
Towards Reinforcement Learning of Human
Readable Policies

Riad Akrour1, Davide Tateo1, and Jan Peters1,2

1 IAS, TU Darmstadt, Germany
{first name}@robot-learning.de

2 Max Planck Institute for Intelligent Systems, Tübingen, Germany.

Abstract. Reinforcement learning (RL) has demonstrated its ability to
solve high dimensional tasks by leveraging non-linear function approx-
imators. These successes however are mostly confined to simulated do-
mains. When deploying RL to the real world, several concerns regarding
the use of a ’black-box’ policy might be raised. In an effort to make RL
more interpretable, we propose in this paper a policy iteration scheme
that retains a complex function approximator for its internal value pre-
dictions but constrains the policy to have a simple, human readable struc-
ture. We show that our proposed algorithm can solve continuous action
deep RL benchmarks and return policies that can be fully visualized and
interpreted by a human non-expert.

Keywords: Hierarchical Reinforcement Learning · Interpretable Ma-
chine Learning

1 Introduction

Reinforcement Learning (RL) [16, 17] has led to several practical breakthroughs [10,
15] despite the high dimensionality of the state-action space of the problems at
hand. To do so, recent RL algorithms leverage high dimensional function ap-
proximators for estimating the value function [10, 18] or both the value function
and the policy [9, 7]. However, in applying RL to real-world problems, the policy
returned by the learner might need to be scrutinized to ensure that it is safe,
ethical and fair. To facilitate the latter we propose to replace the policy, typically
a ’black-box’ deep neural network, with a more interpretable structure.

We choose to use a simpler structure for the policy instead of the value
function because the policy usually has a simpler functional shape [12, 4], and can
thus be more easily approximated. Our proposed algorithm yields a clustering
of the state space, where a single action is associated to each cluster. Such
clustering of the state space could be seen as a form of state abstraction [6, 1, 8,
3]. Previous work in high-dimensional state abstraction however, only considered
non-intepretable state-to-cluster mappings, in the form of polynomial functions
[8] or neural networks [3]. Recently, [11] proposed to learn a policy linear in
state for a medical treatment problem, where interpretability is critical. The



2 R. Akrour et al.

resulting treatment policy was easy to interpret in the bi-variate case but linear-
in-state policies are not ideal for all settings. First, their interpretability in higher
dimensional spaces can be questionable. Secondly, a linear policy class might
severely limit the quality of the policy.

As a computer program, the policy returned by our algorithm can be seen as
a sequence of IF blocks having the structure IF close(state, center[k]) DO

action[k]; where state is the current state, center[k] is a cluster center and
action[k] its associated action. To ensure that such a policy is interpretable,
we impose a series of limitations that make the underlying optimization prob-
lem challenging. First, we limit beforehand the number of clusters to a fixed
number K. Second, and most importantly, we do not allow the cluster centers
to be optimized. Instead, we only allow the discrete decision of picking a cluster
center out of the states encountered during learning. Doing so ensures that the
cluster centers are within the potentially lower dimensional manifold that is the
state space and hence, are interpretable. The final component that is critical for
interpretability is the function close that discriminates if a state belongs to the
specified cluster, i.e., the state is sufficiently close to the cluster prototype. In
this paper, we assume that this function is known, but we later discuss ways of
learning it that would preserve interpretability.

2 Learning the interpretable policy

We describe more formally in this section the policy structure and an associated
learning algorithm. Let Qπ(s, a) = IE [

∑∞
t=0 γ

tR(st, at) | s0 = s, a0 = a], where
the expectation is w.r.t. states st and actions at for t > 0, be the Q function
of policy π, Vπ(s) = IEa∼π(.|s) [Qπ(s, a)] be its value function and Aπ(s, a) =
Qπ(s, a)− Vπ(s) its advantage function.

Policy structure. As described in the previous section, the policy samples
an action by comparing the current state to a list of cluster centers. It can then
for instance select the action associated with the closest cluster. This would
yield a discrete optimization problem. However, learning a satisfactory policy
in this setting is a hard problem. We relax our model, by considering instead
a smoothed version of the previous problem with fuzzy memberships [19] to
each cluster. Formally, the policy at state s is Gaussian distributed π(a|s) =
N (a|Kϕ(s), Σ); where K is a matrix, stacking actions associated to all clusters,
ϕ is the membership function and Σ a state-independent full covariance matrix.
The k-th component of the membership function ϕk is proportional to ϕk(s) ∝
ck exp(−‖s− sk‖22); where ck is a cluster weight and sk a cluster center. The
membership is normalized such that ‖ϕ(s)‖1 = 1.

A final component of the policy is the default action. When a state is far from
all cluster centers, the policy becomes too sensitive to small changes of the state.
This sensitivity introduces both numerical problems and hinders interpretability.
We thus introduce a default action, action[0] that has unormalized membership
ϕ0(s) ∝ 1 fixed to one, independently of the input state.



Towards Reinforcement Learning of Human Readable Policies 3

Policy evaluation. The algorithm for learning the interpretable policy is
based on the approximate policy iteration framework [5, 13]. At each iteration
we sample trajectories, evaluate the policy and update the cluster weights, the
cluster actions and the exploration noise. The advantage function of the current
policy is evaluated on the generated samples by learning a neural approximated
value function, following standard procedures described in e.g. [14]. In addition to
updating the policy parameters of the current clustering, the advantage function
is also used as a heuristic for adding states to the cluster center list.

Policy update. The policy parameters—cluster weights, cluster actions and
covariance—are updated by solving a constrained optimization problem. The
objective of the problem is to maximize the expected advantage function. The
constraints are a Kullback-Leibler (KL) divergence constraint between successive
policies (akin to a step-size) and en entropy constraint (to sustain exploration).
We refer the reader to Sec. 2.2 of [2] for a more expansive definition and justifi-
cation of the policy update optimization problem. From [2] we also borrow the
optimization scheme for optimizing the cluster actions and covariance. Namely,
we make use of the projection defined in Alg. 2 to transform any linear-Gaussian
distribution into a linear-Gaussian distribution complying with the two policy
update constraints; and then optimize the composition of the objective and the
projection using gradient ascent.

For a fixed clustering, the main difference between the policy introduced
in this paper and that of [2] is the feature function of the state. In [2], state
features are given by the hidden layers of a neural network while they are the
cluster memberships in this paper. These features are affected by the cluster
weights. To learn these weights without violating the KL divergence constraint,
we derive a projection that takes as input any vector of cluster weights and
returns cluster weights satisfying the constraint. Similar to [2], we phrase this
as an interpolation between the input and the previous parameters, derive an
upper bound of the KL divergence that is simple in the interpolation parameter
and solve for the interpolation parameter.

Let w(s) be the unnormalized membership, that we denote w for short, which

is given by wk = ck exp(−‖s− sk‖22). Let wq be the unnormalized membership
of the data generating policy, i.e. computed with the old cluster weights, and
φq its normalization. Let ϕη ∝ ηw + (1 − η)wq and ms(η) = ‖Kq(ϕη − ϕq)‖2Σq .
We use the bound in inq. (1), which is tighter when ‖w‖1 ≈ ‖wq‖1 and inq. (2),
which is tighter when ‖w‖1 � ‖wq‖1, to project any input cluster weight to a
cluster weight complying with the KL constraint. We then use this projection
to transform the constrained optimization problem into an unconstrained one.
Proofs for both inequalities are deferred to the appendix.

ms(η) ≤ η2 max

(
‖w‖21
‖wq‖21

, 1

)
ms(1), (1)

ms(η) ≤ η
‖w‖21

‖wq‖21 + 2 ‖wq‖1 (‖w‖1 − ‖wq‖1)
ms(1). (2)



4 R. Akrour et al.

Fig. 1. Average return of the interpretable policies during learning for variable number
of clusters on two continuous control tasks with 11 runs for each setting.

Fig. 2. Learned clusters on the hopping task with five cluster centers. Although not
hopping as fast as a neural network, the policy still learns a successful hopping motion.

Adding and deleting cluster centers. The final element of our algorithm
is to maintain the cluster center list. As stated before, the number of clusters is
fixed beforehand to a hyper-parameter K. Starting from an empty cluster list, if
at the beginning of the policy update, the length of the cluster list is less than K,
we keep adding cluster centers until we reach K centers. The centers are selected
by sorting the state-action pairs in the dataset by decreasing order of their
advantage value. For instance, the first cluster added has a center and associated
action set to the state-action pair with highest advantage. The rational behind
this is that a high advantage value indicates that the action is surprisingly, w.r.t.
the current policy, good in that state and the learner might want to repeat it
more frequently when close to said state. The cluster weights for newly added
clusters is initially set to zero such as not to change the policy, and hence the
KL divergence.

As for deleting clusters, we periodically run a clean-up routine that com-
putes the average membership of each cluster in the current dataset and deletes
all clusters from lowest to highest membership as long as the KL divergence
constraint is not violated. We perform this operation every 5 iterations in order
to give time for the cluster weights of the newly added centers to be learned.

3 Experiments

We evaluate the proposed algorithm on two continuous control tasks, Roboschool-
Hopper and BipedalWalker. The tasks respectively have a state space of 15 and



Towards Reinforcement Learning of Human Readable Policies 5

Fig. 3. Cluster activation across time during one rollout of the hopping policy. The
cyclical nature of the task is clearly apparent in the cluster activation. The cluster
centers show the different phases of the gait: stabilization, flexion and extension.

24 dimensions and an action space of 3 and 4 dimensions. For each task we set
a variable cluster count ranging from 5 to 40 and launch 11 runs for each set-
ting. Results reported in Fig. 1 show, perhaps unsurprisingly, that the higher
the cluster count is the better performance gets. We note however that even
though performance is sub-optimal on the BipedalWalker task, the algorithm
always returns policies successfully walking with as low as 5 cluster centers. The
RoboschoolHopper task appears more challenging and with 5 clusters the algo-
rithm seem to only learn to stabilize itself. However, on rare runs it also learn
successful hopping motions with only 5 cluster centers. An example of such pol-
icy is shown in Fig. 2. The cluster centers appear to be spread evenly along the
hopping motion. Although the motion itself is not as fast as with a more com-
plex policy class. Fig. 3 shows the membership of each cluster across time for
one sampled rollout of the hopping policy. Only the 3 more active cluster centers
from Fig. 2 are displayed. The cyclical nature of the task is clearly apparent in
the figure. The figure also shows the different phases of the gait: stabilization
upon landing, flexion of the leg and extension of the leg right before the hop.

4 Discussion

We have presented in this paper some preliminary results towards interpretable
RL. Transitioning from a fully differentiable policy class to a class with discrete
variables certainly presents a challenge. At a technical level, many questions
remain open, such as training a policy with hard memberships to the clusters.
The deletion mechanism of the cluster centers can also be largely improved since
in the current state, the cluster list converges too early. One solution is to pose
a joint optimization problem for deleting, adding and updating clusters all at
once.



6 R. Akrour et al.

At a more general level, to increase interpretability of RL we proposed in
this paper to split it into two sub-problems: i) learning a similarity function
between states, and ii) leveraging the similarity function to learn the optimal
policy. While we solely focused on the second sub-problem, solving the first sub-
problem in an efficient and interpretable way can prove to be as challenging. One
way to ensure interpretability of the similarity function is to force it to respect
the underlying dynamics of the MDP, and the intuitive knowledge of which states
are likely to come after which other states. To ensure efficiency and scalability
to higher dimensional states such as images, the similarity function will need to
build a more abstract and semantic understanding of the state space.

References

1. Abel, D., Hershkowitz, D.E., Littman, M.L.: Near optimal behavior via approxi-
mate state abstraction. In: International Conference on Machine Learning (ICML).
pp. 2915–2923 (2016)

2. Akrour, R., Pajarinen, J., Peters, J., Neumann, G.: Projections for approximate
policy iteration algorithms. In: International Conference on Machine Learning
(ICML) (2019)

3. Akrour, R., Veiga, F., Peters, J., Neumann, G.: Regularizing reinforcement learn-
ing with state abstraction. In: International Conference on Intelligent Robots and
Systems (IROS) (2018)

4. Anderson, C.W.: Approximating a policy can be easier than approximating a value
function. Computer Science Technical Report (2000)

5. Bertsekas, D.P.: Approximate policy iteration: a survey and some new methods.
Journal of Control Theory and Applications 9(3), 310–335 (Aug 2011)

6. Li, L., Walsh, T.J., Littman, M.L.: Towards a unified theory of state abstraction
for mdps. In: International Symposium on Artificial Intelligence and Mathematics
(ISAIM) (2006)

7. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D.: Continuous control with deep reinforcement learning. CoRR (2015)

8. Mankowitz, D.J., Mann, T.A., Mannor, S.: Adaptive skills adaptive partitions
(ASAP). In: Advances in Neural Information Processing Systems (NIPS). pp. 1588–
1596 (2016)

9. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
International Conference on Machine Learning (ICML) (2016)

10. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540),
529–533 (02 2015)

11. Nie, X., Brunskill, E., Wager, S.: Learning When-to-Treat Policies. arXiv e-prints
(2019)

12. Rexakis, I., Lagoudakis, M.G.: Classifier-based policy representation. In: Seventh
International Conference on Machine Learning and Applications. pp. 91–98. IEEE
(2008)



Towards Reinforcement Learning of Human Readable Policies 7

13. Scherrer, B.: Approximate policy iteration schemes: A comparison. In: Proceedings
of the 31th International Conference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014. pp. 1314–1322 (2014)

14. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. CoRR abs/1707.06347 (2017)

15. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep
neural networks and tree search. Nature 529(7587), 484–489 (Jan 2016)

16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Boston, MA (1998)

17. Szepesvari, C.: Algorithms for Reinforcement Learning. Morgan & Claypool (2010)
18. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double

q-learning. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)
19. Zadeh, L.A.: Fuzzy sets. Information and control 8(3), 338–353 (1965)



8 R. Akrour et al.

Appendix

We prove here the inequalities (1) and (2). They both start from the same
reasoning, bounding the mean component of the KL divergence given wη.

m(wη) =

(
Mµ

ηw + (1− η)wq
‖ηw + (1− η)wq‖1

−Mµ
wq
‖wq‖1

)T
Σ−1q

(
Mµ

ηw + (1− η)wq
‖ηw + (1− η)wq‖1

−Mµ
wq
‖wq‖1

)
=

(
ηw + (1− η)wq
‖ηw + (1− η)wq‖1

− wq
‖wq‖1

)T
MT
µ Σ
−1
q Mµ

(
ηw + (1− η)wq
‖ηw + (1− η)wq‖1

− wq
‖wq‖1

)
=

∥∥∥∥ ηw + (1− η)wq
‖ηw + (1− η)wq‖1

− wq
‖wq‖1

∥∥∥∥2
MT
µ Σ

−1
q Mµ

=

∥∥∥∥ηw‖wq‖1 + (1− η)wq‖wq‖1 − wq‖ηw + (1− η)wq‖1
‖ηw + (1− η)wq‖1‖wq‖1

∥∥∥∥2
MT
µ Σ

−1
q Mµ

=

∥∥∥∥ηw‖wq‖1 + (1− η)wq‖wq‖1 − ηwq‖w‖1 − (1− η)wq‖wq‖1
‖ηw + (1− η)wq‖1‖wq‖1

∥∥∥∥2
MT
µ Σ

−1
q Mµ

=

∥∥∥∥ ηw‖wq‖1 − ηwq‖w‖1
‖ηw + (1− η)wq‖1‖wq‖1

∥∥∥∥2
MT
µ Σ

−1
q Mµ

=
η2

‖ηw + (1− η)wq‖21

∥∥∥∥w‖wq‖1 − wq‖w‖1‖wq‖1

∥∥∥∥2
MT
µ Σ

−1
q Mµ

=
η2‖w‖21

‖ηw + (1− η)wq‖21

∥∥∥∥ w

‖w‖1
− wq
‖wq‖1

∥∥∥∥2
MT
µ Σ

−1
q Mµ

=
η2‖w‖21

‖ηw + (1− η)wq‖21
m(w). (3)

Then, inequalities (1) and (2) differ in the way of bounding ‖ηw + (1− η)wq‖21.
For the first inequality we have the following.

m(wη) ≤

η2
‖w‖21
‖wq‖21

m(w) ‖w‖1 ≥ ‖wq‖1,

η2m(w) otherwise.

(4)

We can write the bound compactly as

m(wη) ≤ η2 max

(
‖w‖21
‖wq‖21

, 1

)
m(w). (5)

The second bound uses the convexity of ‖wη‖21 in η. Let f(η) = ‖wη‖21, then

f(η) ≥ f(0) + f ′(0)η,

= ‖wq‖21 + 2 ‖wq‖1 (‖w‖1 − ‖wq‖1)η,

≥ η(‖wq‖21 + 2 ‖wq‖1 (‖w‖1 − ‖wq‖1)).



Towards Reinforcement Learning of Human Readable Policies 9

Giving rise to this other upper bound

m(pη) ≤ η
‖w‖21

‖wq‖21 + 2 ‖wq‖1 (‖w‖1 − ‖wq‖1)
m(p).

If ‖w‖ ≈ ‖wq‖ the first bound should be tighter. If ‖w‖ � ‖wq‖ the second one
should be better. In practice we compute both and select the tightest. Note that
this is only for a given state, but for the KL divergence we need to compute the
expectation over all states in our dataset.


