
Approximated Policy Search in
Black-Box Optimization
Ungefähre Richtliniensuche in der Black-Box-Optimierung
Master thesis by Zhenhui Zhou
Date of submission: March 1, 2021

1. Review: Prof. Dr. Jan Peters
2. Review: Prof. Dr. Heinz Koeppl
3. Review: M.Sc. Puze Liu
4. Review: M.Sc. Julen Urain De Jesus
Darmstadt



Erklärung zur Abschlussarbeit
gemäß §22 Abs. 7 und §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Zhenhui Zhou, die vorliegende Masterarbeit ohne Hilfe Dritter
und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen,
die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung gemäß §23 Abs. 7 APB überein.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 1. März 2021
Z. Zhou



Abstract

In machine learning, it is a fundamental robotic task to learn a multi-modal and intractable
distribution, which could be the representation of the rewards following the specific policy,
with a well constructed and tractable distribution model. We demonstrate a method based
on the policy search using normalizing flow to address this problem. The normalizing
flow is able to compress the distribution from the observed space into the latent space and
recover it based on the latent space since the direct operations in the observed space are
usually not available. The benefits of normalizing flow are the power of expressive and the
ability of both efficiently sampling as well as accurately evaluating over the drawn samples.
And the strategies of model-based policy search algorithms for updating the constructed
model are well suited to this optimization problem when an additional entropy term is
applied in the objective. Our method also employs a surrogate function for providing the
gradient information. For this objective, we consider both the I-projection andM-projection
to avoid premature collapsing. We evaluate our method to learn the gaussian mixture
model as well as the sparse reward distribution and apply it for the robotic grasping tasks.
The method is able to provide a significantly favorable approximation to the complex
multi-modal target distribution and to give a compact and elegant policy model with high
expressive power.



Zusammenfassung

Im maschinellen Lernen ist es eine grundlegende Roboteraufgabe, eine multimodale und
unlösbare Verteilung zu lernen, die die Belohnungen nach der spezifischen Richtlinie re-
presentieren könnte, mit einem gut konstruierten und handhabbar Verteilungsmodell. Wir
zeigen eine Methode, die auf der Richtliniensuche basiert und den Normalisierungsfluss
verwendet, um dieses Problem zu beheben. Der Normalisierungsfluss kann die Verteilung
vom beobachteten Raum in den latenten Raum transformieren, und auch vom latenten
Raum in den beobachteten Raum wieder herstellen, weil die direkten Operationen im
beobachteten Raum normalerweise nicht verfügbar sind. Die Vorteile der Normalisierungs-
fluss sind die Ausdruckskraft und die die Fähigkeit, sowohl effizient Proben zu entnehmen
als auch die gezogenen Proben genau auszuwerten. Die Strategien modellbasierter Richtli-
niensuchalgorithmen zur Aktualisierung des erstellten Modells eignen sich gut für dieses
Optimierungsproblem, wenn ein zusätzlicher Entropieterm in der Zielsetzung angewendet
wird. Unsere Methode verwendet auch eine Ersatzfunktion zur Bereitstellung der Gradi-
enteninformationen. Für diese Zielsetzung betrachten wir sowohl die I-Projektion als auch
die M-Projektion, um ein vorzeitiges Zusammenfallen zu vermeiden. Wir evaluieren unsere
Methode, um das Gaußsche Mischungsmodell sowie die spärliche Belohnungsverteilung
zu lernen und sie für die Roboter-Greifaufgaben anzuwenden. Das Verfahren ist in der
Lage, eine signifikant günstige Annäherung an die komplexe multimodale Zielverteilung
zu liefern, und ein kompaktes und elegantes politisches Modell mit hoher Ausdruckskraft
zu geben.
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1. Introduction

The classic modeling of the robot and the environment to solve a robotic task is not
sufficiently accurate and limited on adaptation to a new change, while the methods in
machine learning field are mainly focusing on driving the robot by extracting the relevant
information from data. The robotic tasks can be automatically achieved with help of
the power of expressiveness and of the flexibility of the methods from machine learning
techniques, such as reinforcement learning, when these tasks are formulated properly.

One of the core robotic tasks in reinforcement learning is to learn an unknown and
complex target probability distribution, which represents the reward density distribution
following a set of policy strategies, by a tractable and plausible policy model probability
distribution. And this target probability distribution can be multi-modal, which means it
consists of multiple modes with full covariance matrices. After learning the policy model
should describe the whole landscape of the reward density distribution. It is also necessary
for the policy model after training to generate some new reliable samples and predict
rewards on considering samples within specific policies. In short, it requires a policy
model with high expressive power and the ability of both efficiently sampling from itself
and accurately evaluating over the drawn samples. Many previous works make efforts to
represent multi-modal reward density distributions [48, 22, 2, 50, 60], but some have
extensive constructions and make it hard to generalize to new situations. As an alter-
native possibility, we leverage normalizing flow to meet the requirements. Normalizing
flow transforms an initial simple probability distribution through a series of mappings
to produce any richer and more multi-modal probability distributions. As many recent
studies show [53, 35], the expressive power of this transformation is one of the greatest
benefits of using normalizing flow. And this transformation makes it possible to use a prior
probability distribution to represent an unknown target probability distribution so that the
reliable sampling and exact evaluating can be done under the prior distribution and passed
through normalizing flow. This problem can be characterized as an optimization problem
with randomness and can be solved by stochastic optimization method [3]. As a subfield
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of reinforcement learning, the policy search is aiming to search for an optimal policy
model distribution using the strategy of updating parameters [10]. And the policy search
algorithm can directly be applied to such an optimization problem if it can incorporate
a well-defined additional entropy objective [2, 1]. Thus, we demonstrate a method to
address this problem with a well-constructed policy model following the strategy of policy
search. Note that the gradient based strategy can be more efficient for this approximation
and lead to more robust and better optima [27, 25]. So we need to make sure that the
gradient information is maintained in general situations, including sparse and discontin-
uous cases, when we are updating the policy model with the gradient method. It can
be achieved by using a continuous surrogate to fit the data from discontinuous observed
value pairs. When it cooperates with the policy search strategy, we can focus more on the
policy search strategy with a more general constructed policy model with high expressive
power. This ability makes the whole model more compact and elegant to train.

And this policy model can also be constructed under specific conditions from the ob-
servations. In other words, it can be constructed and treated as a posterior probability
distribution given the evidence. When we find such a well-constructed and trained policy
model, we can have all the information of the whole target distribution by the approxima-
tion of the policy model. And this method can also be sufficiently accurate and flexible to
adapt to a new change in the environment.

The construction of this thesis is showing in the following paragraphs.

The Chapter 1 gives a brief introduction to our work. In the Chapter 2, we introduce an
overview of related works to ours.

In the Chapter 3, we give the definition and properties of normalizing flow. Then, we ex-
plain the expressive power of it. Moreover, we show the basic construction of normalizing
flow that we used in our policy model. And we discuss how to construct it.

In the Chapter 4, we transition into the policy search. First, we review the policy search
and give the formulation of the problem using the insights from policy search. And also
we transfer the maximization problem following the strategy of the policy model into an
equivalent minimization problem. Second, we discuss the objective function and show
details on how we compute a suitable objective function. Third, we propose the method
to maintain the gradient information. Finally, we give a summary and the implementation
of the algorithm.
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In the Chapter 5, we give an overview of robotic grasping task, because it is a typi-
cal scenario of multi-modal in robotic tasks. We are applying our method in this realistic
situation to evaluate whether it is qualified. In the beginning, a simplified problem formu-
lation of the grasping task is introduced. And we start from the simulation environment.
Thus, we build a simulation environment for the grasping task based on the PyBullet model.

In the Chapter 6, we evaluate our method in a number of experiments with different
construction or training settings. What’s more, we present the results and the analysis.

Chapter 7 gives the conclusion of this thesis and the outlook of the future work.
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2. Related Work

To solve the problem of approximating an intractable distribution by a tractable distri-
bution, a number of methods have been developed in recent years and gained a lot of
success. In this chapter, we are going to briefly take a look at some methods in the related
study fields and their relevant ideas for solving this kind of problem.

Variational inference is widely used to approximate probability densities by using the
optimization strategy [28, 70, 3]. The main idea is to use a probability density from a set of
candidates, which is simple enough for efficient optimization, to approximate the complex
and unknown distribution. Regier et al. [61] develop a method for variational inference
based on stochastic second-order trust-region optimization and the reparameterization
trick. This stochastic optimization based method converges to a stationary point provably.
Dhaka et al. [11] present a stochastic optimization based variational inference by viewing
this optimization algorithm as producing a Markov chain. Miller et al. [48] demonstrate
a practical variational inference method with an increasingly expressive approximation,
which is able to learn rich, complex, and high-dimensional Gaussian mixture model. Guo
et al. [22] also consider mixing more flexible approximating base distributions for the
multi-modal target distribution, by successively adding and optimizing the components
from the base family. Titsias et al. [67] focus on developing an unbiased variational
inference. Arenz et al. [2] contribute an efficient and gradient-free method for variational
inference to learn a multi-modal intractable target distribution using the insights from
the policy search, which shows the policy search algorithm can be directly applied to
variational inference if the objective is properly defined. On the contrary, the problem in
the context of policy search can also be solved with the help of the variational inference.

Recently variational autoencoder has been wildly and successfully applied in the deep
generative models, especially for handwritten digits, faces and images. The variational
autoencoder can be viewed as two coupled but independently parameterized parts: the
encoder or recognition model, and the decoder or generative model [31]. The encoder
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provides regularised encoding distribution in the latent space, which has good properties
allowing the decoder to generate some meaningful data. The variational autoencoder
framework has been extended in many fields, e.g. to dynamical models by Johnson et
al. [27], to models with multiple levels of stochastic latent variables by Kingma et al. [33].
Kingma et al. [32] introduce a method to use stochastic gradient descent to optimize
the variational inference objective, which is relied on the estimator of the posterior from
the variational autoencoder. Chung et al. [9], Gregor et al. [21] and Eslami et al. [15]
develop variational autoencoder with more complex prior in the latent space for more
complicated representations. The idea of variational autoencoder can also help to solve
the problem, which is intractable from the observed space, with the help of the posterior
from the latent space.

Normalizing flow provides a set of bijective transformations to map a simple and base
distribution onto the arbitrary complex distribution, which shows a high power of ex-
pressive. And it can also be viewed as a generative model that produces the tractable
distribution with both efficient sampling and exact density evaluation on samples. Ho et
al. [24] applied normalizing flow in the image generation, Kumar et al. [39] employ it in
the video generation and Esling et al. [16], Kim et al. [30], Prenger et al. [56] introduce
normalizing flow based method in the audio generation. Moreover, the normalizing flow
has also been applied in the policy search in reinforcement learning. Mazoure et al. [47]
introduce a method combining soft actor-critic updates with a sequence of normalizing
flows. Ward et al. [73] offer a normalizing flow based policy search within the actor-critic
framework to learn more expressive classes. Touati et al. [68] leverage normalizing flow
with deep Q-networks and deep deterministic policy gradient to achieve randomized value
functions in high dimension for tracking a rich approximated posterior distribution over
the parameters of the value function. Urain et al. [69] extend the normalizing flow to
learn stable stochastic nonlinear dynamical systems. Thus, the normalizing flow provides
wide possibilities for variational autoencoder to construct the expressive transformation
from the latent space to the observed space with the abilities of both efficient sampling
and exact evaluation over samples.

Policy search is an approach for improving the policy models by observing the infor-
mation in the previous trials, whose update strategy can be widely used for optimization
problems [10]. And this method usually requires a lot of data from trials, which causes
inefficiency of learning. In the field of policy search, the objective function or its analytic
gradient is usually not known, which is treated as black box. In such a complex context,
some methods are proposed to solve this kind of optimization problem, e.g. black-box opti-
mization, Bayesian optimization, directed exploration in the search space, and actor-critic
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methods [64]. Recently, Mania et al. [46] propose the simplest black-box optimiza-
tion, which refers to a gradient-free random search method. Genetic algorithms [20]
has been successfully developed and applied as a kind of black-box optimization, and
Such et al. [66] apply the genetic algorithm to the deep neural network based on the
modern computational resources. Hansen et al. [23] present a popular method called
covariance matrix adaptation evolution strategy. Bayesian optimization is well suited to
optimize the maximization problem with an expensive to evaluate objective function [18].
It constructs a surrogate statistical model for the objective function, which is typically
a Gaussian process [59], to provide a Bayesian posterior distribution given potential
candidate new samples. And then it defines an acquisition function to decide where to
sample for the next time. For each time the posterior distribution from the built surrogate
is updated based on the new observations. Brochu et al. [7] and Lizotte et al. [43] have
applied it in reinforcement learning. Snoek et al. [65] present a method associating the
Bayesian optimization of hyperparameters with machine learning algorithms to show the
great success for training deep neural networks. Klein et al. [34] propose an entropy
search based Bayesian optimization method to collect globally good information about
hyperparameters by extending additional input variables, such as the dataset size and
the evaluation time, to accelerate the optimization speed. Eriksson et al. [14] adopt a
local strategy for Bayesian optimization in high dimension, e.g. reinforcement learning
problems with sparse reward, by using a collection of independent local surrogate models
and apply multi-armed bandit strategy at each updating step to allocate samples from
these local models, so to decide which local optimization runs to continue. Kandasamy
et al. [29], Gardner et al. [19] and Wang et al. [71] are using an additive structure in
the objective function and then exploiting it through Bayesian optimization. Wang et
al. [72] and Nayebi et al. [52] are considering mapping the high dimension space into
some low dimension subspace to reduce the number of the observations. Novelty search
is given by Lehman et al. [40], and quality-diversity is introduced by Pugh et al. [57],
both of which are directed exploration methods and particularly useful for sparse rewards.
Peters et al. [55] apply actor-critic methods in the high dimension cases within the
context of policy search. What’s more, Abdolmaleki et al. [1] apply a surrogate-based
stochastic search method, which allows a closed-form solution of information geometric
trust regions. And the surrogate based stochastic search algorithms are able to give much
smooth objective function [1]. Chatzilygeroudis et al. [8] apply prior knowledge on the
policy structure to speed up the learning phase of policy search with fewer data.

And also the exploration-exploitation trade-off is the essential point in the policy search
that needs to be addressed. Multi-armed bandit has been successfully used for the
exploration-exploitation tradeoff in reinforcement learning, while a number of algorithms
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are applied for solving this problem, e.g. ϵ-greedy, Boltzmann exploration, upper confi-
dence bound, and so on [37]. Maes et al. [44] propose a search algorithm as a multi-armed
bandit problem over the search space. Papini et al. [54] treat the policy search problem
as a multi-armed bandit and combine multiple importance sampling to estimate the ex-
pected return for exploiting the problem structure. Inside the field, Komiyama et al. [36]
introduce a multiple-play multi-armed bandit and Fouché et al. [17] extend multiple-play
with Thompson sampling.

Grasping task is a fundamental robotic task, which has gained increasingly more at-
tention to be addressed by the data-driven based methods in machine learning. Lenz et
al. [41] and Mahler et al. [45] works on the grasping prediction to estimate the probability
of success based on the visual observation when a specific grasping setting is given. Yan et
al. [75] propose a method to train a neural density model for approximating the posterior
distribution of successful grasping based on visual observations. Morrison et al. [50] and
Redmon et al. [60] focus more on the multi-modal problem in grasping tasks.
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3. Normalizing Flow

Normalizing flow has attracted increasingly more attention in machine learning, because
of its power of expressive and the ability of both sampling and evaluating. Normalizing
flow is a general transformation of a simple and tractable distribution into a complex and
intractable distribution by a sequence of diffeomorphism mappings [53]. This "diffeo-
morphism" has the meaning of invertible and differentiable. "Normalizing" means that a
normalized distribution will be given after applying the diffeomorphism transformations.
"Flow" means that a more complex distribution can be created based on the normalized
distribution by applying the diffeomorphism transformations in the opposite direction.

In the following sections, we show the basic definition and properties of normalizing
flow. Then, we transition into how normalizing flow provides the power of expressive.
Finally, we discuss the autoregressive flow in detail, which is employed in our method.

3.1. Definition and Property

Normalizing flow is able to provide a flexible mapping between the observation space and
the latent space over a continuous random variable.

Suppose x is a random variable in the observation space with a complex and intractable
distribution p(x), and u is a random variable in the latent space with a simple and tractable
distribution p(u). So the basic idea of normalizing flow is to express the random variable
x as a transformation T of the random variable u:

x = T (u) . (3.1)
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Since the transformation T is defined to be diffeomorphism, which also requires that x
and u have the same dimension D [49, 53], so we obtain the density of x

p(x) = p(u)|det JT (u)|−1 (3.2)

by a change of the variable [63, 4, 53], where JT (u) is the Jacobian matrix (D ×D) of
the partial derivatives of the transformation T with respect to the variable u

JT (u) =

⎡⎢⎢⎢⎣
∂T1
∂u1

· · · ∂T1
∂uD

... . . . ...
∂TD
∂u1

· · · ∂TD
∂uD

⎤⎥⎥⎥⎦ . (3.3)

Simultaneously, the transformation in the opposite direction can be given as

u = T−1(x) ,

and the probability density

p(u) = p(x)|det JT−1(x)|−1 ,

where obviously we have JT−1(x) as the Jacobian matrix (D ×D) of the partial deriva-
tives of the inverse transformation T−1 with respect to the variable x, similar to Equa-
tion (3.1) - (3.3).

One of the most important properties of diffeomorphism transformation is composability.
That means the composition of a set of diffeomorphism transformations themselves is also
diffeomorphism. Let τ1, τ2, . . . τN be a set of N diffeomorphism transformations, and the
composition of them is defined as

T = τ1 ◦ τ2 ◦ · · · ◦ τN .

Then the inverse of the transformation T can be derived as

T−1 = (τ1 ◦ τ2 ◦ · · · ◦ τN )−1 = τN
−1 ◦ τN−1

−1 ◦ · · · ◦ τ1−1 .

And the determinant of the Jacobian matrix is given by

det Jτ1,τ2,...τN (u) = det Jτ1,τ2,...τN−1(u) · det JτN (u) .

In consequence, the complex transformation from a distribution p(u) into another p(x)
can be built by composing a series of simpler diffeomorphism mappings, without losing
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the diffeomorphism property, without losing the ability to calculate the density of the
distributions by the determinant of the Jacobian matrix.

Normalizing flow can provide the operations of both sampling and evaluating the density.
We can take the simple and tractable distribution p(u) as a known prior distribution, so
the samples from the prior distribution with their probability densities can be transferred
from the latent space to the observation space using forward "flow" transformation. When
we have some observed samples from the intractable distribution p(x), it is also possible
to evaluate their probability densities by reverse "normalizing" transformation. At first,
we let the samples x with initial densities p0(x) = 1 be transformed from the observation
space into the latent space by the function T−1. As a result of that, we will obtain the
normalized samples u = T−1(x), and the determinant det JT−1(x). Then, we evaluate
the probability densities p(u) on the normalized samples u with the prior distribution.
Finally, the probability densities p(x) can be calculated by the multiplication of the deter-
minant det JT−1(x), and this evaluated densities p(u).

In practice, the transformation T can be chosen flexibly by a chain of multiple sim-
ple mappings, which can be implemented typically by neural networks.

3.2. Power of Expressive

Normalizing flow is sufficiently expressive to represent any interesting distributions by the
simple base distribution, which can be seen as one of the greatest benefits of normalizing
flow based models. We recall the proof of this universal representation under reasonable
conditions on p(x), and we recommend readers to read these papers [53, 26, 5] for more
formal details.

Suppose x ∈ RD and x′ ∈ RD, assume xi is the i-th element and x<i represents the
first (i − 1)-th elements of the random variable vector x. Then, following [26, 5] let a
transformation τ : RD → RD be triangular, which means the derivative of τ is a triangular
matrix if for all i ∈ {1, . . . D} the following formula as reasonable conditions

x′i = τi(xi,x<i) (3.4)

is satisfied. What’s more, the transformation τ is increasing, when the τi is increasing
with respect to the xi for all i ∈ {1, . . . D} while x<i fixed. And increasing triangular
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transformations are universal, i.e. any density distribution can be transformed into any
target density distribution by increasing triangular transformations. In consequence, we
give the theorem directly: for any two distributions p(x) and p(x′) over the random
variables x and x′, an increasing triangular mapping between the random variables

x′ = τ (x)

exists, so that the probability density functions between them

p(x′) = p(x)|det Jτ (x)|−1

always holds. And since the Jacobian matrix of this τ is given as a low triangular matrix,
its determinant can be obtained as the product of its diagonal elements

det Jτ (x) =

D∏︂
i=1

∂τi
∂xi

. (3.5)

And the τ is diffeomorphism, because of the inverse function theorem [62]. Therefore, the
normalizing flow shows its expressive power and is able to approximate any interesting
target distribution by a base simple distribution.

3.3. Autoregressive Flow

Autoregressive flow is a universal approximation to represent arbitrarily complex in-
tractable distributions, whose basic idea is to directly implement the construction follow-
ing the Section 3.2. As it showed in the Equation (3.4), the i-th element of transformed
random variable x′ only depends on the first i-th elements of the previous random variable
before transformation x. Hence, it can be rewritten as

x′i = τi(xi;hi) where hi = ci(x<i) ,

which means that the i-th transformation function τi is parameterized by the vector hi

given by the i-th conditioner ci. And this conditioner ci can only accept the elements of
random variable x with dimension indices less than i as input. As a result of that, the
random variable x is able to determine the behavior of the transformations acting on
itself. So it keeps all the necessary information from x after performing the transformation.
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It is obvious that the inverse transformation can be obtained as

xi = τi
−1(x′i;hi) where hi = ci(x<i) .

However, the vector x<i needs to be computed before the i-the element xi, so that the
conditioner has an available input to compute the parameter vector hi.

Since the determinant of the lower triangular Jacobian matrix of transformation τ with
respect to the random variable x is equal to the product of its diagonal elements, the
log-absolute-determinant can be derived from Equation (3.5) as

log |det Jτ (x)| = log

⃓⃓⃓⃓
⃓
D∏︂
i=1

∂τi
∂xi

⃓⃓⃓⃓
⃓ =

D∑︂
i=1

log
∂τi
∂xi

, (3.6)

which can be easily and efficiently computed while using log-probability. The log-absolute-
determinant in the reversed direction has no difference to Equation (3.6), but just to
change the variable τ with τ−1.

3.3.1. Coupling Layer

Coupling layer based construction of normalizing flow is a class of autoregressive flow.
The candidate vector waiting to be transformed is divided into two parts, and the first
part is used to parameterize the transformation of the second part.

Let x ∈ RD be a random variable. Suppose d denotes the index to divide these two
parts, where d < D is satisfied, so that we obtain x = [x≤d,x>d]

T . Assume τ is the
complete transformation, c is the complete conditioner to the transformation, where the
first part coupling transform with first part coupling conditioner are constants, i.e. not a
function of x, the second part coupling transform with second part coupling conditioner
are given as ω with m. Then the transformation based on coupling layer is given by

x′ = τ (x; c(x)) =

{︄
x′
≤d = x≤d

x′
>d = ω(x>d;m(x≤d)) .

In contrast, the inverse transformation can be easily obtained by

x = τ−1(x′; c(x)) =

{︄
x≤d = x′

≤d

x>d = ω−1(x′
>d;m(x≤d)) .
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As for the evaluation of probability density functions, the Equation (3.6) can be applied.
And we here only focus on the forward transformation. The Jacobian matrix of coupling
layer based complete transformation can be given as a block lower triangular matrix

Jτ (x) =
∂τ (x; c(x))

∂xT
=

⎡⎣ Id 0

∂ω(∂x>d;m(x≤d))

∂(x≤d)T
∂ω(x>d;m(x≤d))

∂(x>d)T

⎤⎦ , (3.7)

where Id is a (d×d) identity matrix, whose determinant is 1. Thus, the Jacobian matrix on
the lower left in the Equation (3.7) does not appear while computing determinant. Then,
we focus on the Jacobian matrix on the lower right in the Equation (3.7). Following [13,
51], the low right block in the Equation (3.7) can be given as

∂ω(x>d;m(x≤d))

∂(x>d)T
=

⎡⎢⎢⎢⎣
qd+1(x

d+1
>d ) · · · 0

... . . . ...

0 · · · qD(x
D
>d)

⎤⎥⎥⎥⎦ , (3.8)

where we use
qi(x

i
>d) =

∂ωi(x
i
>d;mi(x≤d))

∂xi>d

(3.9)

for all i = d+ 1, . . . D. Thus, the log-absolute-determinant can be obtained by

log |det Jτ (x)| = log

⃓⃓⃓⃓
⃓

D∏︂
i=d+1

qi(x
i
>d)

⃓⃓⃓⃓
⃓ =

D∑︂
i=d+1

log qi(x
i
>d) . (3.10)

The transformation τ can be implemented by an arbitrary neural network.

3.3.2. Neural Spline

The coupling layer based transformation has its limitations in the higher dimension cases,
while the simple affine transform is used as coupling transform. In the high dimension
cases, it requires more layers to provide sufficient expressive power, which decreases
the efficiency and increases the costs. Spline based transformation is a possible solution
to address this limitation, especially in the higher dimension cases [51]. The spline
is a piecewise-polynomial or a piecewise-rational function, which passes a set of speci-
fied points and keeps monotonic inside all intervals between these points. There are a
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few options of spline based transformation to use: piecewise-linear, piecewise-quadratic,
piecewise-cubic, and piecewise-rational-quadratic splines. We begin with the simplest
option and then transition into other more complex options.

Recall that we partition the D-dimensional random variable x into two parts as x =
[x≤d,x>d]

T for d < D. And the second part coupling transform is given as ω with the
second part coupling conditioner m.

For piecewise-linear spline, we divide the part x>d into k bins with equal width w. Let
the ((D − d) × k) matrix Q̂ to denote the condition m(x≤d), whose each row defines
the unnormalized probability mass function in the corresponding dimension in the part
x>d. Then, we normalize each row of the matrix Q̂ by the softmax function, and obtain
the normalized matrix Q. Thus, the probability density function in the i-th dimension is
derived as

qi(x
i
>d) =

Qib

w
(3.11)

with the bin b = ⌊kxi>d⌋ that contains the scalar value xi>d for all i = d + 1, . . . D. And
the i-th dimension coupling transform can be obtained by the integral of the probability
density function in the i-th dimension:

ωi(x
i
>d;mi(x≤d)) =

∫︂ xi
>d

0
qi(t) dt = αQib +

b−1∑︂
k=1

Qik , (3.12)

where α = kxi>d − ⌊kxi>d⌋ denotes the relative position of xi>d in bin b. It is obvious
that the Equation (3.12) is the integral form of Equation (3.9). Finally, we obtain the
log-absolute-determinant as

log |det Jτ (x)| = log

⃓⃓⃓⃓
⃓

D∏︂
i=d+1

qi(x
i
>d)

⃓⃓⃓⃓
⃓ = log

⃓⃓⃓⃓
⃓

D∏︂
i=d+1

Qib

w

⃓⃓⃓⃓
⃓ =

D∑︂
i=d+1

log
Qib

w
,

by the combination of the Equation (3.10) and (3.11).

Piecewise-quadratic spline admits a probability density function for piecewise-linear
spline, which uses k+1 vertices. Let the V̂ be the unnormalized ((D−d)× (k+1))matrix
that stores the vertical coordinates of these vertices, and the Ŵ be the unnormalized
((D−d)×k)matrix that stores the horizontal differences between the neighboring vertices.
These two matrices are given by the second part coupling conditioner m(x≤d). Again
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we normalize each row of the matrix Ŵ by the softmax function to obtain W . As for
normalizing the matrix V̂ , we use

Vij =
exp

(︂
V̂ ij

)︂
∑︁K

k=1

exp
(︂
V̂ ik

)︂
+exp

(︂
V̂ i k+1

)︂
2 Wik

,

where the denominator makes sure that the i-th row of the matrix V represents a valid
probability density function [51]. Then, the probability density function can be defined
as

qi(x
i
>d) = lerp(Vib, Vi b+1, α) ,

where α =
(︂
xi>d −

∑︁b−1
k=1Wik

)︂
/Wib indicates the relative position of the xi>d in bin b.

Thus, the i-th dimension coupling transform is given as

ωi(x
i
>d;mi(x≤d)) =

α2

2
(Vi b+1 − Vib)Wib + αVibWib +

b−1∑︂
k=1

Vik + Vi k+1

2
Wik .

And the log-absolute-determinant can be obtained by applying the Equation (3.10),
but with interpolating the entries of matrix V . The piecewise-quadratic spline based
transformation provides better accuracy, efficiency and robustness[51].
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4. Policy Search

Policy search is employed to directly optimize the parameters of a given policy model. It is
well suited in the high dimension cases since it can be gracefully scaled with dimensionality
and show the guarantees of convergence [55, 10, 42]. And policy search can be classified
into model-free and model-based. They are both based on either policy gradients, expec-
tation maximization based updates, or information theoretic insights [10]. Model-free
policy search is used to generate the "samples", or the trajectories, by the interactions with
the real robot or robot physical simulation environment, while model-based policy search
uses a learned internal simulator of dynamics of the robot from the observed data, i.e.,
the policy model provides the prediction about how the robot and its environment would
behave following the current learned policy model, to help to generate the "samples".
Thus, model-based policy search requires fewer interactions with the robot and promises
to generate unforeseen situations efficiently from the policy model learned from observed
data.

We employ the idea of model-based policy search in this paper, which can be solved
by maximization of the reward following the policy. In the following sections, we intro-
duce the model-based policy search and give a strategy to transfer this maximization
problem to be an equivalent minimization problem. Then, we discuss the objective func-
tions for the minimization problem and how these can be used in our method. At last,
we show how to compute the gradient for updating the parameters of the policy model
during the training phase. And we give a summary of policy search using normalizing
flow at the end of this chapter.
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4.1. Model-Based Policy Search

The model-based policy search requires a policy model with the power of expressive so that
the policy model is able to learn arbitrary complex interesting target distribution based on
the gradient descent update strategy. Since the normalizing flow can provide two main
benefits: a) high expressive power to represent any distribution, b) the ability to generate
samples and evaluate over samples, we use the policy model based on normalizing flow in
our policy search task.

When we use the insights from policy search, this optimization problem can be solve by
maximizing the reward following the policy. Assuming that x ∈ RD is a random variable in
D dimension space, q(x) = q̃(x)/Z is a normalized target distribution of an unnormalized
target distribution q̃(x) with normalization constant Z =

∫︁
x q̃(x) dx. And then we define

the reward as r(x) = log q̃(x). As for the objective function for this policy search problem,
we define it as

R =

∫︂
x
p(x)r(x) dx−

∫︂
x
p(x) log p(x) dx ,

where H(x) = −
∫︁
x p(x) log p(x) dx is an additive entropy, and p(x) represents policy

model. The objective function R denotes the reward following the policy and entropy of
the policy self. Therefore, the reward maximization problem is described as

p∗(x) = argmax
p(x)

R .

If we go one step further, so the objective function R can be rewritten as

R = −
∫︂
x
p(x) log

p(x)

exp(r(x))
dx .

Actually, the rewritten form of the objective function R is nothing else but the negative
value of the Kullback-Leibler Divergence. Thus, the maximization of the objective function
R is equivalent to the minimization of the Kullback-Leibler Divergence. The Kullback-
Leibler Divergence is usually used to measure the distance between two distributions. As
a result of that, if we properly define the objective function in the policy search, we can
solve this optimization problem by another equivalent way to find an optimal policy model
distribution, which is closest or most similar to the target distribution. And we use L to
denote this kind of objective function used to measure how similar between the policy
model distributions and target distribution, which can be Kullback Leibler Divergence,
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Jensen Shannon Divergence, and so on. Finally, it can be described as to search the optimal
policy model p∗(x) so that

p∗(x) = argmin
p(x)

L(q̃(x), p(x)) . (4.1)

And assuming that distribution p(x;θ) is with respect to the parameter vector θ so that
searching for an optimal policy model distribution p∗(x) is equivalent to searching for an
optimal parameter vector θ∗. Therefore the Equation (4.1) can be given as

p(x;θ∗) = argmin
p(x;θ)

L(q̃(x), p(x;θ)) . (4.2)

The optimal distribution p(x;θ∗) can be derived using a gradient-based algorithm, follow-
ing the gradient descent with respect to parameter vector θ. And the parameter vector θ
updating strategy is given by

θ ← λ∇θL(q̃(x), p(x;θ)) , (4.3)

where λ is the step size, until it reaches the optimum of parameter vector θ∗. What can
not be ignored is that the reparameterization trick is required for computing the gradient
related to random variables in the distributions. More details about reparameterization
trick are presented in Appendix A. At last, we take intractable distribution p(x;θ∗) to
approximate target distribution q̃(x).

4.2. I-projection and M-projection

The similarity between two distributions can be measured by Kullback–Leibler (KL)
Divergence [38], which can also be called relative entropy. Given two distributions p1(x)
and p2(x), it is defined as

DKL [p1(x) ∥ p2(x)] =
∫︂
x
p1(x) log

(︃
p1(x)

p2(x)

)︃
dx .

The KL Divergence is always non-negative, with zero if and only if p1 = p2 almost every-
where. It is natural to use KL Divergence as the objective function in the application of
policy search problems.
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Since KL Divergence is asymmetric, it provides two forms to use in the optimization
problem. One is called information-projection or I-projection, the other is called moment-
projection or M-projection. In the following sections, we particularly focus on these two
divergences, and we use the notations already defined in the Section 4.1.

4.2.1. I-projection

I-projection is sometimes also called reverse KL Divergence, which is defined between the
target distribution q̃(x) and policy model p(x) as

DKL [p(x) ∥ q̃(x)] =
∫︂
x∼p(x)

p(x) log

(︃
p(x)

q̃(x)

)︃
dx

= Ex∼p(x) [log p(x)− log q̃(x)] ,

where the expectation over samples from the policy model can be estimated by Monte
Carlo as

Ex∼p(x) [log p(x)− log q̃(x)] ≈ 1

N

N∑︂
n=1

log p(x)− log q̃(x) |x∼p(x) .

Then, the gradient of reverse KL Divergence with respect to parameters θ is estimated by

∇θDKL [p(x) ∥ q̃(x)] ≈ 1

N

N∑︂
n=1

∇θ log p(x)−∇θ log q̃(x) |x∼p(x) .

Following the Equation (4.2), the optimization problem to fit the policy model p(x) with
respect to parameters θ to the target distribution q̃(x) can be solved by

p(x;θ∗) = argmin
p(x;θ)

DKL [p(x;θ) ∥ q̃(x)]

with gradient-based methods in practice, when the I-projection is used as an objective
function. Thus, the parameters θ is updated based on the Equation (4.3).

However, using I-projection typically underestimates the target distribution and locks onto
one of the modes of the target distribution. In other words, the reverse KL Divergence
ignores the target distribution q̃(x) > 0 for some x, where p(x) = 0, without any penalty.
Hence, the I-projection tries to avoid spreading the approximation, which is known as
zero forcing. To address this problem, we add M-projection into the objective function to
contribute the extra information about the target distribution, to avoid the policy model
locking onto only one mode of the target distribution.
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4.2.2. M-projection

M-projection is sometimes also known as forward KL Divergence. However, the situation
for applying the M-projection is different to the above assumptions in Section 4.1. In
contrast, the target distribution q̃(x) needs to have the ability to generate samples, or the
samples are given, that can be used to approximate the sampling from target distribution
q̃(x). Hence, we employ a buffer to store the samples from the policy model that are
evaluated to have the best rewards under the target distribution q̃(x). Assume the buffer
is already well designed to approximate the sampling from target distribution, and we
demonstrate how to build the buffer in Section 4.4 in more detail.

And the M-projection is defined between the target distribution q̃(x) and policy model
p(x) as

DKL [q̃(x) ∥ p(x)] =
∫︂
x∼q̃(x)

q̃(x) log

(︃
q̃(x)

p(x)

)︃
dx

= Ex∼q̃(x) [log q̃(x)− log p(x)] ,

where x ∼ q̃(x) represents the estimation of sampling from the target distribution. Again
the expectation over the these samples can be estimated by Monte Carlo as

Ex∼q̃(x) [log q̃(x)− log p(x)] ≈ 1

M

M∑︂
n=1

log q̃(x)− log p(x) |x∼q̃(x) .

Since the target distribution q̃(x) and its sampling x ∼ q̃(x) are independent on the
parameters θ, the Monte Carlo estimation for the gradient of forward KL Divergence with
respect to the parameter θ is given by

∇θDKL [q̃(x) ∥ p(x)] ≈ 1

M

M∑︂
n=1

−∇θ log p(x) |x∼q̃(x) .

M-projection has a property named zero avoiding, which means the forward KL Divergence
only notices all the x as long as q̃(x) > 0, but is not affected by those x with q̃(x) = 0
at all, even if on which the p(x) is really different from the q̃(x). Hence, M-projection
overestimates the target distribution.

4.2.3. Combination of I-projection and M-projection

Neither I-projection alone, either M-projection alone is satisfied with the requirements
in practice, because one is always underestimating, while the other is always overesti-
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(a) Information projection (b) Moment projection

Figure 4.1.: Information projection and moment projection of a target Gaussian
mixture model (red) with two components onto the set of Gaussians
(blue). Information projection underestimates the target distribution
and then locks onto one mode of the target distribution, while the mo-
ment projection overestimating the target distribution and then be-
coming too spread.

mating. The Figure 4.1 gives a more intuitive display of the behaviors of I-projection and
M-projection.

Thus, we leverage both I-projection and M-projection in the objective function, using a
weight to control the contribution of these two parts. As a result of that, the optimization
problem is described as

p(x;θ∗) = argmin
p(x;θ)

DKL [p(x;θ) ∥ q̃(x)] + βDKL [q̃(x) ∥ p(x;θ)] ,

where β denotes the weight of M-projection, with the objective estimated by Monte Carlo
as follows:

L(q̃(x), p(x;θ)) = DKL [p(x;θ) ∥ q̃(x)] + βDKL [q̃(x) ∥ p(x;θ)]

≈ 1

N

N∑︂
n=1

log p(x)− log q̃(x) |x∼p(x) +

β
1

M

M∑︂
n=1

log q̃(x)− log p(x) |x∼q̃(x) .

(4.4)
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Then, the gradient of L with respect to θ is given as

∇θL(q̃(x), p(x;θ)) = ∇θDKL [p(x) ∥ q̃(x)] + β∇θDKL [q̃(x) ∥ p(x)]

≈ 1

N

N∑︂
n=1

∇θ log p(x)−∇θ log q̃(x) |x∼p(x) +

β
1

M

M∑︂
n=1

−∇θ log p(x) |x∼q̃(x) .

(4.5)

Note that the gradient should be computed over the samples generated from the distri-
bution, we use reparameterization trick to achieve this gradient computing. And when
we use normalizing flow based policy model, the reparameterization trick is done in the
latent space, and then this gradient computing is passed by the normalizing flow to the
observed space, where the policy model is defined. Finally, the Equation (4.3) is applied
to optimize the parameters θ, when the gradient is estimated.

4.3. Gradient Maintaining for Policy Search

As mentioned in the Section 4.1, the target distribution only provides the evaluation of
the probability density values on given observed samples. But a set of discrete observed
samples can not give any information about the gradient, on which the policy search
method relies to update the parameters. Especially, the gradient is not always existed in
the cases of sparse rewards. Thus, a continuous function f(x) is employed to approximate
the target distribution by fitting these observed samples so that it can provide the gradient
almost everywhere. Sometimes the gradient could become too steep in the local region
that the gradient-based algorithm is not able to keep stable anymore. Therefore, we try to
maintain the gradient by smoothing the approximate function f(x).

Given a set of observed samples with the rewards evaluated under target distribution,
i.e. the log-value of probability densities (x1, r1), (x2, r2), . . . (xk, rk), it is intuitive to
smooth them by scaling the rewards r1, r2, . . . rk with a weight smaller than 1. And we
choose the weight as the reciprocal of the deviation of these reward values 1/σk, if the
deviation σk > 1, so give scaled reward values as

r̂i =

{︄
ri/σk σk > 1

ri σk ≤ 1
for i = 1, 2, . . . k ,
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Then, we leverage the f(x) to fit the normalized observed samples (x1, r̂1), (x2, r̂2), . . . (xk, r̂k),
denoted as follows:

log q̃(x) ≈ f(x) |(x1,r̂1),(x2,r̂2),...(xk,r̂k) for all x ∈ RD ,

where the f(x) can be implemented with neural network in practice. Finally, we use the
approximated rewards to compute the objective function and its gradient. The Monte
Carlo estimation of I-projection in the objective function from the Equation (4.4) and (4.5)
is given as

DKL [p(x;θ) ∥ q̃(x)] ≈ 1

N

N∑︂
n=1

log p(x)− log q̃(x) |x∼p(x) ,

so we apply the approximation of the target distribution f(x) to obtain

1

N

N∑︂
n=1

log p(x)− log q̃(x) |x∼p(x)≈
1

N

N∑︂
n=1

log p(x)− f(x) |x∼p(x) .

Since the rewards are approximated by the f(x) to show the gradient, we must train the
f(x) before training the policy model to approach the target distribution and make sure
the f(x) is providing the right gradient direction towards to target distribution. As a result
of that, we train the policy model with two steps: first, to train the approximation f(x) of
the target distribution using a set of observed samples for a number of training episodes;
second, to train the policy model to follow the gradient provided by the f(x) to approach
the target distribution for one training episode. The training episodes trade-off between
the first step and the second step needs to be set properly so that the approximation is
well qualified but not overfitting.

4.4. Application of M-projection with Buffer

The policy search problem must take care of the exploration-exploitation trade-off so that
the algorithm explores new territories for the potential global optimums, but also exploits
what it has learned so far. Intuitively, it needs to explore more at the beginning and then
exploit more, when enough new information has already been explored. Since the target
distribution does not provide sampling but only evaluating, we develop a buffer to store
a set of samples to approximate the results of sampling from the target distribution, in
order to leverage the M-projection to avoid premature convergence of the policy model to
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a local optimum. The buffer is actually initialized and updated with generated samples
from the exploration phase. It takes the samples with high rewards in and drops out the
samples with few worth to exploit. However, the buffer would be too greedy to keep as
much available information as possible, when it always only takes the samples with high
rewards in. In the end, the samples in the buffer are gathering in a very small space,
which may be one of the modes of the target distribution. Thus, we kernelize the buffer
with a Gaussian kernel to filter the "duplicate" samples, where "duplicate" means the two
samples are so close to being treated just like one. Then, these samples in the buffer help
to guide the policy model way to the global optimum.

Let φ(ϱ) denote the standard Gaussian distribution N (0, 1), and work as a Gaussian
kernel for each sample. We use r(x, ρ) to denote the local region, which is a hypersphere
with the center x and the radius ρ, and the ρ is given by

φ(ρ) =
1√
2π

e−
ρ2

2 = pc,

where the constant pc is the specified probability density value under φ(ϱ). Then, we take
the samples that are in the same region r(x, ρ) as the "duplicate" samples, and we only
keep one sample with the greatest reward value in this region. What’s more, if the samples
generated from the last time and this time are "duplicate", we also keep the sample with
the greatest reward value among them. As a result of that, the buffer is able to keep
the samples distributed over the whole search space with the worth to exploit. Finally,
the samples in the buffer are used to approximate the sampling from the target distribution.

Nevertheless, this approximation may not be so well as expected, because some samples
that are not under the target distribution may also be included. Therefore, we let all the
samples in the buffer weighted for computing M-projection. From the Equation (4.4)
and (4.5), the Monte Carlo estimation of M-projection in the objective function is given as
follows:

DKL [q̃(x) ∥ p(x;θ)] ≈ 1

M

M∑︂
n=1

log q̃(x)− log p(x) |x∼q̃(x) ,

where only the second term contributes the gradient to the objective function. Thus, we
focus on the second term of M-projection. We use B(x) to approximate x ∼ q̃(x), and
the approximation is given by

1

M

M∑︂
n=1

− log p(x) |x∼q̃(x)≈
1

M

M∑︂
n=1

− log p(x) |x∈B(x) .
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Then, we use the weight γ(x) = q̃(x)/p(x) for all the samples in the buffer. For the cases
that the target distribution q̃(x) provides a high reward, but the current learned policy
model p(x) provides a low reward, so the M-projection over these samples x is emphasized
with high weights. And it can not be ignored that the target distribution p(x) is usually
unnormalized so that the above result is not able to directly be weighted. We address this
problem by self-normalized importance sampling, which gives the result

1

M

M∑︂
n=1

− log p(x) |x∼q̃(x) ≈
1

M

M∑︂
n=1

− log p(x) |x∈B(x)

=
1
M

∑︁M
n=1− log p(x)γ(x) |x∈B(x)

1
M

∑︁M
n=1 γ(x) |x∈B(x)

.

Therefore, the buffer provides the information of exploration by approximating the sam-
pling from target distribution and weighting the approximation results to compute M-
projection.

4.5. Implementation of Policy Search Using Normalizing Flow

We have theoretically discussed the idea of policy search using normalizing flow, so in
this section, we are giving at first the summary of this idea, and then the implementation
details. Recall that we define the random variable x ∈ RD, the policy model as p(x;θ),
the unnormalized target distribution as q̃(x) with the reward as r(x) = log q̃(x), the nor-
malized target distribution q(x) = q̃(x)/Z with normalization constant Z =

∫︁
x q̃(x) dx,

the objective function as L. And x ∼ p(x;θ) represents sampling from the policy model.

We summary the method in the Algorithm 1. Note that we scale the (sample, reward)
pairs for smoothing this approximator f(x) to avoid the too steep gradient, which could
cause the collapsing of the policy model during the training, in the local region. And we
are using the reward defined by the unnormalized target distribution, for which we are not
able to calculate the normalizing constant Z. But this constant Z is not dependent on the
parameters θ, so it can be ignored while we computing the gradient w.r.t the parameter θ.
What’s more, the gradient is related to the random variables of the distribution. In order
to achieve this gradient computing, the reparameterization trick is used. And the gra-
dient can be passed by normalizing flow, so to update the parameters θ of the policy model.
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When computing the M-projection in the objective function, the best samples, that have
been explored in the previous training epochs, are kept in the buffer to approximate the
sampling from the target distribution. And also each of them is weighted with a weight
related to the current learned policy model using importance sampling.

For the training set, we use pre-training and entropy decreasing to avoid collapsing
of the policy model onto local optimum. Pre-training means that we initialize the policy
model at first to have the ability to generate samples in a wide range. And entropy
decreasing is used to emphasize the entropy term in the objective function with decreasing
weight. We use entropy decreasing from the beginning for a given epoch number to let the
policy model can explore areas in the search space. During the entropy decreasing, the
M-projection is not able to contribute to the objective function. After that, the M-projection
is weighted with the β in the objective function.
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Input: the normalizing flow based policy model p(x;θ), the reward function
r(x) = log q̃(x) with the unnormalized target distribution as q̃(x)

Initializing p(x;θ);
Initializing training settings: set the entropy decreasing, set the inner training
iteration, set the weight of M-projection, and other necessary parameters;

while not converged do
for inner training iterations not reached do

Sampling from the policy model:
(x1,x2, . . .xN ) ∼ p(x;θ);

Getting reward on the samples:
r1, r2, . . . rN ;

Smoothing by scaling the reward to generate (sample, reward) pairs:
(x1, r̂1), (x2, r̂2), . . . (xN , r̂N );

Fitting the (sample, reward) pairs using a non-linear function:
r(x) ≈ f(x) |(x1,r̂1),(x2,r̂2),...(xN ,r̂N );

end
Sampling from the policy model:

(x1,x2, . . .xK) ∼ p(x;θ);

Updating the buffer with help of a Gaussian kernel for approximating sampling
from target distribution:
(x1,x2, . . .xJ)→ B(x);

Computing I-Projection and M-projection as an objective function L over the
samples (x1,x2, . . .xK) and B(x):
L = DKL [p(x;θ) ∥ exp(r(x))] + βDKL [exp(r(x)) ∥ p(x;θ)];

Computing the gradient of the objective function L w.r.t θ using
reparameterization trick:
∇θL = ∇θDKL [p(x;θ) ∥ exp(r(x))] + βDKL [exp(r(x)) ∥ p(x;θ)];

Updating the parameter θ:
θ ← λ∇θDKL [p(x;θ) ∥ exp(r(x))] + βDKL [exp(r(x)) ∥ p(x;θ)];

end
Algorithm 1: Policy search using normalizing flow.
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5. Robot Grasping Task Overview

It is a fundamental problem to manipulate a robot arm to grasp an object in machine
learning. In order to solve this task, a wide range of methods are developed [58], from
analytic methods [74] to data-based learning approaches [6]. And the data-based learning
approaches have gained a lot of popularity and success in recent years. The data-based
learning approaches are usually aiming to find an optimal grasping setting for the grasper,
e.g. the position, the posture, the force-closure, and so on. To achieve this goal, most
previous approaches use deep learning to consider the problem as training a neural net-
work for predicting the successful probability of grasping actions, when RGB observations
and depth measurements are given [75, 45]. So these methods require an additional
component for generating the evaluated and ranked samples. It is less natural but more
complex to construct the methods, and also more difficult to adapt to the changing of the
tasks. In this work, we are applying the policy search with normalizing flow to directly
learn the distribution of the grasping setting of the grasper over the whole space, which
provides the abilities of both sampling and evaluating. Thus, the evaluation-ranking
process can be eliminated in the tasks for grasping, so that the model becomes more
compact and gives the power of adaptive.

In this chapter, we mainly introduce the grasping task based on the simulation. At first, we
focus on the formulation of the grasping task and give the problem statement. Currently,
the method does not rely on the RGB observations or the depth measurements, but takes
all the information of objects as prior knowledge. The reason is that we are more interested
in the performance of our method to give a complete picture of the distribution of grasping
settings over the whole space. Then, it is illustrated how to properly choose and set
the environment with robot grasper, how to simplify the simulation in the environment.
Finally, the implementation of the interaction is discussed, which is between the policy
model and the environment, and used for training the policy model from trials.
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5.1. Problem Statement of Grasping Task

We focus on the grasping task for a given simple 3D object model and the parallel-jaw
gripper with two fingers. The gripper has 7 degrees of freedom, i.e. the grasping position
µg ∈ R3, the posture of the gripper νg ∈ R3 and the close position of the two fingers
cg ∈ R. So we are searching for a good grasping setting for the gripper in this joint 7
dimension grasping action space. And a high reward value is given for the successful
grasping, while a low reward value used for the failed grasping. Thus, the reward r is
defined to be binary over the grasping action space. As a result of that, the grasping
actions of the gripper with different given back rewards are considered as a distribution
over this space. If we defined the reward r in the log-range, this interesting distribution
can be denoted as

q(µg,νg, cg) = er(µg ,νg ,cg) , (5.1)

which can be used to describe the probability of successful grasping. If we joint the
position µg, the posture νg and cg together, we obtain

q(x) = er(x). (5.2)

This interesting distribution is not known, but we are going to approximate it with a nor-
malizing flow based policy model p(x). As it showed in the Section 4.1, the maximization
problem of the reward in the policy search is equivalent to the minimization problem of the
"distance" between the interesting target distribution and policy model. Then, we are able
to apply the policy search using normalizing flow, which is demonstrated in the Chapter 4
and the Chapter 5, to train the policy model to approximate the target distribution that
could be multi-modal.

5.2. Building Simulation Environment

We are building the simulation environment for the grasping task at first to evaluate our
method. PyBullet is a popular and easy to use Python module in machine learning, which
is focusing on sim-to-real transfer. And PyBullet provides abundant robot models and a reli-
able physical engine for simulation. The interaction with PyBullet is also easy to implement.

Since we focus on grasping the object, we only build the robot hand with two fingers
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as the robot model. We ignore the process to drive the robot hand to approach some
goal positions with specific postures for grasping, and assume this process is ideal and
precise. But we only care about the final position and posture of the robot hand, which
could lead to a successful grasping. In order to drive the robot hand, we mount the robot
hand on a virtual and invisible robot arm, because of the limitation of PyBullet simulation
environment. And this virtual and invisible robot arm can only place the robot hand
to the expected position with the expected posture, but has no effect on the grasping
task self. The virtual and invisible robot arm consists of 6 links, 3 of which are used for
the translation respectively along the three axises, and the rest 3 of which are used for
rotation respectively along the three axises. Then, such a robot hand with two fingers
is able to be placed through these 6 virtual and invisible links at any position with any
orientation precisely, simply, and without dynamics. In this way, we can avoid some noise
from irrelevant processes to the grasping and can speed up the simulation.

And the two fingers are always set to be symmetric by using the constraint between
them, which means they are always driven to close for the same distance. So the close
distance of them is only another one degree of freedom. For now, we set the force on the
fingers as a const to ensure it could not make the grasping fail, so the close distance is the
only thing that matters of the successful grasping for a specific object, besides the position
and posture of the robot hand.

As for the object to grasp, we start from the simple lego model at current. The lego
model represents a kind of simple and regular objects for grasping tasks. The object
is always placed at a fixed position inside a tray before every grasping attempt. Then,
the robot hand is doing the grasping task, when the position, the posture, and the close
distance are given. The whole environment is showed in the Figure 5.1. For every grasping
attempt, the object is placed at the fixed position for preparation. Next, the robot hand
is placed at the to evaluate position with a specific posture. Then, the fingers close for
a given distance. Finally, the robot hand tries to lift the object to a height for a while.
When the object keeps contacting with the fingers for the whole grasping process, then
this grasping is successful, otherwise, this grasping is failed.
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Figure 5.1.: The simulation environment based on the PyBullet for the grasping
task evaluated in this paper. It shows the two fingers robot hand with
a visual and invisible robot arm, and the simple lego object waiting to
grasp inside the tray.

5.3. Implementation of Reward Function

The successful grasping gives the high reward back, while the failed grasping gives the
low reward back. Actually, it describes the binary reward for the grasping task. However,
this kind of binary reward could make it difficult to learn. It is possibly more unstable for
the used approximator to estimate the gradient of the target distribution, which could
lead to the worse training of the policy model. Note that graspings with low rewards can
also differ a lot among themselves, but the binary reward is not able to distinguish them.
That means grasping very close to the success can not provide more information than
grasping very far to the success, while using the binary reward. So it only relies on being
lucky enough to generate the grasping setting which can lead to successful grasping from
the whole search space.

It is wise to add an additional part to the reward. This additional part comes from
the distance between the robot hand and the object. Only when the robot hand has a
proper distance to the object, the grasping can be successful. Therefore, we define the
additional part of the reward rl as the log-value of the density value of a given gaussian
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distribution as follows
exp rl(∥µg − µt∥) ∼ N (l, v) , (5.3)

where the µg denotes the grasping position of the robot hand, the µt represents the
position of the object, and N (l, v) denotes the Gaussian distribution with the mean value l
and the variance v over the distance between robot hand and the object while applying the
grasping action. When we apply the Equation (5.3), the Equation (5.1) can be updated as

q(µg,νg, cg) = er(µg ,νg ,cg)+rl(∥µg−µt∥) .

Finally, if we joint the variables together, we expand the Equation (5.2) as

q(x) = er(x)+rl(lx) ,

where the lx represents the distance between the to grasp object and the grasping position,
when the grasping setting x is given.
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6. Experiments and Results

In this chapter, we evaluate our method in several experiments. The normalizing flow-
based policy model is applied in several experiments to demonstrate its expressive repre-
sentation ability to approach Gaussian mixture model with different structure settings.
Meanwhile, the effects of the training parameters have also been considered and evaluated.
And we use Gaussian mixture model with low covariance matrix to simulate sparse reward
cases for evaluating our method. Moreover, we apply it to finish the expected position
approaching task for the planar robot in both lower and higher dimension. Finally, we
evaluate this method in robotic grasping tasks in the simulation environment based on
PyBullet. In all the experiments the policy model would be trained for 10, 000 epochs, and
2, 000 samples at each epoch would be used.

6.1. Approximation to Gaussian Mixture Model

The experiment in this section shows the expressive power of normalizing flow based
policy model to approximate the Gaussian mixture model. We evaluate the policy model
constructed by both coupling layer and neural spline based flow. Note that the Gaussian
mixture model is not sparse in this experiment, so it is not wise to do further smoothing
of the target distribution. Otherwise, it may cause unstable of the training. Thus, in this
experiment we still use approximator f(x) to approximate the scaled (sample, reward).
But after that, we denormalize the approximated value. The objective function used in
this section is computed only by the I-projection, i.e. the reverse KL Divergence. For each
construction, we totally train the policy model for 10, 000 epochs and evaluate it with
different training settings.
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(a) The target distribution (left) and the
trained policy model (right).

(b) The target distribution (left) and the
trained policy model (right).

Figure 6.1.: Training policy model with different entropy decreasing speeds. In the
subfigure (a) it shows the result using slow entropy decreasing, i.e. the
weight of the entropy term in the objective function decreases from 0.9
to 0.5 in the first 8, 000 training epochs. In the subfigure (b) it shows
the result using fast entropy decreasing, i.e. the weight of the entropy
term in the objective function decreases from 0.9 to 0.5 in the first 4, 000
training epochs.

6.1.1. Using Coupling Layer

At first, we evaluate the coupling layer based policy model. We construct the policy model
by 10 coupling layers with hidden features as 64. And between any two coupling layers, we
add additionally a random permutation layer and a linear layer. For training the coupling
layer, we pre-train the policy model to map from a standard Gaussian distribution to a
uniform distribution before training.

Evaluating with Different Entropy Decreasing Speeds

We compare the results with different entropy decreasing speeds for first. For the slow
entropy decreasing, we let the weight of the entropy term in the objective function decrease
from 0.9 to 0.5 in 8, 000 epochs so that the policy model can do more exploration. And for
the fast entropy decreasing, we let the weight of the entropy term in the objective function
decrease from 0.9 to 0.5 in 4, 000 epochs. The results are shown in the Figure 6.1. In this
experiment, if we decrease the entropy slowly enough, so the policy model can converge
to all the modes of the target distribution. However, if we decrease the entropy too fast,
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(a) The target distribution
(left) and the trained
policy model (right).

(b) The target distribution
(left) and the trained
policy model (right).

(c) The target distribution
(left) and the trained
policy model (right).

Figure 6.2.: Training policy model with different inner training iterations. The sub-
figure (a) shows the result for training the approximator in the inner
training loop for 3 steps. The subfigure (b) shows the result for training
the approximator in the inner training loop for 6 steps. The subfigure
(c) shows the result for training the approximator in the inner training
loop for 12 steps.

the policy model collapses onto only some modes of the target distribution. Therefore, in
the training set we need to make sure that the entropy decreasing is slow enough.

Evaluating with Different Inner Iterations

In this experiment, we also test the policy model with different inner iterations. We
compare the results, when we set the inner training iterations as 3, 6, and 12. As it shows
in the Figure 6.2, when we train the approximator for 6 steps in the inner training loop, the
policy model can converge onto all the modes of the target distribution. However, when
we train the approximator for more steps or fewer steps, i.e. for 12 steps or 3 steps, the
policy model is not able to converge onto all the modes anymore. When the approximator
is trained for fewer steps, that means the approximation to the target distribution over
the samples generated from the currently trained policy model is not enough, so it can
not show the gradient descent direction towards to global optimum. If the approximator
is trained for more steps, that means the approximator is overfitting over the samples
generated from the current policy model, and the policy model is strongly stuck by the
current state. Therefore, the inner training iteration number should be set properly to
avoid the collapse of the policy model. Since we are using the approximator to give the
gradient towards to the global optimum, it is not qualified if it has been trained too little
to fit the (sample, reward) or has been trained too much.
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(a) The target distribution (left) and the
trained policy model (right).

(b) The target distribution (left) and the
trained policy model (right).

Figure 6.3.: Training policy model with different entropy decreasing speeds. In the
subfigure (a) it shows the result using slow entropy decreasing, i.e. the
weight of the entropy term in the objective function decreases from
0.9 to 0.5 in the first 4, 000 training epochs. In the subfigure (b) it shows
the result using fast entropy decreasing, i.e. the weight of the entropy
term in the objective function decreases from 0.9 to 0.5 in the first 2, 000
training epochs.

6.1.2. Using Neural Spline Based Flow

In this experiment, we construct the policy model with the neural spline based flow. In
order to achieve more nonlinearity, we employ the piecewise-quadratic neural spline to
construct the policy model. And we use two layers of neural spline flow to construct
normalizing flow, i.e. the depth is set to be 2. For every element we quantize the bound
range into 8 bins, so to use the quadratic spline function on these intervals. And in this
experiment, the bound for neural spline based flow has been set to be [−10, 10] at each
dimension.

Evaluating with Different Entropy Decreasing Speeds

At first, we test it with different entropy decreasing speeds. We compare the entropy
decreasing from 0.9 to 0.5 in 4, 000 epochs and 2, 000 epochs. The results are shown in
the Figure 6.3. When we set a slow entropy decreasing, the policy model can converge
onto all the modes of the target distribution. But if we set a fast entropy decreasing, the
policy model collapses. And compared to the policy model based on the coupling layer,
there are no connection lines among modes anymore using neural spline based policy
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(a) The target distribution
(left) and the trained
policy model (right).

(b) The target distribution
(left) and the trained
policy model (right).

(c) The target distribution
(left) and the trained
policy model (right).

Figure 6.4.: Training policy model with different inner training iterations. The sub-
figure (a) shows the result for training the approximator in the inner
training loop for 6 steps. The subfigure (b) shows the result for training
the approximator in the inner training loop for 12 steps. The subfigure
(c) shows the result for training the approximator in the inner training
loop for 24 steps.

model. The reason is that the neural spline based flow provides more nonlinearity and
has been bounded.

Evaluating with Different Inner Iterations

In this experiments we also test the policy model with different inner iterations. At first,
we train the approximator in the inner training loop for 12 steps so that the approximator
can give the gradient information. The result is presented in the Figure 6.4. And again
the if the approximator is trained too much or too little, the policy model can also not
converge to all the modes of the target distribution. Since the approximator trained too
little is not qualified, and the approximator trained too much is overfitting. And the policy
model is constructed with different layers, the inner iterations should be set properly for
different constructions.

As the above results show, the policy model based on the neural spline flow has a better
performance than based on the coupling layer in our policy search task context. Therefore,
we use the policy model based on neural spline flow for the approximation to a more
complex target distribution.
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(a) The target distribution
(left) and the trained
policy model (right).

(b) The target distribution
(left) and the trained
policy model (right).

(c) The target distribution
(left) and the trained
policy model (right).

Figure 6.5.: Training policy model with different entropy decreasing speeds. The
subfigure (a) shows the results using entropy decreasing from 1.0 to
0.5 in first 1, 000 training epochs. The subfigure (b) shows the results
using entropy decreasing from 1.0 to 0.5 in first 4, 000 training epochs.
The subfigure (c) shows the results using entropy decreasing from 1.0
to 0.5 in first 8, 000 training epochs.

6.2. Approximation to Sparse Reward Model

In this experiment, we apply our method in sparse cases. The target distribution is
chosen to be Gaussian mixture model but given with low covariance. The policy model is
constructed with the neural spline based flow with depth as 2. The bound for neural spline
based flow is set to be [−10, 10] at each dimension. And the bound range is quantized into
8 bins, at each of which the quadratic spline function is used to give the mapped value
element-wise. As for the objective function, we use both M-projection and I-projection.
The M-projection always reminds the policy model to exploit the areas possibly with high
rewards under the target distribution. Moreover, the entropy decreasing is also used
during the training. But at the phase of the entropy decreasing, the M-projection part of
the objective is ignored. As soon as the entropy decreasing is finished, the M-projection is
able to contribute into the objective with a given weight.

6.2.1. Evaluating with Entropy Decreasing Speeds and Inner Iterations

In this experiment, we test the training of policy model with different entropy decreasing
speeds. Since the M-projection is applied into the objective function, the information,
which is provided by the samples in the buffer for guiding the policy model towards the
global optimum, is always available so that the entropy decreasing speed does not have to
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(a) The target distribution (left) and the
trained policy model (right).

(b) The target distribution (left) and the
trained policy model (right).

Figure 6.6.: The states of the policy model during the training. The subfigure (a)
shows the policy state when the entropy decreasing is finished, here,
it means after 1, 000 training epochs. So the policy model explore the
areas as widely as possible. Only when the entropy decreasing phase
is finished, the M-projection is able to contribute to the objective func-
tion with a weight β = 1.0. The subfigure (b) shows the state of pol-
icy model after 10, 000 training epochs. The trained policy model con-
verges onto all the modes of this sparse target distribution.

be extremely slow like the cases only using I-projection. However, the M-projection used in
our method is approximated over the samples in the buffer. The buffer is always collecting
the samples worth exploring from the previous samplings following the policy model.
That means the entropy decreasing is only expected to be slow enough to let the buffer
collect enough samples for computing M-projection part of the objective. As it shows in
the Figure 6.5, the policy model can converge onto the target distribution in all the three
settings. However, the policy model with slower entropy decreasing speed is trained not as
well as with faster entropy decreasing speed, and covers too much area outside the target
distribution. The reason is that the policy model with the slower entropy decreasing speed
is not trained enough, when the totally training epoch is fixed. Since the M-projection
only contributes into objective function after the entropy decreasing phase, the slower the
entropy decreasing speed, the fewer epochs the policy model is trained. Assume that the
total training epoch is large enough, the policy model could learn the target distribution
as well, but it would unnecessarily increase the time cost. So the policy model should be
able to not only explore as much area as possible but also decrease the time cost, before
the M-projection is added into the objective function. Figure 6.6 explains the situation.
After the entropy decreasing phase for first 1, 000 epochs, the policy model is almost like a
uniform distribution to explore all the searching space inside the bounds. Then, we stop
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(a) The target distribution (left) and the
trained policy model (right).

(b) The target distribution (left) and the
trained policy model (right).

(c) The target distribution (left) and the
trained policy model (right).

(d) The target distribution (left) and the
trained policy model (right).

Figure 6.7.: Training policy model with different inner iterations in sparse cases.
The subfigure (a) shows the result with inner iterations as 3. The sub-
figure (b) gives the result with inner iterations as 6. The result with 12
inner iterations is shown in the subfigure (c). And the result with 30
inner iterations is presented in the subfigure (d).
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the entropy decreasing phase and let the M-projection contribute into the objective. It
should be noted that in the high dimension search space, we would choose a little slower
entropy decreasing speed to let the policy model do enough exploration.

As for the inner iterations at each training epoch, we also test some different settings to
compare the results. The Figure 6.7 presents the results with different inner iterations.
When the inner training step is set to be 30, the policy model acts not as well as the others
for covering too much area outside the target distribution. And when the inner training
step 3 or 6, then there are some not expected banded area between two different modes.
For the training step 12, the policy model is trained with more clearly separated modes
and less covering of area outside the target distribution. From the results we observe that,
if the number of the inner iteration is too large, there could be more resistance for the
policy model to step over the not optimal state at current. And the policy model is not able
to follow the gradient descent direction if the inner training of the approximator is not
enough. Thus, it also requires a proper setting of inner training iterations for cooperating
well with the outer training for updating the policy model itself, so that the policy model
can give a more accurate approximation after training.

6.2.2. Evaluating with Weights of M-projection

Since we leverage the M-projection in the total objective function for the application in
sparse cases, it is crucial to determine the weight of M-projection in the objective function.
And it is intuitive that the objective depends too much on the M-projection if the weight
is extremely high and vice versa. So we test different possibilities of the weight to show
the effects. As the results presented in the Figure 6.8, if the weight β is too lower, e.g.
β = 0.5, the policy model approximates the target distribution more widely. But when
the weight β is set too higher, e.g. β = 10 or β = 20, the objective emphasizes more the
M-projection part, so that the trained policy model can still not accurately approximate the
target distribution. For the cases of sparse reward, we choose the β = 1 for the training.
Actually, the application of both I-projection and M-projection leads to the balance of zero
forcing and zero avoiding, where the balance depends on the weight of the M-projection.
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(a) The target distribution (left) and the
trained policy model (right).

(b) The target distribution (left) and the
trained policy model (right).

(c) The target distribution (left) and the
trained policy model (right).

(d) The target distribution (left) and the
trained policy model (right).

Figure 6.8.: Training policy model with different weight β of the M-projection in
the objective in sparse cases. The subfigure (a) shows the result with
the weight β as 0.5. The subfigure (b) presents the result with the
weight β as 1. The weight β equals to 10, and the result is given in
the subfigure (c). The weight β is set to be 20 for training, whose result
is presented in the subfigure (d).
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6.3. Application in Approaching Task for Planar Robot Arm

From the above results, we know how the different training settings affect the result. In
this section, we are going to apply our method with the proper training setting in the
approaching task for the planar robot arm, which gives a closer approximation of sparse
reward to reality. And also we apply our method in higher dimension cases to evaluate its
performance. The approaching task for the planar robot arm is better for visualization of
the results.

For the planar robot arm, we set the total length to be fixed, and the length of each
link to be the quotient of the total length and the number of the links. The dimension
number is nothing else but the number of all the links. And the link is joint with the
previous link with only one degree of freedom. The relative angle between the link to the
previous one is defined as the parameter in this degree of freedom. And the search space
is defined as the space consisting of the relative angle of each planar robot link. Then, the
position of the top of the planar robot arm can be calculated given these relative angles of
all the robot links. Finally, we are aiming to let the top of the planar robot to approach
one expected position in the planar as precisely as possible. This expected position is set
to be (2, 0). And the expected distribution is defined as a distribution with this expected
position as the mean, and the low covariance 0.1 for each coordinate in the planar. Thus,
the target distribution to be approximated in the search space is multi-modal and sparse.
There always exists different relative angles of each link to place the top of the planar
robot arm to the expected position, and only when this placing with small error would
return high reward, i.e. the log value of the probability density following the expected
distribution.

For 2 Dimensions

To begin, we test it in 2 dimensions, i.e. the planar robot arm has only two links. The
training settings of the policy model are set as follows: a) the entropy decreasing is
designed from 1.0 to 0.5 in the first 2, 000 epochs; b) the inner training iterations is set to
be 12; c) the weight β of M-projection in the objective is set to be 1.0.

The samples, which can be seen as the postures of the planar robot arm following the
parameter settings, from both the target distribution and the learned policy model are
presented in the Figure 6.9. All postures are distinguished by different colors from the
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Figure 6.9.: Application of the method in the approaching task for the planar robot
arm. The expected position is at (2, 0). In order to visualize the distri-
bution, we use a color bar beside the subfigures to map the rewards
onto the postures of the planar robot arm. The postures of the planar
robot arm with high rewards are colored close to the warm color, while
those with low rewards are colored close to the cool color. And the
numbers beside the color bar show the max, min, and mean values of
the exponential of the rewards exp r(x) of all the samples visualized in
the figures. The left figure shows the target distribution for the planar
robot arm to approach the expected position. The right figure shows
the policy model trained to approximate the target distribution.
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color map. The higher the reward is, the closer the posture is colored to be red with high
transparency; the lower the reward is, the closer the posture is colored to be blue with low
transparency. On the left side, it shows the samples (postures of the planar robot arm)
from the target distribution in the search space. On the right side, the samples (postures
of the planar robot arm) from the learned policy model are given. And the numbers beside
the color map show the max value, min value, and the mean value of the exp r(x). The
policy model is able to approximate the sparse target distribution well. The learned policy
model can give a sight of the whole shape of the target reward distribution, and it can
also converge onto all the modes of the target distribution. However, the policy model
is much smoother than the sparse target distribution. The reason is that we use a much
smoother approximator with gradient information to approximate the target distribution
without gradient information. Nevertheless, the policy model is still able to generate
reliable samples that belong to the target reward distribution with a high possibility.

For 7 Dimensions

Next, we go to the 7 dimensions cases to evaluate our method. And because it is in a
higher dimension, we set a smaller kernel to filter the explored samples into the buffer for
computing the M-projection. Note that it is hard to clearly present the whole distribution
over the postures of the planar robot by coloring, because overlapping of too many abun-
dant postures of the planar robot in 7 dimensions causes the loss of the details. Then,
we add a prior distribution of the planar robot. The added prior distribution forces the
policy model to keep focusing the defined region by itself in the search space and then to
search more in this region. Thus, it could provide a more clear visualization of the target
distribution over all the posture of the planar robot by coloring.

We set the planar robot to have 7 links in the approaching task on the planar. The
general training settings of the policy model are set as follows: a) the entropy decreasing
is designed from 1.0 to 0.5 in the first 2, 000 epochs; b) the inner training iterations is set
to be 12; c) the weight β of M-projection in the objective is set to be 1.0.

The result is shown in the Figure 6.10. Again all the postures are distinguished by
different colors in the visualization of both target distribution and learned policy model.
The higher the reward is, the closer the coloring of the posture is to the warm colors with
high transparency. And the lower the reward is, the closer the coloring of the posture is to
the cool colors with low transparency. The figure on the left side represents the target
distribution which we would like to approach. The policy model shown on the right is
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Figure 6.10.: Application of the method in the approaching task for the planar
robot arm. The expected position is at (2, 0). In order to visualize the
distribution, we still use a color bar beside the subfigures to map the
rewards onto the postures of the planar robot arm. The postures of
the planar robot arm with high rewards are colored close to the warm
color, while those with low rewards are colored close to the cool color.
And the numbers of beside the color bar show the max, min, and mean
values of the exponential of the rewards exp r(x) of all the samples vi-
sualized in the figures. The left figure shows the target distribution for
the planar robot arm to approach the expected position. In the higher
dimension case, the target distribution is much more complex. The
right figure shows the policy model trained to approximate the target
distribution.
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able to approximate the target distribution well, while considering the prior distribution
of the planar robot self for better visualization. Although the policy model gives a much
smoother approximation for the sparse target distribution, it can reliably obtain high
rewards on original samples with high rewards within the target distribution range. Thus,
the learned policy model is plausible for the approximation to the target distribution so
to provide the ability to both generating new samples and evaluating on them. And the
policy model can catch the multi-modality of the target distribution well. Nevertheless, it
can not be ignored that the learned policy model is biased in higher dimensions, which
means that the sample with the highest reward following the new learned policy model
to approximate may not have the highest reward following the sight of the target reward
distribution. Following the policy model, the predicted reward on the generated sample is
also available. If it requires a more accurate reward, the reward function to evaluate the
reward following the target distribution can still be used.

6.4. Application in Robot Grasping Task in Simulation

In order to evaluate the performance of our method in more realistic applications, we
apply it in the robotic grasping task. To begin, we build a robotics simulation environment,
which is presented in the Chapter 5 in detail, for the evaluation. The built grasper has
seven degrees of freedom. And the object to grasp is for now always placed at the position
(0.6, 0, 0) with the initial orientation (0, 0, 0). At first, we build the search space with only
3 dimensions for simplifying the complex task in higher dimensions. Then, we apply it in
the complete search space with 7 dimensions.

For 3 Dimensions

We test it by using only three degrees of freedom: the grasping position coordinates µx,
µy, and the yaw angle νy inside the posture vector of the gripper. The rest degrees of
freedom are not variable and fixed on rational values. And the general training settings
in this case are set as follows: a) the entropy decreasing is designed from 1.0 to 0.5 in
the first 2, 000 epochs; b) the inner training iterations is set to be 12; c) the weight β of
M-projection in the objective is set to be 1.0.

After training the policy model is used to generate samples and the approximated reward
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Figure 6.11.: The grasping attempts of the generated samples from the top 25 ap-
proximated rewards following the trained policy model. Subfigures in
each row show one complete successful grasping attempt.
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(a) The distribution of the position coordinates µx and µy in 2 dimensions his-
togram for sliced layers [−π,−0.9π), [−0.9π,−0.8π), [−0.8π,−0.7π), [−0.7π,−0.6π) and
[−0.6π,−0.5π).

(b) The distribution of the position coordinates µx and µy in 2 dimensions histogram for
sliced layers [−0.5π,−0.4π), [−0.4π,−0.3π), [−0.3π,−0.2π), [−0.2π,−0.1π) and [−0.1π, 0).

(c) The distribution of the position coordinates µx and µy in 2 dimensions histogram for
sliced layers [0, 0.1π), [0.1π, 0.2π), [0.2π, 0.3π), [0.3π, 0.4π) and [0.4π, 0.5π).

(d) The distribution of the position coordinates µx and µy in 2 dimensions histogram for
sliced layers [0.5π, 0.6π), [0.6π, 0.7π), [0.7π, 0.8π), [0.8π, 0.9π) and [0.9π, π).

Figure 6.12.: The distribution of position coordinates along the x and y axis, de-
noted as µx and µy for different sliced layers of the yaw angle along
the z axis, denoted as νy. The 2 dimensions histogram of µx and µy

provides high density around the (0.6, 0), which is also the first 2 co-
ordinates of the placed target object.
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values on them. We sort the samples by their reward values from high to low. And
then we choose the top 25 samples with the highest approximated reward following the
policy model. We present six typical samples from them at each row respectively in the
Figure 6.11. We repeat ten times for each considered sample in the evaluation. All the
ten trials of each considered sample are successful grasping attempts. Thus, we are able
to give a conclusion that the learned policy model can draw reliable samples and give the
trusted approximated reward values on all the drawn samples. The results of all the top
25 samples are shown in the Appendix B.

In order to give a better visualization of the picture of the policy model in such a simplified
3 dimensions case, we quantify the range of yaw angle νy from [−π, π] into 20 layers.
And then we present the distribution of position coordinates µx and µy in 2 dimensions
histogram for each sliced layer. The results are given in the Figure 6.12. It shows that
the learned policy model is able to approximate the target reward distribution, while
giving high density of samples around the target object placed position. From these sliced
layers, we can find that in the layers of [−π,−0.9π], [−0.8π,−0.7π], [−0.1π, 0], [0, 0.1π],
[0.7π, 0.8π, ], and [0.9π, π] the shown sliced distributions of position coordinates µx and
µy are a little more narrow and more concentrated than others. So these distributions in
the sliced layers could imply those possible modes along the third dimension yaw angle
νy. Therefore, our method can catch the multi-modality of the target distribution and
meet the requirements for providing a plausible approximation.

For 7 Dimensions

At last, we evaluate our method in the 7 dimensions case of the robotic grasping task. The
general training settings are set as follows: a) the entropy decreasing is designed from
1.0 to 0.5 in the first 2, 000 epochs; b) the inner training iterations is set to be 12; c) the
weight β of M-projection in the objective is set to be 1.0.

The result is shown in the Figure 6.13. Since it is difficult to draw the whole distri-
bution of the reward, we only present the top 6 generated samples with the highest
approximated reward following the policy model. The grasping attempts shown in the
second row and the third row are successful and from different modes, which describes the
multi-modality while using policy model to approximate the target distribution. Moreover,
the learned policy model is able to generate plausible samples with their predicted rewards.
But this policy model approximates the target distribution with a bias. These samples,
which have high predictions from the sights of the policy model, do not obtain the same
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Figure 6.13.: The grasping attempts generated with top 6 approximated rewards
following the trained policy model. Subfigures in each row show one
complete successful grasping attempt. The grasping attempts pre-
sented in the second row and third row are successful.
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high rewards following the reward function. In this case, the generated sample with the
highest approximated reward, as shown in the first row in the Figure 6.13, is failed to
grasp the object and can not get a high reward. Alternatively, we can also get a better
result when we evaluate those samples, which are drawn by the generative policy model,
directly using the reward function. Note that the model-based policy search needs a lot of
samples to guarantee good performance of the trained model, so it is essential to draw
these samples in a wide range to explore as many modes as possible during the training.
And in higher dimension search space, it should be trained for a longer time and with a
better-suited setting to get a better policy model for approximation. However, it could
cause a much higher cost of training than in the lower dimension case, which becomes a
not ignorable limitation while this method applied.
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7. Conclusion and Outlook

In this paper, we demonstrate a method of policy search using normalizing flow to solve the
problem which is aiming to approximate an intractable target distribution with a tractable
distribution. Considering the insights from the policy search, this target distribution can be
used to present the reward distribution. Then, this task can be viewed as to approximate
the true reward distribution over the parameter space of the policy, by using a properly
built policy model to show the complete picture of the true reward distribution.

This normalizing flow based method not only provides the high power of expressive
to approximate arbitrary complex target distribution, but also gives the probability of
both sampling and evaluating on the samples at the same time. The policy model con-
structed with the normalizing flow, which is used to approximate the unknown target
distribution, can "normalize" any complex reward distribution from observed space onto
a simple and tractable defined prior distribution in the latent space. On the contrary,
the prior distribution in the latent space can "flow" to the observed space through the
transformation. In order to obtain a policy model built in such a way, we apply the policy
search to update all the parameters of this policy model following the gradient. And we
transfer the problem of maximizing the reward from the insights of policy search into an
equivalent problem of minimizing the KL Divergence between the target distribution and
policy model by adding an additional entropy objective. Moreover, the complete objective
for the minimization problem consists of both I-projection and M-projection, which avoids
the policy model premature collapsing to suboptimal. Since the updating strategy is based
on gradient descent, we introduce a surrogate function to approximate the reward by
fitting the discrete observed sample-reward pairs for maintaining the gradient and employ
the reparameterization trick for stochastic optimization.

For evaluating we apply our method with the complex target distributions such as Gaussian
mixture model reward with a full covariance matrix, the sparse reward distribution or
binary reward distribution. And we also evaluate the algorithm in more realistic cases,
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e.g. the approaching task of the planar robot and a simple grasping task of a typical
grasper with two fingers in the simulation environment based on PyBullet physics engine.
The demonstrated method is capable of learning high-quality approximations to complex
and multi-modal target distributions with high power of expressive. And it is also able to
provide the ability to generate new reliable samples that are expected to be inside in the
real target distribution and to give the whole picture of the distribution.

However, our method has limitations. The method is biased, which means that the
sample with the highest reward from the policy model may not have the highest reward
from the sight of target reward distribution. This algorithm would also overestimate the
target distribution, so to include too many unexpected samples. The reason could be
that the policy model is sometimes so confident to predict high rewards on new samples
without penalty. And for the learning phase, the policy model relies on a lot of samples,
which causes inefficient training. Moreover, the algorithm is currently still limited to adapt
to new contexts of new tasks. In the future, we are going to eliminate the bias of the
learned policy model so to make the approximation more precise. We will reduce the
data used to train the policy model for speeding up the learning phase by adding possible
prior knowledge. We are still expecting to make our method to be more adaptive to more
general cases by adding some observed evidence for a general construction of the policy
model. And we are looking forward to applying our algorithm in a more sophisticated
grasping task, e.g. adding more types of objects to grasp and building a more complex
environment to place the objects. It would be quite necessary for us to adapt our method
to the real robot in future work.
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A. Reparameterization Trick

In the field of variational inference and variational autoencoder, it is essential to apply
the reparameterization trick so that the backpropagation of gradient can flow through a
random node to update the gradient-based estimator.

Assume that we have the expectation

Ep(x;θ) [fθ(x)] ,

where the p(x;θ) is the considered distribution w.r.t. the parameter θ and fθ(x) is a
differentiable function. Then, we are going to compute the gradient of this expectation
w.r.t. the parameter θ

∇θEp(x;θ) [fθ(x)] =

∫︂
x
fθ(x)∇θp(x;θ) dx+ Ep(x;θ) [∇θfθ(x)] .

Actually, the gradient is not guaranteed to be obtained, when the ∇θp(x;θ) is not able to
be analytically solved. So we define a new prior distribution

ϵ ∼ p(ϵ)

so that the x can be obtained by

x = gθ(ϵ,x) .

Finally, the gradient can be computed by

∇θEp(x;θ) [fθ(x)] = ∇θEp(ϵ) [f(gθ(ϵ,x))]

= Ep(ϵ) [∇θf(gθ(ϵ,x))]

≈ 1

L

L∑︂
l=1

∇θf(gθ(ϵl,xl)) ,

where the ϵl and xl represent the l-th element of the vector ϵ and x respectively.
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B. Robot Grasping Task Result

The results of the generated samples from the 1st to 25th high approximated rewards
following the trained policy model are shown in the following figures, while the grasping
task is solved in the simplified 3 dimensions case.
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Figure B.1.: The grasping attempts of the generated samples from the 1st to 5th
high approximated rewards following the trained policy model. Sub-
figures in each row show one complete successful grasping attempt.
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Figure B.2.: The grasping attempts of the generated samples from the 6th to 10th
high approximated rewards following the trained policy model. Sub-
figures in each row show one complete successful grasping attempt.
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Figure B.3.: The grasping attempts of the generated samples from the 11th to 15th
high approximated rewards following the trained policy model. Sub-
figures in each row show one complete successful grasping attempt.
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Figure B.4.: The grasping attempts of the generated samples from the 16th to 20th
high approximated rewards following the trained policy model. Sub-
figures in each row show one complete successful grasping attempt.
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Figure B.5.: The grasping attempts of the generated samples from the 21st to 25th
high approximated rewards following the trained policy model. Sub-
figures in each row show one complete successful grasping attempt.
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