
field of study:
Computational Engineering
Institut
Intelligente Autonome
Systeme

Hierarchical Reinforcement
Learning with Self-Play for
Robotic Air Hockey
Master in the field of study “Computational Engineering” by Yuheng Ouyang
Date of submission: September 25, 2024

1. Review: Prof. Jan Peters
2. Review: Puze Liu
3. Review: Dr. Davide Tateo
Darmstadt

Erklärung zur Abschlussarbeit gemäß §22 Abs. 7 APB TU Darmstadt

Hiermit erkläre ich, Yuheng Ouyang, dass ich die vorliegende Arbeit gemäß § 22 Abs. 7 APB
der TU Darmstadt selbstständig, ohne Hilfe Dritter und nur mit den angegebenen Quellen
und Hilfsmitteln angefertigt habe. Ich habe mit Ausnahme der zitierten Literatur und
anderer in der Arbeit genannter Quellen keine fremden Hilfsmittel benutzt. Die von mir
bei der Anfertigung dieser wissenschaftlichen Arbeit wörtlich oder inhaltlich benutzte
Literatur und alle anderen Quellen habe ich im Text deutlich gekennzeichnet und gesondert
aufgeführt. Dies gilt auch für Quellen oder Hilfsmittel aus dem Internet.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 25. September 2024
Yuheng Ouyang

2

Abstract

This thesis proposes an improved Hierarchical Reinforcement Learning (HRL) method,
specifically the Termination Soft Actor-Critic (TSAC) algorithm running on the OCAD
framework. To begin, we extended the Option-Critic Architecture (OCA) to an OCA with
deterministic intra-option policies (OCAD), and subsequently implemented the Termina-
tion Soft Actor-Critic algorithm within this framework, namely the TSAC algorithm, which
simultaneously learns the termination critic. Unlike the original OCA, our method adopts
continuous options and efficiently learns the option critic, actor, and termination critic
using the Markov Decision Process (MDP) replay buffer.

To validate our method, we chose to apply it in an air hockey environment using the LBR
iiwa robotic arm. This decision was made because the widely applied 7-degree-of-freedom
robotic arm has high-dimensional observation and action spaces, and the air hockey
environment provides long-horizon and highly dynamic scenarios, thereby offering a
comprehensive way to thoroughly test and validate our approach.

In our proposed method, the agent consists of two layers: a low-level agent and a high-
level agent. The low-level agent functions as a deterministic controller, receiving options
from the high-level agent and translating them into control commands. In contrast, the
high-level agent is trained using the TSAC algorithm. In this research, we constructed and
tested two types of low-level agents: Constrained Neural Motion Planning with B-splines
(CNP-B) and Acting on the Tangent Space of the Constraint Manifold (ATACOM). After
evaluating their performance, we eventually adopted ATACOM.

Furthermore, we conducted a series of experiments to validate the necessity of the two-
layer structure and the effectiveness of the termination critic in our method. Finally, to
enhance the agent’s performance, we focused on two key aspects: Curriculum Learning
(CL) and Self-Learning (SL). The experimental results demonstrated that both CL and
SL significantly improved the agent’s performance, with SL further enhancing the agent’s
generalization capability.

3

Zusammenfassung

Diese Arbeit schlägt eine verbesserte hierarchische Verstärkungslern-Methode (HRL)
vor, konkret den Termination Soft Actor-Critic (TSAC)-Algorithmus, der auf dem OCAD-
Framework ausgeführt wird. Zunächst haben wir die Option-Critic-Architektur (OCA)
zu einer OCA mit deterministischen intra-Options-Politiken (OCAD) erweitert und an-
schließend den Termination Soft Actor-Critic-Algorithmus in diesem Framework imple-
mentiert haben, nämlich den TSAC-Algorithmus, der gleichzeitig den Terminationskritiker
erlernt. Im Gegensatz zur ursprünglichen OCA verwendet unsere Methode kontinuierliche
Optionen und erlernt effizient den Optionskritiker, Akteure und Terminationskritiker
mithilfe des Markov-Entscheidungsprozesses (MDP) Replay-Puffers.

Um unsere Methode zu validieren, haben wir uns entschieden, sie in einer Air-Hockey-
Umgebung mit dem LBR iiwa-Roboterarm anzuwenden. Diese Entscheidung fiel, weil
der weit verbreitete 7-Grad-of-Freedom-Roboterarm hochdimensionale Beobachtungs-
und Aktionsräume bietet und die Air-Hockey-Umgebung komplexe und hochdynamische
Szenarien ermöglicht, was eine umfassende Möglichkeit bietet, unseren Ansatz gründlich
zu testen und zu validieren.

In unserer vorgeschlagenen Methode besteht der Agent aus zwei Ebenen: einem low-
level-Agenten und einem high-level-Agenten. Der low-level-Agenten fungiert als de-
terministischer Controller, der Optionen vom high-level-Agenten empfängt und sie in
Steuerbefehle umsetzt. Im Gegensatz dazu wird der high-level-Agent mit dem TSAC-
Algorithmus trainiert. In dieser Forschung haben wir zwei Arten von low-level-Agenten
konstruiert und getestet: Constrained Neural Motion Planning mit B-Splines (CNP-B) und
Acting on the Tangent Space of the Constraint Manifold (ATACOM). Nach der Bewertung
ihrer Leistung haben wir schließlich ATACOM übernommen.

Darüber hinaus habenwir eine Reihe von Experimenten durchgeführt, um die Notwendigkeit
der zwei-Schichten-Struktur und die Effektivität des Terminationskritikers in unserer Meth-
ode zu validieren. Schließlich haben wir auf zwei Schlüsselaspekte konzentriert, um die
Leistung des Agenten zu verbessern: Curriculum Learning (CL) und Self-Learning (SL).

4

Die experimentellen Ergebnisse zeigten, dass sowohl CL als auch SL die Leistung des
Agenten signifikant verbesserten, wobei SL die Generalisierungsfähigkeit des Agenten
weiter steigerte.

5

Contents

1 Introduction 8
1.1 Proposed Method . 8

1.1.1 Method Overview . 8
1.1.2 Deployed Platform . 9
1.1.3 Contribution . 9

1.2 Related Work . 10
1.2.1 Playing Air Hockey with Robots . 10
1.2.2 Motion Planner . 11
1.2.3 Curriculum Learning . 12
1.2.4 Hierarchical Reinforcement Learning (HRL) 13

2 Fundamentals 15
2.1 Reinforcement Learning(RL) . 15

2.1.1 Markov Decision Process . 15
2.1.2 Bellman Equation . 16
2.1.3 Policy Gradient Methods . 17

2.2 Soft Actor Critic(SAC) . 18
2.2.1 Entropy-Regularized Reinforcement Learning 18
2.2.2 Soft Actor-Critic . 19
2.2.3 Learning the Policy . 20

2.3 The Option-Critic Architecture(OCA) . 20
2.4 CNP-B . 22
2.5 ATACOM . 23

3 Methods 26
3.1 Build Agent . 26
3.2 Low Level Agent . 27

3.2.1 Training CNP-B . 27
3.2.2 ATACOM . 28

6

3.3 Learning in High Level . 29
3.3.1 High Level Agent . 29
3.3.2 Intra-option Q-Learning . 29
3.3.3 Learning Options . 29
3.3.4 Learning Termination . 33
3.3.5 Pseudo Code of High Level Training 34

3.4 Curriculum Learning . 35
3.5 Self Learning . 36

4 Experiment 37
4.1 Settings . 37

4.1.1 Experiment Overview . 37
4.1.2 Simulation Environment . 38
4.1.3 Hyperparameters . 40

4.2 Evaluation . 41
4.2.1 CNP-B . 41
4.2.2 Hierarchical Learning . 43
4.2.3 Different Termination Probability 44
4.2.4 Curriculum Learning . 46
4.2.5 Self Learning . 47
4.2.6 Play Games . 48

5 Conclusion and Future work 52

7

1 Introduction

1.1 Proposed Method

1.1.1 Method Overview

The thesis extends a hierarchical reinforcement learning (HRL) framework called the
option-critic architecture (OCA) with deterministic intra-option policies, termed as OCAD.
Moreover, we adopt the soft-actor-critic(SAC) algorithm[13], enabling it to simultaneously
learn the termination critic, referred to the termination SAC(TSAC). It is worth noting that
we have successfully implemented the OCAD with continuous options compared to the
traditional discrete options. Please refer to Figure 3.1 for a clear flowchart of the structure
and to Section 3.3 for the algorithm details.

The OCDA decomposes the task into two layers: low-level action control and high-level
target selection, allowing the system to focus on learning high-level strategies without
concerning itself with low-level trajectory planning. It is essentially a HRL approach. Re-
inforcement Learning (RL) faces significant challenges in handling complex, long-horizon
tasks, especially in environments with high-dimensional state and action spaces[28, 5, 33].
HRL provides an effective solution to these challenges by breaking down complex tasks
into simpler subtasks. In this framework, we learn the options of the Semi-Markov Decision
Process (SMDP) using a MDP replay buffer. The higher-level policy aims to complete
the overall task by selecting the optimal subtasks as its options. This task decomposition
efficiently reduces the original task’s long horizon into a shorter sequence of subtasks, each
subtask acts as a high-level option that operates over a longer timescale than lower-level
actions, a process known as temporal abstraction [4, 39]. HRL algorithms have demon-
strated superior performance over standard RL in various long-horizon problems, such as
continuous control [10, 23, 27], long-horizon games [20, 46], robotic manipulation [11,
12], and more.

8

The TSAC learns the termination critic by termination gradient shown in Equation 3.18,
allowing for rapid switching between targets when necessary. This adaptability enables
the system to better handle complex and dynamic environments.

The implemented TSAC algorithm can effectively learn the option critic, actor, and ter-
mination critic using the MDP replay buffer. This off-option method is also known as
intro-option Q-learning. Due to the addition of an entropy bonus, the entropy of our
policy is also regulated, thereby balancing exploration and exploitation.

1.1.2 Deployed Platform

We decided to validate our method in an air hockey environment using the LBR iiwa robot
arm. This is a 7-axis arm known for its high degrees of freedom and flexibility. It is widely
used in fields such as industrial automation, healthcare, research, and service robotics. Its
additional degree of freedom enables high-speed, accurate movements and adaptability to
dynamic changes, making it ideal for the requirements of the game. This also means that
when validating our method, the algorithm’s adaptability to high dimension of observation
and action space, as well as highly dynamic scenarios, can be fully tested by demonstrating
its performance.
Moreover, playing air hockey with a robotic arm is inherently a long-horizon task that
requires continuous control. And the dynamic and competitive environment requires the
agent to employ swift, accurate, and adaptive strategies.

1.1.3 Contribution

Achievement

We proposed and validated a HRL method, implemented an improved algorithm called
termination SAC(TSAC) over the OCAD, which makes the agent effectively learn the option
critic, actor, and termination critic using the MDP replay buffer. And the continuous high
level options are successfully executed.

We have successfully built two controllers capable of generating motion trajectories in
air hockey games. One agent utilized a learning-to-plan framework called Constrained
Neural Motion Planning with B-splines (CNP-B)[18], while the other implemented Acting
on the Tangent Space of the Constraint Manifold (ATACOM)[25]. Both agents are also
suitable for trajectory planning in other scenarios.

9

We have conducted experiments presented in Table 1.1.

Experiment Topic Experiment Purpose
CNP-B Train and evaluate the controller
Hierarchical Learning Compare our method with one without HRL
Different Termination Probabilities The influence of terminations
Curriculum Learning The improvement using curriculum learning (CL)
Self Learning The improvement using self learning(SL)
Play Games The practical performance in competition

Table 1.1: Experiments and Purposes

In the experiments, we have evaluated the CNP-B and explored its improvement. We have
validated our method and explored the possibility of enhancing the agent’s performance
in air hockey games, primarily focusing on CL and SL aspects.

Conclusion

The CNP-B agent struggles to operate effectively under conditions with multiple termi-
nations. The well-performing ATACOM agent is set as a low-level agent. Our proposed
method works well and achieves ideal performance. It reduces the action space that needs
to be learned, making exploration more efficient and lowering the task complexity. In
practical applications, employing both SL and CL methods can significantly enhance the
agent’s performance, ensuring stable behavior even when faced with previously unseen
opponents.

1.2 Related Work

1.2.1 Playing Air Hockey with Robots

The development of air hockey-playing robots has advanced significantly in recent years,
as researchers focus on various aspects such as control strategies, motion planning, and
perception systems.
The multi-level control structure has been introduced, enabling the robot to manage

10

complex tasks more efficiently through a hierarchical processing architecture [29]. This
architecture allowed for more organized and strategic gameplay by dividing tasks into
different layers of control. Building on this foundational concept, the two-layer system
further enhanced the robot’s capabilities by integrating high-level tactics with low-level
actions, enabling it to execute both offensive and defensive maneuvers more effectively
and adaptively [38].
The approach incorporated visual feedback to adjust the robot’s movements in real time,
significantly improving its responsiveness during gameplay [6]. The integration of predic-
tive planning represented another key advancement, enabling the robot to optimize its
attack strategies by forecasting future puck positions and anticipating opponent move-
ments. This predictive ability substantially increased the robot’s competitiveness and
allowed it to engage in more strategic play[16]. Further refinement was achieved through
the application of optimal control theory combined with Bayesian tracking. This combina-
tion enabled the robot to accurately predict puck trajectories, strengthening its striking
precision and decision-making capabilities [2].
More recent research emphasized the importance of developing highly reactive planning
systems to handle the rapid pace of air hockey, achieving an effective balance between
speed and accuracy through optimized planning algorithms that allowed the robot to
respond swiftly to high-speed interactions[24]. The application of deep reinforcement
learning also enabled the robot to adapt to various scenarios and opponents by learning
optimal policies from experience[43].

1.2.2 Motion Planner

Neural motion planners have emerged as a promising alternative to classical motion plan-
ning approaches in recent years. Traditional planning methods, such as optimization-based
and sampling-based planners, have been widely used for generating feasible trajectories
in robotic applications. However, these methods often face challenges when dealing with
complex, high-dimensional, or dynamic environments.

Optimization-based planners, like CHOMP [35] and TrajOpt [37], have shown effec-
tiveness in generating smooth trajectories. Nonetheless, they are often computationally
intensive and can struggle with non-linear constraints, leading to issues like getting stuck
in local minima. On the other hand, sampling-based planners, such as RRT [21] and PRM
[17], provide probabilistic completeness but often become inefficient as the dimensionality
of the problem increases or when navigating narrow passages.

11

In contrast, neural motion planners leverage the learning capabilities of deep neural
networks to model and solve planning problems more efficiently. By training on large
datasets of demonstrations or using reinforcement learning, these planners can learn
to generate feasible trajectories that adhere to task constraints. This approach enables
them to handle high-dimensional inputs and adapt to complex dynamic environments
more effectively. Recent works, such as Motion Planning Networks (MPNet) [34], have
demonstrated that neural networks can significantly reduce the time required for planning
by learning from prior experience, making them suitable for real-time applications.

The use of neural motion planners has opened new possibilities for handling motion
planning tasks in highly dynamic and uncertain environments, showing potential for
applications where classical methods may fall short. This area continues to be an active
field of research, with ongoing efforts to improve their adaptability, robustness, and
efficiency.

1.2.3 Curriculum Learning

Curriculum learning (CL) in reinforcement learning (RL) has emerged as a powerful
strategy for improving both the speed and effectiveness of the learning process by struc-
turing tasks to gradually increase in difficulty. The foundational idea of CL can be traced
back to early studies in supervised learning, such as those presented in [9] and [36].
These studies demonstrated that training models on simpler tasks first, before progressing
to more complex ones, improved convergence and performance. This approach allows
learning algorithms to build a foundation of basic skills that can be refined and extended
as task complexity increases.

In the context of RL, transfer learning has laid the groundwork for curriculum learning
by showing how knowledge gained from simpler tasks can be effectively transferred to
facilitate learning in more challenging environments [22, 44]. This transfer of knowledge
is crucial in RL, where the exploration-exploitation trade-off often makes it difficult for
agents to learn efficiently in complex tasks from scratch.

Recent works have made significant strides in formalizing CL frameworks for RL. For
instance, [42] introduced a method for generating curricula using a directed acyclic graph
(DAG) of tasks, where each node represents a task, and the edges define the progression
from simpler to more complex tasks. This structure allows for automatic task sequencing,
ensuring that the agent follows a learning trajectory that builds on previously acquired
knowledge, thereby improving learning efficiency and performance.

12

Another notable contribution is the concept of reverse curriculum generation introduced
in [30], which takes an innovative approach by starting the agent’s learning process with
simpler, goal-like tasks and progressively moving towards the more challenging initial
conditions. This reverse approach helps agents efficiently explore the state space and
adapt to the complexities of the task environment.

Adaptive curriculum methods have also gained traction, where the task difficulty is
adjusted dynamically based on the agent’s performance. The work in [26] proposed a
”teacher-student” framework that automatically selects tasks based on the student’s current
learning progress, ensuring that the agent is always challenged at an appropriate level.
Similarly, [31] introduced a meta-learning approach that learns an optimal curriculum
by evaluating the agent’s performance across different tasks, allowing the curriculum to
adapt in real-time as the agent improves.

Despite these advancements, challenges remain in evaluating and standardizing curricu-
lum learning across different RL domains. The diversity of task environments, agent
capabilities, and learning objectives makes it difficult to establish universally applicable
metrics for CL effectiveness. Addressing these challenges is essential for the broader
adoption of curriculum learning in RL, as it holds the potential to significantly accelerate
training and improve performance in complex decision-making tasks.

1.2.4 Hierarchical Reinforcement Learning (HRL)

Hierarchical Reinforcement Learning (HRL) has emerged as a powerful paradigm for tack-
ling complex, long-horizon decision-making tasks by decomposing them into manageable
subtasks, which enhances both exploration and learning efficiency. Early approaches,
such as the Options Framework [39] and MAXQ value function decomposition [8], were
instrumental in laying the foundation for HRL by introducing the concept of reusable
skills or options, allowing agents to make decisions over extended time horizons. These
frameworks excelled in abstracting temporal sequences of actions, making them particu-
larly useful in tasks with sparse rewards or high-dimensional state spaces [4]. With the
integration of deep learning, HRL has expanded its applicability to more complex domains,
as demonstrated by neural network-based policy learning [46]. However, challenges such
as efficient exploration, subtask discovery, and scalability of hierarchical policies persist as
active research areas in HRL [32].

One of the most significant advancements in HRL is the option-critic architecture, which
offers a more structured and end-to-end learning approach for hierarchical policies [3].

13

This architecture enables agents to learn both intra-option policies and termination func-
tions through policy gradient methods, thereby eliminating the need for manual option
definition. The option-critic framework’s ability to adaptively discover and refine options
during training has greatly improved the flexibility and applicability of HRL.

Building upon the original option-critic architecture, the natural option critic [15] in-
troduced natural gradient techniques to enhance the stability and efficiency of option
learning, resulting in more robust performance in challenging environments. The Double
Actor-Critic (DAC) architecture [47] further extended the option-critic framework by
employing two actor-critic networks—one dedicated to selecting options and the other
to learning option-specific policies. This separation allowed for more effective policy
learning across different levels of the option hierarchy, especially in continuous action
spaces. Additionally, the Soft Option Actor-Critic (SOAC) architecture [7] integrated the
entropy-maximizing principles from the soft actor-critic framework into the option-critic
model, promoting more exploratory behavior and achieving superior performance in
stochastic environments.

A critical aspect of option execution within HRL is the decision of when to terminate an
option. The introduction of the termination critic [14] addressed this by incorporating a
critic that predicts the optimal timing for option termination, thereby mitigating issues
associated with premature or excessively prolonged option execution and enhancing the
agent’s efficiency in managing subtask transitions.

14

2 Fundamentals

2.1 Reinforcement Learning(RL)

Reinforcement Learning(RL) is learning how tomap situations to actions, so as to maximize
a numerical reward signal. The learner is not told which actions to take, but instead must
discover which actions yield the most reward by trying them. In the most interesting and
challenging cases, actions may affect not only the immediate reward but also the next
situation and, through that, all subsequent rewards. These two characteristics, trial-and-
error search and delayed reward, are the most important distinguishing features of RL.
The learner and decision maker is called the agent. The thing it interacts with, comprising
everything outside the agent, is called the environment. These interact continually, the
agent selecting actions and the environment responding to these actions and presenting
new situations to the agent. The environment also gives rise to rewards, special numerical
values that the agent seeks to maximize over time through its choice of actions[40].

2.1.1 Markov Decision Process

MDPs are a classical formalization of sequential decision making, where actions influence
not only immediate rewards, but also subsequent situations, or states, and, through them,
future rewards. Thus MDPs involve delayed reward and the need to trade off immediate
and delayed reward.
More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3, At each time step t, the agent receives some representation
of the environment’s state, St ∈ S, and on that basis selects an action, At ∈ A. The
probability distribution over actions conditioned on states is called policy, π(a | s). One
time step later, in part as a consequence of its action, the agent receives a numerical

15

reward, Rt+1 ∈ R ⊂ R, and the expected rewards for state–action–next-state triples as a
three-argument function r : S ×A× S ′ → R:

r(s, a, s′)
.
= E[Rt | St−1 = s,At−1 = a, St = s′] (2.1)

and finds itself in a new state, St+1. We call the sequence {S0, A0, R1, S1, A1, R2, S2, A2, R3, ...}
as trajectory. We usually use a discounting γ in practice and try to select actions so that
the sum of the discounted rewards it receives over the future is maximized. The expected
discounted return defined as:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞∑︂
k=0

γkRt+k+1, (2.2)

In a finite MDP, the random variables Rt and St have well-defined discrete probability
distributions dependent only on the preceding state and action. For particular values
of s′ ∈ S and r ∈ R, there is a probability of those values occurring at time t, called
dynamics/transition of the MDP:

p(s′, r | s, a) .= Pr{St = s′, Rt = r | St−1 = s,At−1 = a} (2.3)

2.1.2 Bellman Equation

In discounted problems, the value function of a policy π is defined as the expected return:

Vπ(s)
.
= Eπ[Gt | St = s] = Eπ

[︄ ∞∑︂
k=0

γkRt+k+1 | St = s

]︄
(2.4)

and the action-value function for policy π:

Qπ(s, a)
.
= Eπ[Gt | St = s,At = a] = Eπ

[︄ ∞∑︂
k=0

γkRt+k+1 | St = s,At = a

]︄
(2.5)

The Bellman equation expresses a relationship between the value of a state and the values
of its successor states. For any policy π and any state s, the following consistency condition

16

holds between the value of s and the value of its possible successor states:

Vπ(s)
.
= Eπ[Gt | St = s]

= Eπ[Rt+1 + γGt+1 | St = s]

=
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)
[︁
r + γEπ[Gt+1|St+1 = s′]

]︁
=

∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)
[︁
r + γVπ(s

′)
]︁ (2.6)

There is always at least one policy that is better than or equal to all other policies. This
is an optimal policy. We denote all the optimal policies by π∗. The optimal state-value
function, denoted V ∗, is defined as V ∗(s)

.
= maxπ Vπ(s), the Bellman equation for V ∗, or

the Bellman optimality equation:

V ∗(s) = max
a∈A(s)

q∗(s, a)

= max
a

Eπ∗ [Gt | St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1 | St = s,At = a]

= max
a

E[Rt+1 + γV ∗(St+1) | St = s,At = a]

= max
a

∑︂
s′,r

p(s′, r | s, a)[r + γV ∗(s′)].

(2.7)

The Bellman optimality equation for Q∗ is

Q∗(s) = E[Rt+1 + γmax
a′

Q∗(St+1a
′) | St = s,At = a]

=
∑︂
s′,r

p(s′, r | s, a)[r + γmax
a′

Q∗(St+1, a
′)].

(2.8)

2.1.3 Policy Gradient Methods

Policy gradient methods [41, 19] address the problem of finding a good policy by per-
forming stochastic gradient descent to optimize a performance objective over a given
family of parameterized stochastic policies, πθ. The policy gradient theorem [41] provides
expressions for the gradient of the average reward and discounted reward objectives
with respect to θ. In the discounted setting, the objective is defined with respect to a

17

designated start state (or distribution) s0: ρ(θ, s0) = Eπθ
[︁∑︁∞

t=0 γ
trt+1 | s0

]︁
. The policy

gradient theorem shows that:

∂ρ(θ, s0)

∂θ
=

∑︂
s

µπθ(s | s0)
∑︂
a

∂πθ(a | s)
∂θ

Qπθ(s, a), (2.9)

where µπθ(s | s0) =
∑︁∞
t=0 γ

tP(st=s|s0)∑︁∞
t=0 γ

t is a discounted weighting of the states along the
trajectories starting from s0. In practice, the policy gradient is estimated from samples
along the on-policy stationary distribution. [45] showed that neglecting the discount
factor in this stationary distribution makes the usual policy gradient estimator biased.
However, correcting for this discrepancy also reduces data efficiency. For simplicity, we
build on the work of [41] and assume the stationary distribution is the discounted one.

2.2 Soft Actor Critic(SAC)

Soft Actor-Critic (SAC)[13] is an off-policy actor-critic algorithm based on the maximum
entropy RL framework. In the framework, the actor aims to simultaneously maximize
expected return and entropy, a measure of randomness in the policy. The higher entropy
refers to the higher random act of the agent. This has a close connection to the exploration-
exploitation trade-off: increasing entropy results in more exploration, which can accelerate
learning later on. It can also prevent the policy from prematurely converging to a bad
local optimum.

2.2.1 Entropy-Regularized Reinforcement Learning

Let x be a random variable with probability mass or density function P . The entropy H
of x is computed from its distribution P according to

H(P) = −Ex∼P [logP (x)]

In entropy-regularized reinforcement learning, the agent gets a bonus reward at each
time step proportional to the entropy of the policy at that time step. This changes the RL

18

problem to:

π∗ = argmax
π

Eτ∼π

[︄ ∞∑︂
t=0

γt(R(st, at, st+1 + α ∗H(π(· | st)))

]︄
where α > 0 is the trade-off coefficient. Then we define the slightly-different value
functions in this setting. V π is changed to include the entropy bonuses from every time
step:

V π(s) = Eτ∼π

[︄ ∞∑︂
t=0

γtR(st, at, st+1) + α

∞∑︂
t=1

γtH(π(· | st)) | s0 = s, a0 = a

]︄
With these definitions, V π and Qπ are connected by:

V π(s) = Ea∼π [Qπ(s, a) + αH(π(· | s))]

and the Bellman equation for Qπ is

Qπ(s, a) = Es′∼P,a′∼π
[︁
R(s, a, s′) + γ(Qπ(s′, a′) + αH(π(· | s′)

]︁
= Es′∼P

[︁
R(s, a, s′) + γV π(s′)

]︁
2.2.2 Soft Actor-Critic

SAC concurrently learns a policy πψ and two Q-functions Qθ1 , Qθ2 . We’ll start by taking
our recursive Bellman equation for the entropy-regularized Qπ from earlier and rewriting
it slightly using the definition of entropy:

Qπ(s, a) = Es′∼P,a′∼π
[︁
R(s, a, s′) + γ(Qπ(s′, a′) + αH(π(· | s′)

]︁
= Es′∼P,a′∼π

[︁
R(s, a, s′) + γ(Qπ(s′, a′)− α logπ(ã′ | s′)

]︁
we can approximate it with samples:

Qπ(s, a) = r + γ(Qπ(s′, ã′)− α logπ(ã′ | s′)), ã′ ∼ π(· | s′)

SAC sets up the MSBE loss for each Q-function using this kind of sample approximation for
the target. SAC uses the clipped double-Q trick and takes the minimum Q-value between
the two Q approximators. The loss functions for the Q-networks in SAC are:

L(θi, D) = E(s,a,r,s′,d)∼D
[︁
((Qθi(s, a)− y(r, s

′, d))2)
]︁

where the target is given by

y(r, s′, d) = r + γ(1− d)
(︃
min
j=1,2

Qθtargs,j (s
′, ã′)− α logπψ(ã′|s′)

)︃
, ã′ ∼ πψ(·|s′)

19

2.2.3 Learning the Policy

The policy should, in each state, act to maximize the expected future return and expected
future entropy. That is, it should maximize V π(s), which we expand out into

V π(s) = Ea∼π [Qπ(s, a) + αH(π(·|s))]
= Ea∼π [Qπ(s, a)− α logπ(a|s)]

The way we optimize the policy makes use of the reparameterization trick, in which
a sample from πψ(·|s) is drawn by computing a deterministic function of state, policy
parameters, and independent noise. Following the authors of the SAC paper, we use a
squashed Gaussian policy, which means that samples are obtained according to

ãψ(s, ξ) = tanh (µψ(s) + σψ(s)⊙ ξ) , ξ ∼ N (0, I)

The policy is thus optimized according to

max
ψ

Es∼D, ξ∼N

[︃
min
j=1,2

Qθj (s, ãψ(s, ξ))− α logπψ(ãψ(s, ξ) | s)
]︃

The Loss function of the policy by using gradient descent is

Lπ(ψ,D) = Es∼D, ξ∼N

[︃
α logπψ(ãψ(s, ξ) | s)− min

j=1,2
Qθj (s, ãψ(s, ξ))

]︃

2.3 The Option-Critic Architecture(OCA)

The option-critic architecture tackles the problem of temporal abstraction. It derives policy
gradient theorems for options and is capable of learning both the internal policies and the
termination conditions of options, in tandem with the policy over options, and without
the need to provide any additional rewards or subgoals.

An option ω is defined as a triple (Iω, πω, βω), where Iω represents the initiation set,
πω : S ×A→ [0, 1] is the intra-option policy, and βω : S → [0, 1] denotes the termination
function. The initiation set Iω ⊆ S specifies where the option ω can be initiated. In many
scenarios, Iω is assumed to be the entire state space S, meaning that the option can be
initiated at any state.

20

Once an option is initiated, the agent selects actions according to the intra-option policy
πω. The option will continue to be executed until it is terminated based on the termination
function βω, which provides the probability of termination at each state.

The framework of options allows the reinforcement learning problem to be extended
from MDPs to SMDPs. In this extended framework, the agent’s behavior is determined
by a policy over options πΩ : S × Ω→ [0, 1], where Ω is the set of all options. The value
functions associated with the policy over options are defined as follows:

QΩ(s, ω) =
∑︂
a

πω(a|s)QU (s, ω, a),

QU (s, ω, a) = r(s, a) + γEs′∼p(·|s,a)
[︁
U(ω, s′)

]︁
,

U(ω, s′) =
(︁
1− βω(s′)

)︁
QΩ(s

′, ω) + βω(s
′)VΩ(s

′),

VΩ(s) =
∑︂
ω

πΩ(ω|s)QΩ(s, ω),

where QΩ(s, ω) is the value of an option ω initiated in state s, QU (s, ω, a) is the value
of executing action a in the context of the option ω and state s, and VΩ(s) is the value
function over options.

The paper [3] introduced the Option-Critic Architecture (OCA), a policy gradient method
designed to learn both the intra-option policies {πω}, parameterized by θπ, and the
termination functions {βω}, parameterized by θβ. The goal of OCA is to maximize the
expected discounted return, QΩ(s0, ω0), by applying the Intra-option Policy Gradient
Theorem and the Termination Gradient Theorem:

∆θπ ∝ ∇θπ logπωt(at|st)QU (st, ωt, at)
∆θβ ∝ −∇θββωt−1(st) (QΩ(st, ωt−1)− VΩ(st))

At each time step t, OCA performs a gradient descent step to minimize the loss:

1

2
(gt −QU (st, ωt, at))2

where gt is the update target defined as:

gt = rt+1 + γ

(︃
(1− βωt(st+1))QΩ(st+1, ωt) + βωt(st+1)max

ω′
QΩ(st+1, ω

′)

)︃
This update target is also utilized in the Intra-option Q-learning framework [39].

21

2.4 CNP-B

In the paper [18] the author proposed a novel learning-to-plan framework, called con-
strained neural motion planning with B-splines (CNP-B), which generates plans satisfying
an arbitrary set of constraints and computes them in a short constant time. This allows
the robot to plan and replan reactively.

Figure 2.1: Architecture of the neural network used to determine p(s) and r(s) B-spline
control points. The ω Block computes the control points of the configuration
B-spline Cp

B-splines (Basis Splines) are a crucial curve representation method, widely applied in
motion planning and trajectory generation. Mathematically, a B-spline is defined as a
linear combination of control points, given by the following equation:

C(s) =

n∑︂
i=0

Ni,k(s)Pi

where Pi are the control points, Ni,k(s) are the B-spline basis functions of degree k, and
n is the degree of the curve. By adjusting these control points, we can precisely control
the smoothness and shape of the curve, ensuring that the generated trajectory adheres
to the required constraints, even in dynamic environments. This flexibility significantly
accelerates trajectory generation under dynamic constraints.

22

In the CNP-B method, B-splines are used not only for generating initial trajectories but also
for ensuring that the trajectory meets the specified boundary conditions, such as position,
velocity, and acceleration at both the start and the end. These boundary conditions can
be formulated as:

q(0) = q0, q̇(0) = q̇0, q̈(0) = q̈0

q(1) = qd, q̇(1) = q̇d

The optimization process minimizes the total loss function L(ζ), defined as:

L(ζ) =

∫︂ T

0
Lt(q(t), q̇(t), q̈(t)) dt

Thus, the CNP-B framework provides an effective way to represent trajectories on the
constraint manifold, while its flexibility and efficiency allow for rapid motion planning
under dynamic constraints.

2.5 ATACOM

ATACOM, which stands for Acting on the Tangent Space of the Constraint Manifold, is a novel
reinforcement learning approach developed to address the challenge of safe exploration
in environments with dynamic constraints[25]. ATACOM transforms the constrained rein-
forcement learning problem into an unconstrained one by allowing the agent to explore
in the tangent space of the constraint manifold. This approach enables RL algorithms
to remain within the feasible space defined by these constraints while maintaining high
computational efficiency and robust learning performance.

In the context of RL, constraints such as joint limits, velocity limits, and task-specific
requirements (e.g., keeping an end-effector on a surface) must be adhered to continu-
ously. In ATACOM, these constraints are represented as a constraint manifold, where
the system’s state must evolve. The method leverages the tangent space of this manifold,
enabling exploration without violating the constraints. The general state constraints can
be expressed as:

23

f(q) = 0, g(q) ≤ 0

where f(q) represents equality constraints and g(q) represents inequality constraints. To
handle these constraints, ATACOM utilizes the Jacobian of the constraint manifold to
calculate the null space, representing the allowable directions of motion in the tangent
space. The time derivative of the constraints is calculated as:

ċ(q, µ, q̇, µ̇) = Jc(q, µ)

[︃
q̇
µ̇

]︃
= 0

By ensuring that the trajectory remains within this null space, the constraints are continu-
ously satisfied.

ATACOM further simplifies the constraint problem by converting inequality constraints
into equality constraints with the introduction of slack variables µ, allowing the system to
avoid over-constraining the RL algorithm. This reformulation is given by:

c(q, µ) =

[︃
f(q)

g(q) + 1
2µ

2

]︃
= 0

In addition to equality constraints, ATACOM handles inequality constraints, such as joint
limits and velocity limits, which restrict the feasible state-action space. By operating in the
tangent space of the lower-dimensional manifold, ATACOM enables efficient exploration
and faster learning, particularly in high-dimensional tasks.

The ATACOM approach has several advantages:

• It supports both equality and inequality constraints, maintaining all constraints
below a predefined tolerance during learning.

• It does not require an initial feasible policy, allowing the agent to learn from scratch.

• It eliminates the need for manual safe backup policies, as the constraints are re-
spected throughout the learning process.

• ATACOM can be integrated with any model-free RL algorithm, such as PPO, TRPO,
DDPG, TD3, or SAC, making it highly flexible.

24

• By exploring the lower-dimensional manifold, ATACOM reduces the effective explo-
ration space, leading to improved learning performance compared to unconstrained
exploration.

25

3 Methods

We extend the option-critic architecture(OCA) with deterministic intra-option policies,
referred to as OCAD. Under this structure we implement a SAC algorithm with termination
condition, referred to as termination SAC(TSAC). The method inherits the hierarchical
structure of OCA and control over entropy of SAC. It is worth noting that it is also applicable
to continuous options. During the implementation, we add the entropy bonus to the option-
value function and update option critic, termination critic and actor effectively using the
MDP replay buffer.

3.1 Build Agent

In the method proposed in this paper, the agent is structured into two layers: a high-level
agent that issues options and a low-level agent that receives these options and translates
them into control commands. Additionally, the termination critic within the high-level
agent determines whether to continue with the previous option or to adopt a new one.
The structure of the agent can be seen in Fig. 3.1.

Figure 3.1: The structure of the agent built by our method

26

3.2 Low Level Agent

The low-level agent receives the option command of high-level agent and convert it to the
joint command of the robot arm. It must be compatible with the task environment, which
means it must meet the constraints. In this thesis, the robot arm’s generated trajectory
must first be smooth and must not exceed the maximum and minimum limits of actual
joint velocities and joint positions. Obviously, it should also avoid collisions with other
joints or the table surface. Additionally, the end effector must always remain above the
table.

ATACOM[25] and CNP-B[18] are built as low level agents in this thesis. CNP-B is trained
by converting the violated parts of the generated trajectory into a loss function, while
ATACOM adopts a simpler approach by optimizing the trajectory in real time through
constraints. Their outputs are shown in Table 3.1.

Description Methods
CNP-B ATACOM

Output of high level/Input of low level [x, y, ρ, η] [x, y]
Output of low level ut ∈ τA→E ut = f(st, ot)

Table 3.1: Comparison of Input and Output of Different Low-Level Agents. u is the joint
command for controlling. τA→E means the trajectory from start point A to end
point E. smeans state and omeans option. (x, y) represents the target point
coordinates, ρ is the hit direction, and η is the speed scale.

3.2.1 Training CNP-B

The input of CNP-B is the joint positions and joint velocities [q, q̇] of both the start and
end points. Its output would be the whole trajectory from start point to end point. To
train CNP-B, we first define the constraints that the generated trajectories must satisfy.
The constraints required for CNP-B in our thesis are shown in the following Table 3.2.

Once the constraints are set, we can prepare the training dataset for CNP-B. We employed
four methods to construct the training dataset:

27

Constraints Explanation
x_loss The trajectory does not exceed the x-axis boundaries of the table
y_loss The trajectory does not exceed the y-axis boundaries of the table
z_loss The trajectory remains at a fixed height along the z-axis
q_loss The joint positions do not exceed their limits
q_dot_loss The joint velocities do not exceed their limits
t_loss Minimize the execution time of the trajectory as much as possible
obstacle The trajectory’s intermediate points do not include the target point

Table 3.2: Constraints and Their Explanations

No. Description
1 Set 100,000 random start and end point pairs of the task space.
2 Randomly generate 100,000 points of the task space and pair them arbitrarily

during training.
3 Randomly generate 50,000 points of the task space, while the remaining points

are randomly sampled from trajectories generated by the pre-trained CNP-B.
4 Continuously add data from planning failure points to the existing dataset for

further training.

Table 3.3: Training Data Generation and Augmentation Strategies

When generating the data, we add noise to the optimal joint configurations of the start and
end points to generate joint positions. We use linear programming to find the maximum
velocity and multiply a random scaling factor ζ ∈ [0, 1] as hitting velocity, as indicated by
the following optimize objective[24]:

max
{v,α}

v, s.t. q̇l ≤ Jpinv · v +N · α ≤ q̇u (3.1)

where α is null space velocity, N is null space matrix, Jpinv is pseudo inverse of Jacobian
matrix, q̇l and q̇u is the minimize and maximum limit of joint velocity.

3.2.2 ATACOM

We built an ATACOM agent for the air hockey environment, where the input is the 2D
coordinates (x, y) of any point in the task space of the robotic arm, and the output is the
control signal in the form of joint commands [q, q̇]. The more details please refer to [25].

28

3.3 Learning in High Level

3.3.1 High Level Agent

The high-level agent is primarily used to issue decision-making instructions to the low-
level agent for execution. Therefore, different low-level agents require different high-level
instructions. In this thesis, there are mainly two types of action spaces, as shown in Table
3.1.
Based on the OCDA structure and TSAC algorithm, the high-level agent contains 7 neural
networks to approximate different functions. They are two critic networks, two target
critic networks, two actor and a termination function, the features of the networks are
shown in Table 4.4.
After the warmup steps in Table 4.4, the high-level agent begins to learn the parameters
every step. It extracts the data in the replay buffer and then calculates the gradient to
update the parameters.
Every time the agent draws the option, it will first evaluate the previous option using the
termination critic. Falls the previous option can be expected more reward, it will most
likely to keep this option. Otherwise it may terminate the option and sample a new one.

3.3.2 Intra-option Q-Learning

The option framework is formalized on the basis of the theory of Semi-Markov Decision
Process (SMDP). SMDP is an extension of the MDPwhere actions can take variable amounts
of time to complete, and in the context of HRL, it refers to the temporary abstract option,
and the low-level action follows the intra-option policy. When all intra-option policies are
deterministic, we can implement effective Intra-option Q-Learning[39, 47]. The update
equation 3.12 is applied to every option w satisfying πω(At|St) > 0. We refer to this
property as off-option.

3.3.3 Learning Options

Option-Value Function

The option-value function QΩ of OCA[3] is defined as :

29

QΩ(st, ωt) =
∑︂
at

πω(at | st)Qθ(st, ωt, at) (3.2)

Because of deterministic intra-option policies, πω(at | st) = 1, the option-value function
QΩ(st, ωt) is defined as

QΩ(st, ωt) = Qθ(st, ωt, at) (3.3)

Qθ(st, ωt, at) is the value of executing an action at in the context of a state-option pair
(st, ωt), we simply call it option critic. In our method, we additionally incorporated an
entropy bonus in option critic Qθ:

Qθ(st, ωt, at) = r(st, at) + γEst+1∼p(·|st,at)U(ωt, st+1)− α logπψ(ωt | st) (3.4)

α is the trade-off coefficient the same as in SAC. πψ(ωt | st) is the sample option policy
over current state. Due to the deterministic intra-option policies, we will use the notation
Qθ(s, w) in the following sections and omit action a. U(ωt, st+1) denotes the option value
upon arrival at the state option pair (st+1, ωt):

U(ωt, st+1) = (1− βφ(st+1, ωt))Qθ(st+1, ωt) + βφ(st+1, ωt)V (st+1) (3.5)

Thus the complete expression of Qθ(st, ωt)

Qθ(st, ωt) = r(st, at) + γEst+1∼p(·|st,at) [(1− βφ(st+1, wt))Qθ(st+1, ωt) + βφ(st+1, wt)V (st+1)]

− α logπψ(ωt | st) (3.6)

which is parameterized by θ in our implement.

Value Function

The relationship between V (s) and Qθ(s, ω):

V (st) =
∑︂
ωt

πΩ(ωt | st, ωt−1)Qθ(st, ωt) (3.7)

30

where the option policy πΩ(ωt | st, ωt−1) includes the probability of keeping the previous
option, or the probability of sampling a new option. Please note the difference between
option policy πΩ and sample option policy πψ.

πΩ(ωt | st, ωt−1) = (1− βφ(st, ωt−1)) Iωt=ωt−1 + βφ(st, ωt−1)πψ(ωt | st) (3.8)

where βφ(st, ωt−1) is the termination function, which outputs the termination probability
of the current option-state pair. It is parameterized by φ in our implementation. A higher
β value indicates that the current option is more likely to be terminated.

In the actual implementation of the algorithm, we use a Monte Carlo estimator to approx-
imate the value of the V function, as shown in Equation 3.21.

Policy Gradient

The policy gradient is the same as which used in SAC[13]. The policy tries to maximize
the V π(st)

V π(st) = Eω∼πo [Qθ(st, ωt) + αH(πo(·|st))]
= Eω∼πo [Qθ(st, ωt)− α logπo(ω|st)]

(3.9)

The policy is thus optimized according to

max
ψ

Es∼D

[︃
min
j=1,2

Qθj (s, ω̃ψ(s))− α logπψ(ω̃ψ(s) | s)
]︃

(3.10)

where ω̃ψ means the sampled options of the actor based on states in replay buffer, the
actor is parameterized by τ .

Object

The option-value function Qθ(w, s) parameterized by θ can be trained to minimize the
Bellman residual:

JQ(θ) = E(wt,st)∼D

[︃
1

2

(︁
Qθ(st, wt)−

(︁
r(st+1, at+1) + γEst+1∼p

[︁
Vθ̃(st+1)

]︁)︁)︁2]︃ (3.11)

31

where Vθ̃(st+1) is derived from Qθ̃(st, wt) according to Equation 3.7. The corresponding
one-step off-policy updates target gt:

gt = r(st+1, at+1) + γ
(︂
(1− βφ(st+1, wt))Qθ(st+1, wt) + βφ(st+1, wt+1)max

ω
Qθ(st+1, w)

)︂
(3.12)

The policy parameters can be learned by directly minimizing the expected KL-divergence:

Jπ(ψ) = Est∼D
[︁
Ewt∼πψ [α logπψ(wt|st)−Qθ(wt, st)]

]︁
(3.13)

Reparameterize

The Q-function, which is represented by a neural network and can be differentiated, and
it is thus convenient to apply the reparameterization trick instead, resulting in a lower
variance estimator. To that end, we reparameterize the policy using a neural network
transformation:

ωt = fψ(ϵt; st) (3.14)

We use a squashed Gaussian policy, which means that samples are obtained according to

fψ(ϵt; st) = tanh (µψ(st) + σθ(st)⊙ ϵt) , ϵ ∼ N (0, I) (3.15)

Update alpha

The optimal policy at time t is a function of the dual variable αt:

α∗
t = argmin

αt
Ewt∼π∗

ψ

[︂
−αt logπ∗ψ(wt|st)− αtH̃

]︂
(3.16)

H̃ is target entropy seen as a hyperparameter. The above equations are proved in the
paper[13].
In our case, once the wt is determined by high-level policy πΩ(wt|st, wt−1).

32

3.3.4 Learning Termination

Termination Gradient

According to the option-critic architecture[3], the termination gradient is

−
∑︂

st+1,ωt

µΩ(st+1, ωt | s1, ω0)
∂βφ(st+1, ωt)

∂φ
AΩ(st+1, ωt) (3.17)

In our implement, we consider only one step transition, it can be

−
∑︂

st+1,ωt

µΩ(st+1, ωt | st, ωt−1)
∂βφ(st+1, ωt)

∂φ
AΩ(st+1, ωt) (3.18)

whereAΩ(st+1, wt) = Qθ(st+1, ωt)−V (st+1) denotes the advantage function. FallsQ > V ,
it means the current option is better than other options, the βφ(s, ω) would be decreased.
Falls Q < V , it means the current option should be more likely to terminate and the
βφ(s, ω) would be increased.

Implement Termination Gradient

We use a Monte Carlo estimator over the data in the replay buffer D to approximate the
termination gradient in Equation 3.18. The extracted data (st, wt, r(st, at), st+1) exactly
consists of single-step transition. We used a mini-batch approach to update the gradients,
with the batch size set as a hyperparameter, which can be found in Table 4.4.

−E(st+1,wt)∼D

[︃
∂βφ(st+1, wt)

∂φ
AΩ(st+1, ωt)

]︃
(3.19)

The advantage function AΩ is defined as:

AΩ(st+1, wt) = Qθ(st+1, ωt)− V (st+1) + υ (3.20)

where the υ > 0 is the advantage bonus, which encourages the termination critic to keep
the previous option ωt−1 rather than terminating it, when the Qθ and V are close. The
value of advantage bonus can be seen in Table 4.4.

33

The V (st+1) according to 3.7 can be approximated using Monte Carlo estimator

V (st+1) = Eωt+1∼πΩ(wt+1|st+1,wt) [Qθ(ωt+1, st+1)] (3.21)

where the number of sampled ω set as a hyperparameter number of MC samples in Table
4.4. The policy πΩ is determined according to 3.8, which can sample a new option or
keep the previous option.

3.3.5 Pseudo Code of High Level Training

The following pseudo code provides a detailed illustration of the algorithm’s process,
where θ parameterizes the Q-function, ψ parameterizes the policy and φ parameterizes
the termination critic.

Algorithm 1 Termination Soft Actor-Critic under OCAD
Input: θ1, θ2, ψ,φ ▷ Initial parameters
θ̃1 ← θ1, θ̃2 ← θ2 ▷ Initialize target network weights
D ← ∅ ▷ Initialize an empty replay pool
for each iteration do

for each environment step do
wt ∼ πΩ(wt|st) ▷ Sample high-level option from the policy
at ∼ π(at|wt) ▷ Get deterministic low-level action
st+1 ∼ p(st+1|st, at) ▷ Sample transition from the environment
D ← D ∪ {(st, wt, r(st, at), st+1)} ▷ Store the transition in the replay pool

end for
for each gradient step do

θi ← θi − λQ∇θiJQ(θi) for i ∈ {1, 2} ▷ Update the Q-function parameters
ψ ← ψ − λπ∇ψJπ(ψ) ▷ Update policy weights
α← α− λα∇αJ(α) ▷ Adjust temperature
φ← φ− λφ

∂βω,φ(s
′)

∂φ A(s′, w) ▷ Update termination function weights
θ̃i ← τθi + (1− τ)θ̃i for i ∈ {1, 2} ▷ Update target network weights

end for
end for
Output: θ1, θ2, φ, ψ ▷ Optimized parameters

34

3.4 Curriculum Learning

In the CL experiment, we decomposed the final task into multiple simpler subtasks,
gradually increasing the training difficulty to make the training process more efficient.
Based on our ultimate goal of scoring, we adopted two approaches to design the curriculum
experiments, namely the curriculum line and curriculum reward. Both curriculum tasks
aim at hitting puck much closer to the goal. The curriculum steps are set to 5 in our thesis.

• Curriculum Line: This approach involves a dynamic line setting on the opponent’s
side above the table. Every time the puck across the line and its velocity towards
the opponent, we give it an additional bonus. We also evaluate the success rate
of crossing the line. If the success rate exceeds 0.7, the line would shift towards
opponent for one shift step, until arriving at target line, which is very close to the
table edge. A more intuitive explanation can be found in Fig. 3.2.

• Curriculum reward: This approach adjusts the reward as curriculum form:

r = η ∗ rhit + (1− η) ∗ rcross line

where rcross line is the reward of crossing the fixed line in Fig. 3.2. The η is the
curriculum coefficient, ranging in {0.9, 0.7, 0.5, 0.3, 0.1}. Every time the success rate
of crossing the line exceeds a value, the value of η would decrease, leads to the
weight of rhit decrease, the weight of rcross line increase.

Figure 3.2: Setting of curriculum learning shown above table.

35

3.5 Self Learning

In the self-learning method, we first create an opponent list that includes all potential
opponents. During training, each time a new episode begins, we randomly select an
opponent from this list. At the end of each epoch, the agent trained in the previous epoch
is added to the opponent list. This way, we gradually build a continuously evolving set of
opponents. It is worth to notice that we keep the baseline agent forever, to maintain the
diversity of opponents and the stability of training.
Another important point to note is that we need to pre-train a well-performing agent before
continuously updating the opponents, otherwise, the opponents will not be sufficient to
play games.

Figure 3.3: Opponent list and its update

36

4 Experiment

4.1 Settings

4.1.1 Experiment Overview

The names of all trained high-level agents evaluated in this chapter and their relevant
information are shown in the following table 4.1, the relevant reward is shown in 4.2.

Curriculum Self learn Opponent Epoch Pre-train

Origin × × fixed two 200 ×
SL-Origin × ✓ updating 200 ×
CL-Line ✓ × fixed two 200 ✓
SL-CL-Line ✓ ✓ updating 200 ✓
CL-R ✓ × fixed two 200 ✓
SL-CL-R ✓ ✓ updating 200 ✓

Table 4.1: Comparison of different agents across various attributes. SL stands for self learning
and CL stands for curriculum learning.

where pre-trained in 4.1 means the first 100 epochs are trained using the same method as
the origin agent. After the 100th epoch, training is conducted using the corresponding
setting. Every epoch contains 20,000 steps. The opponent is also needed to be cleared,
that fixed two is baseline and a TSAC trained agent. The baseline is provided by the
Robot Air Hockey Challenge 2023 competition[1]. It is a manually programmed agent with
well-established and stable attack, defense, and preparation strategies. Therefore, it is
regarded as the initial and most important training opponent.
Furthermore, different agents may utilize distinct reward structures during training. In

37

our implementation, we employ three types of reward systems, as presented in Table
4.2. One notable reward mechanism is the cross dynamic line bonus, where a line is
set on the opponent’s side of the field, as referred to in section 3.4. A bonus is awarded
whenever the puck crosses this line due to the training agent’s hitting. This line can
be dynamically shifted as the agent’s success rate of crossing the line increases. This
mechanism encourages the agent to focus on improving its offensive capabilities in a
structured way.
The hyperparameter η, as defined in Table 4.2, has a range of {0.9, 0.7, 0.5, 0.3, 0.1} and
serves as a curriculum learning parameter. The more details are shown in Section 3.4.

Reward

Origin Base reward + goal − lose
SL-Origin Base reward + goal − lose
CL-Line Base reward + Cross dynamic line bonus + goal − lose
SL-CL-Line Base reward + Cross dynamic line bonus + goal − lose
CL-R η∗ Base reward +(1− η)∗ Cross fixed line bonus + goal − lose
SL-CL-R η∗ Base reward +(1− η)∗ Cross fixed line bonus + goal − lose

Base reward Hit puck bonus + Initial velocity bonus of hit puck

Table 4.2: Compare the reward of different agent

4.1.2 Simulation Environment

The observation space is 20-dimensions, as shown in Table 4.3.

Observation Description
Puck’s X-Y Position, Yaw Angle [x, y, θ]

Puck’s Velocity [ẋ, ẏ, θ̇]

Joint Position / Velocity [q1, q2, q3, q4, q5, q6, q7, q̇1, q̇2, q̇3, q̇4, q̇5, q̇6, q̇7]

Table 4.3: Observation space

The simulation environment is set up strictly following the real-world arrangement to
facilitate future migration. The dimensions of the table are shown in Fig. 4.1, and the
placement coordinates of the iiwa are given in Fig. 4.2.

38

Figure 4.1: Air hockey table

Figure 4.2: Kuka iiwa environment

39

4.1.3 Hyperparameters

The hyperparameters are shown in Table 4.4. The adv bonus is an additional term in the
advantage function AΩ in Equation 3.18, designed to ensure that when Q and V are close,
the value of AΩ remains greater than zero. This encourages the agent to continue using
the existing option rather than sampling a new one. The number of MC samples represents
the number of sampled wt+1 when applying the Monte Carlo estimator in Equation 3.21.
Update target network weight and target entropy are parameters used in the SAC algorithm.
The warmup settings mean parameter updates begin only after accumulating a certain
number of warmup steps in the replay buffer, which enhances learning stability.

Table 4.4: Hyperparameters in experiment
Algorithm-related

Adv bonus Number of MC sam-
ples

Update target net-
work weight

Target entropy

0.1 50 0.003 -2
Replay Buffer Size and Warm-up Settings

Max replay size Critic warmup Actor warmup Termination
warmup

1000000 20000 20000 20000
Gradient Updating

Batch size Alpha learning rate Actor learning rate Critic learning rate
256 0.00001 0.0003 0.0003

Termination learning rate 0.00001
MDP Settings

Maximum horizon
of one episode

Gamma

600 0.995
Features of Neural Network

Critic Actor Termination critic
256 256 256 256 256 256 256 256 256

Others
Curriculum step Size of opponent

buffer in SL
5 4

40

4.2 Evaluation

4.2.1 CNP-B

Setting constraint of CNP-B

The training method refers to Section 3.2.1. Here we want to show two training curves of
total loss in Fig. 4.3. The total loss is the sum of the losses from all the constraints during
training. Both experiments use the same dataset. The difference between Experiment 1
and Experiment 2 is the strictness of the constraints.

Figure 4.3: Total loss of CNP-B in training

In both experiments, the loss initially drops sharply to near zero. However, in Experiment
2, the total loss quickly rises again during subsequent training.

The reason for the difference is that Experiment 2 failed to meet the stricter constraint
settings, resulting in the inability to reduce the loss, which was continuously amplified
as the weight coefficients increased. There was no significant difference in the actual
performance of the agents from Experiment 1 and Experiment 2. Therefore, we believe
that overly strict constraint settings in the CNP-B training method can cause the loss to
fail to converge but may not have a significant impact on actual performance.

41

Implement CNP-B in Our Method

In the OCAD framework, we can arbitrarily replace the low-level agent as long as it can
generate smooth trajectory actions based on high-level commands. We first used a CNP-B
agent as the low-level agent for a simple serve task, the agent needs to serve a stationary
puck from our half side to the opponent’s half.

We first run a normal experiment, see 4.4 for origin curve. The β values are updated but
the reward value is very unstable, and inversely proportional to the number of terminations.
Then we limit the terminations, the reward appears normal, as shown by the green curve
in 4.4.

Figure 4.4: Serve task using CNP-B

The algorithm is working but the performance is highly dependent on termination numbers.
The higher β leads to more terminations and the performance becomes poor. The reason
is that the CNP-B agent doesn’t have the ability to generate smooth trajectory during lots
of terminations. That will cause the robotic arm to stop working.

Improve CNP-B

Our approach is to improve the dataset. The corresponding method No. 2, No. 3 and
No. 4 can be found in Section 3.2.1. The final trained agent showed some improvement
but still couldn’t be reliably applied to a high-level agent with frequent terminations. We

42

observed that in certain termination cases, the joint velocity of the robot in the simu-
lation exceeded the limit, which could be a key reason for the abnormal trajectory planning.

Conclusion

The CNP-B can generate trajectories that meet the requirements. However, within the
framework of our method, it cannot adapt well to situations with frequent terminations.
Thus in the subsequent experiments, we employ the ATACOM agent as low-level agent.

4.2.2 Hierarchical Learning

Here we aim to compare the differences between reinforcement learning training using
the OCAD structure of HRL and reinforcement learning training without the HRL. The
main differences between the two are shown as Fig. 4.5.

(a) Agent with HRL (b) Agent without HRL

Figure 4.5: Comparison between HRL and non-HRL reinforcement learning

The reward graph shows that the hierarchical model consistently outperforms the non-
hierarchical model, achieving significantly higher rewards and maintaining a more stable
performance. In terms of scores, the hierarchical model also displays a faster and more
consistent increase, indicating a more efficient learning process. Meanwhile, the losses
graph reveals that the non-hierarchical model accumulates losses at a faster rate, while
the hierarchical model keeps losses relatively low, reflecting its better ability to optimize
and learn from the environment.

43

Figure 4.6: With or without hierarchical structure

Conclusion

The comparison in the Fig. 4.6 clearly demonstrates the superiority of the hierarchical
reinforcement learning approach. This is because the dimension of action space is highly
reduced. The action space of the high level agent in OCAD has only two dimensions,
compared with 7 dimensions of joint space without HRL structure. This greatly reduces
the difficulty of the learning task, improves sampling efficiency, and makes the result more
explainable.

4.2.3 Different Termination Probability

Setting

Termination condition is a crucial part of our algorithm, a perfect termination condition
makes the agent to change its current option to a better option immediately. We ran four
experiments with different settings of termination condition:

Experiments exp 1 exp 2 exp 3 exp 4
Beta Values(β) 0.1 0.5 0.9 updating beta

Table 4.5: Beta settings

44

The β of Exp 4 is not fixed, updated using the termination gradient 3.18. The beta values
β means the probability of terminating the current option. Lower β means the lower
terminate probability at current option-state pair.

Analysis

Figure 4.7: Different Beta Values in different experiments

From figure 4.7 we observe the updating beta values, compared with other fixed β. At
different state-option pair, the value of beta exhibits a polarization phenomenon, with its
mean close to 0.4.

Based on a comprehensive observation of figures 4.8, the performance of β = 0.1 is
relatively poor, while the other three groups are close to each other. The reward curve
shows a convergence trend. The slope of the score curve increases as the number of
iterations increases, whereas the slope of the concede curve decreases. In the case of
target entropy is -2, the entropy values of all four experimental groups tend to approach
-2, ranging between -1 and -2.

45

Figure 4.8: Reward, scores, concedes and entropy

Conclusion

In context of air hockey games. It is necessary to have termination condition while the
option contains multiple action steps in our structure, we need termination to adapt
dynamic environment. With termination gradient we truly result a good termination
critic.

4.2.4 Curriculum Learning

Curriculum learning is an approach in which the learning process is structured by pro-
gressively increasing the complexity of the tasks the agent faces. By starting with simpler
tasks and gradually introducing more challenging ones, the agent can build foundational
skills before confronting more complex scenarios.

Here we run two experiment as the section 3.4 shows. In Fig. 4.9, the origin model has
the most goals, but the slope in scores of all three agents are fast the same. The slope and
the total number of loses also don’t have much difference. That means the performance
on goals and loses might be no significant difference by using the curriculum algorithm.
It is important to note that the both curriculum task don’t arrive at the final curriculum
step, they are both stuck at the second step.

46

Figure 4.9: Scores and concedes in curriculum experiment

Conclusion

Based on the training curves, using the CL method did not show a significant improvement
in performance. Moreover, since the curriculum tasks did not progress to the end, this
indicates that there is room for improvement in the design of the CL experiment. It is
necessary to identify more appropriate subtasks or progression criteria.

4.2.5 Self Learning

In our agent training approach, we utilize a unique self-learning method by setting up an
opponent list to store different versions of the agent and periodically update it, the setting
details refer to section 3.5.
In Fig. 4.10 shows the results of self-learning (SL) methods versus non-self-learning
methods. We see that the self-learning agents (denoted with sl prefixes) generally perform
better in goals. On the total number of losses, we observe that the sl-origin agent accumu-
lates losses at a much faster rate compared to the other models. Based on the figure alone,
the agent in training implementing the self-learning method performs slightly worse in

47

terms of losses, with a higher number of losses and a steeper slope.

Figure 4.10: Goals and loses in self learn training

Conclusion

The agent that used the SL method performed slightly better than the one that did not
use the SL method. Considering that during the training process the opponents are also
continuously updating and becoming stronger, we infer that the self learning agent would
be more powerful in actual competition. Therefore, the SL method does indeed help
improve the agent’s performance.

4.2.6 Play Games

Against baseline

Here, we compared the number of goals and loses between different training agents and
the baseline. The data is averaged based on simulations over 120,000 steps with three

48

different seeds, which is equivalent to the average result of three 40-minute matches in
the real world. The result shows in Fig. 4.11.

Figure 4.11: Goals and loses against baseline

From the results, it can be seen that the sl-origin method, which uses the SL approach,
shows a significant improvement in defensive performance. Similarly, the sl-cl-r method
also enhances the defensive ability of cl-r. The overall performance of cl-line is the most
outstanding, indicating that the related experimental configuration is most suitable for
training against a fixed opponent.

Against each other

The data in the Fig. 4.12 and 4.13 represents the average values obtained after running
three matches, each equivalent to 40 minutes in the real world. From the matches among
the six agents, it is evident that the sl-cl-line agent stands out, based on the scores alone,
achieving a decisive victory against all five other agents. Agents using the SL method
were consistently able to defeat those that did not employ SL. Agents using only the CL
method did not show a clear advantage over those without CL. The cl-line agent seemed to
perform worse than the cl-r agent, but the sl-cl-line agent outperformed the sl-cl-r agent.

49

Figure 4.12: Agents against each other. The blue bars represent the goals scored by
the y-axis agent, while the red bars represent the goals scored by the x-axis
agent.

If the agent fails to hit the puck from its own half to the opponent’s half within 5 seconds,
it is recorded as a fault. A higher number of faults indicates poorer performance in the
match. The proportion of faults for each agent relative to the total number of episodes
is shown in the Fig. 4.13. The agent sl-cl-line and sl-cl-r have the minimum rate, while
the cl-line has the maximum rate. The performance of the other agents does not differ
significantly.

50

Figure 4.13: Agents’ faults rate

Conclusion

The sl-cl-line agent exhibited top-tier performance, significantly outperforming the other
agents in the matches. The sl-cl-r agent also showed outstanding performance compared to
the others. Agents trained using SL, CL, or a combination of both methods demonstrated
superior capabilities compared to those that did not employ these methods. Therefore,
the use of SL and CL methods can substantially enhance the agent’s performance.

Compared to their matches against the baseline, agents that did not use the SL method
experienced a significant drop in performance when competing against unseen opponents.
This further demonstrates that the SL method can significantly enhance generalization.

51

5 Conclusion and Future work

Combining all the experiments, we arrived at the following conclusions:

• 1: Our proposed TSAC algorithm within the OCAD framework has been successfully
validated in the air hockey environment. The OCAD structure truly simplifies the
learning task and the TSAC efficiently trains the continuous options and performs
well with the termination critic.

• 2: CNP-B can be trained to generate trajectories that meet the constraints. However,
it fails to function properly in our method when multiple terminations occur. This
failure is due to the abnormal joint velocities observed at the termination points.

• 3: The well-performing ATACOM agent meets our requirements.

• 4: Curriculum learning can significantly improve training outcomes. However, the
CL experiment we designed did not complete all the curriculum steps.

• 5: Self-learning not only significantly improves the agent’s performance but also
enhances generalization, allowing it to perform well even when facing previously
unseen opponents.

Our future work can be carried out as follows:

• 1: Compare our method with other existing HRL approaches.

• 2: Validate our approach on more platforms.

• 3: Further explore new CL experiment designs.

• 4: Continue to explore new self-learning methods, such as using multiple agents for
parallel training to diversify the opponents in the opponent list.

52

Bibliography

[1] Air Hockey Challenge. https://air-hockey-challenge.robot-learning.
net/home. Accessed: 2024-09-21.

[2] Ahmad AlAttar, Louis Rouillard, and Petar Kormushev. “Autonomous Air-Hockey
Playing Cobot Using Optimal Control and Vision-Based Bayesian Tracking”. In:
Towards Autonomous Robotic Systems. Ed. by Kaspar Althoefer, Jelizaveta Konstanti-
nova, and Ketao Zhang. Cham: Springer International Publishing, 2019, pp. 358–
369. isbn: 978-3-030-25332-5.

[3] Pierre-Luc Bacon, Jean Harb, and Doina Precup. “The Option-Critic Architecture”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press. 2017,
pp. 1726–1734.

[4] Andrew G Barto and Sridhar Mahadevan. “Recent advances in hierarchical rein-
forcement learning”. In: Discrete Event Dynamic Systems 13.4 (2003), pp. 341–
379.

[5] Marc Bellemare et al. “Unifying count-based exploration and intrinsic motivation”.
In: Advances in neural information processing systems 29 (2016).

[6] Bradley E Bishop and Mark W Spong. “Vision-based control of an air hockey playing
robot”. In: IEEE Control Systems Magazine 19.3 (1999), pp. 23–32.

[7] Petros Christodoulou, Curtis Twomey, and Doina Precup. “Soac: The soft option
actor-critic architecture”. In: Proceedings of the 38th International Conference on
Machine Learning. 2021.

[8] Thomas G Dietterich. “Hierarchical reinforcement learning with the MAXQ value
function decomposition”. In: Proceedings of the 17th International Conference on
Machine Learning (ICML). 2000, pp. 232–240.

[9] Jeffrey L Elman. “Learning and development in neural networks: The importance
of starting small”. In: Cognition 48.1 (1993), pp. 71–99.

53

https://air-hockey-challenge.robot-learning.net/home
https://air-hockey-challenge.robot-learning.net/home

[10] Carlos Florensa, Yan Duan, and Pieter Abbeel. “Stochastic neural networks for
hierarchical reinforcement learning”. In: arXiv preprint arXiv:1704.03012 (2017).

[11] Roy Fox et al. “Multi-level discovery of deep options”. In: arXiv preprint arXiv:1703.08294
(2017).

[12] Abhishek Gupta et al. “Relay policy learning: Solving long-horizon tasks via imita-
tion and reinforcement learning”. In: arXiv preprint arXiv:1910.11956 (2019).

[13] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor”. In: Proceedings of the 35th International
Conference on Machine Learning (ICML). 2018, pp. 1861–1870.

[14] Jean Harb et al. “Waiting for the right time: When to commit to action in model-
based reinforcement learning”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 32. 1. 2018.

[15] Anna Harutyunyan, Nicolas Vieillard, Doina Precup, et al. “The natural option
critic”. In: Proceedings of the International Conference on Machine Learning (ICML).
2019, pp. 3093–3102.

[16] Kazuki Igeta and Akio Namiki. “Algorithm for optimizing attack motions for air-
hockey robot by two-step look ahead prediction”. In: 2016 IEEE/SICE International
Symposium on System Integration (SII). IEEE. 2016, pp. 465–470.

[17] Lydia E Kavraki et al. “Probabilistic roadmaps for path planning in high-dimensional
configuration spaces”. In: IEEE transactions on Robotics and Automation 12.4 (1996),
pp. 566–580.

[18] Piotr Kicki et al. “Fast kinodynamic planning on the constraint manifold with deep
neural networks”. In: IEEE Transactions on Robotics (2023).

[19] Vijay R. Konda and John N. Tsitsiklis. “Actor-Critic Algorithms”. In: Advances in
Neural Information Processing Systems. Vol. 13. MIT Press, 2000, pp. 1008–1014.

[20] Tejas D Kulkarni et al. “Hierarchical deep reinforcement learning: Integrating
temporal abstraction and intrinsic motivation”. In: Advances in neural information
processing systems 29 (2016).

[21] Steven M LaValle and James J Kuffner. “Rapidly-exploring random trees: Progress
and prospects: Steven m. lavalle, iowa state university, a james j. kuffner, jr., uni-
versity of tokyo, tokyo, japan”. In: Algorithmic and computational robotics (2001),
pp. 303–307.

54

[22] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. “Transfer in reinforce-
ment learning: a framework and a survey”. In: Proceedings of the 9th European
Conference on Machine Learning and Knowledge Discovery in Databases. 2008, pp. 19–
24.

[23] Andrew Levy et al. “Learning multi-level hierarchies with hindsight”. In: arXiv
preprint arXiv:1712.00948 (2017).

[24] Puze Liu et al. “Efficient and reactive planning for high speed robot air hockey”. In:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2021, pp. 586–593.

[25] Puze Liu et al. “Safe Reinforcement Learning on the Constraint Manifold: Theory
and Applications”. In: arXiv preprint arXiv:2404.09080 (2024).

[26] Tambet Matiisen et al. “Teacher-student curriculum learning”. In: Proceedings of
the 31st International Conference on Neural Information Processing Systems. 2017,
pp. 4930–4940.

[27] Ofir Nachum et al. “Data-efficient hierarchical reinforcement learning”. In: Advances
in neural information processing systems 31 (2018).

[28] Ofir Nachum et al. “Why does hierarchy (sometimes) work so well in reinforcement
learning?” In: arXiv preprint arXiv:1909.10618 (2019).

[29] Akio Namiki et al. “Hierarchical processing architecture for an air-hockey robot
system”. In: 2013 IEEE International Conference on Robotics and Automation. IEEE.
2013, pp. 1187–1192.

[30] Sanmit Narvekar and Matthew E Taylor. “Source task creation for curriculum
learning”. In: Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems. 2016, pp. 566–574.

[31] Sanmit Narvekar et al. “Learning curriculum policies for reinforcement learning”.
In: Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems. 2019, pp. 25–33.

[32] Shubham Pateria et al. “Hierarchical reinforcement learning: A comprehensive
survey”. In: ACM Computing Surveys (CSUR) 54.5 (2021), pp. 1–35.

[33] Deepak Pathak et al. “Curiosity-driven exploration by self-supervised prediction”.
In: International conference on machine learning. PMLR. 2017, pp. 2778–2787.

[34] Ahmed Hussain Qureshi et al. “Motion planning networks: Bridging the gap be-
tween learning-based and classical motion planners”. In: IEEE Transactions on
Robotics 37.1 (2020), pp. 48–66.

55

[35] Nathan Ratliff et al. “CHOMP: Gradient optimization techniques for efficient motion
planning”. In: 2009 IEEE international conference on robotics and automation. IEEE.
2009, pp. 489–494.

[36] Terence D Sanger. “Neural network learning control of robot manipulators using
gradually increasing task difficulty”. In: IEEE International Conference on Robotics
and Automation. IEEE. 1994, pp. 1766–1771.

[37] John Schulman et al. “Finding locally optimal, collision-free trajectories with se-
quential convex optimization.” In: Robotics: science and systems. Vol. 9. 1. Berlin,
Germany. 2013, pp. 1–10.

[38] Hideaki Shimada et al. “A two-layer tactical system for an air-hockey-playing robot”.
In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2017, pp. 6985–6990.

[39] Richard S Sutton, Doina Precup, and Satinder P Singh. “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning”. In: Artifi-
cial Intelligence 112.1-2 (1999), pp. 181–211.

[40] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
Second. The MIT Press, 2018. url: http://incompleteideas.net/book/
the-book-2nd.html.

[41] Richard S. Sutton et al. “Policy Gradient Methods for Reinforcement Learning with
Function Approximation”. In: Advances in Neural Information Processing Systems.
Vol. 13. MIT Press, 2000, pp. 1057–1063.

[42] Max Svetlik et al. “Automatic curriculum learning through value disagreement”. In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017,
pp. 4333–4340.

[43] Ayal Taitler and Nahum Shimkin. “Learning control for air hockey striking using
deep reinforcement learning”. In: 2017 International Conference on Control, Artificial
Intelligence, Robotics & Optimization (ICCAIRO). IEEE. 2017, pp. 22–27.

[44] Matthew E Taylor and Peter Stone. “Transfer learning for reinforcement learn-
ing domains: A survey”. In: Journal of Machine Learning Research. Vol. 10. 2009,
pp. 1633–1685.

[45] Philip S. Thomas. “Bias in Natural Actor-Critic Algorithms”. In: Proceedings of the
International Conference on Machine Learning (ICML). PMLR, 2014, pp. 441–448.

[46] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, et al. “Feudal networks
for hierarchical reinforcement learning”. In: Proceedings of the 34th International
Conference on Machine Learning. 2017, pp. 3540–3549.

56

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

[47] Shangtong Zhang and Shimon Whiteson. “DAC: The double actor-critic architecture
for learning options”. In: Advances in Neural Information Processing Systems 32
(2019).

57

	Introduction
	Proposed Method
	Method Overview
	Deployed Platform
	Contribution

	Related Work
	Playing Air Hockey with Robots
	Motion Planner
	Curriculum Learning
	Hierarchical Reinforcement Learning (HRL)

	Fundamentals
	Reinforcement Learning(RL)
	Markov Decision Process
	Bellman Equation
	Policy Gradient Methods

	Soft Actor Critic(SAC)
	Entropy-Regularized Reinforcement Learning
	Soft Actor-Critic
	Learning the Policy

	The Option-Critic Architecture(OCA)
	CNP-B
	ATACOM

	Methods
	Build Agent
	Low Level Agent
	Training CNP-B
	ATACOM

	Learning in High Level
	High Level Agent
	Intra-option Q-Learning
	Learning Options
	Learning Termination
	Pseudo Code of High Level Training

	Curriculum Learning
	Self Learning

	Experiment
	Settings
	Experiment Overview
	Simulation Environment
	Hyperparameters

	Evaluation
	CNP-B
	Hierarchical Learning
	Different Termination Probability
	Curriculum Learning
	Self Learning
	Play Games

	Conclusion and Future work

