraint must be learned
through neural networks before exploration, which causes the problem of inaccuracy of
constraints and slow query speed. Here we directly use the trained ReDSDF as a constraint
for safe explorer. During the learning, the velocity of robot joint is controlled and the
degrees of freedom of the robot is 7. So the dimension of action space is 7, and these
7 joints are all on the right arm of robot. The robot base is fixed and can’t move. The
dimension of observation space is 81, which includes the state of joints, the position of
target, the orientation of cup, the position of human, orientation of human and pose of
human. The target position where the cup should be placed is selected randomly. The
hyperparameters and some details of training are shown in the Appendix A. We performed
every experiment with 10 random seeds.

52

Trivial SAC Safe Explorer ATACOM

Average error to target 0.3288 0.07887 0.1292
Minimal error to target 0.3819 0.07360 0.08271

Average number of sprinkling 4969.2 130.3 0
Minimal number of sprinkling 585 22 0
Average cumulative reward 1.284 1085 903.5
Maximal cumulative reward 475.4 1204 1014
Average discounted reward 40.98 348.9 267.2
Maximal discounted reward 138 382.6 337.3

Average collision during learning 1561 270.8 6.4
Minimal collision during learning 1146 130 1
Average breaking joint constraints 8 2.4 0
Minimal breaking joint constraints 1 0 0

Average maximal value of constraints / 0.1301 0.1096
Minimal maximal value of constraints / 0.1169 0.0836

Average number of steps 452.5 490.9 499.9
Maximal number of steps 465.9 495.5 500

Table 6.7.: Results of RL-Experiment in Human-Robot Interaction

The comparison of results and the learning process can be found in Table 6.7 and Figure A.3.
The experimental results were taken as the average of 10 times and the best result of 10
times. In the table, we have considered eight results: error to target, number of sprinkling,
cumulative reward, discounted cumulative reward, number of collision during learning,
number of breaking joint constraints, maximal value of constraints and average number
of steps for each epochs. All eight results are presented by means of 10 random seed
experiments, taking the average and optimal values. And the figure shows 6 different items
during learning including discounted cumulative reward, cumulative reward, number of
collision, number of breaking joint limits, average number of steps in each epoch and

53

maximal value of constraints. As we can see from the results, although safe explorer has
a higher cumulative reward than ATACOM, ATACOM can also learn good results. And
ATACOM is able to achieve nearly 0 collision learning. If no safety algorithm is used, the
robot will not learn the expected results. In particular, the robot won’t break the joint
limits if we apply ATACOM. So for safety reasons, our method has better performance.

54

7. Conclusion

In this chapter, the method proposed in this thesis will be summarized based on the
experimental results, and future work will be prospected. The summary and future work
will be presented in two separate sections respectively.

7.1. Summary

In this thesis, we propose Regularized Deep Signed Distance Fields (ReDSDF) framework,
a novel distance field, which is network and estimates distance with high performance.
Furthermore, we propose methods to apply this network to reactive motion control and
Reinforcement Learning (RL) to achieve robot obstacle avoidance and Safe Exploration
(SafeExp).
For ReDSDF, we propose new methods for generating augmented points and design the
architecture of this network. We add the dimension of the pose in the input of network, so
ReDSDF can express different postures of arbitrary articulated objects. Since the output of
the network is limited by inductive bias in training, the network can estimate the distance
to any position in space and the distance field can become smooth. The performance of
ReDSDF has been validated by training different dynamic as well as static models. In
addition, the quality of network has been compared with two baselines: ECoMaNN and
DeepSDF. The distance network can be used not only in computer graphics, but also in
robot control and RL. The results of the comparison lead to the conclusion that ReDSDF
has better performance. It can not only compensate the disadvantage that DeepSDF can
only estimate the distance near the object, but also improve the smoothness of distance
field compared with ECoMaNN.
Safety is important for autonomous robots, both when planning actions that considers
themselves and the world around them, and when robots interact with humans in shared

55

workspace. Applying the ReDSDF proposed in this thesis can solve these collision problem.
On the one hand, we propose to apply this network to generate reactive motions in
robot control to enable the robot to achieve obstacle avoidance. The method has been
validated with two different experiments in both static and dynamic environments, and
the performance of this method has been compared with baseline. On the other hand,
we use this network to implement SafeExp. We constrain the state space of the robot by
ReDSDF to achieve obstacle avoidance during the process of learning policy. Also this
method is compared with baseline, and the performance of the method has been validated
through two different experiments. The method has proven to be applicable not only to
static environments, but also to dynamic environments such as human-robot interaction.
Applying this method, the robot is able to achieve SafeExp in a static environment without
collision. In a dynamic environment, although there are a small number of collisions, the
robot will not go to actively hit human and will avoid human.
I also learned a lot from this thesis. Overall, I have gained a deeper understanding of
neural network training, robot control, and RL, as well as an improved ability to program
and work with others. The specific experience can be summarized as follows: First,
machine learning is a discipline that combines theory and practice. Each attempt must
be based on theory for continuous attempts to gradually improve the learning results.
Second, experiments with robots in the real world differ greatly from those in simulated
environments. Experiments in the real world require many factors to be considered to
ensure the proper functioning of the robot. Finally, we need to make full use of the
computer’s resources to complete the task efficiently. If we use a reasonable strategy we
can largely reduce the computation time.

7.2. Future Work

This thesis has only partially completed the study of robot safety. For the future work is
summarized in the following three main aspects.
First, the estimation of the normal direction of the dataset. The method used in this thesis
cannot accurately estimate the normal direction of all points. And looking at the existing
techniques, there is no method that can accurately estimate all normal directions of a
pointcloud especially for some thin-walled objects. Even though some points with wrong
normal estimation are removed by deleting outliers in this thesis, it still has an impact
on the training of the network. Therefore, if a method to accurately estimate the normal
direction can be studied, the performance of ReDSDF can be greatly improved.

56

The second is to apply the methods of robot control and safeRL that have been proposed in
this thesis to more and more complex environments. The method proposed in this thesis
can also be applied in real-world robots. The number of obstacles involved in this thesis
is small, so the validation of the stability of the algorithm is not comprehensive enough.
Therefore, the next work can apply the method to more robot control and reinforcement
learning algorithms.
The final research direction is to find methods to accurately estimate the human pose.
Now we can estimate the distance network of the human body from the human pose
parameters. So if we want to apply the method proposed in this thesis to real-world
human-robot interaction scenarios, we need to obtain the position and pose of the human
body through computer vision methods or point tracking methods.

57

Acknowledgments

The advisors have guided me to a great extent while writing this thesis. I would like to
express my sincere gratitude to Puze Liu, Davide Tateo and Georgia Chalvatzaki here. I
am also grateful that they give me this opportunity to work with them. During the thesis,
they gave me a lot of constructive suggestions. Every time I asked them for advice, they
were patient and explained. I also learned a lot about robotics and machine learning
through this thesis. My appreciation also extends to PhD student Snehal Jauhri from
iROSA Group. He also collaborated with me on some of my thesis work.
In the future, I wish Puze can graduate as a doctor successfully, and the best of luck for
Davide and Georgia in their future endeavors.

58

Bibliography

[1] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274,
2017.

[2] P. Liu, D. Tateo, H. B. Ammar, and J. Peters, “Robot reinforcement learning on the
constraint manifold,” in Proceedings of the 5th Conference on Robot Learning (A. Faust,
D. Hsu, and G. Neumann, eds.), vol. 164 of Proceedings of Machine Learning Research,
pp. 1357–1366, PMLR, 08–11 Nov 2022.

[3] J. Corrales, F. Candelas, and F. Torres, “Safe human-robot interaction based on
dynamic sphere-swept line bounding volumes,” Robotics and Computer-Integrated
Manufacturing, vol. 27, no. 1, pp. 177–185, 2011.

[4] M. d. S. Arantes, C. F. M. Toledo, B. C. Williams, andM. Ono, “Collision-free encoding
for chance-constrained nonconvex path planning,” IEEE Transactions on Robotics,
vol. 35, no. 2, pp. 433–448, 2019.

[5] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient optimization
techniques for efficient motion planning,” in 2009 IEEE International Conference on
Robotics and Automation, pp. 489–494, 2009.

[6] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, “Riemannian motion
policies,” arXiv:1801.02854, 2018.

[7] P. Liu, K. Zhang, D. Tateo, S. Jauhri, J. Peters, and G. Chalvatzaki, “Regular-
ized deep signed distance fields for reactive motion generation,” arXiv preprint
arXiv:2203.04739, 2022.

[8] N. Vahrenkamp, H. Arnst, M. Wächter, D. Schiebener, P. Sotiropoulos, M. Kowalik,
and T. Asfour, “Workspace analysis for planning human-robot interaction tasks,” in
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids),
pp. 1298–1303, 2016.

59

[9] L. Balan and G. M. Bone, “Real-time 3d collision avoidance method for safe human
and robot coexistence,” in 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 276–282, 2006.

[10] P. Papadakis, A. Spalanzani, and C. Laugier, “Social mapping of human-populated en-
vironments by implicit function learning,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1701–1706, 2013.

[11] D. Vogt, S. Stepputtis, S. Grehl, B. Jung, and H. Ben Amor, “A system for learning
continuous human-robot interactions from human-human demonstrations,” in 2017
IEEE International Conference on Robotics and Automation (ICRA), pp. 2882–2889,
2017.

[12] N. I. Badler, C. B. Phillips, and B. L. Webber, Simulating humans: computer graphics
animation and control. Oxford University Press, 1993.

[13] D. Kee and W. Karwowski, “Analytically derived three-dimensional reach volumes
based on multijoint movements,” Human factors, vol. 44, no. 4, pp. 530–544, 2002.

[14] H. Jiang, J. Cai, and J. Zheng, “Skeleton-aware 3d human shape reconstruction from
point clouds,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5431–5441, 2019.

[15] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, “Smpl: A skinned
multi-person linear model,” ACM transactions on graphics (TOG), vol. 34, no. 6,
pp. 1–16, 2015.

[16] B. L. Bhatnagar, C. Sminchisescu, C. Theobalt, and G. Pons-Moll, “Combining implicit
function learning and parametric models for 3d human reconstruction,” in European
Conference on Computer Vision, pp. 311–329, Springer, 2020.

[17] Z. Li, M. Oskarsson, and A. Heyden, “Detailed 3d human body reconstruction
from multi-view images combining voxel super-resolution and learned implicit
representation,” Applied Intelligence, vol. 52, no. 6, pp. 6739–6759, 2022.

[18] M. Kocabas, N. Athanasiou, and M. J. Black, “VIBE: Video inference for human body
pose and shape estimation,” in Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pp. 5252–5262, IEEE, June 2020.

[19] V. Choutas, L. Müller, C.-H. P. Huang, S. Tang, D. Tzionas, and M. J. Black, “Accurate
3d body shape regression using metric and semantic attributes,” in Proceedings IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2022.

60

[20] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in
Autonomous robot vehicles, pp. 396–404, Springer, 1986.

[21] J. Urain, A. Li, P. Liu, C. D’Eramo, and J. Peters, “Composable energy policies for reac-
tive motion generation and reinforcement learning,” arXiv preprint arXiv:2105.04962,
2021.

[22] H. Beik-Mohammadi, S. Hauberg, G. Arvanitidis, G. Neumann, and L. Rozo,
“Reactive motion generation on learned riemannian manifolds,” arXiv preprint
arXiv:2203.07761, 2022.

[23] B. Curless and M. Levoy, “A volumetric method for building complex models from
range images,” in Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, pp. 303–312, 1996.

[24] K. Saulnier, N. Atanasov, G. J. Pappas, and V. Kumar, “Information theoretic active
exploration in signed distance fields,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4080–4085, IEEE, 2020.

[25] L. Han, F. Gao, B. Zhou, and S. Shen, “Fiesta: Fast incremental euclidean distance
fields for online motion planning of aerial robots,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4423–4430, 2019.

[26] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger, “Convolutional
occupancy networks,” in European Conference on Computer Vision, pp. 523–540,
Springer, 2020.

[27] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “Deepsdf: Learning
continuous signed distance functions for shape representation,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 165–174, 2019.

[28] G. Sutanto, I. M. R. Fernández, P. Englert, R. K. Ramachandran, and G. S. Sukhatme,
“Learning equality constraints for motion planning on manifolds,” arXiv preprint
arXiv:2009.11852, 2020.

[29] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy
networks: Learning 3d reconstruction in function space,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4460–4470,
2019.

[30] D. Holden, J. Saito, T. Komura, and T. Joyce, “Learning motion manifolds with
convolutional autoencoders,” in SIGGRAPH Asia 2015 technical briefs, pp. 1–4, 2015.

61

[31] T. Osa, “Learning the solution manifold in optimization and its application in motion
planning,” arXiv preprint arXiv:2007.12397, 2020.

[32] P. S. Thomas, “Safe reinforcement learning,” 2015.
[33] A. Hans, D. Schneegaß, A. M. Schäfer, and S. Udluft, “Safe exploration for reinforce-

ment learning.,” Citeseer.
[34] J. Garcia and F. Fernández, “Safe exploration of state and action spaces in rein-

forcement learning,” Journal of Artificial Intelligence Research, vol. 45, pp. 515–564,
2012.

[35] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger, and C. J.
Tomlin, “Reachability-based safe learning with gaussian processes,” in 53rd IEEE
Conference on Decision and Control, pp. 1424–1431, IEEE, 2014.

[36] M. Pecka and K. Zimmermann, “Safe exploration for reinforcement learning in real
unstructured environments,”

[37] E. Altman, “Constrained markov decision processes with total cost criteria: La-
grangian approach and dual linear program,” Mathematical methods of operations
research, vol. 48, no. 3, pp. 387–417, 1998.

[38] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy optimization,” in
International conference on machine learning, pp. 22–31, PMLR, 2017.

[39] A. Stooke, J. Achiam, and P. Abbeel, “Responsive safety in reinforcement learning by
pid lagrangian methods,” in International Conference on Machine Learning, pp. 9133–
9143, PMLR, 2020.

[40] D. Ding, X. Wei, Z. Yang, Z. Wang, and M. Jovanovic, “Provably efficient safe explo-
ration via primal-dual policy optimization,” in International Conference on Artificial
Intelligence and Statistics, pp. 3304–3312, PMLR, 2021.

[41] A. I. Cowen-Rivers, D. Palenicek, V. Moens, M. A. Abdullah, A. Sootla, J. Wang,
and H. Bou-Ammar, “Samba: Safe model-based & active reinforcement learning,”
Machine Learning, vol. 111, no. 1, pp. 173–203, 2022.

[42] Y. Liu, J. Ding, and X. Liu, “Ipo: Interior-point policy optimization under constraints,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4940–4947,
2020.

[43] C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained policy optimization,”
arXiv preprint arXiv:1805.11074, 2018.

62

[44] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin,
“A general safety framework for learning-based control in uncertain robotic systems,”
IEEE Transactions on Automatic Control, vol. 64, no. 7, pp. 2737–2752, 2018.

[45] S. Herbert, J. J. Choi, S. Sanjeev, M. Gibson, K. Sreenath, and C. J. Tomlin, “Scalable
learning of safety guarantees for autonomous systems using hamilton-jacobi reach-
ability,” in 2021 IEEE International Conference on Robotics and Automation (ICRA),
pp. 5914–5920, IEEE, 2021.

[46] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3387–3395,
2019.

[47] A. Taylor, A. Singletary, Y. Yue, and A. Ames, “Learning for safety-critical control
with control barrier functions,” in Learning for Dynamics and Control, pp. 708–717,
PMLR, 2020.

[48] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa, “Safe
exploration in continuous action spaces,” arXiv preprint arXiv:1801.08757, 2018.

[49] K. Wainwright et al., Fundamental methods of mathematical economics. Boston, Mass.
McGraw-Hill/Irwin, 2005.

[50] J. Stewart, Calculus. Cengage Learning, 2015.
[51] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,

2018.
[52] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,

A. Gupta, P. Abbeel, et al., “Soft actor-critic algorithms and applications,” arXiv
preprint arXiv:1812.05905, 2018.

[53] A. Boulch and R. Marlet, “Fast and robust normal estimation for point clouds with
sharp features,” in Computer graphics forum, vol. 31, pp. 1765–1774, Wiley Online
Library, 2012.

[54] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3d: Amodern library for 3d data processing,”
arXiv preprint arXiv:1801.09847, 2018.

[55] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. J. Black, “AMASS:
Archive of motion capture as surface shapes,” in International Conference on Computer
Vision, pp. 5442–5451, Oct. 2019.

63

[56] S. R. Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoinverse
and damped least squares methods,” IEEE Journal of Robotics and Automation, vol. 17,
no. 1-19, p. 16, 2004.

[57] R. P. Singh and P. W. Likins, “Singular Value Decomposition for Constrained Dy-
namical Systems,” Journal of Applied Mechanics, Transactions ASME, vol. 52, no. 4,
pp. 943–948, 1985.

[58] S. S. Kim and M. J. Vanderploeg, “QR Decomposition for State Space Representation
of Constrained Mechanical Dynamic Systems,” Journal of Mechanisms, Transmissions,
and Automation in Design, vol. 108, pp. 183–188, 1986.

[59] R. H. Byrd and R. B. Schnabel, “Continuity of the null space basis and constrained
optimization,” Mathematical Programming, vol. 35, no. 1, pp. 32–41, 1986.

[60] M. McGuire, “Numerical methods for ray tracing implicitly defined surfaces,”
Williams College, 2014.

[61] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, et al., “Shapenet: An information-rich 3d model repository,”
arXiv preprint arXiv:1512.03012, 2015.

64

A. Appendix

This appendix contains hyperparameters and recorded data from the deep learning and
reinforcement learning process.

A.1. Recording of Training Process of ReDSDF

In this Section, the hyperparameters and recorded data for training the ReDSDF are
shown.
The hyperparameters can be found in Table A.1:

Human body TIAGo Table Sofa

Batch size 4096 4096 2048 2048
Hidden layer 5*512+2*32 5*512+2*32 4*512+2*32 4*512+2*32
Learning rate 1e-4 1e-4 1e-4 1e-4
Optimizer Adam Adam Adam Adam
Alpha 0.02 0.02 0.02 0.02

Table A.1.: Hyperparameters for Training ReDSDF

The curve of loss can be found in Figure A.1:

65

0 100 200 300 400

0.05

0.10

0.15

sofa
training
validation

0 25 50 75 100 125 150 175

0.06

0.08

0.10

0.12
human

0 10 20 30 40 50
0.02

0.03

0.04

0.05

tiago

0 20 40 60 80 100 120 140 160

0.05

0.10

0.15

0.20
table

Figure A.1.: Loss Curve during Training

66

A.2. Hyperparameters for RL

In this section, the hyperparameters and recorded process for RL will be shown. The
hyperparameters of the two RL experiments are shown in Table A.2. And the data recorded
during training is shown in Figure A.2 and Figure A.3

With Shelf Human-Robot Interaction

Algorithm SAC SAC
Number of epochs 200 200

Number of steps in each epoch 10000 10000
Number of episodes for test 10 10

Number of features in policy network 256-256-256 512-512-256
Learning rate for actor network 3e-4 1e-5
Learning rate for critic network 3e-4 5e-5

Batch size 64 64
Initial replay size 5e3 5e3

Maximal replay size 2e5 2e5
τ for SAC 0.001 0.001

Warm-up Transitions 5e3 5e3
Learning rate of alpha 5e-6 1e-5

Target entropy -10 -10
Discount factor γ 0.995 0.995

Maximal steps for one episodes 500 500
Control frequency 30Hz 30Hz

Type of slack variable for ATACOM softcorner exponential

67

Kc for error correction of ATACOM 30 20
β for slack variable of static object 30 20

β for slack variable of dynamic object / 5
β for slack variable of joint limits 30 10

Threshold of slack variable of static object 1e-3 1e-5
Threshold of slack variable of dynamic object / 2e-2
Threshold of slack variable of joint limits 1e-3 1e-5

Table A.2.: Hyperparameters for RL

68

0 25 50 75 100 125 150 175 200

300

200

100

0

100

200

300

400

500

J
atacom
safe_explorer
trivial

0 25 50 75 100 125 150 175 200

500

0

500

1000

1500

R

0 25 50 75 100 125 150 175 200

0

10

20

30

40

50

60

Num of Collisions

0 25 50 75 100 125 150 175 200

0

1

2

3

4

5

6

7
Num of Joint Limits

0 25 50 75 100 125 150 175 200

200

250

300

350

400

450

500

Num of Steps

0 25 50 75 100 125 150 175 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Error to target

Figure A.2.: Results of RL-Experiment with Shelf

69

0 25 50 75 100 125 150 175 200
200

100

0

100

200

300

400

J
atacom
safe_explorer
trivial

0 25 50 75 100 125 150 175 200

500

250

0

250

500

750

1000

1250

R

0 25 50 75 100 125 150 175 200

0

5

10

15

20

25

Num of Collisions

0 25 50 75 100 125 150 175 200

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Num of Joint Limits

0 25 50 75 100 125 150 175 200

350

375

400

425

450

475

500

Num of Steps

0 25 50 75 100 125 150 175 200
0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Max Constraint

Figure A.3.: Results of RL-Experiment in Human-Robot Interaction

70

	Introduction
	Related Work
	Safe Human-Robot Interaction
	3D Human Body Reconstruction
	Reactive Motion Generation
	Distance Fields and Manifold
	Safe Robot Reinforcement Learning

	Preliminaries
	Implicit Function and Signed Distance Field
	Artificial Potential Field
	Fundamentals of Reinforcement Learning
	Acting on the Tangent Space of the Constraint Manifold

	Regularized Deep Signed Distance Fields
	Generation of Dataset
	Sampling Points and Estimating Normal Direction
	Filtering out Outliers and Data Rejection
	Generating Augmented Data and Down Sampling
	Data Generation for Dynamic Articulated Objects

	Architecture of the Network
	Training of the Network

	Application of Geometric Constrains
	Robot Motion Control with ReDSDF
	Construction of Artificial Potential Fields
	Applying Distance Field and APF on Robot

	Safe Exploration with Learned Constraints
	Pipeline of Safe Reinforcement Learning
	Applying Constraints on Robots to Avoid Collisions
	Define Actions on the Constraints

	Experiments and Results
	Results of ReDSDF
	Results of Human Model
	Results of TIAGo with Single Arm
	Results of Static Models

	Whole Body Control
	Reaching Target Point with a Shelf
	Human Robot Interaction
	Reactive Motion Generation in Shared Human-Robot Workspace
	Reinforcement Learning in Human Robot Interaction Environment

	Conclusion
	Summary
	Future Work

	Appendix
	Recording of Training Process of ReDSDF
	Hyperparameters for RL

