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Abstract

Exploration is a key ingredient of reinforcement learning (RL). Most common RL algorithms
for robot RL use Gaussian action noise to explore new behaviors, which does not make
use of prior knowledge about the robot or the environment. This thesis studies how task
space methods from classical robotics can improve exploration for robot RL. We approach
the task space exploration problem from a local and a global perspective.

From the local perspective, we establish a maximum entropy formulation from which we
derive an optimal sampling strategy. We define a new framework of Jacobian methods
that generalizes the well-known Jacobian inverse and Jacobian transpose method, and we
interpret the optimal sampling strategy with the aid of the new framework. Based on the
theoretical findings, we develop task-space-aware action sampling (TAAS). Our empirical
studies find that TAAS explores more efficiency and can increase the success rate of RL
compared to common joint space exploration.

To improve global task space exploration directly, we couple the standard local action
policy with an actively exploring global bias policy. By deriving an adapted surrogate
loss function from the performance difference lemma, we integrate our approach, task
space biasing (TSB), into the state-of-the-art RL algorithm proximal policy optimization
(PPO). We compare TSB with pure PPO and residual reinforcement learning (RRL) on a
complex reaching task with sparse rewards and find that it outperforms both baselines by
a large margin. We argue that the presented analysis and developed methods enrich the
possibilities of integrating prior knowledge into robot RL and, hence, have the potential
of rendering more challenging robotic problems efficiently solvable in the future.



Zusammenfassung

Exploration ist ein Hauptbestandteil von Reinforcement Learning (RL). Für die Anwen-
dung auf Roboter-Lernprobleme wird dazu üblicherweise Gauß’sches Rauschen über die
Steuergröße gelegt. Dieses Verfahren nutzt keinerlei Vorwissen über den Roboter oder die
ihn umgebende Umwelt. Die vorliegende Abschlussarbeit beschäftigt sich mit der Frage-
stellung, wie Arbeitsraummethoden der Robotik in das Roboter-Reinforcement-Learning
integriert werden können, um die Exploration zu verbessern. Die Fragestellung wird
sowohl aus einer lokalen als auch einer globalen Perspektive betrachtet.

Die lokale Perspektive ermöglicht eine analytische Problembeschreibung, aus welcher
heraus eine optimale lokale Explorationsstrategie hergeleitet wird. Mithilfe einer neuen ver-
allgemeinernden Definition von Jacobi-Methoden kann die hergeleitete Explorationsstra-
tegie ebenfalls als Jacobi-Methode interpretiert werden. Auf Grundlage der theoretischen
Untersuchung wird das Task Space Aware Action Sampling (TAAS) entwickelt, dessen
Explorationseffizienz sich empirisch validieren lässt und im Vergleich zur gelenkweisen
Exploration die Erfolgsrate von RL erhöhen kann.

Zur direkten Verbesserung der globalen Exploration wird die übliche lokale Policy durch
eine aktiv explorierende globale Bias-Policy ergänzt. Die neue Methode, Task Space Bia-
sing (TSB), kann durch die Herleitung einer angepassten Ersatz-Kostenfunktion in einen
aktuellen RL-Algorithmus, Proximal Policy Optimization (PPO), integriert werden. Der Ver-
gleich von TSB mit herkömmlichem RL und Residudal RL (RRL) anhand eines komplexen
Erreichen-Problems mit spärlicher Belohnung zeigt ein deutlich verbessertes Lernverhal-
ten. Es wird dargelegt, dass die vorliegende Analyse sowie die entwickelten Methoden
die Möglichkeiten der Integration von Vorwissen in das Roboter-RL erweitern und somit
das Potenzial besitzen, in Zukunft das effiziente Lösen von noch anspruchsvollerenden
Robotikproblemen ermöglichen.
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1. Introduction

The principles of exploration and optimization are at the core of reinforcement learning
(RL). An agent needs to experience that a certain action leads to higher rewards before this
action can become an established part of the policy through optimization. This interplay of
exploration and optimization makes good exploration a key mechanism of successful RL.

In robot RL, the common exploration strategy is based on Gaussian action noise [1, 2].
A stochastic policy is initialized isotropically, and at each time step, a random action is
sampled from the policy and executed in the environment. This simple sampling strategy
does neither harvest available knowledge about the task structure nor does it provide
global exploration and can fail easily in sparse reward settings [3].

The limitations of Gaussian exploration have been addressed in various works. Regarding
robot RL, the most prominent advanced exploration paradigm is correlated exploration
[4, 5, 6, 7]. Instead of sampling an action independently at every time step, temporal
or special correlation is used to further global exploration. While being conceptually
promising, most methods cannot improve the learning process on a general level or are not
applicable to on-policy learning. Moreover, they do not make use of prior task knowledge.

Task knowledge is available in every robot learning scenario. Long before the rise of deep
RL and its application to robot learning, robots have been employed for many industrial
applications, and, continuing to the current day, most robot controllers in use are based
on first principles. One prevalent technique is task space or operational space control [8].
Based on the kinematics of the robot, it allows for planning trajectories in Euclidean space
and transforming them into joint space for motor control.

Only few works have applied insights from task space control to RL. The most popular
approach is using RL to improve on an existing hand-engineered base controller [9, 10].
This approach is known as residual reinforcement learning (RRL) because the RL agent
learns the residual action, which is added to the action coming from the base controller.
RRL improves learning convergence significantly. It is hypothesized that one reason for
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its success is that the base controller acts as an exploration guide [10]. However, RRL is
restricted to scenarios in which an engineered controller approximately solves the task
and restricts exploration around the nominal trajectory given by the base controller.

The aim of this thesis is to investigate the use of task space methods for exploration in
robot RL. We explore the potential benefits of the application of task space methods for
exploration both analytically and experimentally. Based on our analysis, we develop
methods that incorporate prior knowledge of the robot and its environment into the
learning process and evaluate them on sparse reward RL problems.

This thesis approaches the task space exploration problem from two distinct directions.
The first approach sheds light on the local task space exploration problem for which we
establish a maximum entropy formulation that enables the use of analytical tools. With this
formulation, we can derive an optimal exploration strategy. We define a common Jacobian
framework unifying the well-known Jacobian inverse and Jacobian transpose methods.
Using this framework, we link the newly derived optimal exploration strategy to task space
control methods. Based on our theoretical findings, we develop task-space-aware action
sampling (TAAS), an adaptation to Gaussian action sampling that can be easily integrated
into existing RL algorithms and demonstrate its exploration efficiency.

The second approach focuses on global task space exploration. Based on concepts from
RRL, we present task space biasing (TSB), that uses a learnable additive task space
controller to drive exploration globally. Thereby, we enable fine-grained incorporation
of prior knowledge into the learning process. We derive abyore general surrogate loss
function from the performance difference lemma that lets us integrate TSB into the state-
of-the-art RL algorithm proximal policy optimization (PPO). On a sparse reward complex
reaching task, we show how TSB improves performance compared with plain PPO and
RRL by a large margin.

This thesis is structured as follows. Chapter 2 summarizes related work around exploration
in RL, task space learning, and RRL. Chapter 3 introduces concepts and tools that are
important to understand the main parts. The fundamental research of this thesis is
outlined in chapter 4 (Local Task Space Exploration) and chapter 5 (Global Task Space
Exploration).
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2. Related Work

This chapter introduces related work from RL and robotics. The first part gives an overview
of prior work on exploration in RL and summarizes core ideas. The second part sheds
light on previous works combining RL and task space control, and in the third part, we
present related work on residual reinforcement learning (RRL).

2.1. Exploration in RL

Exploration is a core concept in RL. It enables the agent to learn about the environment
and try new actions to possibly improve its performance. Unsurprisingly, exploration has
been studied frequently in the last decades, and many methods have arisen. Even though,
the core exploration mechanisms stay largely unchanged and depend on the type of action
space. If the action space is discrete, actions are sampled either from a learned soft-max
distribution or according to an ε-greedy method [11]. The soft-max distribution assigns
each action a probability directly. On the other hand, ε-greedy methods perform the
assumable best action with probability 1− ε or randomly choose from the other actions
with probability ε. If instead, the action space is continuous, like in the robot learning
scenario that we are interested in, exploration is based on perturbing a mean action by
Gaussian noise.

Historically, the most studied example of exploration is the multi-armed bandit problem. In
its context, the upper confidence bound (UCB) method was developed [12]. It introduces
two ideas still influential for modern exploration methods used in deep RL. First, it treats
value estimation probabilistically and quantifies the amount of trust in the estimate, and
second, it gives a bonus to less explored but potentially rewarding actions. Both techniques
will appear throughout the following presentation of exploration paradigms shown in
Figure 2.1. To learn more about recent methods beyond this brief overview, the reader is
referred to the survey by Yang et al. [13].
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Figure 2.1.: Overview of exploration paradigms in deep RL.

A modern relative of probabilistic value estimation in the UCB method is randomized
value functions. Instead of a single estimate of the state-action value function (Q-
function), a distribution over Q-functions is updated as training progresses. In principle,
this would allow for an optimistic approach similar to the UCB method. Recent works
suggest Thompson Sampling as an alternative approach [14, 15, 16]. In each episode,
a sample Q-function is drawn from the learned distribution, and actions are selected
greedily with respect to the sample. While offering desirable theoretical properties for
long-term exploration [17], its use is restricted to the Q-learning setting which only allows
for discrete action spaces.

Another UCB-influenced paradigm that became popular in deep RL is intrinsic rewards.
Similar to the UCB algorithm, a bonus for exploring actions or states that are less explored
is added to the objective. This idea is implemented by changing the reward function
in the following manner. The original reward function is interpreted as an extrinsic
reward provided by the environment. Now, an additional term, the intrinsic reward
provided by the agent itself, is added. Intrinsic rewards can be constructed in various ways.
Pathak et al. [18] train a dynamics model of the environment on observations and define
an interesting state as one that has unknown dynamics, i.e., the predictive error of the
dynamics model is high. Alternatively, an intrinsic reward can be based on state visitation
counts [19, 20]. Intuitively, this strategy rewards actions leading to states that are less
often visited. Although being easy to integrate into existing algorithms, intrinsic rewards
change the learning objective and do not affect the initial exploration characteristics.

While intrinsic rewards include the problem of learning to explore into the process of
learning the task itself, exploration pre-training splits the two objectives clearly. First,
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the policy is pre-trained to explore the environment in the absence of a task to solve. After
that, the pre-trained policy is optimized to solve a specific task through regular RL. The
pre-training objective is finding a policy that explores the state space as uniformly as
possible, which is formulated as maximizing the entropy of the state space distribution [21].
The resulting pre-training problem is not an RL problem [22] and hence, needs different
optimization techniques. Hazan et al. [21] and Lee et al.[22] propose solutions to this
problem by iterating between density estimation and policy optimization and show that
pre-trained policies can learn new tasks faster. However, Lee et al.[22] note that the
pre-training problem is considerably more difficult than exploration for a specific task.

Instead of sampling actions at every time step independently, coherent exploration tries
to act consistently over many time steps to reach more distant regions in the state space
and explore more efficiently. This goal can be either achieved by perturbing the policy
parameters or by correlating the action noise over time.

Parameter space exploration samples new policy parameters every episode leading to co-
herent trajectories during one trial. The strategy is known to work well for a small amount
of policy parameters. In contrast, deep RL is based on neural network architectures with
thousands or more parameters. Nonetheless, Plappert et al. [23] show that meaningful
perturbations by adding Gaussian noise to the policy parameters at every episode are
also possible with neural networks, and Fortunato et al. [24] learn a distribution over the
parameters of the last policy layer. Both works demonstrate that deep RL can be combined
with parameter space exploration but cannot improve on action-based exploration in
continuous settings.

Lillicrap et al. [4] already suggested the use of an Ornstein-Uhlenbeck process as a substi-
tute for white noise (Gaussian noise) to improve exploration in off-policy RL for continuous
control problems. From there on, researchers investigated correlated exploration, which
samples actions at every time step but introduces temporal correlation between them.
Korenkevych et al. [5] develop a framework for using autoregressive processes as action
noise and define hyperparameters to vary the degree of smoothness in the control in-
put. They also discuss that action correlation requires the extension of the state space
by an action history to ensure the Markovian property and allow for its application in
on-policy RL methods. Instead of explicitly including a temporally correlated stochastic
process, state-dependent exploration [25] samples a state-dependent noise perturbation
function for each episode. Since this function is continuous with respect to changes in
the state, the noise is also temporally correlated. Raffin et al. [6] bring this concept to
deep RL and investigate the impact of the sampling interval on the learning performance.
They show that episodic sampling makes learning inefficient and propose to use shorter
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sampling intervals. This trade-off between long and short-term correlation has been
further analyzed by Eberhard et al. [7] for using stochastic processes. In agreement with
previous works, they propose pink noise, a noise pattern between uncorrelated white
noise (Gaussian) and highly correlated red noise (similar to Ornstein-Uhlenbeck), as the
new default exploration noise.

Only few works consider distribution shaping to use action distributions different from
Gaussians with diagonal covariances. The popular soft actor-critic (SAC) algorithm [2]
changes the distribution shape slightly by squashing the actions between the action limits
using the hyperbolic tangent. In addition, Mazoure et al. [26] add a normalizing flow
to the policy architecture to further extend the class of action distributions. A similar
distribution-shaping approach is presented in this thesis. Different from their work, we
consider shaping functions that are known in advance and relate to the kinematic structure
of the robot.

This overview introduced a broad range of exploration strategies for deep RL. Notably,
assuming knowledge about the kinematic structure of robots and exploiting it to guide
exploration has not been studied so far.

2.2. Task Space Learning

Task space or operational space methods were developed to control robots more intu-
itively [8]. They allow for planning trajectories in world coordinates and transform task
space set points to joint control commands that can be executed on the robot.

In recent works on robot RL, task space methods are often applied without further
discussion. E.g., Nair et al. [27] and Zuo et al. [28] learn to control the position of the
end-effector in Cartesian space together with the distance between the gripper fingers of
a 7 degrees of freedom (DoF) manipulator. They use this setup to solve pick-and-place
tasks. The remaining DoF are controlled by means of task space control methods and
ensure that the gripper is always oriented in the same way, and the robot arm stays in an
upright posture. These constraints assume regularity in the arrangement of the objects to
manipulate.

Bellegarda and Byl [29] explicitly focus on the impact of task space control on the training
speed of robot RL. They argue that the inverse kinematics have to be learned when
applying RL to joint space control, and learning in task space would circumvent this
necessity. Their experiments demonstrate faster convergence when learning the task space
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control commands compared to joint space control commands. However, they also point
out the dependence on an accurate inverse kinematics model and observe a significant
performance drop in the case of model mismatch.

To mitigate the problems related to model mismatch, Kaspar et al. [30] perform a system
identification step before learning a peg-in-hole task in simulation. They apply task
space control to address various goals. First, they argue that a task space control policy
generalizes better from simulation to the real robot and, hence, decreases the reality gap.
Second, they integrate both joint and task space limits into the controller to protect the
robot and its environment. And third, they make the policy easier to learn by reducing
the number of controllable DoF.

A different application of task space methods can be found in the paper by Al-Hafez and
Steil [31]. Instead of learning the task space control commands, they focus on redundancy
resolution. They build upon the idea that if a goal is defined solely in task space, like
reaching tasks, kinematically redundant actions lead to the same reward. Now, they
integrate the concept of null space control from robotics where the redundant DoF can be
used to target secondary objectives like keeping an upright posture or obstacle avoidance.
The integration is realized by simply adding the analytically determined null space action
as an action bias to the output of the RL agent. We will also make use of null space actions
for integrating task space methods into RL and incorporate an action bias.

In conclusion, task space methods have primarily been used in RL to reduce the number
of DoF for leaerning, which restricts the policy search space and seems to improve train-
ing speed. Task space methods also appear to improve generalization capabilities and
disentangle primary and secondary objectives. Yet, an analysis of the effect of task space
methods on exploration is missing.

2.3. Residual Reinforcement Learning

Residual reinforcement learning (RRL) was concurrently introduced by Johannink et
al. [9] and Silver et al. [10] in 2019 for robot RL. The idea is quite simple and summarized
in Figure 2.2. Instead of learning a full controller from scratch, RL is used to train a
residual controller that optimizes the output of a given base controller. This technique
can improve the learning speed of RL and the optimality of base controllers.

Johannink et al. [9] argue that many robotic problems can be approximately solved with
conventional feedback control methods. However, these methods are very hard to tune or
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Figure 2.2.: In residual reinforcement learning (RRL), an action u is the superposition of
an action a sampled from the residual policy πθ and a base action b from the
predefined base controller ϕ.

unable to provide optimal control when dealing with contacts and friction. On the other
hand, RL provides a means of model-free controller optimization through environment
interactions. The authors propose superposing both approaches leading to RRL where the
RL agent needs only to identify the action deviation from the base controller. According
to the authors, this partition corresponds to a typical reward structure in robotics tasks,
where one part represents geometric relationships like distances to a goal while another
part describes further general characteristics. The former is said to be easily optimizable
a priori by employing a hand-engineered controller while the latter is optimized with RL.
The authors successfully apply RRL on a real robot learning a block-assembly task.

Silver et al. [10] evaluate RRL on several manipulation tasks in simulation proving its
usefulness in scenarios with partial observability, sensor noise, model misspecification,
and controller miscalibration. Besides improving an existent base controller, the authors
bring up the perspective of the base controller being a guide for exploration, which directly
connects to our work. They describe three potential benefits of RRL compared to regular
model-free RL. First, a good base controller offers a performance boost at the beginning of
training. Second, the base controller improves exploration when it is unlikely to observe
high rewards by chance. And third, the residual RL problem may be easier than the
original one.

One adaptation to the framework, RRL from demonstrations by Alakuijala et al. [32],
exchanges the hand-tuned controller with a neural base policy trained using behavioral
cloning from visual inputs. Additionally, they include learned features from the base policy
into the input of the residual policy. Another recent adaptation by Staessens et al. [33]
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introduces a scaling factor into the superposition to ensure stability of the composite
controller.

In all these works, the base policy is deterministic and fixed, ensuring the residual control
problem is easily solvable by common RL algorithms. However, this limits the use of RRL
to well-understood problems. Our work builds on ideas from RRL but focuses on guiding
exploration rather than optimizing a base policy. Thereby, we try to make the base policy
itself learnable, extending its usefulness to scenarios where only partial task knowledge is
available a priori.
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3. Foundations

The study of task space methods for robot RL requires knowledge of linear algebra,
information theory, RL, and robotics. All of the techniques presented in this chapter will
play an important role throughout the following analysis. Besides rephrasing well-known
concepts, we introduce extended singular value decomposition (eSVD) which splits the
scaling and projection operations into separate matrices.

3.1. Reinforcement Learning (RL)

This section introduces the framework of model-free RL. We introduce a specific type of
model-free RL algorithms, namely policy gradient methods, and present a state-of-the-art
policy gradient method, proximal policy optimization [1].

3.1.1. Introduction to Reinforcement Learning

Reinforcement learning (RL) formalizes the concept of learning by trial and error. As
illustrated in Figure 3.1, to learn a new task, the agent interacts with the environment. Its
policy maps the observed state st to an action distribution π(a|st) from which an action
at is sampled and applied in the environment responding with a reward rt. The goal of
an RL algorithm is to improve the agent’s policy to maximize the expected cumulative
reward during one trajectory τ of length T

E[R(τ)] = E

[︄
T∑︂
t=0

γtrt

]︄

where the discount factor γ ∈ (0, 1] controls how much to focus on immediate returns
compared to future returns. In summary, RL is a machine learning paradigm in which

10



Policy

Agent Environment

RL Algorithm

Action 𝑎𝑡

Reward 𝑟𝑡

State 𝑠𝑡
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Figure 3.1.: In reinforcement learning (RL), the agent learns by interacting with the en-
vironment. The agent observes states, and its policy acts accordingly. The
environment responses with a state transition and a reward signal. The RL
algorithm updates the policy to maximize the cumulative reward.

an agent’s policy is optimized to maximize cumulative rewards based on environment
interactions [11].

The ideas of tasks and environments are formalized through Markov decision processs
(MDPs) [11]. An MDP is a tuple (S,A, P, r, P0, γ) which represents all core objects that
describe an RL problem. S is the state space, and an element s ∈ S is assumed to
completely describe the current state of the environment and is fully observable by the
agent. The action space A defines how an agent can interact with the environment. For
robot learning, S could be the joint space and an action a ∈ A could be a joint velocity
command.

The transition distribution P and in continuous scenarios its probability density function
p(st+1|st, at) model the dynamics of the environment and must satisfy the Markovian
property. It states that the distribution over the next state st+1 is independent of the
history s0, s1, ..., st−1 given the current state st. The Markovian property implies that by
observing the current state st, the agent has access to all knowledge necessary to act
optimally. The task objective is encoded by the reward function r(st, at, st+1) and when a
new trajectory τ starts, the initial state is sampled from the initial state distribution P0 (or
p0). γ is the previously introduced discount factor.
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3.1.2. Policy Gradient

Policy gradient methods enable the use of advanced gradient optimization schemes for RL
by estimating the gradient of the RL objective function

J (θ) := Eτ [R(τ)] =

∫︂
pθ(τ)R(τ)dτ

with respect to the policy parameter θ. The likelihood of a trajectory pθ(τ) can be expressed
as a function of the transition probabilities p(st+1|st, at), the parameterized policy πθ(at|st),
and the initial state distribution p0(s0):

pθ(τ) = p0(s0)

T−1∏︂
t=0

p(st+1|st, at)πθ(at|st).

Note that when applying the logarithm to this function, the product turns into a sum, and it
is possible to separate the known policy terms πθ(at|st) from the unknown dynamics terms
p(st+1|st, at). With this setup, we derive the simplest form of the policy gradient [34] as
follows

∇θJ (θ) = ∇θ

∫︂
pθ(τ)R(τ)dτ

=

∫︂
∇θpθ(τ)R(τ)dτ

=

∫︂
pθ(τ)∇θ log pθ(τ)R(τ)dτ

= Eτ [∇θ log pθ(τ)R(τ)]

= Eτ

[︄
T−1∑︂
t=0

∇θ logπθ(at|st)R(τ)

]︄
.

Finally, we can estimate the expectation over trajectories with Monte-Carlo sampling,
providing an unbiased estimate of the policy gradient.

The policy gradient is a powerful and direct approach to solve RL problems. Its derivation
highlights the possibility of optimizing an objective function that depends on the dynamics
of the environment without knowing them but instead, by sampling transitions through
interactions. However, the accuracy of the gradient is limited due to its high variance
estimator, and hence, many interactions with the environment are needed. This problem
motivates extensions to the simple policy gradient estimator.
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Instead of considering the cumulative reward R(τ) of one complete trajectory, the variance
is reduced by only taking into account the future reward. This strategy is possible because
an action at only influences future time steps t + 1, ..., T . Another approach uses the
concept of variance-reducing baselines which led to the actor-critic framework in which
an advantage function A(st, at), also called the critic, estimates whether the performed
action at is better or worse than expected.

3.1.3. Performance Difference Lemma and Surrogate Loss

The performance difference lemma was stated and proved by Kakade and Langford [35].
It is the mathematical base for modern policy gradient methods like proximal policy
optimization (PPO) which we introduce in the next section.

The lemma states that if we have two policies π and q with performances J (π) and J (q)
respectively, the performance difference can be expressed as

J (π)− J (q) = Eτ∼π

[︄
T−1∑︂
t=0

γtAq(st, at)

]︄

where Aq(st, at) is the advantage function of the policy q and trajectories are sampled
from the trajectory distribution pπ(τ) according to the policy π. Therefore, we can also
rewrite the policy gradient as

∇θJ (θ) = ∇Eτ∼πθ

[︄
T−1∑︂
t=0

γtAq(st, at)

]︄
⏞ ⏟⏟ ⏞

E

.
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We further restructure the expectation E on the right-hand side to eliminate the sum over
time steps:

E =

∫︂
pπ(τ)

T−1∑︂
t=0

γtAq(st, at)dτ

=

∫︂ T−1∑︂
t=0

γtpπ(τ)A
q(st, at)dτ

=

∫︂ T−1∑︂
t=0

γt

(︄
p0(s0)

T−1∏︂
i=0

p(si+1|si, ai)πθ(ai|si)

)︄
Aq(st, at)dτ

=

∫︂ T−1∑︂
t=0

γtp0(s0)

(︄
t−1∏︂
i=0

p(si+1|si, ai)πθ(ai|si)

)︄
πθ(at|st)Aq(st, at)dτ.

Note that in the last step, we used the independence of future time steps, and dτ is a
shorthand for the product of all dst and dat. We now introduce the discounted state
distribution of the policy π

dπθ(s) :=
1− γ

1− γT

T−1∑︂
t=0

γt
∫︂

p0(s0)

(︄
t−1∏︂
i=0

p(si+1|si, ai)πθ(ai|si)

)︄
st=s

dτt−1

which is the γ-discounted likelihood of visiting state s under policy π at any time within
the horizon T . Here, dτt−1 is a shorthand for the product of all dst and dat up to the time
step t− 1. Integrating dπθ into the former equation yields

E =
1− γT

1− γ

∫︂
dπθ(s)πθ(a|s)Aq(s, a)dsda

=
1− γT

1− γ
Es∼dπθ , a∼πθ(·|s) [A

q(s, a)] .

For estimating the gradient of the resulting expression, it remains the issue that dπθ

depends on θ and is unknown. Hence, for a practical implementation, dπθ is replaced by
the undiscounted state distribution uq of the policy q leading to the surrogate loss function

L(θ) = Es∼uq , a∼πθ(·|s) [A
q(s, a)]

= Es∼uq , a∼q(·|s)

[︃
πθ(a|s)
q(a|s)

Aq(s, a)

]︃
(3.1)
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where importance sampling is applied to remove the dependence on θ from the sampling
distribution. The surrogate loss and its gradient can be easily estimated by Monte Carlo
sampling.

3.1.4. Proximal Policy Optimization

Algorithm 1: Proximal Policy Optimization (PPO)
Initialize policy πθ
Initialize value function Vφ

for iteration = 1 to number of iterations do
Initialize data buffer D
for interaction = 1 to number of interactions do

Run πθ and collect sample (st, rt) in D
end
Compute advantages At

Update Vφ

for epoch = 1 to number of optimization epochs do
Compute surrogate loss over D
Update πθ using the gradient of the surrogate loss

end
end

Proximal policy optimization (PPO) is an on-policy, actor-critic RL algorithm by Schul-
man et al. [36]. It is a policy gradient method that is strongly influenced by trust region
policy optimization [37] and uses an adaption of the surrogate loss function (3.1). Therein,
the policy q from equation (3.1) is referred to as πθold indicating that its parameters are
fixed for the policy update.

To keep the update within a trust region, PPO clips the surrogate loss according to a
threshold ϵ (usually ϵ = 0.2). Thus, the full surrogate loss for the policy update becomes

L(θ) = E
[︃
min

(︃
πθ(at|st)
πθold(at|st)

At, clip
(︃

πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)︃
At

)︃]︃
.

Note that we dropped the subscript of the expectation operator to improve readability. The
advantages At are estimated through generalized advantage estimation [38] based on a
parameterized value function Vφ(s) trained on interaction samples to predict the expected
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reward to come at a specific state. To reduce the greediness of the method, a common
approach is to add an entropy bonus to the loss function. Algorithm 1 summarizes the
method. To better understand the objective and how it relates to a KL penalty, the reader
is referred to the original paper [1].

3.2. Entropy

To analyze the expected information gain of a message, Claude Shannon introduced the
information-theoretic entropy of a random variable. For a random variable x which takes
discrete values in X and follows the probability mass P , the entropy reads

H(P ) = −
∑︂
x∈X

P (x) logP (x) = E[− logP (x)].

Which base to choose for log can vary for different applications, but we will use the natural
logarithm throughout the thesis. The entropy is lower bounded by 0 which corresponds
to a random variable that always gives the same output, i.e., it is deterministic.

For continuous settings, the differential entropy is a commonly used concept to quantify
the randomness of a random variable. It follows the same computational structure but is
based on the density function p(x) and is defined by

H(p) = −
∫︂
X
log p(x)dx = E[− log p(x)].

In contrast to the original entropy, the differential entropy is not lower bounded. Instead,
as the random variable gets more deterministic, the differential entropy tends to −∞.
Note that the term entropy is used to refer to both definitions, and its concrete meaning
depends on the setting (discrete or continuous).

For Gaussian random variables x ∈ Rn, x ∼ N (µ,Σ), the (differential) entropy can be
expressed in closed form as

H(N (µ,Σ)) =
1

2
log det(2πeΣ) =

n

2
+

n

2
log(2π) +

1

2
log detΣ. (3.2)
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This equation includes constant terms scaled by the dimensionality of the random variable
and a term depending on the log-determinant of the covariance matrix. The latter one
captures the property that with increasing covariance, the entropy increases as well.

It is worth mentioning that we can decompose the entropy of the joint distribution pxy(x, y)
of two independent random variables x and y as

H(pxy) = E[− log pxy(x, y)]
= E[− log(px(y)py(y))]
= E[− log px(y)] + E[− log py(y)]
= H(px) +H(py).

We can exploit this fact to facilitate entropy calculations for new sampling methods.

3.3. Task Space Control

Task space control is a fundamental concept in robotics that focuses on controlling the
position and orientation of a robot’s end-effector in a desired task space. It enables robots
to perform precise and accurate manipulation tasks, navigate complex environments, and
interact with objects and humans. Unlike joint space control, task space control operates
directly in the Cartesian space, allowing for more intuitive and versatile control strategies.
By explicitly specifying the desired task space behavior, robots can exhibit dexterous
and adaptive behavior, making task space control an essential technique for achieving
sophisticated robotic applications.

Essential for task space methods is the theory of differential kinematics that relates the end-
effector movement in task space to joint velocity commands. This relation is fundamentally
described by the Jacobian matrix of the robot. We will introduce the Jacobian matrix
and its geometric interpretation and describe two well-known Jacobian-based methods,
namely, the Jacobian pseudo-inverse method and the Jacobian transpose method. To delve
deeper into the concepts behind task space control, we refer the reader to the textbook by
Siciliano et al. [8].
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3.3.1. The Manipulator Jacobian

The knowledge about the structure of a robot is encoded in its forward kinematics

x = f(q), (3.3)

specifying the map from joint configurations q in joint space to end-effector positions x
in task space. When moving the robot, we are interested in the relation between joint
and task space velocities. Since velocity is the time derivative of position, we find the task
space velocity by deriving equation (3.3) and obtain the differential kinematics equation

ẋ =
∂f(q)

∂q⏞ ⏟⏟ ⏞
J(q)

q̇. (3.4)

As indicated, the derivative of the kinematics with respect to the joint angles q is called
the (analytical) Jacobian J(q).

Figure 3.2 depicts a simple model of a 2 degrees of freedom (DoF) manipulator. The robot
has two rotational joints colored blue and red, respectively. If the blue joint at the robot

Figure 3.2.: The Jacobian matrix of a 2 DoFmanipulator. The blue and red arrow illustrate
how the blue and red joint can move the end-effector locally. They are the
columns of the Jacobian matrix. The manipulability ellipsoid and its principle
axes are depicted in grey.
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base moves, the whole robot arm rotates around the robot base. The velocity and the
direction are indicated by the blue arrow at the end-effector. Analogously, the red arrow
symbolizes how the end-effector moves if the red joint turns. The dotted lines which are
perpendicular to the arrows, show the leverage of the joints. Intuitively, with increased
distance between the end-effector and the joint, the influence of a joint increases, and the
final impact of a joint, illustrated by its color-coded arrow, increases as well.

The arrows in Figure 3.2 visualize exactly the columns of the Jacobian at the depicted
configuration which provides us with a graphical interpretation of the Jacobian. The
gray ellipse in the figure represents the manipulability ellipsoid. It shows where the
end-effector can move if q̇ has unitary norm, i.e.,

∥q̇∥ = 1 ⇔ q̇⊺q̇ = 1.

The arrows indicating the columns of the Jacobian always lie on the ellipsoid. Since in our
example, the columns are not orthogonal to each other, the arrows do not align with the
principle axes of the ellipse shown in gray and the fact that one principle axis is shorter
than the other means that movements along different task space directions might require
different action effort q̇⊺q̇.

With the geometric meaning of the Jacobian in mind, we can interpret equation (3.4) as a
linear combination of the velocity vectors of each joint

ẋ =

n∑︂
i=0

Ji(q)q̇i,

where Ji(q) is the i-th column of the Jacobian, q̇i is the joint velocity of the i-th joint, and
n is the number of joints. Figure 3.3 visualizes this idea and highlights how each joint
contributes to the resulting task space motion.

3.3.2. Differential Inverse Kinematics

If we are given a target trajectory in the task space coordinates of the end-effector, we
need to find joint space commands that result in the desired motion. For simple structures,
we can invert the kinematic equation (3.3), but in general, it is not possible due to non-
linearities and redundancies [8]. Differential inverse kinematics avoids this limitation
by exploiting the linear relationship between task space and joint velocities as seen in
equation (3.4).
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Figure 3.3.: Kinematics of a 2 DoF manipulator. The blue joint rotates with 0.6 rad/s
and the red one with -0.5 rad/s. The scaled column vectors of the Jacobian
superpose and result in an end-effector velocity illustrated with the black
arrow.

The most straightforward approach is to impose a task space velocity v and solve for the
individual joint velocities. For an equal number of task space and joint dimensions and a
full rank Jacobian, we obtain the solution by inverting equation (3.4) giving

q̇ = J(q)−1v.

We can interpret the equation in the same manner as before. Regarding Figure 3.3, q̇ is
the vector of coefficients of the linear combination of the light red and light blue vector
that results in the desired velocity vector v visualized by the black arrow.

For redundant robots, J(q) is not square and, hence, not invertible, which means that
there is an infinite number of solutions q̇ that lead to the same task space velocity v and
solve equation (3.4). To find a unique solution, a common approach is solving for the least
squares solution, i.e., determining q̇ that minimizes q̇⊺q̇ while providing the desired v.

This formulation yields the convex optimization problem

min q̇⊺q̇, s.t. v = J(q)q̇,

which has the closed form solution

q̇ = J(q)⊺ (J(q)J(q)⊺)−1 v

= J(q)†v,
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Figure 3.4.: Comparison of the Jacobian pseudo-inverse and the Jacobian transpose
method in joint space (left) and task space (right). The Jacobian pseudo-
inverse action in blue moves the end-effector along the direct task space
path to the goal in green. The Jacobian transpose action corresponds to a
gradient step minimizing the task space error in joint space.

where J(q)† denotes the pseudo-inverse. We present the full derivation of the Jacobian
pseudo-inverse method in appendix A.1.

A different method can be derived from a goal-reaching perspective. Instead of enforcing
a certain task space velocity, the Jacobian transpose method focuses on minimizing the
task space error, i.e., the Euclidean distance between the current task space position f(q)
and a desired task space position xd.

This approach gives rise to the optimization problem

min
1

2
∥xd − f(q)∥2 (3.5)

and q̇ is the gradient descent step

q̇ = −α
∂

∂q

(︃
1

2
∥xd − f(q)∥2

)︃
= αJ(q)⊺(xd − f(q))

= αJ(q)⊺e
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with step size α and task space error e = xd − f(q). Hence, q̇ minimizes the task space
error as fast as possible. If we further introduce the vector v = αe and substitute, we
obtain q̇ = J(q)⊺v, which highlights the similar structure of the Jacobian transpose and
the Jacobian pseudo-inverse method.

Figure 3.4 compares the two methods and shows how the Jacobian pseudo-inverse method
finds an action that moves the end-effector on a direct path in task space to the goal. The
left plot depicts the contour lines of the task space error in joint space. This loss landscape
illustrates the objective (3.5). Its gradient is proportional to the action in red proposed by
the Jacobian transpose method.

3.3.3. Null Space Control

Differential inverse kinematics methods find one solution to the differential kinematics
equation (3.3). However, as previously discussed, this solution is not unique for redundant
robots. Mathematically, this phenomenon is described by the null space of J(q), which is
the set of q̇ such that every element satisfies

J(q)q̇ = 0 (3.6)

where 0 is the zero vector. Figure 3.5 illustrates null space actions, i.e., solutions q̇ to
equation (3.6). We observe that the end-effector of the robot remains in the same position

Figure 3.5.: Null space actions of a 4 DoF manipulator. While the joint configuration
changes, the end-effector remains at the same task space position.
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while the links and joints move. This variability can be exploited to perform secondary
tasks like keeping an upright posture or obstacle avoidance.

Null space projection [39] offers a simple approach for performing secondary tasks without
interfering with the task space objective. It takes advantage of

J(q)
(︂
I − J(q)†J(q)

)︂
q̇0 = 0.

I.e., we can find q̇0 to perform a secondary task and then, project it onto the null space
using

(︁
I − J(q)†J(q)

)︁
q̇0. With this setup, the final joint space velocity command reads

q̇ = J(q)†v +
(︂
I − J(q)†J(q)

)︂
q̇0

where J(q)†v could be substituted by J(q)⊺v.

3.4. Transformation of Random Variables

To analyze how the task space distribution changes with different action distributions,
we must understand the transformation characteristics of random variables. These char-
acteristics are captured by the change of variable formula that we will introduce in this
section. After that, we will focus on an important case: affine transformations of Gaussian
distributed random variables across different dimensions.

3.4.1. Change of Variable Formula

We consider two random variables x,y ∈ Rn which are connected by the differentiable
bijective transformation

y = f(x), x = f−1(y).

Assuming x is distributed according to a known density function px(x) (notation: x ∼ px),
the distribution py over y can be written as

py(y) = px
(︁
f−1(y)

)︁ ⃓⃓⃓⃓
det
(︃
∂f−1(y)

∂y

)︃⃓⃓⃓⃓

23



where the last term is the determinant of the Jacobian of the inverse transformation.
If we know the corresponding pair (x,y), the distribution can also be expressed as

py(y) = px (x)⏞ ⏟⏟ ⏞
association

⃓⃓⃓⃓
det
(︃
∂f(x)

∂x

)︃⃓⃓⃓⃓−1

⏞ ⏟⏟ ⏞
morphing

which can be helpful in cases where the Jacobian of the forward path is already known.

As indicated, the change of variable formula has a distinct structure. The first part
associates the unknown density with the known density at the point of interest. Intuitively,
if the corresponding likelihood of x) is low, the resulting density at y is also low. The
latter part accounts for the local morphing of the space. E.g., if f(x) contracts the space,
the resulting values for y are close, which should increase the density in the area of
accumulation. Indeed, where f(x) is contracting, its determinant becomes closer to 0
leading to an increased morphing factor.

Even though the change of variable formula can handle complex transformations, it is not
directly applicable to redundant robots. The issue arises from the redundancy: kinematics
are not invertible. A whole set of joint movements can lead to identical end-effector
positions. To alleviate this problem, we need to define a marginalization that associates
redundant joint configurations with one exemplary solution to the inverse kinematics
problem. By definition, the resulting mapping from task space to the set of exemplars is
bijective. In general, this procedure is hard to perform but in the special case of Gaussian
densities and affine transformations, the procedure yields a simple closed-form solution.

3.4.2. Affine Transformations of Gaussian Random Variables

A Gaussian distribution can be fully characterized by its mean µ and covariance matrix Σ,
and its density function reads

p(x) =
1√︁

det(2πΣ)
exp

(︃
−1

2
(x− µ)⊺Σ−1(x− µ)

)︃
.

In the following, we will use the shorthand x ∼ N (µ,Σ) to denote that x is a Gaussian
distributed random variable with mean µ and covariance matrix Σ and refer to its density
function by p(x) = N (x;µ,Σ).
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Figure 3.6.: An affine transformation of a Gaussian distribution (in green) can be de-
composed into the marginalization over the null space of the transformation
(blue) and a scaling and translation operation (red).

A useful property of Gaussian distributions is that affine transformations of Gaussian
random variables yield Gaussian random variables themselves. More precisely, if x ∼
N (µ,Σ) and y = Ax+ b where x ∈ Rn, y, b ∈ Rm, and A ∈ Rm×n,

y ∼ N (Aµ+ b,AΣA⊺). (3.7)

To make the connection to the change of variable formula more evident, we can express
the transformation rule if m ≤ n as

py(y) = N
(︂
A†(y − b);µ,Σ

)︂
|detA|−1,

where A† = A⊺(AA⊺)−1 is the (right) pseudo-inverse, and detA =
√︁

det (AA⊺) is the
pseudo-determinant. This simple expression implicitly solves the previously discussed
problem of the general change of variable formula, and the marginalization becomes part
of the matrix-vector multiplication.

Figure 3.6 illustrates an affine transformation of a 2-dimensional Gaussian distribution.
First, we integrate over the null space dimension of the transformation and find the
marginal distribution. This step is equivalent to a projection operation. Then, the distribu-
tion is translated by the bias b and scaled according to the morphing term |detA|−1.
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3.5. Extended Singular Value Decomposition (eSVD)

singular value decomposition (SVD) is a well-known tool for analyzing linear maps y = Ax
with vectors x ∈ Rn and y ∈ Rm and a matrix A ∈ Rm×n. It generalizes the concept of
eigenvalues and eigenvectors to non-square matrices. It allows for studying linear maps
by only analyzing rotations, projections, and scaling operations. We suggest looking at
a linear algebra textbook like the one by Strang [40], which provides a more thorough
introduction to SVD and its properties.

SVD decomposes a matrix A ∈ Rm×n into three matrices

A = UDV ⊺.

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and D ∈ Rm×n is a diagonal
matrix. The diagonal entries of D are non-negative and called singular values. They are
ordered from the largest singular value s1 to the smallest sm or sn depending on whether
m ≤ n or m > n. The columns of U and V are referred to as left and right singular
vectors, respectively. To simplify our analysis, we further decompose the diagonal matrix
D into a square matrix S containing all singular values and a projection matrix P with
ones on the diagonal and zeros elsewhere. We call this decomposition extended singular
value decomposition (eSVD).

To better understand eSVD, we look at the casem < n. This case is of particular interest to
us since it captures the characteristics of a redundant robot acting in a lower-dimensional
task space. The regular SVD has the structure

A = U ·

⎡⎢⎢⎢⎣
s1

. . . 0

sm

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

D

·V ⊺.

Here, 0 denotes the zero matrix with suiting dimensionality. Now, eSVD splits D into its
scaling part and a separate projection, resulting in the decomposition

A = U ·

⎡⎢⎢⎢⎣
s1

. . .

sm

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

S

·

⎡⎢⎢⎢⎣
1

. . . 0

1

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

P ⊺

·V ⊺.
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Figure 3.7.: Illustration of the extended singular value decomposition (eSVD) of a 2 by 3
matrix. The arrows correspond to the singular vectors.

The m < n case works analogously, but the projection happens after the scaling, and we
write A = UPSV ⊺.

The appeal of decomposition methods for analyzing linear maps is that the resulting
matrices provide insides into the characteristics and are nicely interpretable. Figure 3.7
illustrates the effect of the individual matrices resulting from applying eSVD to a 2 by 3
matrix. V ⊺ rotates the frame to be aligned with the right singular vectors. The projection
P ⊺ eliminates the third dimension. Then, S scales the space according to the singular
values, and finally, U rotates the frame to complete the mapping.

Besides the intuitive interpretation, the resulting matrices have practical properties which
simplify derivations.

• The rotational matrices U ,V are orthogonal leading to

UU⊺ = U⊺U = Im, V V ⊺ = V ⊺V = In

where Id is the the d-dimensional identity matrix.

• Applying any power to S applies the operation element-wise to its diagonal.

• The multiplication of P and its transpose either leads to the lower dimensional
identity P ⊺P = Im or it results in

PP ⊺ =

⎡⎣Im
0n−m

⎤⎦ ,

an identity-like matrix where the last (n−m) diagonal entries are zeros. For m > n,
the indices m,n are swapped.
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In summary, given a matrix A ∈ Rm×n with m < n, performing eSVD leads to

A = USP ⊺V ⊺. (3.8)

In the opposite case, where m > n, we write

A = UPSV ⊺.

In this thesis, we will use eSVD to formulate a common framework for Jacobian methods,
derive a new sampling strategy, and analyze its properties for exploration. Note that since
it is only a small extension to the original SVD, we can base numerical calculations on
standard implementations of SVD.
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4. Local Task Space Exploration

The common approach in robot RL applies Gaussian action noise to the individual joints.
For redundant robots, this approach can lead to inefficient exploration. E.g, if two joints
are moving the end-effector in the same way, exciting them in sync leads to larger task
space coverage. On the other hand, individual Gaussian noise might anneal the effect of
both joints and hence, hinder exploration.

Figure 4.1 visualizes the general idea of local task space exploration. By focusing on joint
actions that effectively move the end-effector, we increase task space exploration without
increasing the action effort.

Focus on 

Task Space

Figure 4.1.: Focusing on effective actions in task space increases task space entropy
for single step exploration without increasing action effort. End-effector
positions are shown in blue. The red ellipse corresponds to the standard
deviation in task space.
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4.1. Local Maximum Entropy Task Space Exploration

In this section, we find the optimal Gaussian action distribution for the single-step explo-
ration problem. To this end, we derive the covariance matrix that maximizes task space
entropy under an action penalty given the dynamics of the system.

We assume that the mapping from the action ui at time step i to the task space coordinate
xi+1 at the next time step i+ 1 is given by an affine transformation

xi+1 = Aiui + bi, (4.1)

where xi+1, bi ∈ Rm, Ai ∈ Rm×n with full rank, ui ∈ Rn, and m < n. It’s readily
apparent that all control affine systems, including the illustrative case of the manipulator,
adhere to this structure up to linearization. Since we are only interested in the single-step
problem, we omit the subscript and write x = Au+ b.

The Gaussian action distribution is denotes by pu(u) = N (u;µu,Σu). For the purpose
of this derivation, we set µu = 0. However, for every fixed µu, the derivation is iden-
tical. Using the fact that the tasks space transformation (4.1) is affine, we can apply
the transformation rule for Gaussian random variables (3.7) and find the task space
distribution

px(x) = N (x; b,AΣuA
⊺) .

The entropy of this density is obtained by (3.2) and reads

H(px) =
m

2
+

m

2
ln(2π) +

1

2
ln (det (AΣuA

⊺)) .

Since the first two terms are independent of the parameters, we will omit them in the
further derivation.

Easily, increasing the variance results in greater entropy. However, simply increasing the
variance is undesirable because of action limits and the search for energy-efficient policies.
Hence, we introduce the effort E(pu) = E [u⊺u] as a penalty term in the optimization.
We can rearrange the term with the aid of matrix identities

E [u⊺u] = E [Tr [uu⊺]] = Tr [E [uu⊺]] = Tr [Σu] ,

which uncovers the direct dependency on the parameters.
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Finally, we arrive at the optimization objective

max H(px)⏞ ⏟⏟ ⏞
maximize task space entropy

− λ

2
E(pu)⏞ ⏟⏟ ⏞

minimize effort

where λ > 0 is the penalty coefficient. Plugging in the expressions for entropy and effort
leads to the objective function

L(Σu) =
1

2
ln (det (AΣuA

⊺))− λ

2
Tr [Σu] .

To make sure the optimizer Σ∗
u is a valid covariance matrix, we parameterize Σu as

Σu = MM where M is the non-negative symmetric square root of Σu. We will ensure
symmetry and non-negativity later on. With the new parameterization, we rewrite L and
get

L(M) =
1

2
ln (det (AMMA⊺))− λ

2
Tr [MM ] .

To obtain a solution, we calculate the gradient and set it to zero, which gives the necessary
condition

∂L
∂M

=
1

2

(︂
A⊺ (AMMA⊺)−1A− λIn

)︂
M = 0, (4.2)

where 0 ∈ Rn×n. We can substitute A with its eSVD (3.8) A = USP ⊺V ⊺ yielding

0 =
1

2

(︂
V PSU⊺ (USP ⊺V ⊺MMV PSU⊺)−1USP ⊺V ⊺ − λIn

)︂
M

=
1

2

(︂
V P (P ⊺V ⊺MMV P )−1P ⊺V ⊺ − λIn

)︂
M

=
1

2
V
(︂
P (P ⊺V ⊺MMV P )−1P ⊺ − λIn

)︂
V ⊺M .

Now, both sides are multiplied by V ⊺ from the left and V from the right and we get

0 =
1

2

⎛⎝P (P ⊺V ⊺MMV P )−1P ⊺)⏞ ⏟⏟ ⏞
rank m

−λIn

⎞⎠V ⊺MV .

Written in this form, we observe that the indicated term is an n by n matrix of rank m.
Hence, the expression in parentheses can only become zero along the first m dimensions.
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We extract these first dimensions through multiplication by P ⊺ from the left and P from
the right and solve the sub-problem

0 = (P ⊺V ⊺MMV P )−1 − λIm

⇔ 1

λ
Im = P ⊺V ⊺MMV P .

By means of pseudo-inversion of P , we find

MM =
1

λ
V PP ⊺V ⊺ ⇐ M =

1√
λ
V PP ⊺V ⊺

being a solution to this equation and satisfying the symmetry and non-negativity con-
straints. Moreover, the last (n−m) eigenvalues ofM are 0 which suggests that this choice
of M solves the necessary condition (4.2). We conclude our derivation by validating this
claim:

1

2

(︂
A⊺ (AMMA⊺)−1A− λIn

)︂
M

=
1

2

(︄
V PSU⊺

(︃
USP ⊺V ⊺ 1√

λ
V PP ⊺V ⊺ 1√

λ
V PP ⊺V ⊺V PSU⊺

)︃−1

·

·USP ⊺V ⊺ − λIn

)︄
1√
λ
V PP ⊺V ⊺

=
1

2

(︄
V PSU⊺

(︃
1

λ
US2U⊺

)︃−1

USP ⊺V ⊺ − λIn

)︄
1√
λ
V PP ⊺V ⊺

=
1

2

(︁
λV PSU⊺US−2U⊺USP ⊺V ⊺ − λIn

)︁ 1√
λ
V PP ⊺V ⊺

=
1

2
(λV PP ⊺V ⊺ − λIn)

1√
λ
V PP ⊺V ⊺

=

√
λ

2
V PP ⊺V ⊺V PP ⊺V ⊺ −

√
λ

2
V PP ⊺V ⊺

=

√
λ

2
V PP ⊺V ⊺ −

√
λ

2
V PP ⊺V ⊺

= 0.
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Finally, we obtain the optimal covariance matrix

Σ∗
u = MM =

(︃
1√
λ
V PP ⊺V ⊺

)︃(︃
1√
λ
V PP ⊺V ⊺

)︃
=

1

λ
V PP ⊺V ⊺.

After establishing a general framework for Jacobian methods in the next section, we will
provide some intuition on this abstract result and analyze potential benefits.

4.2. Common Jacobian Framework

Joint actions that effectively move the end-effector are usually obtained by applying Jaco-
bian methods (section 3.3). We will now generalize the Jacobian inverse and Jacobian
transpose method and define a new class of Jacobian methods of power p. This generaliza-
tion will allow us to compare the newly found maximum entropy solution to well-known
task space methods.

As previously mentioned in section 3.3, the Jacobian transpose and the Jacobian inverse
method share a similar structure. Expressing both methods using the eSVD of J =
USP ⊺V ⊺ gives

J⊺v = V PSU⊺v

for the Jacobian transpose method and

J†v = J⊺ (JJ⊺)−1 v

= V PSU⊺ (USP ⊺V ⊺V PSU⊺)−1 v

= V PSU⊺ (︁US2U⊺)︁−1
v

= V PSU⊺US−2U⊺v

= V PS−1U⊺v

for the Jacobian inverse method. Here, we only consider m < n, but m ≥ n can be
analyzed analogously.

Looking at the equations, it becomes obvious that their only difference is the exponent of
the singular value matrix S. It is S+1 for the Jacobian transpose method and S−1 for the
Jacobian inverse method. This observation motivates the following definition of a general
class of Jacobian methods of power p.
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1

0
-1

2

-2

Figure 4.2.: Jacobian methods of power p transform a target velocity (black circle) differ-
ently. The resulting velocities are depicted by the arrows, and the power of
the corresponding Jacobian method is indicated. The principle axes of the
manipulability ellipsoid are shown in gray.

Definition 1. Let J be a Jacobian matrix and J = USP ⊺V ⊺ its eSVD. A mapping from a
task space coordinate v to a joint space coordinate u of the form

u = V PSpU⊺v

is called Jacobian method of power p and we denote the corresponding (pseudo) Jacobian
matrix as

Jp = US−pP ⊺V ⊺.

Besides rephrasing the well-known Jacobian methods as Jacobian methods of power 1 and
−1, this definition allows for other powers in between and outside. Figure 4.2 visualizes
the effect of different powers on the end-effector movement. The target velocity vector v
is transformed to joint space using different powers p, resulting in different end-effector
velocities. We observe that only the p = −1 method (Jacobian inverse) enforces exactly
matching the target velocity vector while the other methods deviate. This deviation leads
to velocity vectors closer to the larger principle axis of the manipulability ellipsoid for
p > −1 and velocity vectors closer to the smaller axis for p < −1.

We can explain this observation by analyzing the transformation from the target velocity
vd to the resulting velocity vr, which is given by

vr = JJ†
pvd.
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Expanding the expression with eSVD, we find

vr = JJ†
pvd

vr = USP ⊺V ⊺V PSpU⊺vd

vr = USp+1U⊺vd.

For p > −1, singular values that are larger than 1 get enforced while smaller singular
values get diminished. The opposite is true for p < −1.

4.3. Interpretation and Comparison of Maximum Entropy Solution

In section 4.1, we found the optimal Gaussian distribution for local task space exploration.
For a system x = Au + b and A = USP ⊺V ⊺, the resulting optimal covariance matrix
reads

Σu =
1

λ
V PP ⊺V ⊺. (4.3)

In robotics applications, this system matrix A is usually the Jacobian J . This assumption
even holds for acceleration-controlled robots. Hence, we can exchange A for J . Moreover,
since S0 = Im and U⊺U = Im, we can expand expression (4.3), which gives

Σu =
1

λ
V PS0U⊺US0P ⊺V ⊺

Σu =
1

λ
J⊺
0J0

Σu = J⊺
0

(︃
1

λ
Im

)︃
J0.

Finally, we can define a new diagonal covariance matrix Σv with variance σ2
v for every

dimension as
Σv = σ2

vIm =
1

λ
Im.

Now, sampling the action u from N (µu,Σu) is equivalent to sampling v ∼ N (0,Σv) and
applying the transformation

u = µu + J⊺
0v = µu + J†

0v,

which means sampling a target velocity from an isotropic Gaussian distribution and
transforming it to joint space using the Jacobian method of power 0.
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Alternatively, we can interpret the sampling process as joint space sampling with null
space filtering. Here, a candidate action ū is drawn from an isotropic Gaussian distribution
N (0, σ2

vIn). The final action u is then obtained by u = µu + J†Jū, which filters out the
null space components of ū. We can prove the equivalence by showing that the resulting
covariance matrix is identical

Σu = J†J(σ2
vIn)J

†J

= σ2
vJ

†JJ†J

= σ2
vJ

†J

= σ2
vV PS−1U⊺USP ⊺V ⊺

= σ2
vV PP ⊺V ⊺.

Note that the null space of Jp is invariant to changes of p.

While the first interpretation is useful for the implementation of a working algorithm,
the latter one highlights two key properties of the maximum entropy solution. First,
the manipulability ellipsoid does not change compared to joint space sampling. I.e.,
the resulting task space distribution is the same for joint space sampling and maximum
entropy sampling. And second, the improved efficiency comes from reducing null space
actions. Thus, by using the maximum entropy sampling, you can either reduce the action
effort while keeping the same task space entropy or increase task space entropy without
increasing the action effort.

The theoretical benefit can be quantified as follows. Assuming isotropic Gaussian joint
space exploration with zero mean and standard deviation σold along each dimension, the
effort is

E[u⊺u] = Tr[σ2
oldIn] = nσ2

old.

where n is the number of action dimensions. For the maximum entropy exploration, we
have

E[u⊺u] = Tr[σ2
vV PP ⊺V ⊺]

= σ2
v Tr[PP ⊺V ⊺V ]

= σ2
v Tr[PP ⊺]

= mσ2
v

where m is the number of task space dimensions. Setting both expressions equal, we find

σv =

√︃
n

m
σold. (4.4)
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Hence, reducing null space exploration enables
√︁
n/m wider task space exploration

without a larger expected action norm. Notably, this result also highlights that if the
number of task space dimensions m and action dimensions n is equal, the maximum
entropy solution coincides with common joint space exploration.

4.4. Null Space Sampling

Even though our previous analysis suggests reducing null space exploration completely,
null space exploration might still be important for RL. The derived optimum only considers
the single-step exploration problem from a fixed configuration. However, the configuration
itself impacts the exploration and changes due to null space actions. E.g., the manipula-
bility ellipsoid might have a different shape. Another important factor stems from the
learning objective. Even though the goal of a task is fully described in low-dimensional task
space coordinates, the objective can have null space dependencies. Such dependencies
could be obstacle avoidance, where for a fixed end-effector position, the robot might
collide in some joint configurations, or time objectives, rewarding faster completion of
the task. Moreover, when learning to control all joints of the robot, the policy network
can produce null space actions that need correction and therefore, null space exploration.

To add null space exploration to the task space exploration scheme, we use concepts
from null space control (subsection 3.3.3). An action u0 is drawn from the null space
distribution N (0, σ0In), transformed to the null space by(︂

In − J†J
)︂
u0,

and added to the task space sample. Alternatively, it is possible to adapt the covari-
ance matrix Σu using the theory of affine transformations of Gaussian random variables
(subsection 3.4.2).

Adding null space noise to the exploration scheme changes the expected squared action
norm, and hence, the expected theoretical benefit is lower. Incorporating a null space
standard deviation σ0 ≤ σold, the updated equation (4.4) reads

σv =

√︃
n

m
σ2
old −

n−m

m
σ2
0. (4.5)

This equation also shows that if σold = σ0 ⇒ σv = σold, i.e., without null space reduction,
there is no exploration benefit.
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4.5. Task Space Aware Action Sampling (TAAS)

State 𝑠

𝜇𝑢 𝐽𝑝 𝑣 𝑢0

𝜇𝑢 + 𝐽𝑝
†𝑣 + 𝐼𝑛 − 𝐽𝑝

†𝐽𝑝 𝑢0

Mean Action      Task Space Exploration       Null Space Exploration

Action 𝑢

Task Space 

Noise

Null Space 

Noise

Figure 4.3.: Task-space-aware action sampling (TAAS) constructs a local kinematics
model (the Jacobian) to split exploration noise into a task space part and a
null space part.

As a consequence of the previous analysis, we compile maximum entropy and null space
sampling into one RL algorithm, which we call task-space-aware action sampling (TAAS).
We start by describing the sampling procedure as depicted in Figure 4.3, and then we
present how action probabilities and entropy can be calculated in this setting. In the end,
we will arrive at a simple RL algorithm incorporating kinematic knowledge to further local
exploration.

Figure 4.3 illustrates how an action sample is drawn using kinematic information. The
mean action µu is the output of a mean policy network. The Jacobian of power p, Jp, is
calculated from the state. The noise sample v is drawn from a Gaussian in task space
coordinates, transformed to joint space using a Jacobian method, and added to µu. Finally,
another noise sample is added that is drawn from a joint space distribution and projected
onto the null space. Note that we use µu to correct the Jacobian to explore around the
mean trajectory instead of the current state. E.g., for a velocity controlled manipulator,
the Jacobian is calculated as Jp(s+∆t µu) (∆t denotes the time step) instead of Jp(s).

An alternative approach that yields the same action distribution is constructing a Gaussian
distributionN (µu,Σu) using affine transformations of the task space distributionN (0,Σv)
and the null space distribution N (0,Σ0). The resulting covariance reads

Σu = J†
pΣv

(︂
J†
p

)︂⊺
+
(︂
In − J†

pJp

)︂
Σ0

(︂
In − J†

pJp

)︂
.
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However, Σu is badly conditioned if null space exploration is strongly reduced, and in the
limit, without null space exploration, the covariance matrix does not have full rank, which
is incompatible with standard sampling methods.

To compute the probability of an action given a state s, we split the final action u into the
mean µu, the task space noise v, and a null space component û0

µu = µu(s)

v = Jp(s,µu)(u− µu)

û0 = u− µu − Jp(s,µu)
†v.

Calculating the probability of v is straightforward. In contrast, almost surely, the null
space component û0 will not be equal to the original null space sample u0 due to the null
space projection. As a remedy, assuming the null space covariance matrix Σ0 = σ2

0In, we
can still come up with the correct probability of the projected sample. For that, we express
û0 and the null space distribution using an (n − m)-dimensional null space basis. We
define R ∈ Rn×(n−m) to be the counterpart to the matrix P , which stems from the eSVD
of Jp, such that the concatenation [P |R] = In. Now, R⊺V ⊺ projects onto an orthogonal
null space basis, and the null space probability is given by

N (R⊺V ⊺û0;0,R
⊺V ⊺Σ0V R) .

The probability of u given s π(u|s) finally reads

π(u|s) = N (v;0,Σv)⏞ ⏟⏟ ⏞
task space

N (R⊺V ⊺û0;0,R
⊺V ⊺Σ0V R)⏞ ⏟⏟ ⏞

null space

|detJp|⏞ ⏟⏟ ⏞
scaling

.

This splitting is possible because the task space and null space distributions are indepen-
dent, and the scaling factor |detJp| is multiplicative. Without null space sampling, the
corresponding term must be omitted, and for p = 0, the scaling factor |detJ0| = 1.

The action entropy can be calculated analogously to the probability. Using the splitting
property presented in section 3.2, we can write

H(π(·|s)) = H (N (0,Σv)) +H (N (0,R⊺V ⊺Σ0V R))− log (|detJp|) .

It is important to note that if no null space exploration is used, the action distribution
is degenerate for m < n, and the entropy is always −∞, which is impractical and not
informative. Therefore, without null space exploration, it is necessary to exclude the null
space term.

39



4.6. Empirical Evaluation

After establishing the theory for local exploration and deriving a maximum entropy
approach, we now aim to validate the theoretical findings. Therefore, we ask whether there
is empirical evidence for the local entropy being maximized with a Jacobian method with
p = 0, and whether reducing null space exploration actually improves local exploration.
Furthermore, we extend the investigation to a global level, asking whether the benefits
we derived locally are also present for global task space exploration. Then, we consider
the learning problem, where we focus on the impact of null space reduction using TAAS.

Figure 4.4 shows the simulation environments for the experiments in this chapter. The
4 DoF manipulator in Figure 4.4a has links of unit length and can move the joints contin-
uously without joint limits. The manipulator only acts in the x-y plane and is velocity-
controlled at 10 Hz. We use this scenario to validate the theoretical findings and learn
a simple reaching task. Within 300 time steps, the robot shall position and keep its
end-effector inside the green area. For every time step inside the green area, it receives a
reward of +1, otherwise, it is neither rewarded nor penalized. We use a discount factor
of γ = 0.99.

(a) Planar reaching: A 4 DoF toy robot can
move its end-effector freely on the x-y
plane. Its task is reaching the goal area
in green.

(b) TIAGo reaching: The 7 DoF arm of the
TIAGo robot is trained to reach the red
goal.

Figure 4.4.: Simulation Environments for local exploration experiments.
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Figure 4.4b depicts the second, more complex scenario. The 7 DoF manipulator is velocity-
controlled at 25 Hz and shall learn to reach the red goal with a 10 cm radius. The horizon
length is 500, γ = 0.99, and the movement of the manipulator is constrained by joint
and action limits and collisions. The reward structure is the same as before. In both
scenarios, a goal position and an initial joint configuration are sampled randomly for the
whole training, and the agents observe the joint angles. We provide more details about
the environments and the hyperparameters in appendix A.3.

4.6.1. Choice of Sampling Method for Local Exploration

For the first experiment, we estimated the local exploration entropy of joint space explo-
ration and Jacobian methods of power -1, 0, and 1 with varying standard deviations. For
the entropy estimation, we constructed a Gaussian distribution from the end-effector posi-
tions resulting from 20 random actions and averaged over 100 random joint configurations.
The results, including the 95 % confidence interval, are shown in Figure 4.5.
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Figure 4.5.: Relationship between the mean action norm and the local task space entropy.
Average and 95 % confidence interval from 100 random joint configurations.
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We can observe that increasing the mean action norm increases local entropy, supporting
the idea of fixing a mean action norm for comparison. As suggested by the theory, the
green p = 0 line shows the highest local entropy for all reported action norms. Surprisingly,
the Jacobian transpose method (p = 1) approaches the green p = 0 line as the action norm
increases. We think this behavior is due to action clipping, which is not considered by our
theoretical derivation. The Jacobian inverse method performs slightly worse than joint
exploration, indicating that the efficiency gain due to null space reduction is completely
countervailed. This phenomenon is caused by the Jacobian inverse method enforcing
isotropic task space exploration even close to singularities, which is inefficient in terms
of task space exploration. Jacobian methods outside the typical range [−1, 1] perform
significantly worse than all other methods. In particular, large negative powers seem to
hurt exploration drastically.

For a fixed mean squared action norm,here E
(︁
∥u∥2

)︁
= 0.5, Figure 4.6 visualizes the

relation between the power parameter and local task space entropy. In accordance with the
maximum entropy derivation, the peak is at p = 0, and the curve lowers towards higher and
lower powers. The entropy decrease is much stronger for lower powers than higher ones,
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Figure 4.6.: Relation between the power of a Jacobian method and local task space
entropy for amean action norm of 0.25. Average and 95 % confidence interval
from 100 random joint configurations.
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𝑝 = −2Joint Space 𝑝 = −1

𝑝 = 22𝑝 = 1𝑝 = 0

Figure 4.7.: Task space sample patterns for different Jacobian methods and joint space
exploration with equal mean squared action norm (0.5) at the same joint
configuration (depicted on the left). 200 action samples are drawn each. The
principle axes of the manipulability ellipsoid are shown in gray.

which matches our observation from Figure 4.5. Unexpectedly, the confidence interval
for larger powers widens, indicating that using a larger power method can potentially
improve local task space entropy at certain joint configurations.

Figure 4.7 provides some intuition for the numerical results of the previous experiments.
For the depicted joint configuration, the 6 panels on the right show the end-effector
position for 200 samples. While for p = −2, the samples approach the weak singular axis
of the manipulability ellipsoid, the samples for p = 1 and p = 2 arrange around the strong
axis. The Jacobian inverse method (p = −1) forms a circular pattern normalizing the
axes, and joint space sampling and p = 0 sampling follow the proportionality of the axes,
confirming that p = 0 does not change the shape of the task space distribution. However,
while all distributions share the same mean squared action norm of 0.5, the samples of
p = 0 are spread wider, supporting its optimality.

4.6.2. Impact of Null Space Reduction (NSR) on Exploration

We have already discussed that the Jacobianmethod of power p = 0 is effectively joint space
exploration with null space reduction (NSR). After our previous experiments confirmed
the optimality of p = 0, we now investigate the importance of null space actions on local
and also global exploration.
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Figure 4.8.: Relationship between null space reduction (NSR) and task space entropy.
Average and 95 % confidence interval are reported.

(a) 0 % NSR (b) 90 % NSR

Figure 4.9.: End-effector traces starting from the same initial configuration using the
same random seed.
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To quantify local exploration, we estimated the local entropy from 100 samples at 100
joint configurations as before. The task space standard deviation σv and the null space
standard deviation σ0 were chosen according to

σv =

√︃
n

m
σ2
old −

n−m

m
σ2
0. (4.6)

Here, we use a baseline standard deviation of σold = 1, and 90 % NSR means that the
null space standard deviation is σ0 = (1− 0.9)σold. For σold and σ0, equation (4.6) then
determines σv. For the global exploration experiment, we sampled 3 trajectories from
100 initial joint configurations each. The global task space entropy was then estimated
using a histogram method with 400 bins.

As can be seen in Figure 4.8, local (Figure 4.8a) and global (Figure 4.8b) portray consistent
results: the task space entropy is larger for a stronger NSR. However, the entropy gain for
NSR over 90 % is only marginal.

Figure 4.9 shows the end-effector traces for 0 % and 90 % NSR using the same random
seed. The trace of the 90 % sampling shows higher end-effector velocities and, hence,
explores more areas of the task space, which explains the increased global entropy.

4.6.3. Impact on Learning

The p = 0 Jacobian method with 100 % NSR showed superior results in the previous
experiments that focused purely on task space exploration. However, the ultimate goal of
exploration is accumulating knowledge about the environment to learn a new task. We
already brought up concerns that strong NSR could hinder learning success. In the final
experiments of this section, we investigate the impact of different NSR percentages on
learning. We train the agents with PPO (subsection 3.1.4) on the sparse reward-reaching
tasks described previously and evaluate their final performance, success rate, and action
effort. In the following experiments, we approach the question of whether employing
TAAS instead of pure joint space sampling is beneficial in robot RL.

Planar Reaching

The evaluation metrics after 0.5 million training steps for the planar reaching experiment
are presented in the tables 4.1, 4.2, and 4.3. Additional results for the planar reaching
and the TIAGo reaching experiments can be found in appendix A.2. For each documented
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Std / NSR 0 % 50 % 90 % 99.9 % 100 %

1.0 92 % 100 % 100 % 0 % 100 %

0.7 96 % 96 % 100 % 0 % 96 %

0.5 84 % 92 % 96 % 0 % 92 %

0.3 64 % 80 % 84 % 0 % 88 %

Table 4.1.: Planar reaching: success rates.

standard deviation (Std) and null space reduction (NSR) configuration, we accumulated
the data of 25 randomly initialized trials (random goal and random initial joint configu-
ration) and provide averages and 95 % confidence intervals. The Std value corresponds
to σold in equation (4.6) and indicates an equal mean squared action norm of across all
untrained agents with the same Std.

Table 4.1 lists the success rates where we consider a trial successful if the average cumula-
tive return is at least 100. We observe that generally, the larger the Std, the more likely it
is to learn the task successfully. Surprisingly, the success rate with a Std of 1 and 0 % NSR
is lower than the success rate of the same configuration with a Std of 0.7. We consider
this an outlier without statistical significance. Quite drastically, we see that with 99.9 %
NSR, the agent was never able to learn the task successfully independent of the Std level.
Since 100 % NSR leads to comparable success rates as 50 % NSR, the low performance
of 99.9 % NSR is probably caused by numerical instabilities in the gradient calculation.
50 % NSR and 100 % NSR lead to the same number or more successful trials for all Std
values compared to joint space exploration, and 90 % NSR improves the success rate even
further. Notably, with 90 % NSR, at already 0.7 Std, all trials learned successfully, which
suggests that this configuration explored most efficiently.

Looking at the average performance (cumulative, discounted reward) in Table 4.2, the
values largely follow the same pattern as the success rates. E.g., a larger Std means gener-
ally better performance, and the performance of the 99.9 % trials implies no improvement
to a random actor. However, the average performances of the 90 % NSR runs are always
below the performances of the 50 % NSR runs and 100 % runs. This observation indicates
that even though the 90 % NSR actors can learn to solve the task more often, they are
also negatively influenced by numerical instabilities. A Std of 1 and 50 % NSR lead to the
best performance.
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Std / NSR 0 % 50 % 90 % 99.9 % 100 %

1.0 82.8 (±10.4) 90.3 (±1.5) 85.2 (±3.1) 2.7 (±1.4) 88.1 (±3.3)

0.7 84.8 (±7.6) 85.2 (±7.7) 83.2 (±4.0) 2.0 (±0.8) 85.7 (±7.7)

0.5 73.1 (±13.6) 80.3 (±10.4) 79.4 (±8.1) 1.8 (±0.9) 81.6 (±10.4)

0.3 54.7 (±17.3) 66.6 (±14.8) 63.4 (±13.6) 3.0 (±2.1) 74.4 (±12.2)

Table 4.2.: Planar reaching: average performance.

Std / NSR 0 % 50 % 90 % 99.9 % 100 %

1.0 1.06 (±0.03) 1.01 (±0.05) 0.76 (±0.04) 2.25 (±0.11) 1.27 (±0.23)

0.7 0.83 (±0.04) 0.82 (±0.04) 0.65 (±0.03) 1.70 (±0.09) 0.99 (±0.15)

0.5 0.66 (±0.03) 0.66 (±0.04) 0.56 (±0.04) 1.38 (±0.17) 0.71 (±0.05)

0.3 0.44 (±0.03) 0.47 (±0.03) 0.43 (±0.03) 0.95 (±0.12) 0.56 (±0.07)

Table 4.3.: Planar reaching: root mean squared action norm.

By comparing our observations with the reported values in Table 4.3, we see that the
lower performance values of the 90 % NSR runs correspond to a lower root mean squared
action norm. A NSR of 50% or 90% reduces the final action norm compared to 0% NSR.
The configuration with a Std of 0.7 and 90 % NSR leads to the lowest root mean squared
action norm while successfully learning the task in all trials. For 100 % NSR and the not
learning 99.9 % NSR, we observe higher values and higher uncertainties compared to
most other trials.

TIAGo Reaching

Compared to the planar reaching task, the TIAGo reaching task is more difficult to learn
because of its higher-dimensional task and action space, the smaller target area, joint
limits, collisions, and a higher control frequency. The increased difficulty lets us evaluate
how much the previous findings can be generalized to more complex scenarios, and if
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the importance of null space exploration changes with the additional challenges. In the
following tables, we report the same metrics as before after 1 million training steps.

In contrast to planar reaching, none of the success rates in Table 4.4 reaches 100 %,
confirming the increased difficulty of the task. As before, the runs with 99.9 % NSR were
not able to learn the task, and the success rates generally tend to be better with higher
Std. However, we observe a performance drop for 90 % NSR when going from a Std of
0.7 to 1.0. Moreover, the 90 % NSR success rates are all inferior compared to 0 %, 50 %,
and 100 % NSR success rates, which could be a sign of numerical instabilities. A 50 %
NSR seems to be the best choice in terms of success rate for this experiment. For each Std,
it outperforms the 0 % NSR baseline, and its variant with a Std of 1 reports the highest
success rate overall.

Std / NSR 0 % 50 % 90 % 99.9 % 100 %

1.0 80 % 92 % 12 % 0 % 88 %

0.7 72 % 88 % 40 % 0 % 56 %

0.5 60 % 72 % 36 % 0 % 56 %

0.4 56 % 60 % 40 % 0 % 60 %

0.3 60 % 64 % 32 % 0 % 56 %

Table 4.4.: TIAGo reaching: success rates.

Std / NSR 0 % 50 % 90 % 99.9 % 100 %

1.0 66.9 (±14.6) 77.0 (±10.6) 7.0 (±6.3) 0.1 (±0.1) 66.4 (±12.0)

0.7 59.0 (±16.2) 68.1 (±13.3) 20.7 (±10.7) 0.0 (±0.1) 45.9 (±15.4)

0.5 49.4 (±17.3) 55.4 (±16.3) 19.1 (±9.2) 0.1 (±0.1) 49.1 (±15.1)

0.3 48.3 (±16.9) 50.0 (±16.3) 15.4 (±9.8) 0.0 (±0.1) 44.5 (±17.2)

Table 4.5.: TIAGo reaching: average performance.
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Std / NSR 0 % 50 % 90 % 99.9 % 100 %

1.0 2.32 (±0.22) 1.73 (±0.20) 2.24 (±0.17) 5.13 (±1.08) 5.68 (±1.53)

0.7 1.62 (±0.18) 1.36 (±0.18) 1.43 (±0.16) 4.39 (±1.54) 3.94 (±1.53)

0.5 1.13 (±0.11) 0.99 (±0.13) 1.10 (±0.09) 3.79 (±1.42) 2.63 (±0.79)

0.4 1.02 (±0.14) 0.92 (±0.11) 0.91 (±0.08) 3.46 (±1.28) 1.88 (±0.46)

0.3 0.81 (±0.07) 0.75 (±0.10) 0.72 (±0.06) 2.44 (±0.87) 1.30 (±0.31)

Table 4.6.: TIAGo reaching: root mean squared action norm.

Table 4.5 shows that higher success rates explain the higher average performance. Nonethe-
less, while (0.5, 50 %) and (0.7, 0 %) have the same success rates, the performance of
the latter is higher, and while (0.7, 50 %) and (1.0, 0 %) have a comparable average
performance, the success rate of (0.7, 50 %) is considerably higher. These discrepancies
can be explained by the difference in the root mean squared action norm (Table 4.6): the
50 % NSR runs consistently lead to a lower root mean squared action norm compared
with 0 % NSR. This observation indicates that successful task completion is less null
space dependent than optimal performance. For the 100 % NSR runs, we find the same
phenomenon of increased mean squared action norms in Table 4.6 as before.

4.7. Discussion

In this chapter, we focused on local task space exploration and how kinematic knowledge
can be used to improve it. We derived an optimal sampling strategy within a local
maximum entropy framework and found that it is strongly linked to existing Jacobian
methods. By defining a common framework for Jacobian methods with a power parameter
p, we could make the connecting explicit. The optimal strategy with p = 0 was proven
to be equivalent to joint space exploration with null space reduction (NSR). Based on
the theory, we developed the task-space-aware action sampling (TAAS) method that uses
kinematic knowledge and combines task space and null space exploration.

The empirical evaluation confirmed our theoretical findings. The Jacobian method with
p = 0 showed its superiority, and NSR increases exploration efficiency in task space.
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However, the learning results show a more nuanced picture. Even though reducing null
space sampling could improve success rates and performance when applied to 50 %, the
trials without null space exploration could only improve over joint space sampling on the
simpler planar task. It appears that more complex scenarios require more exploration of
the null space actions, but it remains unclear how much NSR is beneficial and when it
hinders learning successfully.

While in the exploration experiments, 100 % NSR explored most efficiently, the mean
squared action norm after training was higher compared to other methods. This is of
particular interest since we were originally interested in reducing the mean squared action
norm. However, the high norms are most likely caused by interpolations of the neural
network approximator that cannot be corrected for due to missing null space exploration.
Therefore, it is necessary to either have some degree of null space exploration or let the
network only predict actions along the task space axes.

When NSR was applied to a stronger degree but below 100 %, we observed decreased
performance measures. This observation is indicative of numerical instabilities in the opti-
mization process but is unrelated to the principle of TAAS. We conjecture that the different
scales of the probabilities over the task and the null space lead to poorly conditioned
probability ratios during policy optimization. The fact that we observed this instability
even for 90 % NSR in the higher dimensional TIAGo reaching experiment supports this
conjecture because the standard deviation along each null space axis is smaller than for
the planar reaching task. We suggest adapting the PPO clipping objective to work with
differently scaled distributions or internally reweighing the probabilities to improve the
conditioning.

Overall, the benefit of TAAS for RL is limited. As it is a local method that uses step-wise
Gaussian noise for exploration, it widens the spectrum of efficiently solvable RL problems
only marginal. This problem motivates the search for global task space methods that make
more use of the available task knowledge.

50



5. Global Task Space Exploration

In the previous chapter, we looked at the local task space exploration problem and
developed an algorithm (TAAS) that exploits kinematic knowledge locally to further
exploration efficiency. However, we also experienced that for complex robotics tasks, such
an exploration method is still insufficient. Reaching a rewarding state can be a rare event,
and associating the right actions leading to successful executions is hard. Building on top
of the success of RRL, we now focus on global task space exploration that can potentially
overcome the limitations of local exploration methods and incorporate additional task
knowledge.

5.1. Intuition

Consider the scenario in Figure 5.1. The TIAGo robot is positioned in front of a shelf. It is
supposed to learn a control policy that moves the end-effector to a goal region inside the
shelf. Only if the the end-effector reaches the goal region, the agent receives a reward of
+1. However, the position of the goal region is not known, which makes the application of
a simple, engineered goal-reaching controller impossible. Hence, we cannot apply RRL to
the problem. At the same time, falling back to pure Gaussian action noise exploration is
undesirable. The likelihood of reaching a goal state inside the shelf only by chance is low,
and we lose the potential benefit of incorporating the prior knowledge available.

Ideally, we would like to apply a learning algorithm that follows two heuristics. First, the
exploration should focus on the shelf area. Since we know that the goal position is inside
the shelf, trajectories that lead away from the shelf have no chance of reaching the goal at
all. We would prefer an algorithm that exploits this prior knowledge. Second, once the
goal area is identified, the exploration should focus on trajectories that lead to that goal
rather than ending up at a different spot inside the shelf and not receiving any reward.

51



Figure 5.1.: The TIAGo robot is supposed to learn reaching an unknown goal position
inside the shelf. Hence, it is preferable to explore trajectories leading toward
the shelf.

The idea of splitting the exploration problem into reaching the goal and optimizing the
trajectory is closely related to the RRL perspective. A base controller ensures reaching the
goal, and the residual policy optimizes the execution to fulfill other criteria. Nonetheless,
implementing our idea requires a substantial modification to the RRL framework. Namely,
we need the base controller to actively explore the environment. Only this modification
can provide well-informed global task space exploration.

In the following sections, we present a new RL agent design that couples local action
exploration with global task space exploration. We show how the new method can be
integrated into an existing policy optimization algorithm. Finally, we evaluate the new
method in simulation on the TIAGo robot.
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5.2. Task Space Biasing (TSB)

Task space biasing (TSB) uses two trainable policies as indicated in the overview scheme
in Figure 5.2. The global bias policy ϕ provides a task space target x once per episode.
This target indicates which part of the task space the exploration should concentrate on
in the current episode. At each time step, using kinematic information about the robot, x
is transformed to a joint space action bias b that drives the end-effector movement toward
x. The local policy π outputs a residual action that is added to b, and the superposition u
is executed on the robot.

The schematic includes a context state c. This context state includes information that might
change from episode to episode, which gives the flexibility of a context-dependent task
space bias. As motivated previously, the bias policy should make use of prior knowledge.
Its initialization can follow expected goal positions or other hints.

Comparing Figure 5.2 with the scheme of RRL (Figure 2.2), we can note certain similarities.
The residual policy in RRL is replaced by the local policy in TSB, acting in largely the
same way, and the base controller in RRL can be found as a combination of the bias policy
and the Jacobian method incorporating prior knowledge and guiding the local policy.
However, an important distinction has to be made. Unlike in RRL, the bias policy ϕ is a
learnable, stochastic policy that actively explores the task space. Thus, we can view TSB

+

Robot State 𝑞

Local Policy

 𝜋𝜃1 ⋅ |𝑞, 𝑐, 𝑏

Jacobian Method

𝐽𝑝 𝑞 †

Global Bias Policy

𝜑𝜃2 ⋅ 𝑐

Context State 𝑐

Action 𝑢

𝑥𝑏

𝑎

Prior 

Knowledge

Figure 5.2.: Task space biasing (TSB) uses a global bias policy ϕ that exploits prior
knowledge to guide exploration. The task space target x is transformed to
joint space using a Jacobian method, yielding the bias action b. The local
policy outputs the residual action a.
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𝑥

Goal Area

𝑓 𝑞0

Figure 5.3.: Illustration of TSB working principle. The sampled task space target x (red)
becomes the center of a bias vector field (gray) for one episode that causes
more exploration toward and around x. A hypothetical task space trajectory
starting from f(q0) is drawn in blue. Target samples close to the goal area
(green) likely result in higher rewards and are reinforced throughout the
training.

as both a special case of RRL since it focuses explicitly on task space exploration and a
generalization of it that opens the space for learnable base controllers.

The exploration mechanism is illustrated in Figure 5.3. For each episode, a task space
target x is sampled that acts as an attractor for the end-effector. The attraction is realized
by the Jacobian method that outputs a bias action driving the end-effector toward x.
Meanwhile, the local policy explores in action space at every time step, resulting in a
variant trajectory approaching x. If x happens to be sampled close to the goal area, the
local exploration makes it likely to receive a reward. Over time, the learning process will
reinforce highly rewarding task space targets and focus on points near the goal area. At
the same time, the local policy is supposed to learn to avoid obstacles and optimize the
goal-reaching trajectory.
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5.2.1. Parameterization and Action Sampling

We assume that the state s is a concatenation [q|c] of a robot state q and a context state c
that includes episode-specific information. At the beginning of an episode, x is sampled
from the global bias policy

x ∼ ϕθ2(·|c).

We implement ϕθ2 as a Gaussian distribution where the mean µ is the sum of the output
of a neural network g(c) and an a priori defined center xprior

µ = xprior + g(c).

The covariance has the structure σ2I. This parameterization allows us to easily incorporate
prior knowledge by choosing an initial exploration center xprior and an exploration radius σ.
The free network parameters and the standard deviation σ are contained in the trainable
parameter vector θ2. Given x and the robot state q, the Jacobian method determines a
bias action b as follows. First, a task space direction vector d with a maximum norm of 1
is found:

d(x, q) =

{︄
x− f(q) if ∥x− f(q)∥ ≤ 1
x−f(q)

∥x−f(q)∥ if ∥x− f(q)∥ > 1
.

The norm clipping ensures that the bias term will not dominate the final action, and the
local policy can still explore even if x is far from the current end-effector position f(q).
Then, we get the bias action

b(q,x) = Jp(q)
†d(x).

To avoid problems with kinematic singularities and bias the action in a natural way that
follows the manipulability ellipsoid, we use the Jacobian of power p = 0 J0(q).

The residual action a is sampled from the local policy

a ∼ πθ1(·|q, c, b(q,x))

that observes the full state and the bias. The bias is included to let the local policy react
to potentially undesirable bias actions and stay closer to a Markovian setting. ϕθ1 is a
trainable Gaussian distribution with a diagonal covariance matrix and a neural network,
predicting the mean action.
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5.2.2. Integration into PPO

Since a task space target x is sampled once per episode and influences all actions samples
ui within a trajectory, the trajectory distribution pθ(τ) changes to

p(τ) = p0(s0)ϕθ2(x|s0)
T−1∏︂
i=0

p(si+1|si,ui)p(ui|si,x)

= p0(s0)ϕθ2(x|s0)
T−1∏︂
i=0

p(si+1|si,ui)πθ1(ai|si,x).

Now, in a similar fashion as in subsection 3.1.3, we restructure the performance difference
lemma

Eτ

[︄
T−1∑︂
t=0

γtAold(st,ut)

]︄

=

∫︂
p0(s0)ϕθ2(x|s0)

T−1∑︂
t=0

γt

(︄
T−1∏︂
i=0

p(si+1|si,ui)πθ1(ai|si,x)

)︄
Aold(st,ut)dτ

=
1− γ

1− γT

∫︂
p0(s0)ϕθ2(x|s0)dπθ1 (s|s0,x)πθ1(a|s,x)Aold(s,u)dadsdxds0

=
1− γ

1− γT
E s0∼p0, x∼ϕθ2

(·|s0),
s∼d

πθ1 (·|s0,x), a∼πθ1
(·|s,x)

[︂
Aold(s,u)

]︂
where dπθ1 (·|s0,x) is now conditioned on the initial state and the sampled target x. With
the common approximations, we arrive at the adapted surrogate loss

L(θ) = E s0∼p0, x∼ϕθ2
(·|s0),

s∼u
πθ1,old (·|s0,x), a∼πθ1

(·|s,x)

[︂
Aold(s,u)

]︂

= E s0∼p0, x∼ϕθ2,old (·|s0)

s∼u
πθ1,old (·|s0,x), a∼πθ1,old (·|s,x)

[︄
πθ1(a|s,x)ϕθ2(x|s0)

πθ1,old(a|s,x)ϕθ2,old(x|s0)
Aold(s,u)

]︄
.

The clipping objective follows naturally. However, instead of clipping the probability ratio
at once, we perform the clipping for the local and the bias policy separately to avoid
that one policy dominates the update. We use a clipping threshold of ϵ = 0.1 leading to
approximately the same maximum clipping ratio as before: (1− 0.1)2 ≈ (1− 0.2).
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5.3. Empirical Evaluation

With the following experiment, we investigate if and to what extent the new TSB method
can improve on regular model-free RL and compare it to the ideal RRL scenario. Further-
more, we explore differences between the RRL base controller and the TSB bias policy.
Lastly, we assess the robustness of TSB to sub-optimal bias initializations.

We evaluate the performance on the TIAGo robot in simulation as already seen in Figure 5.1.
The task is to reach a goal area with a 10 cm radius inside the shelf with the end-effector
of the right arm. If the end-effector is within the goal radius, the agent receives a reward
of 1. The position of the goal area changes for each episode, and the agent observes the
robot joint angles and the goal position. The action frequency is 100 Hz. We use a horizon
length of 500 and train the policies for 3 million steps.

We compare TSB with two baselines. The RL baseline uses plain PPO for training. It
corresponds to pure local exploration without incorporating prior knowledge. The RRL
baseline is considered the ideal scenario because it directly exploits the knowledge of
the goal position. As the base controller, we use the same Jacobian method as for TSB.
All methods use identical architectures for the local policies, and the hyperparameters
resulted from a small grid search and are documented in appendix A.3.3. The global bias
policy of the TSB method is initialized such that its mean is at the center of the shelf, and
two times its standard deviation covers all expected goal positions.

5.3.1. Comparison to RL and RRL

Figure 5.4 summarizes the results from the comparison of TSB to the two baselines RL
and RRL. We present the average learning curves and the 95 % confidence intervals after
25 trials. Unsurprisingly, before training (at time step 0), the initial performance of RL is
the lowest, and RRL performs the best. The well-informed initialization of the bias policy
in TSB improves initial performance compared to the RL baseline but cannot reach RRL
performance at all. However, after 0.75 million training steps, the TSB learning curve
surpasses the RRL learning curve, and its final performance is significantly better than
those of the two baselines. This observation is particularly remarkable since RRL does not
need to learn the mapping from the context variable to the actual goal position. The RL
baseline cannot overcome the lack of integrated prior knowledge.
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Figure 5.4.: Mean learning curve with 95 % confidence interval for TSB (red) and the
baselines RL (blue) and RRL (green). TSB outperforms both baselines by a
large margin.

Figure 5.5.: The position of the learned bias in blue and the target position in red are
offset. In relation to the target, the bias lies opposite to most initial end-
effector positions.
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Figure 5.6.: The mean of the learned bias distribution and the position of the target along
the indicated axis. While at the end of training, the bias tracks the y and z
coordinates closely, bias and target are offset along x.

To understand how TSB uses the bias, Figure 5.5 depicts the goal position in red and the
position of the learned bias in blue. Surprisingly, the positions are clearly offset. The bias
is slightly shifted away from the goal to a position opposite to most initial end-effector
positions. Even though we only report one instance, we could observe this phenomenon
arising in the majority of trials. This offset positioning causes the bias action to drive the
end-effector to some extent faster toward the goal but also slightly too far.

The observed offset in Figure 5.5 corresponds to an offset along the x axis in the world
coordinates of the simulator. This x offset can also be noticed in Figure 5.6a. Along the
other axes, Figure 5.6 reports good tracking performance. However, besides the offset,
the goal tracking along x appears to be accurate as well. A final accuracy level seems to
be reached after around 0.75 million steps. Beyond that point, there is no perceivable
accuracy gain. Notably, at the same time, the learning curve of TSB in Figure 5.4 surpasses
the RRL performance.

59



(a) Well-Informed (b) Shifted (c) Large Variance

Figure 5.7.: We compare different bias distribution initializations to assess the robustness
of the method. The figures show the center and two times the standard
deviation of the initial bias distribution.
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Figure 5.8.: Mean learning curves and 95 % confidence interval for different bias initial-
ization. The right plot shows the same data but focuses on the first 300
thousand training steps. All initializations perform on par.
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5.3.2. Robustness to Bias Initialization

After comparing TSB against the two baselines, we evaluate the robustness of the method
to sub-optimal bias initializations. The different initial distributions are visualized in
Figure 5.7, showing the center and two times the standard deviation. The well-informed
initialization is the one we used in the previous experiment. In the shifted initialization,
the center is misplaced to the edge of the shelf, and in the large variance initialization,
the standard deviation is double the well-informed standard deviation.

We evaluated the learning of the sub-optimal initializations using 5 trials. Figure 5.8
reports the learning curves and confidence intervals with a focus on the first 300 thousand
training steps on the right. In the beginning, the well-informed initialization results in a
higher performance, and it seems to take longer for the sub-optimally initialized policies
to improve. Nevertheless, the initial performance gap diminishes as training progresses,
ultimately resulting in comparable final performances.

5.4. Discussion

This chapter described a new approach, task space biasing (TSB), to incorporate prior
knowledge to guide local and enable global exploration. We showed how the existing
state-of-the-art RL algorithm PPO can be adapted to work with TSB through an alternative
surrogate loss. The comparison of the structure of TSB and RRL displayed that the TSB
method has comparable components but extends the framework by making the base
controller learnable.

We evaluated the new method on a challenging sparse-reward and goal-conditioned
reaching task and found that it outperforms plain PPO and RRL by a large margin, even
though RRL used a goal-reaching Jacobian method. We analyzed the learned bias and
found that it was offset to the goal position in a consistent way. This observation indicates
that the gained flexibility of TSB compared to RRL enabled local action biasing that is
more beneficial than pure goal-reaching. Instead of driving the end-effector to the goal
position directly, the bias policy provides a trajectory around which the local policy can
explore and optimize more easily.

In a second comparison, we assessed the robustness of TSB to sub-optimally initialized bias
distributions. Even though the initial performance dropped compared to the well-informed
initialization, the final performance was equally high independently of the initial bias
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distribution. This result assures some robustness of TSB to sub-optimal bias initializations.
However, we do not expect a completely misplaced initial bias distribution to lead to
comparable results. On the other hand, we experienced that the bias is converging rapidly
compared to the overall training, which suggests the use of TSB in scenarios with less
prior knowledge available. There, the bias policy could relatively quickly find a promising
region to explore, even if the initial bias distribution is wide.

The quick convergence of the bias opens a new question. It remains unclear whether the
performance benefit resulted from the interplay between optimizing the bias and the local
policy, or if it solely came from the bias policy being optimized on a variant of the MDP
that accounts for local exploration noise. If the latter turned out to be true, it would be
advisable to optimize the bias first, freeze it, and then optimize the local policy in the
style of RRL. This investigation, however, is beyond the scope of this thesis.

Even though the TSB method and the experiments focused on goal reaching, and the
context state was the goal position, the developed framework is far more general. Trivially,
the context could be a textual or visual description of the goal, but the framework can
be directly applied as long as the global bias policy is conditioned only on information
available at the first time step of an episode. This generality opens the possibility of
making any base controller adaptable during the learning process and, hence, improves
the integration of prior knowledge into RL.
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6. Conclusion

In this thesis, we studied how task space methods can be integrated into robot RL to
further exploration. We approached this overarching question from a local and a global
perspective on task space exploration. The theoretic findings and intuitive ideas were
used to develop methods exploiting the task structure, namely task-space-aware action
sampling (TAAS) and task space biasing (TSB). In both cases, we found that incorporating
prior knowledge about the robot and its environment can improve exploration efficiency
and learning performance. However, we experienced that a global exploration mechanism
is far more effective than an optimized local one. While TAAS could improve on joint
space exploration, we do not believe that it can extend the spectrum of tasks solvable by
RL significantly. Instead, a global approach, like the proposed TSB method, may do.

In light of the promising results of the TSB method, we see great potential in fusing
policies exploring on a global level with local exploration. Hence, we suggest further
research to investigate the extension of RRL base controllers to adjustable bias policies.
Moreover, the interplay between a local and a global policy connects our work, at least
conceptually, to hierarchical RL. Here, an interesting path could be making the connection
explicit and combining hierarchical RL with action superposition.

In the local exploration part, we evaluated exploration and learning independently. Under-
standing the exploration during the learning process, however, remains an open challenge.
It could be worth studying which characteristics of the observed data lead to successfully
learning a task and which experiences improve learning speed or mislead the optimization.
These insights could further improve exploration strategies and learning speed.

This thesis fits into a line of research that tries bridging the gap between learning and
engineered control. We believe that strong inductive biases are essential for the emergence
of intelligent robots and encourage combining intuition and established techniques from
learning and engineering in new creative ways.
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A. Appendix

A.1. Derivation of Jacobian Pseudo-Inverse Method

The objective is to find the least squares solution q̇ that solves the differential kinematics
equation (3.3) and it reads

min
1

2
q̇⊺q̇, s.t. v = J(q)q̇.

We formulate the constraint problem by means of Lagrangian optimization with the vector
valued Lagrangian multiplier λ leading to the Lagrangian

L =
1

2
q̇⊺q̇ + λ⊺(J(q)q̇ − v)

Deriving with respect to q̇ and setting the gradient to 0 gives

∇q̇L = q̇ + J(q)⊺λ = 0 ⇔ q̇ = J(q)⊺λ.

We now solve for λ by substituting q̇ in the constraint

v = J(q)J(q)⊺λ ⇔ λ = (J(q)J(q)⊺)−1 v.

Finally, we obtain the solution

q̇ = J(q)⊺ (J(q)J(q)⊺)−1 v

= J(q)†v.
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A.2. Extended Evaluation of Learning with TAAS

Std / NSR 0 % 50 % 90 % 99.9 % 100 %

1.0 82.8 (±10.4) 90.3 (±1.5) 85.2 (±3.1) 2.7 (±1.4) 88.1 (±3.3)

0.7 84.8 (±7.6) 85.2 (±7.7) 83.2 (±4.0) 2.0 (±0.8) 85.7 (±7.7)

0.5 73.1 (±13.6) 80.3 (±10.4) 79.4 (±8.1) 1.8 (±0.9) 81.6 (±10.4)

0.4 67.2 (±14.6) 71.5 (±13.7) 75.7 (±10.0) 2.6 (±2.1) 79.3 (±10.3)

0.3 54.7 (±17.3) 66.6 (±14.8) 63.4 (±13.6) 3.0 (±2.1) 74.4 (±12.2)

0.2 40.3 (±17.9) 56.7 (±16.7) 48.2 (±16.9) 1.4 (±0.8) 53.1 (±17.2)

0.1 33.1 (±15.7) 36.4 (±17.5) 28.5 (±14.7) 2.4 (±1.5) 39.3 (±16.0)

Table A.1.: Planar reaching: average performance (cumulative, discounted reward) with
95% confidence interval for different base standard deviations (std) and null
space reductions.

Std / NSR 0 % 50 % 90 % 99.9 % 100 %

1.0 92 % 100 % 100 % 0 % 100 %

0.7 96 % 96 % 100 % 0 % 96 %

0.5 84 % 92 % 96 % 0 % 92 %

0.4 80 % 84 % 92 % 0 % 92 %

0.3 64 % 80 % 84 % 0 % 88 %

0.2 48 % 68 % 60 % 0 % 64 %

0.1 48 % 44 % 44 % 0 % 56 %

Table A.2.: Planar reaching: success rates for different base standard deviations (std)
and null space reductions.
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Std / NSR 0 % 50 % 90 % 99.9 % 100 %

1.0 1.06 (±0.03) 1.01 (±0.05) 0.76 (±0.04) 2.25 (±0.11) 1.27 (±0.23)

0.7 0.83 (±0.04) 0.82 (±0.04) 0.65 (±0.03) 1.70 (±0.09) 0.99 (±0.15)

0.5 0.66 (±0.03) 0.66 (±0.04) 0.56 (±0.04) 1.38 (±0.17) 0.71 (±0.05)

0.4 0.57 (±0.03) 0.57 (±0.03) 0.50 (±0.03) 1.07 (±0.14) 0.67 (±0.07)

0.3 0.44 (±0.03) 0.47 (±0.03) 0.43 (±0.03) 0.95 (±0.12) 0.56 (±0.07)

0.2 0.33 (±0.03) 0.34 (±0.03) 0.32 (±0.02) 0.99 (±0.19) 0.41 (±0.05)

0.1 0.21 (±0.02) 0.20 (±0.02) 0.17 (±0.01) 0.85 (±0.20) 0.27 (±0.04)

Table A.3.: Planar reaching: root mean squared action norm and 95% confidence interval
for different base standard deviations (std) and null space reductions.

Std / NSR 0 % 50 % 90 % 99.9 % 100 %

1.0 66.9 (±14.6) 77.0 (±10.6) 7.0 (±6.3) 0.1 (±0.1) 66.4 (±12.0)

0.7 59.0 (±16.2) 68.1 (±13.3) 20.7 (±10.7) 0.0 (±0.1) 45.9 (±15.4)

0.5 49.4 (±17.3) 55.4 (±16.3) 19.1 (±9.2) 0.1 (±0.1) 49.1 (±15.1)

0.4 42.1 (±16.3) 49.8 (±17.4) 18.5 (±9.7) 0.1 (±0.3) 49.0 (±16.3)

0.3 48.3 (±16.9) 50.0 (±16.3) 15.4 (±9.8) 0.0 (±0.1) 44.5 (±17.2)

0.2 33.1 (±16.6) 37.4 (±17.1) 12.0 (±8.8) 0.1 (±0.2) 35.9 (±16.4)

0.1 11.1 (±10.0) 24.2 (±13.7) 6.7 (±5.5) 0.6 (±1.1) 18.4 (±12.2)

Table A.4.: TIAGo reaching: average performance (cumulative, discounted reward) with
95% confidence interval for different base standard deviations (std) and null
space reductions.
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Std / NSR 0 % 50 % 90 % 99.9 % 100 %

1.0 80 % 92 % 12 % 0 % 88 %

0.7 72 % 88 % 40 % 0 % 56 %

0.5 60 % 72 % 36 % 0 % 56 %

0.4 56 % 60 % 40 % 0 % 60 %

0.3 60 % 64 % 32 % 0 % 56 %

0.2 44 % 48 % 16 % 0 % 48 %

0.1 20 % 40 % 16 % 0 % 32 %

Table A.5.: TIAGo reaching: success rates for different base standard deviations (std)
and null space reductions.

Std / NSR 0 % 50 % 90 % 99.9 % 100 %

1.0 2.32 (±0.22) 1.73 (±0.20) 2.24 (±0.17) 5.13 (±1.08) 5.68 (±1.53)

0.7 1.62 (±0.18) 1.36 (±0.18) 1.43 (±0.16) 4.39 (±1.54) 3.94 (±1.53)

0.5 1.13 (±0.11) 0.99 (±0.13) 1.10 (±0.09) 3.79 (±1.42) 2.63 (±0.79)

0.4 1.02 (±0.14) 0.92 (±0.11) 0.91 (±0.08) 3.46 (±1.28) 1.88 (±0.46)

0.3 0.81 (±0.07) 0.75 (±0.10) 0.72 (±0.06) 2.44 (±0.87) 1.30 (±0.31)

0.2 0.58 (±0.06) 0.56 (±0.06) 0.53 (±0.05) 2.67 (±0.92) 1.03 (±0.34)

0.1 0.36 (±0.06) 0.33 (±0.05) 0.33 (±0.09) 2.46 (±0.89) 0.62 (±0.14)

Table A.6.: TIAGo reaching: root mean squared action norm and 95% confidence interval
for different base standard deviations (std) and null space reductions.
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A.3. Experiment Specifications

A.3.1. Planar Reaching

Environment Specification

Robot Link Lengths [1, 1, 1, 1]

Joint Constraints -

Action Space Velocity commands for every joint

Action Limits [±π,±π,±π,±π]

Observation Space Sine and cosine of every joint angle

Goal Radius 0.5

Goal Position Uniformly distributed over the reachable

space of the manipulator

Initial Joint Configuration Uniformly distributed over full joint space

Control Frequency 10 Hz

Discount Factor γ 0.99

Horizon Length 300

Table A.7.: Planar reaching Environment specifications.
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Hyperparameters

Learning Rate 0.0003

Clipping Ratio 0.2

Entropy Coefficient 0

GAE λ 0.98

Number Policy Update Epochs 10

Number Episodes Per Update 10

Policy and Value Network 64 hidden neurons, ReLU activation

Network Initialization To reduce the impact of initialization, we

initialize the weights between [-0.1, 0.1]

and set the last layer bias to 0 for the

policy network in all experiments.

Table A.8.: Planar reaching hyperparameters.
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A.3.2. TIAGo Reaching

Environment Specification

Lower Joint Limits [−1.17,−1.17,−0.78,−0.39,−2.09,−1.41,−2.09]

Upper Joint Limits 1.57, 1.57, 3.92, 2.35, 2.09, 1.41, 2.09]

Action Space Velocity commands for every joint

Action Limits [±0.975,±0.975,±1.175,±1.175,±0.975,±0.88,±0.88]

Observation Space Joint angles

Goal Radius 0.1

Goal Position Uniformly distributed in a spherical region in front to

the robot

Initial Joint Configuration Uniformly distributed over 80 % of joint space

Control Frequency 25 Hz

Discount Factor γ 0.99

Horizon Length 500

Gravity Due to insufficient gravity compensation by the

Pybullet simulator, we needed to set gravity to

zero for all TIAGo experiments.

Table A.9.: TIAGo reaching environment specifications.
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Hyperparameters

Learning Rate 0.0003

Clipping Ratio 0.2

Entropy Coefficient 0

GAE λ 0.98

Number Policy Update Epochs 10

Number Episodes Per Update 10

Policy and Value Network 64 hidden neurons, ReLU activation

Table A.10.: TIAGo reaching hyperparameters.
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A.3.3. TIAGo Shelf Environment

Environment Specification

Lower Joint Limits [−1.17,−1.17,−0.78,−0.39,−2.09,−1.41,−2.09]

Upper Joint Limits 1.57, 1.57, 3.92, 2.35, 2.09, 1.41, 2.09]

Action Space Velocity commands for every joint

Action Limits [±0.975,±0.975,±1.175,±1.175,±0.975,±0.88,±0.88]

Observation Space Joint angles and goal position

Goal Radius 0.1

Goal Position Uniformly distributed inside the shelf in each episode

Initial Joint Configuration Uniformly distributed over 80 % of joint space in each

episode

Control Frequency 100 Hz

Discount Factor γ 0.995

Horizon Length 500

Table A.11.: TIAGo shelf environment specifications.
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Hyperparameters

Initial Standard Deviation 1.0

Learning Rate 0.0003

Clipping Ratio 0.2 (TSB: 0.1 · 0.1)

Entropy Coefficient 0.004

GAE λ 0.98

Number Policy Update Epochs 10

Number Episodes Per Update 20

Policy Network 256 hidden neurons, ReLU activation

Value Network 64 hidden neurons, ReLU activation

Bias Network (TSB only) no hidden layer, ReLU activation

Table A.12.: TIAGo shelf environment hyperparameters.

77



Abbreviations and Symbols

List of Abbreviations

Notation Description

DoF degrees of freedom

eSVD extended singular value decomposition

KL Kullback-Leibler divergence

MDP Markov decision process

NSR null space reduction

PPO proximal policy optimization

Q-function state-action value function

RL reinforcement learning

RRL residual reinforcement learning

SAC soft actor-critic

Std standard deviation

SVD singular value decomposition

TAAS task-space-aware action sampling

TRPO trust region policy optimization
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TSB task space biasing

UCB upper confidence bound

List of Symbols

Notation Description

a,u (local) action

b bias action

A(s,a), At advantage

D data buffer

detA determinant of A

detA pseudo-determinant of A

γ discount factor

p0(s) initial state distribution

dπ(s) discounted state distribution of policy π

uπ(s) undiscounted state distribution of policy π

E(p) effort

H(p) entropy

Ef(x) [] expectation

N (µ,Σ) Gaussian distribution

µ mean of Gaussian distribution

Σ covariance matrix of Gaussian distribution

σ standard deviation

T horizon length
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L loss function

In n-dimensional identity matrix

Jp(q) Jacobian of power p

A† pseudo-inverse of A

Tr [A] trace of A

J (θ),J (π) reinforcement learning objective

θ parameter vector

π(a|s) (local) policy

ϕ(s) base controller

ϕ(x|c) bias policy

r(st, at, st+1) reward

R(τ) cumulative discounted reward

A action space

S state space

s state

c context state

q joint angles, robot state

e) task space error

x,v task space vectors

τ trajectory

V (s) value function
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