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Abstract

In this work, we introduce the development of a baseline agent in robot air hockey. The
aim is to build up a system of two general-purpose robot arms to play air hockey against
each other. In order to the high velocities of the dynamical system, the robot has to reach
fast and reactive movements in the end effector. This task is even more challenging due
to the precise limitation constraints in the joint and the task space of the robot. To solve
the problem the state information of the puck is needed in advance. We mainly focus
on precise state estimation and prediction of the puck. Using a composite model for
the puck’s movement and a Kalman filter for the state estimation, we manage to predict
the movement precisely. We learn the physical parameter of the model with Bayesian
optimization, where we vary the prediction horizon as well as the objective function.
Furthermore, we estimate the variance of the noise of the components of the Kalman
filter: the measurement and system model in order to get the filter to work optimally.
This allows us to predict the position with an accuracy of less than one cm one second in
advance. Based on this prediction, we evaluate different hitting movements of the robot
using predefined metrics and implement an automatic testing routine. These results serve
as a baseline and automatic evaluation of future work.
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Zusammenfassung

In dieser Arbeit stellen wir die Entwicklung eines Basisagenten für Roboter Airhockey vor.
Ziel ist es, ein System aus zwei universell einsetzbaren Roboterarmen aufzubauen, um
Airhockey gegeneinander zu spielen. Um die hohen Geschwindigkeiten des dynamischen
Systems zu erreichen, muss der Roboter schnelle und reaktive Bewegungen im Endeffektor
ausführen. Diese Aufgabe ist aufgrund der präzisen Begrenzungsbedingungen sowohl im
Gelenk als auch im Aufgabenraum des Roboters noch anspruchsvoller. Um das Problem zu
lösen, wird die Zustandsinformation des Pucks im Voraus benötigt. Wir konzentrieren uns
hauptsächlich auf die präzise Zustandsschätzung und -vorhersage des Pucks. Mit Hilfe
von einem zusammengesetzten Bewegungsmodell des Pucks und einem Kalman Filter für
die Zustandsschätzung gelingt es uns, die Bewegung präzise vorherzusagen. Wir lernen
die physikalischen Parameter des Modells mit Bayes’scher Optimierung, wobei wir sowohl
den Prognosehorizont als auch die Zielfunktion variieren. Darüber hinaus schätzen wir die
Varianz des Fehlers der verschiedenen Komponenten des Kalman Filters: die Beobachtung
und das Systemmodell, damit der Filter optimal arbeiten kann. Dadurch können wir
die Position mit einer Genauigkeit von weniger als einem Zentimeter eine Sekunde im
Voraus vorhersagen. Auf der Grundlage dieser Vorhersage bewerten wir verschiedene
Schlagbewegungen des Roboters anhand vordefinierter Metriken und implementieren eine
automatische Testroutine. Diese Ergebnisse dienen als Grundlage für die automatische
Bewertung zukünftiger Arbeiten.
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1 Introduction

Implementing robots for competitive games is a popular topic not only for entertainment
yet for research. Tactics and planning define the interaction of the robots and enable a
wide field for learning and optimization. The dynamical change of the game state of such
systems and high uncertainties caused by the opponent or the system itself challenge the
robot control. Furthermore, the dynamic gameplay requires fast responses and movements
by the robot in which it has to satisfy constraints in the task space, like not complying
with the game’s rules.
We study the problem of implementing robot air hockey, which is a comparative table
game. Two robots try to strike the cylindrical puck into the opponent’s goal using a paddle.
The table has small holes with flowing air to reduce the friction and allow high-velocity
movements of up to 15 m/s in professional games by humans. Additionally, the spin of the
puck makes the dynamical system more uncertain and enables the player to perform tricks
for an exciting game. Based on these characteristics, it is crucial to have a fast prediction
and response by the robot for a stable dynamical game. We divide the movement of the
puck into three different parts. Firstly the linear part, where the puck flows on the table
without any distraction. Secondarily the impact with the wall, where the direction of
the puck’s velocity changes. Thirdly the moment when the mallet transmits with a hit
the momentum to the puck. These discontinuous movements depend on many different
physical parameters like the coefficient of restitution of the puck and the table or friction
and the preimpact state of the puck, i.e., the velocities. To hit the puck precisely is
significant to understand all parts of the movement and predict it in advance in order to
have enough time for the robot to plan the desired control response trajectory and perform
it. The correct prediction of the puck is the essential precondition for optimal control.
When the state prediction is wrong, even the best control strategy fails. Furthermore, the
earlier we get an accurate state prediction the more time we have for the planning and
strategy selection.
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While playing air hockey, the robot has two aims: scoring goals and defending its own. In
a complete game are more than two skills needed, like a safe status or different tactics to
score or defend. The robot’s control selection is often found on a two-layer system. One
layer determines the game status based on observations and predictions, and another
layer plans the trajectory and applies the control selected based on the game status.
In this work, we want to expand previous work on the robot air hockey [1]. The aim is to
adapt the simulation system to the real-world robot system. Therefore, we perform two
steps. First, we adjust the physical model and parameters to the real world using recorded
trajectories of the puck. Second, we show an evaluation of the tactics in the simulation to
ensure they are stable and performing correctly before applying them to the real-world
system.
The first part mainly focuses on the puck prediction, as, especially to prevent goals, it is
necessary to have a precise state estimation of the puck movement. Therefore, we use a
Kalman filter and implement a complex dynamical system model capable of predicting
the collisions of the puck. To determine the physical parameters values of the model, we
use a black box system identification, Bayesian optimization, to get a proper parameter
calibration for the system. The loss is based on recorded puck position data from the
real-world air hockey table by an OptiTrack system. To deal with the recorded data of the
camera, including lost frames and irregular time intervals, we also need to implement some
preprocessing of the data. To get the best out of the Kalman filter, we evaluate the effect
of different improvement strategies like noise estimation for the system and measurement
noise. While adjusting the movement model improves the prediction precision significantly,
the variance estimation of the system and the measurement model do not improve against
the preassumptions we have of the variance.
The second part uses the new model with the optimized configurations to evaluate the
different skills of the robot: Smash, Cut, Prepare and Repel. Therefore, we define success
criteria for each skill and develop an automatic test setup. It enables us to reevaluate
different approaches rapidly to accelerate the research process. We require the results
for two reasons. First, we want to verify the safety of the robot’s movement to apply it to
the real-world robot. Second, we want to set a baseline for the robot, when we perform
controls based on observation only without learning, to refer to in future work.
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2 Related Work

A lot of different work has been done on playing air hockey and predicting the puck
movement. Each focuses on another problem we already introduced: the tactics selection,
the system identification, and the movement prediction.
In 1999, Bishop et al. developed an integrated system for robot air hockey [2]. This
approach included state estimation with additional uncertainty of the state and prediction.
The state prediction in the 2D system relies on translational position data and a simple
bounce model using the reflection laws. Using this results in a high uncertainty for the
wall impacts and forces the robot to play very defensively. On the other hand, the state
prediction of the linear parts of the trajectory is very accurate and precise. To allow more
aggressive playing the authors show the need to include the rotation information of the
puck. In later work, the same group developed a detailed physical model for the collisions
of an air hockey puck [3]. It is based on the Routh impact model derived from linear and
angular momentum laws and based on the work of Wang and Mason [4]. This model is
described in more detail in section 3 as we use it to improve our prediction. In contrast to
the model of the complex dynamics, further investigations have been made by Park using
a neuronal network for the prediction of the puck [5]. They use position and velocity
as the input of the network, ignoring the rotation. For the training, they use data from
linear and one bounce trajectories. The results once more show the high impact of the
bounce and prone the influence of the puck’s rotation on the prediction’s accuracy. The
group of Ghanzvini [6] showed good results using the physical model of Partridge et
al. for a prediction, even though its input only is based on the less precise human hand
movement before hitting the puck with the mallet. For this approach, they work with an
off-the-shelf camera that could not capture the fast movement of the puck after the impulse
of the mallet. Nevertheless, the model needs adjustment to the specific environment, as
it depends on the material and other properties of the components involved. To derive
the physical parameter of the system of Partridge, Alizadeh implemented an automatic
calibration of the air hockey environment parameter like damping and restitution [7].
They derive the damping from a regression procedure that adds noise for each point on the
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table to describe the difference in the airflow, as the amount of flow is not uniformly over
the whole table distributed. In a second step, they determine the restitution using a binary
search procedure. For this approach, they only use a few observations. The resulting noise
of the parameter is tiny, so we will assume the parameters to be invariant for our work.
Differently from this approach, we implement a Bayesian optimization routine for the
automatic calibration of the air hockey robot environment.
The two-layer approach [8] is a study focusing more on the tactics of a robot than on the
prediction of the puck. This work describes the development of an entertainment robot
air hockey that performs tactics, which are several strikes together, to play successfully
against humans. The skill layer selects a specific movement like smash or defend by two
criteria: the tactics layer and the current game situation. For this, they use a horizontal
two-link robotic arm. For the baseline of our robot, we rely on the skills and the proposed
layer architecture but set the tactics layer to a fixed state machine. Updating the weights
of the state machine by a second tactical layer is future work.
Another work that considers the whole robot air hockey system is by Wang who developed
a system playing air hockey [9]. For the prediction, they only view the linear part of the
puck, so they begin the state prediction after the last collision with the table and apply a
uniform acceleration and a constant velocity model. The robot’s skills are: attack, defend,
and stand-by, and are selected by fuzzy control based on the distance of the puck’s last
impact with the wall to the defend line and the puck’s velocity. This simple approach
shows how to build up a visual-based control system like ours. Beyond, we develop a more
complex system including a longer prediction horizon to perform more skills.
In contrast to the discussed works, which mainly use robots acting in the 2D space of the
table, we use a general-propose robot to perform the action. On the one hand, this enables
us to utilize more complex movements. On the other hand, our - thus bigger - task space
requires additional restrictions. Beyond, we want to build a closed system including the
puck prediction as well as system identification for a dynamic robot vs. robot air hockey
play.
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3 Foundations

3.1 Puck Movement Model

The model of the puck’s movement on the table is a combination of two second order
system models with a constant acceleration model. One is for the linear movement of the
puck on a table without any external force disturbing the trajectory. The other one specifies
the collision behavior of the puck with the rim of the table or the mallet, respectively. The
puck state s of the system has six dimensions: two for the translation x and y, one for the
rotation θ and for each the corresponding velocity value ẋ, ẏ, θ̇.

s = (x, y, ẋ, ẏ, θ, θ̇)

For the linear part (see eq. 3.1), the changes in position p (consisting of x, y) and
orientation θ of the puck are defined by the current velocity. The velocity of the translation
part is reduced by a constant friction µsurface between the puck and the table surface and
the damping d of the system. For the rotation velocity, the only reduction comes through
the model’s noise assumption, which is denoted with ϵ.

pt+1 = pt +∆Tpṫ + ϵ

ṗt+1 = pṫ −∆Tpṫµsurfaced+ ϵ

θt+1 = θt +∆Tθṫ + ϵ

θ̇t+1 = θṫ + ϵ (3.1)

As a basis of the collision model, we rely on the work of Partridge [3], who derived a
physical model for the contact of two rigid bodies in robot air hockey. The method is
based on the Routh impact model and on the work of Wang [4] about rigid body collisions
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with friction to get a mapping from preimpact velocity to post impact velocity of the puck.
This allows a precise puck prediction and trajectory planning for the hitting. One of the
main challenges is to include the effect of friction, restitution, and rotation of the puck.
The Routh method divides the normal impulse P into a compression impulse Pc and
a restitution impulse Pr. The compression impulse is measured from the time the two
objects contact until their relative velocity is zero. The restitution impulse is measured
from the time the relative velocity is zero until the two objects do no longer contact. The
restitution coefficient e of the rigid body can be computed as the ratio of the restitution
and compression impulse and mainly depends on the material properties.
The impulse during the collision P = (Pb, Pn)

T is modeled by the linear and angular
momentum laws, which can be applied and reformulated to the puck-wall collision. The
main simplification comes from the fixed table as one part of the collision. The coordinate
system is transformed from the base frame (x, y) to the impact frame (b, n) such that the
coordinate system’s origin is the point of the first contact, the b-axis is tangent to the
objects, and the n-axis is normal to the point of contact. That way, the impact forces align
with the system. When the collision is not perfectly straight, there is friction µrim between
the objects. If the friction is high or the velocity low enough, it prevents sliding in the
collision. For each of the two scenarios, the impact’s impulse can be computed like shown
in equation 3.3 and 3.2 for the impact with sliding and without sliding in the collision,
respectively. Here, r is the radius of the puck, m is the mass of the puck, e is the restitution
of the table, µrim is the friction between the puck and the table’s rim and s is the sign of
the relative sliding velocity before the impact.

Pb = −
m

3
(ḃ0 + θ̇0 · r)

Pn = −(1 + e)m · ṅ0 (3.2)

Pb = µrims(1 + e)m · ṅ0

Pn = −(1 + e)m · ṅ0 (3.3)

The resulting velocity (ḃ, ṅ, θ̇) in the impact frame is based on the impact in the collision
and the velocity just before it, as shown in equation 3.4. Finally, to derive the final velocity
the results need to be transformed into the baseframe.
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ḃ = ḃ0 +
Pb

m

ṅ = ṅ0 +
Pn

m

θ̇ = θ̇0 + 2
Pb

m · r
(3.4)

3.2 Kalman Filter

The Kalman filter is a widely used filter for state estimation in uncertain environments
[10]. Unlike other filters, it is only based on the last and the current measurement and
can be applied simultaneously with the observation. For each time step, the filter holds
two variables: The current state belief x̂ and the covariance matrix P of the certainty
of the state. The notation of x̂ denotes that the state is an estimation of the real state
x, which is unknown. The subscript k|k − 1 consists of two parts, where the first part k
defines the state that we are estimating, and the second part k− 1 defines the state which
is used as a basis for the estimation.
The Kalman filter consists of two phases, namely the prediction phase and the update
phase. In the prediction phase, the state is propagated forward using a dynamic linear
system model F and an additional control input u with the control matrix B to predict
the next state (eq. 3.5). Besides, the certainty P of the predicted state is computed based
on the certainty of the last step and the system model (eq. 3.6). Additionally, Gaussian
white noise with covariance Q can be considered. As the current time step information is
not included at this point, the state estimate is also called the a priori state estimate.
In the update phase, the current observation z of the state will be included in the estimation,
so the state is also called the posteriori state estimate. Based on the difference of the
estimation and the observation, mapped into the state space using an observation model
H, the innovation y (eq. 3.7), as well as the innovation covariance S (eq. 3.8) is computed.
The innovation depends on the covariance of the state and the measurement noise R, so
the greater it is, the less we trust in the current state estimation. Based on the innovation
and the covariance, the Kalman gain K is computed (eq. 3.9), which defines how much
the current observation influences the state estimation x̂ (eq. 3.10) and the belief P (eq.
3.11) in the updated state.
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Prediction:
x̂k|k−1 = Fx̂k−1|k−1 +Bkuk (3.5)
Pk|k−1 = FkPk−1|k−1F

T
k +Qk (3.6)

Update:
yk = zk −Hkx̂k|k−1 (3.7)
SK = HkPk|k−1H

T
k +Rk (3.8)

Kk = Pk|k−1H
T
k S

−1
k (3.9)

x̂k|k = x̂k|k−1 +Kkyk (3.10)
Pk|k = (I −KkHk)Pk|k−1 (3.11)

3.2.1 Extended Kalman Filter

As already mentioned, the forward model F in the Kalman filter is a linear system model.
In many applications, the dynamics of the system are not linear. In the extended Kalman
filter, the state transition model as well as the observation modelH do not have to be linear
but differentiable functions anymore. These functions f(·) and h(·) still have the same
functionality as in the non extended version: f(·) is now the nonlinear state transformation
and h(·) a nonlinear transformation of the predicted state to the measurement. As before,
the system and observation model can contain noise which we do not include in the
equations here.
For the state prediction the function can be applied directly: x̂k|k−1 = f(x̂k−1|k−1, uk), but
for the covariance prediction we need to use the partial derivative, i.e. the Jacobian:

Fk =
∂f

∂x

⃓⃓⃓⃓
x̂k−1|k−1,uk

The Jabobian is updated every step to get a linearization about the current mean and
covariance.
Respectively, for the observation model: zk = h(xk) and

Hk =
∂h

∂x

⃓⃓⃓⃓
x̂k|k−1
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3.2.2 Noise Estimation

As the Kalman filter balances between the system model belief and the measured obser-
vation, the performance highly depends on the correctness of the model and the correct
assumptions about the noise of the system model and the measurement noise. If the
measurement noise is too high, we do not trust the measurements and the Kalman Filter
needs more time to adapt to changes. Setting the noise too small will take outliers into
account so the estimation of the state will include the outliers as well. On the opposite,
miss-guessing the system noise will make the system adapt very fast or slow to new
observations. To improve the performance of the filter, we use variance estimation to
approximate the noise better. Therefore, we start with noise assumptions inferred from
the camera and model precision. Following, we describe the variance estimation for the
two covariance matrices.

Measurment Noise

To calculate the noise of the measurement, we compute the covariance between the actual
state x and the measured state z like shown in equation 3.12. In an uncertain world,
we are not able to observe the actual state without error, so we have to estimate it. This
results in using the estimation of the state x̂k|k of the Kalman filter and assuming it to be
the actual state. Based on this estimation, we also get an estimated covariance for the
measurement. We get a mutual dependency from the estimated state to the Kalman filter,
which we are trying to solve by using multiple iterations for convergence.

R =
1

n− 1

n∑︂
k=0

(h(zk)− xk)(h(zk)− xk)
T (3.12)

System Nosie

For the system noise we compute the covariance between the state evolution by the system
model f(xn) and the next (true) state xn+1, see equation 3.13. As for the measurement
noise we use the estimated state to approximate it.

Q =
1

n− 1

n∑︂
k=1

(f(xn)− xn+1)(f(xn)− xn+1)
T (3.13)
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3.3 Bayesian Optimization

Bayesian Optimization (BO) is a common black-box optimization algorithm [11]. The
function to be optimized, called objective function, is unknown and modeled by a Gaussian
Process over the function. The optimization is sample based, so we observe some samples
of the function and have a Gaussian distribution over the unknown parts of the objective
function. The uncertainty of the Gaussian Process is defined by the kernel function, which
depends on how fast the function value changes with the function argument.
To optimize the function, initially some start samples are evaluated, that can be chosen
randomly or based on assumptions of the objective function. Given the observed samples,
the probabilities of the Gaussian Process can be computed and used to generate new
samples to find the optimum. Therefore the following two policies are used:

• Exploitation: Select a point with a high probability to be the optimum
• Exploration: Select a point with a high uncertainty

The trade-off between the policies and the next sample point is defined by the acquisition
function. Frequently used acquisition functions are Probability of Improvement and
Expected Improvement.

Probability of Improvement

MPI(x) := cdf
(︃
(µ− y∗)− α

σ(x)

)︃

Expected improvement

EI(x) := (µ− y∗ − α) ∗ cdf((µ− y∗ − α)) ∗ pdf((µ− y∗ − α))

Algorithm 1 shows the pseudo code of BO, where f is the objective function, and g is the
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acquisition function. In each iteration, multiple samples can be selected and evaluated.

Result: x∗ = argmax f(x)
observe f on initial values x1..i;
p(x) = Gaussian process of GP (f, µ,Σ);
while n < N do

xn = max g(P, samplesn);
yn = f(xn);
add (xn, yn) to samples;
update P with all samples;

end
Algorithm 1: Bayesian Optimization

The Gaussian process model is based on two assumptions. First, that the function can be
modeled by a multivariate Gaussian distribution with a fixed variance, and second, that if
two function arguments x and x′ are close to each other, then also the difference between
the corresponding function values y and y′ is small.
To get good results, it is necessary to have a good setup with the correct kernel function
and hyperparameter as shown by the group of Snoek [12].
For the Bayesian optimization, we use HEBO [13], Heteroscedastic Evolutionary Bayesian
Optimization. In comparison to standard BO algorithms, HEBO includes two adaptions:

• For the model, non-linear input and output transformations are used, so complex
noise can be handled, as many problems are not homoscedasticity (so the variance
of the noise is not equal on the whole function). Further, an additional likelihood is
added to the Gaussian process mean so the exploration is amplified.

• Multi-objective functions are defined for the acquisition function, so the optimal
point is found across all the acquisition functions and not by only one single function.

We assume our problem to be heteroscedastic, i.e., the noise of the states varies over the
function, as the data we have is just a mini-batch of the problem. Furthermore, the loss
function changes radically w.r.t. different values of the parameter.
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4 Methodology

The key to a successful game of dynamical robot air hockey is the puck prediction, as
the control has to react to future states. To predict the puck’s movement precisely, we
define a Kalman filter. To get optimal results of the state estimation, we need a good
approximation model for the state process as well as noise variance assumptions.
In this section, we will describe the specific process we followed to get an improvement of
the state prediction, as well as the testing routine of the robot hitting strategies based on
the state prediction.
We will start with an overall introduction to the system architecture, to understand how
the different components work together. Afterward, we will focus first on the prediction
of the puck, describing the implementation of the puck’s state process model and the
corresponding optimizations based on the already introduced Bayesian optimization (see
section 3.3) and noise covariance estimation (see section 3.2.2). These optimization
algorithms are based on data sets described in the final section of the prediction.
In the last section of the chapter, we will describe the hitting strategies of the robots and
define success characteristics to identify the baseline performance of the robot.

4.1 Build Architecture

To build our robot application, we use ROS1 for managing the components as well as
message passing. Each of the robots has its own node, including two main components.
First, the puck tracker, the observer of the game state, which contains the Kalman filter
implementation for state prediction and estimation. Second, the control, a two layer
system, one for the selection of the hitting strategy (Tactics Processor) and one for the

1https://www.ros.org/
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Figure 4.1: Simplified architecture of the baseline agent

control trajectory planning (Trajectory Generator). The strategy selection is based on a
state machine depending on the puck’s current and prediction state. Figure 4.1 shows a
simplified version of one baseline agent, as well as the relations between the components.
The entities on the right are the extensions we implemented for the prediction optimization
or strategy testing, respectively, as described in the next section.
Additionally, one node is implemented as the referee, also observing the game status
to detect goals as well as illegal states, i.e., when the puck is not on the table or the
end effector moves into the table. Furthermore, the referee interacts with the system by
resetting the puck after a goal or when the puck is not on the table anymore. It can also
stop the game, e.g., if the robot gets into an illegal state.
This basic architecture is shared for simulation and real-world setup. While the puck
position in the real-world setup is observed by the camera system, in the simulation the
position information is provided by the Gazebo2 simulator.

2http://gazebosim.org/
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Figure 4.2: Shows the components of the nodes involved in the prediction optimization

4.1.1 Architecture Extension

For the optimization, we extended the system as already shown in figure 4.1 with two
additional, temporal ROS nodes, one to perform different optimization and evaluation
tools for the Kalman filter (Prediction Optimizer) and one for the strategy testing (Strategy
Test). Figure 4.2 shows the components of the prediction optimizer and the puck tracker
in more detail. Through a Server-Client structure, the prediction optimizer node replaces
the observation of the real-word or simulation with the prerecorded data.
To reduce the complexity, we are not launching the whole baseline agent, but only the
puck tracker used for the state estimation. Furthermore, this makes the new system
independent of the actual time, as the filter only processes a step on request. Note that
this forces us to make some of the transformations and preprocess structures, which are
normally handled by the additional baseline agent code. The puck tracker node provides
several services:

• update physical parameter of the system model
• update noise covariance of the system or measurement model
• perform Kalman filter step
• reset Kalman filter
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The update services are needed to change the behavior of the Kalman filter. To evaluate
the changes, the puck tracker provides the perform Kalman filter step service, which takes
the measurement data and returns the estimation and covariance of the state as well as
the prediction. If not specified, it returns the one-step-prediction.
The reset service is needed every time we are resetting the puck state, e.g., at the beginning
of a new trajectory or for the tactics test.
In the following sections, we will focus on the puck tracker node components first and
then on the prediction optimizer node components from top to bottom.

4.2 Puck Tracker Process Model

The system model of the Kalman filter is the model for the linear state transition. For the
prediction and the filtering, this step is very important as it defines the expected behavior
of the system.
The extended Kalman filter described in 3.2.1 additionally allows non linear updates
based on the partial derivative in the current point. For linear functions, the extended
and non-extended version do not differ. The main part of the puck’s movement is linear
except when colliding with the wall.
A simple concept is to use the Kalman filter without extension and just update the velocities
when a collision is detected. This predicts x̂k|k−1 properly but the covariance prediction of
Pk|k−1 is still based on the linear model F and might result in a wrong belief about the
state estimation. This is especially a problem, as the collision is the critical part of the
trajectory for the prediction and the most uncertain state.
To overcome this problem, we use the extended Kalman filter with the collision model
3.1 f and the partial derivative S of it. As the model differs whether sliding occurs in
the impact or not, different Jacobians are needed. Moreover, the transition A into the
collision model space orthogonal to the impact is needed, e.g., a rotation along the z-axis.
The system model of the Kalman filter depends on the state, and the selection can be
formulated as follow:

J ←

{︄
A−1

i SjAi i ∈ [0 . . . 3] j ∈ [0, 1], if collision(x)
F otherwise
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For the states in the linear movement of the puck, the state transition is still the linear
model F , but if the puck borders on the table’s rim, the Jacobian is A−1SA, where Ai is
the transformation matrix for the affected wall i and Sj is the partial derivative of the
collision model with, j = 0, or without, j = 1, sliding.

4.3 System Identification

To determine the physical parameters, we perform 50 Bayesian optimization iterations.
The method is described in section 3.3. In each iteration the acquisition function selects
5 suggestions for the parameters configuration to evaluate. In total we specify four
parameters: µsurface, d, e and µrim. From the linear transition model (eq. 3.1), we need to
identify µsurface which is the friction between the table surface and the puck as well as
the damping d of the system. For the collision transition model, (eq. 3.2 and eq. 3.3), we
need to identify the coefficient of restitution e for the collision and the friction between
the puck and the table’s rim µrim.
In contrast to the system identification of the previous work [1] where the aim was to
adjust the simulation environment, we want to adjust the forward system model and
include the new parameter of the more complex collision model. To obtain this, we
compare the prediction x̂k|t we make at time t for the time k with t < k and a prediction
horizon of k− t with the measured state zk at time k. Nevertheless, we assume the values
of the parameters to be similar to the hand tuned used before and use them as initial
values and to derive the upper and lower bounds of the parameter as shown in table 4.1.
For the robot, we need at least a prediction horizon of 0.3 sec to respond to the state and
plan and run the control trajectory. So the prediction should be precise for a prediction
horizon between 36 and 180 steps, as this is the upper bound for the prediction horizon.
Notice that changing the prediction steps in the learning process can affect the outcomes,
as for a small prediction horizon the prediction does not include impacts with the rim,
and therefore, the parameters of the collision do not affect the result. On the other hand,
having a high prediction horizon increases the distance of the compared data points and
fewer comparisons. We therefore learn with prediction horizons of 60, 120, and 180 steps
and validate the learned parameters against the two others.
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lower bound upper bound
friction surface 0 0.5
friction rim 0 0.6
restitution 0.5 1
damping 0.2 0.8

Table 4.1: Lower and upper bound for the physical parameters

4.3.1 Objective Function

For the performance of the Bayesian optimization, the choice of the objective function has
a huge impact. Following, we describe the two different functions we used to optimize
the physical parameters of the Kalman filter system model.

• The first metric is the mean squared error of the position. The difference between
the predicted and measured state is added up for each point. We begin with the first
predicted step x̂0 with a prediction step size of j which is compared to the actual
value xj , so we lose j − 1 points for the comparison.

L(x, x̂) =
1

N

N∑︂
i

x̂i − xi

• The second metric is a probabilistic-based loss function. In contrast to the method
before, not every discrepancy is weighted the same. For this method we sum up the
probability of the actual value xi+j given by the normal distribution N (µ,Σ) with
the prediction x̂i as mean and the covariance of the prediction Pi as variance.

L(x, x̂) =
N∑︂
i

ln(p(x|N (x̂, P )))

4.4 Noise Estimation

For the optimal state estimation of the Kalman filter, the variance of the system Q and
the measurement R needs to be set accordingly. We implement the formula 3.12 and
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3.13 without correlation terms, so the resulting noise matrix is diagonal. Therefore, the
data set as well as the system architecture is shared with the system identification routine
described in the section before.
Unknown values for R and Q will result in suboptimal x̂k|k. Changing the covariance
matrix affects the state estimation which again affects the noise estimation. Therefore, we
need an initial guess about the noise and perform 5 iterations for convergence.
As we already have information about the precision of the camera system which should
reflect the measurement noise in position data, we can roughly assume the noise and set
it initially to

R = diag(2.5× 10−6, 2.5× 10−6, 2.5× 10−6),

as we assume the precision of the camera to be 1× 10−6m. The initial guess for the system
variance is more challenging, as it is not attached to a specific value. We assume the model
to be very accurate. So we start with a variance that is very certain in the position, and a
little more uncertain in the rotation.

Q = diag(1× 10−10, 1× 10−10, 2× 10−7, 2× 10−7, 1× 10−6, 1× 10−6).

Note that the filter expects an invariant noise over the whole system model which includes
both the collision and the linear part of the puck’s movement.
Moreover, we can configure the algorithm to estimate only a subset of the state variance
while assuming fixed pre-defined noise for the remaining ones.

4.5 Data Set

To generate training and validation data we recorded the puck’s movement on the real air
hockey table. We used an OptiTrack system with six OptiTrack Flex 13 cameras with (1920
× 1680) pixels resolution. Each camera has a frame rate of 120 Hz and is placed above
the air hockey table. The table has a length of 1.956m and a width of 1.042m. The goal is
0.25m wide and the puck has a radius of 31.65cm. The world coordinate origin is placed
outside of the table like shown in 4.3 in the bottom left corner of the mount. Therefore,
the table’s center is located at the coordinate of (1.504, 0.0.07) with the same orientation
as the world coordinate frame. The puck and the table are tagged with multiple markers
to allow us to observe spin information and a position with a precision of 1mm. The data
recorded by the camera system is the center of the disc, which is calibrated before. In
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Figure 4.3: Air Hockey Table in simulation

total, we recorded 104 trajectories with an average length of 845 data points and with
at least one impact in each trajectory. The puck is hit by the mallet from a rest position,
the average of the initial velocity is 3.86m/s. To collect as many different positions of the
table as possible, we are varying the direction, trying not to score a goal to get a long
trajectory also containing the process of slowing down. The aim is to get as many points
of the table and different impacts with the wall as possible.
The resulting data set is split up into a training data set with 94 trajectories and a validation
set with 10 trajectories with a total of 8400 data points.

4.5.1 Preprocessing

In the Kalman filter, the time step size dt for the forward model is fixed. In the recorded
data, the time step between two observations is defined by the camera rate of 120Hz but
can vary dt + ϵ due to technical noise. Furthermore, some frames can be lost and the
records can contain consecutive frames with the same value, which causes outliers in the
velocity calculations. To limit the effects of the noisy data, we implement preprocessing
procedures to clean the data. Besides this, we also cut the data at the beginning and the
end to exclude the influences of the humans, like the hitting or the adjustment of the puck
in the end for the next trajectory.
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Lost frames

To detect lost frames and to adjust the real-world data to the model, we compare the
timestamp of the data with the model timestamp of the Kalman filter. This method ensures
that for each model timestamp, we have the corresponding timestamp in the data set.
Note that a tiny difference is still possible.
As shown in algorithm 2, we are initializing the model time stamps by the fixed frequency
of the model from 0 to the end time of the recorded data. After this, we are iterating over
each of the model timestamps to find the closest data point in the recorded data. If the
next data point we get is closer to the next model time stamp, we insert a blank data point
with the right timestamp, which helps for the Kalman Filter update described in 3.2. In
case there would be two data points referring to the same model time stamp, we delete
one to get an exact mapping.

data← t0 . . . tn
timemodel ← [0 . . . kn, stepsize = 1/120]
for ki in model do

if tj is closer to model ki+1 then
append(blank data with model time ki)

else
while ki closer to tj+1 do

remove tj from dataset

Algorithm 2: Add lost data frames

Outlier

In our definition, an outlier is a point where the value of the position does not change
at all, so the resulting velocity in this point would be zero, which is unexpected for the
dynamical system. To avoid these jumps in the velocity, we apply interpolation for the
data points, where the distance of the position is smaller than a threshold value of 10−6.
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4.6 Hitting Strategies

In this section, we describe the test setup and the evaluation criteria of the different skills
of the robot. Many of the criteria are based on specific positions on the table which will
be described first.
The air hockey table with length l and width w is divided into two sides for each robot:
the own side and the opponent’s side, delimited by the centerline. As l >> w, we divide
the rims into two groups: long rim, for the rims along the length, and short rim, for the
rims along the width. Each side contains a defending line, which has a distance of 20cm to
the short rim and is used as a reference line for the robot to plan an action. Furthermore,
each side contains a smash area with a distance to each rim, so the robot can hit the puck
from every side and find a feasible solution for a trajectory towards the opponent’s goal.
The robot is able to perform four different actions: Smash, Cut, Prepare and Repel. Smash
is the strategy of the robot to score goals and has three sub strategies: scoring directly
without wall contact or playing across one of the long rims to the goal. Cut is a defense
mode with the aim to be able to Smash afterward, so the puck should stay in the smash
area after a Cut. Sometimes the puck gets into areas at the edge of the table, where it
is impossible to apply Smash directly, so we also have a strategy Prepare to hit the puck
back into the smash area. The Repel strategy is applied when the puck is approaching
the goal directly without hitting the walls. This strategy is to defend and use the velocity
of the puck directly for a counter strike. To evaluate the strategies we define a success
characteristic for each one:
Smash Success is defined by the score ratio and the distance to the goal center.
Cut Success is defined by the ratio the puck stays in the smash area after hitting and

partial success the hitting rate of the puck.
Prepare Success is defined by the ratio of the puck stopping in the smash area or partial

success for stopping in the own area.
Repel Success is defined by the hitting rate of the puck and the velocity of the repelled

puck on the opponent’s defending line.
For the testing, we are setting the puck’s state manually and forcing the robot to use the
desired strategy, while the opponent robot is disabled. Figure 4.4 shows the table with
the smash area in blue and the defending line of the own side and the opponent’s side
in cyan. The back lines indicate the border of the table and the red line the goal. The
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orange line defines the task space reachable for the robot on the table, without running
into singularities.
For the initialization, we have a static position for Smash and Prepare and a dynamic
position for Cut and Repel. The initial position of the puck for the Smash action is inside
the smash area. To force the robot to use Prepare, the puck is set outside the smash area
but inside the task space, reachable for the robot.
Initializing the position and velocity for Cut and Repel includes challenges about the
timing of setting the puck and the strategy. To simulate a hit from the opponent, we are
setting the puck randomly on the defend line of the opponent and set the magnitude of
velocity to the maximal possible velocity reached by the robot, which is 2m/s. To perform
the action correctly, we need the prediction of the puck on the defend line in advance. So,
for determining the time to execute the action the robot is waiting until the prediction of
the puck satisfies all restrictions for performing, e.g., reaching the defend line straight to
perform Repel.
The direction of the puck’s velocity is set for the Repel action directly towards the goal’s
center, and for the Cut action across one long rim, varying the collision point in the own
side.

Figure 4.4: Air Hockey Table visualization with the smash area in blue and defending line
in cyan
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5 Results

In this chapter, we will provide and discuss our results. For visualizations of the puck
movement, we choose a challenging trajectory from the validation set, which is hard to
predict. That enables us to point out the improvements, as the non-optimized model is
already capable of dealing with simple trajectories with a low number of collisions and a
moderate initial velocity and spin.
We start discussing the results from the changed dynamical model of the puck movement
and continue with the physical parameter identification.

5.1 System Model

For the process model of the Kalman filter we implement two improvements:
1. using a more differentiated collision model (see section 3.1)
2. using Jacobians for covariance update (see section 4.2)

To validate the updated system model, we compare the velocity of the estimated and the
measured state of the puck. We choose the velocity, as the new system model redefines
the calculation of the velocity after an impact with the wall. Beyond, the noise of the state
is higher in the derived velocity than in the position and therefore the filtering is more
visible.
Figure 5.1 shows the derived velocity of the measurement and the estimation of the
velocity by the Kalman filter. The line colored in cyan represents the estimation and the
blue line the measurement for each direction (ẋ, ẏ) and the rotational velocity θ̇. We
can see a lot of oscillations in the measurement due to the noise of the measured data.
Differences between the new and old system come from slightly different preprocessing
methods. The changes of the sign in the velocity, in x or y or both directions, indicate a

26



collision with the wall. The more consistent parts indicate the linear movement of the
puck, where the velocity is only reduced by friction and damping. At the top of figure 5.1,
we see in the first collision a high discrepancy of the expected velocity, displayed by the
light blue line, and the resulting velocity in the measurement. This error slightly reduces
with time as the filter adapts to the changes. Nevertheless, the error is propagated and
reinforced when the velocity estimation is wrong before the collision.
After about 3 seconds, we can observe a spike in ẏ of the old model, which is caused by
the collision model. The old model only models the case where the sliding terminates in
the collision. As before, the filter adapts to the measurements quickly but will provide a
wrong belief because of the wrong collision estimation.
With the new system model in the lower part of figure 5.1, the velocity is estimated before
and after an impact very precisely and only shows little differences. While the estimation
of the translation velocity is very smooth, the rotational velocity estimation still fluctuates
a bit, because of suboptimal noise configuration. Note, the new system model uses the
suited physical parameters.

5.1.1 Execution Time

In the last section, we discussed the improvements of the modifications to the systemmodel.
However, the modified model uses an extended version of the collision model, which is
also used for the system transition model. Therefore, the model requires additional matrix
transformations and computations which increase the execution time of a prediction. To
ensure the prediction can still be performed in one step of the Kalman filter, we measured
the execution time of 2000 predictions.
The update rate of the system is at 120Hz, i.e., 0.00833secˆ︁=8.33ms, defined by the ob-
servation rate of the camera system, and is the maximum time which is available for the
prediction. To evaluate the execution time, we therefore use the worst case of performing
180 steps, which is the prediction horizon maximum of the baseline agent.
Table 5.1 shows the execution time of one prediction for each model type. We assume
the time to be Gaussian distributed, resulting in 95% of the prediction computations can
be performed in under 93259nsˆ︁=0.093259ms, which is still fast enough to perform the
prediction in one time step.
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(a) Old model

(b) New system model

Figure 5.1: Estimated vs. measured velocity of Kalman filter
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mean std
simple Model 21837 3578
modified Model 75741 8759

Table 5.1: Mean and standard deviation of prediction execution Time in ns

tpred µsurface µrim damping etable loss min median
0.5 1.01× 10−6 0.13167 0.50001 0.90038 0.00706 0.00110 0.00405
1 7.96× 10−8 0.13523 0.31874 0.88078 0.01174 0.00542 0.01548
1.5 3.13× 10−7 0.11105 0.50015 0.99825 0.04356 0.01982 0.03969

Table 5.2: Loss and physical parameter values for learning with position error for differ-
ent prediction horizons

5.2 System Identification

In section 4.3, we described the system identification with the two different objective
functions. Table 5.2 and 5.3 show the resulting parameter values and the respective
position error for different prediction horizons. Each of the tables is based on a different
loss function.
The tables allow conclusions about the comparison of the different loss functions, as well
as the loss evolution over the prediction horizon. Further, we can derive the final physical
parameters. In the following subsections, we will discuss each of the conclusions in more
detail, starting with the objective function, then the loss function, and finally the physical
parameters.

5.2.1 Objective function

The loss values in the table are the average position distance in meter between the
prediction and the measurement for each point. For the position based optimization, we,
therefore, get an average divergence of 7mm per point and for the log likelihood based
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Figure 5.2: Comparison of the real data and the prediction data using hand tuned physi-
cal parameter

optimization 3mm. These values are only based on x and y, the rotation is not included
in the loss.
Even though the differences do not seem very big, Figure 5.2 to 5.4 show the effects on
the position values (x, y, θ) over time. Therefore, we use a prediction horizon of half a
second and visualize the example trajectory. As already mentioned, the trajectories in
the validation set differ a lot regarding the loss. To emphasize the improvement of the
different methods, we selected a trajectory with a comparatively high loss. In the example
trajectory, the measurement data is indicated by the blue line and the prediction data is
indicated in orange. Figure 5.2 shows the trajectory with hand tuned physical parameter,
figure 5.3 with learned physical parameter using the position based error function and
figure 5.4 with the log likelihood based error function. While the position data improve for
both of the optimization routines, the big difference is in the improvement of predicting
the rotation, pictured at the bottom of the figure and is particularly noticeable after 3
seconds.
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Figure 5.3: Comparison of the real data and the prediction data where the physical pa-
rameter are learned using position error

The highest derivations are the predictions with no new observation (due to lost frames)
when the state prediction only is based on the system model without any new data
information. Even though we use an extensive model, it is impossible to get a perfect state
prediction, so small differences between the state prediction and the measurement are
unavoidable.
Notice that the prediction of the orientations gets much better with increasing time, that
is, when the puck movement slows down. The validation trajectory 8 visualized in figure
5.4 has an initial velocity of 3.9m/s and reaches the maximal hitting velocity of the robot,
i.e., 2m/s, at second 1.25. Hence, we are especially interested in the predictions after 1.75
seconds. Of cause, it is desirable to predict higher velocities to make the robot able to play
against a human, but as the aim is to develop a baseline for the robot-against-robot air
hockey, this prediction is accurate enough.
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Figure 5.4: Comparison of the real data and the prediction data where the physical pa-
rameter are learned using log likelihood error

5.2.2 Loss Trend

The loss is described by three values. Loss indicates the average position distance for each
data point, i.e., each data point is weight the same. Median indicates the average position
distance in the trajectory which is in the stored list midst. Finally, min is the average
position distance of the trajectory which is fitted best.
In the parameter table 5.3, we only show the error based on the position rather than the
error based on log likelihood for comparability and interpretability. We rate the results
with a lower median than loss higher, as we assume the loss to be more affected by outlier
trajectories, than the median. As the prediction horizon increases, so does the error.
Figure 5.5 shows the evolution of the error with increasing time, using the same physical
parameters.
The log likelihood based error function outperforms the position based error function for
all prediction horizons. We attribute this behavior to the fact that the error in the position
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tpred µsurface µrim damping etable loss min median
0.5 2.79× 10−6 0.15213 0.49032 0.87490 0.00371 0.00068 0.00321
1 6.31× 10−6 0.15340 0.51433 0.92426 0.00855 0.00283 0.01164
1.5 2.28× 10−4 0.09848 0.50128 0.94717 0.02229 0.00931 0.02441

Table 5.3: Loss and physical parameter values for learning with log likelihood error for
different prediction horizons

Figure 5.5: Position error of prediction with increasing prediction horizon

based method is weighted the same, regardless of the certainty, i.e., a difference in the
collision is weighted the same as in the linear part.

5.2.3 Physical Parameters

Due to the sample based optimization routine, we get different results for each run. The
estimated value for the surface friction µsurface varies a lot. However, this should not affect
the model a lot, as all the values are close to zero. The friction of the rim µrim is significantly
smaller for the small prediction horizons than for the long prediction horizon. We expect
the long prediction horizon to be more affected by correlations of the parameters.
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tpred learn tpred loss min median
1 0.5 0.00943 0.00304 0.01311
1 1.0 0.00855 0.00283 0.01164
1 1.5 0.00852 0.00299 0.01001

Table 5.4: Validation of the physical parameters learned with different prediction hori-
zons for a prediction horizon of 1

In section 4.3 we described the advantages and disadvantages of using the different
prediction horizons for learning. To set the final physical parameters we evaluated the
learned parameters against each other.
In order to choose the final parameter configuration of our system, we first define the
desired prediction horizon to be 1sec. This provides enough time for the control and, as the
position error of the prediction increases exponentially, it is still small enough to get a good
state prediction. So, we performed the validation for the 1sec prediction horizon using
the physical parameter of the 0.5sec and 1.5sec prediction horizon, respectively. Table 5.4
shows the results where the first column is the prediction horizon for the validation and
the second column is the prediction horizon of the system for the learning part. We finally
select the parameters learned with a prediction horizon of 1.5sec, as this improves the
performance in the average and median loss.

5.3 Noise Estimation

To improve further of the Kalman filter and obtain smoother trajectories we apply noise
variance estimation. The measurement variance estimation, described in section 3.2.2
with eq. 3.12 results in a variance of:

R = diag(1.036× 10−7, 1.361× 10−7, 9.050× 10−5)

This reflects the technical details of the Opti Track Flex 13 camera, which indicates a
precision of 0.1mmˆ︁=1× 10−7m for most systems. As the variance estimation for the
rotation seems reasonable, we are setting the measurement variance to the estimated
values.
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(a) Position prediction

(b) Velocity estimation

Figure 5.6: Example trajectory with prediction and estimated noise
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Estimating the system noise variance with eq. 3.13 results in:

Q = diag(7.028× 10−6, 7.625× 10−6, 5.450× 10−4, 7.015× 10−4, 0.014, 42.43).

In contrast to the initial covariance, which we are using for the data in figure 5.2 to 5.4,
the estimated noise is a lot higher for all parts. This high noise leads to a lot of trusts in
the measurement data, especially in the rotational part, as the covariance estimation rates
this part very uncertain. A possible reason could be noise in the velocity data. It is well
known that computing derivatives of noisy measurement data are critical. Through the
expected high noise in the system, the outliers of the measurements and their derivatives
influence the state estimation. Moreover, we model the decreasing velocity of the rotation
only by the noise, so this may also lead to a higher estimate.
In figure 5.6, we show the same trajectory as in figure 5.4 using the same physical
parameters. The only difference is Q and R, where we use the values estimated before
in contrast to the initial covariance. The miss estimation of the noise is particularly
visible in the rotational data, but also in the translation data. This effect is mostly caused
by the updated system noise, as the measurement noise does not change much. We
already discussed possible reasons in the paragraph before. In order to set the final noise
covariance for the filter, we evaluated different configurations:

1. Change the measurement covariance and keep the system covariance to the initial
assumption

2. Change the measurement noise covariance and the translational part of the system
noise covariance

While the prediction accuracy improves a little (≈ −2× 10−6) when we adapt R, changing
Q to the estimated covariance worsens the prediction. We therefore change R but keep Q
to the initial values.

5.4 Hitting Strategy Test

Figure 5.7 shows the success rate for each of the hitting strategies. For Cut and Prepare
it also shows the defined partial success in more transparent blue. Smash has a score of
82,2% for the straight hit, 73,6% across the right, and 73,4% across the left rim. After a
Prepare hit, the puck stops in the smash area in 26,15% and in the own side in 44.62% of
the cases. The success score of the Cut strategy is 34.3%, i.e., the puck stops in the smash
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Figure 5.7: Success and partial success score for each strategy

area after the Cut, but as it’s also a defend mode, 76.66 % of the incoming pucks can be
stopped. The robot repels the puck after a straight attack in 92% of the cases.

5.4.1 Smash

For each of the smash strategies, we aim at the center of the goal. Figure 5.8 shows the
average distance of the puck to the goal’s center after applying one of the three Smash
strategies. The red lines indicate the goal’s boundaries, so a sample hitting one of these
lines would not score a goal.
While playing directly has the lowest bias to one side, it is noticeable playing against the
right wall results in hitting the goal rather in the left and vice versa. This can be explained
by the model we use to plan the hitting, which does not take rotation into account, but
the reflection law. The robot usually gives a spin to the puck through the cylindrical shape,
which affects the impact and outcome. Nevertheless, the mean and standard derivation of
the positions are still inside the goal.
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Figure 5.8: Distance and standard derivation to goal center of different smash strategies.
The red line indicates the goal limits

5.4.2 Prepare

The aim of the Prepare strategy is to put the puck into a better position to be able to
Smash it. Therefore, the puck has to be pushed against the long rim with a regulated
velocity. In our Prepare implementation, we always hit a little in the x-direction, i.e., in
the direction of the opponent’s goal. This leads, especially for the initial samples near
the centerline, to cross the centerline into the opponent’s side. When the puck crosses
that line, it’s automatically counted as a fail. On the other hand, when the impact mainly
pushes the puck in the y-direction to the closest rim, the mallet might still be unintendedly
placed in the trajectory of the puck bouncing back from the wall, which can lead to high
spin movements. The task of positioning the puck accordingly is not trivial, as it would
also need back movements by avoiding own goals strictly. Nevertheless, the score is still
upgradable, even in the limitations of the baseline agent, i.e., the strategy needs to be
based on the puck’s state only.

5.4.3 Cut

By generating the test data, we did not control the puck’s movement to aim at the goal,
making it hard to evaluate the strategy by the ratio of defended incoming pucks. Still, 1%
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of the test attacks could score a goal. On the other hand, using the Cut strategy, the robot
manages to stop the puck in the smash area which is, as described before, a challenging
task. The translation velocities of the pucks reaching the defend line on the own side are
0.63 ± 0.2m/s, as the initial velocity is 2m/s and the puck’s trajectory includes at least
one collision. The partial success of over 75% can be rated as very good. For success, the
momentum of the puck is often still too high to stop in the smash area.

5.4.4 Repel

The Repel strategy’s goal is to return the puck as fast as possible to the opponent’s goal.
The almost optimal success score is caused by the test setup, as the puck is approaching
straight without wall impact, which is very accurately predictable. Indeed, the strategy
performs very well, reaching velocities of over 2m/s on the opponent’s defending line,
and an average velocity of 1.57 ± 0.1m/s. For future work, the hitting direction could
be improved as only 13% of the pucks score a goal. Currently, scoring is no part of the
trajectory planning in Repel.
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6 Conclusion

In this work, we showed routines and algorithms to get a precise prediction of a puck’s
movement in robot air hockey. For slower movements, we are even able to predict the
orientation of the puck, which will allow more complex hitting strategies in the future.
To be able to improve the prediction, we used a combination of a linear and differential
system model, modeling the straight movement on the table without impacts and the
collisions with the wall. These models are based on the physical parameters which we
learned using a black-box optimization algorithm. Therefore, we use large data sets of
recorded puck trajectories and two different loss functions. There, we showed that using
a likelihood loss performs better and results in a more precise prediction than using a loss
function based on the position’s distance.
Using this, we were able to improve the prediction accuracy significantly by over 80% for
the 1sec prediction horizon even though the results still suffer from the noisy measurement
data.
To deal with the noisy data, we implement an estimation for the variance of the noise for
the process model and for the measurement model. This routine is affected by outliers and
cannot compete with the results we get setting the variance to our assumptions. When we
estimate the variance of the model system, we approximate the variance for the whole
system and assume a homoscedastic noise. This is problematic for the composite model
due to the different characteristics of the model components.
In order to improve the puck’s movement prediction further, one research direction could
be to use different noise covariances for the different model parts, i.e., the linear and the
collision model. Another promising approach could be to adapt the dynamics to a higher
order system with constant acceleration.
Even though we do not have an optimal noise variance set up, using the optimized
prediction, we showed and introduced evaluation methods for the robot air hockey baseline
agent and evaluated the different strategies of the robot. These results can be used for
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further work on the tactics, on the one hand, e.g., for using a complex strategy selection
based on machine learning, or on the other hand to see if improving the puck prediction
further will lead to a better playing performance. Furthermore, the tactics themselves
can be improved, e.g., by combining different consecutive strategies. The robots enable
us to implement new stand of art algorithms regarding selecting and planning complex
tactics. The baseline agent then serves as the opponent and validates the improvement of
the learning. For the robot baseline agent in the simulation, we showed that the tactics
perform as expected by following the safety constraints, like keeping the mallet on the
table’s surface. Hence, the next step for our system is to transfer the strategy test to the
real-world robot to get the robots to play air hockey against each other.
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