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Abstract

Direct policy search usually frames the search distribution update as a constrained maxi-
mization of the expected return. The constraint bounds the information loss of the search
distribution and is an ad hoc solution to the exploration-exploitation dilemma. In this
paper we propose an alternative to the method of Lagrange multipliers to solve the con-
strained problem. We propose a projection that maps a parametric representation of the
search distribution to a search distribution complying with the update constraints. This
projection transforms the constrained optimization problem to an unconstrained one which
is then solved using standard gradient ascent. We show on a toy optimization problem that
the proposed approach finds better solutions and is more robust to small sample counts
than two other state-of-the-art approaches that rely on the method of Lagrange multipli-
ers. In a second phase we extend our approach to step-based reinforcement learning and
show that one can seamlessly use the tools introduced in this paper to add hard entropy
constraints to existing reinforcement learning algorithms.

1. Introduction

Policy search comprises a wide variety of approaches to tackle reinforcement learning (Deisen-
roth et al., 2013). Among these approaches, a distinguishing property of direct policy search
is its reliance on parameter-space exploration as opposed to action space exploration. In
parameter-space exploration, a search distribution is updated from sampled parameters of
deterministic policies and an evaluation thereof. In contrast, action space exploration is
used to optimize a stochastic policy that adds exploration noise to every time-step. We
refer the reader to Deisenroth et al. (2013), Sec. 2.1, for a more in depth discussion on
exploration strategies in policy search. In robotics, parameter-space exploration results in
a less jerky exploration which reduces the amount of wear and tear caused to the robot.
When used in conjunction to specialized low dimensional policies, direct policy search can
solve complex tasks in a model-free fashion, running directly on robotic platforms (Parisi
et al., 2015). It was also shown in simulation that parameter exploration can be used to
train larger, neural network based, policies (Plappert et al., 2017).

We focus in this paper on a simple and well founded formulation of direct policy search
that maximizes the expected policy return under Kullback-Leibler (KL) constraint between
successive search distributions. The KL constraint is akin to specifying a learning rate,
trading-off between exploration and exploitation and preventing the search distribution
from collapsing to a point-mass after a single iteration. The considered baseline algorithms
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are REPS (Peters et al., 2010) and MORE (Abdolmaleki et al., 2015) that both rely on the
method of Lagrange multipliers to obtain a closed form solution to the constrained problem.
Although a closed form solution is derived in both cases, the former algorithm does not
restrict the search distribution to a particular class in the optimization problem and requires
in practice an additional approximation step from samples; causing large violations of the
KL constraint. The latter algorithm always complies with the KL constraint but requires
to learn a quadratic model mapping policy parameters to policy returns and the policy
parameters are usually high dimensional. Limitations of both approaches are especially
apparent when the sample count is low compared to the dimensionality of the problem.
A concise description of both algorithms is provided in Sec. 4 and their limitations are
scrutinized in Sec. 5.

The main contribution of the paper is to propose an alternative approach to updating
the search distribution that is robust to low sample counts. The core of our approach lies
in a projection g that maps any search distribution to a search distribution that complies
with the update constraints. As a result, the constrained maximization of some objective
function f is transformed to the unconstrained maximization of f ◦ g. We experimentally
demonstrate on a toy task that maximizing f ◦ g by gradient ascent yields comparable
results to REPS and MORE in high sample count regimes but significantly outperforms
these algorithms when the sample count drops.

An important characteristic of our work is that the constraint projection g is indepen-
dent of the objective f . We show in Sec. 6 how projections developed for parameter-space
exploration algorithms can be seamlessly reused in action-space exploration algorithms. We
notably show how to integrate a hard entropy constraint to two popular reinforcement learn-
ing algorithms for both discrete and continuous actions spaces, and analyze its empirical
effect in Sec. 7.

2. Problem definition

Let f be a noisy function and let π(θ) = N (θ;µ,Σ) be a Gaussian distribution of mean
µ and covariance matrix Σ over Rd. Typically, θ will be the parameters of a (determin-
istic) policy and f(θ) is a random realization of its cumulative rewards in the stochastic
environment. Our goal is to find θ∗ = arg maxθ IE [f(θ)]. For this purpose we consider
the iterative algorithm that samples and evaluates K parameters from the current Gaus-
sian search distribution q and finds the next search distribution by solving the following
constrained optimization problem

arg max
π

IEπ [f(θ)] (1)

subject to KL(π ‖ q) ≤ ε, (2)

H(q)−H(π) ≤ β, (3)

where ε and β are two strictly positive constants and H denotes the entropy. This problem
is identical to the one solved by MORE (Abdolmaleki et al., 2015) which adds to the
parameter exploration version of REPS (Deisenroth et al. (2013), Sec. 2.4.3) an entropy
constraint given by (3). The problem solved by MORE is important and has applications
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in approximate policy iteration (Akrour et al., 2018), variational inference (Arenz et al.,
2018) and Bayesian optimization (Akrour et al., 2017).

The objective is to find a new search distribution π that maximizes the expected cumu-
lative reward (1) while staying close to the current search distribution (2). The expectation
is taken w.r.t. distribution π and the stochastic environment. In our algorithm we approx-
imate (1) by

L(π) =
1

K

∑
θ[i]∼q

π(θ[i])

q(θ[i])
f [i](θ[i]). (4)

The use of importance sampling in Eq. (4) behaves well in practice because constraint (2)
enforces π and q to be close to each other. Although the KL constraint already limits the
loss in entropy of q, separating the entropy constraint from the KL constraint allows larger
modifications to the mean and rotation of the covariance matrix of q while being more
cautious in reducing its entropy (exploration).

3. Constraint projection update

To solve the optimization problem defined in Sec. 2 we will use a series of projections that
will ensure that all parameterizations of a search distribution comply with constraints (2)
and (3). To fix ideas let us first consider the maximization of some function L(π) under a
single entropy equality constraint H(π) = c for some c ∈ R. In relation to Sec. 2, L is as in
(4) and c = H(q)− β.

Let π = N (µ,Σ) be a Gaussian with diagonal Σ. We recall that the entropy of a
Gaussian distribution only depends on its covariance matrix and the notation H(Σ) will be
used interchangeably with H(π) which is given by H(Σ) = 1

2 log(|2πeΣ|). Finally we define

h(λ, c) =

(
d

2
log(2πe) +

∑
i

λi

)
− c (5)

where the inner most term is the entropy of some diagonal covariance matrix having vector
exp(2λ) ∈ Rd in its diagonal and c is the target entropy. The first parameterization that
transforms a constrained problem to an unconstrained one is given by the following property.

Proposition 1 Optimizing any function L(π) w.r.t. mean vector µ and diagonal matrix
Σ of a Gaussian π = N (µ,Σ) under entropy equality constraint H(π) = c is equivalent to
the unconstrained optimization of L(π) w.r.t. mean vector µ and the real valued parameter
vector λ such that Σi,i = exp2(λi − 1

dh(λ, c)) with h as defined in Eq. 5.

Proof We will show that any value of parameter vector λ will yield a Gaussian distribution
that satisfies the entropy equality constraint and that for any Gaussian distribution N (µ,Σ)
satisfying the entropy constraint there is a parameter vector λ representing Σ. First note
that for any parameter vector λ the entropy of π = N (µ,Σ) where Σi,i = exp2(λi− 1

dh(λ, c))
is always c—which can be verified through direct computation given the expression of h in
Eq. 5. Conversely for any π = N (µ,Σ) such that H(Σ) = c there is a parameter vector λ
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that yields the covariance Σ; which is λi = 1
2 log(Σi,i) where in this case h(λ, c) = 0. Hence

optimizing L(π) w.r.t. Σ under constraint H(π) = c is equivalent to the unconstrained
optimization of L(π) w.r.t. λ with the given parameterization.

Prop. 1 defines a projection g that maps any diagonal covariance matrix to a diagonal
covariance matrix having an entropy of exactly c. As this projection is differentiable, and
assuming L is also differentiable (which is true for Eq. (4)), one can use gradient ascent for
the unconstrained maximization of L ◦ g. In the following, we will extend this principle to
the inequality constraint H(π) ≥ c, to full covariance matrices and to the KL constraint.

Proposition 2 Optimizing any function L(π) w.r.t. mean vector µ and diagonal matrix Σ
of a Gaussian π = N (µ,Σ), under entropy inequality constraint H(π) ≥ c is equivalent to
the unconstrained optimization of L(π) w.r.t. mean vector µ and the real valued parameter
vector λ such that Σi,i = exp2(max(λi, λi − 1

dh(λ, c))) with h as defined in Eq. 5.

Proof As for the equality case, first note that for any vector λ, if Σi,i = exp2(max(λi, λi−
1
dh(λ, c))) and Σ′i,i = exp2(λi − 1

dh(λ, c)) then H(Σ) ≥ H(Σ′) and we have already shown
that H(Σ′) = c. Now let a diagonal Gaussian distribution π = N (µ,Σ) such that H(Σ) ≥ c
and let λ be the parameter vector such that λi = 1

2 log(Σi,i), then h(λ, c) ≥ 0 implying that
max(λi, λi − 1

dh(λ, c)) = λi and hence the parameter vector λ will yield Σ. As a result,
optimizing L(π) w.r.t. Σ under constraint H(π) ≥ c is equivalent to the unconstrained
optimization of L(π) w.r.t. λ with the given parameterization.

This proposition extends to full covariance matrices Σ where A is its Cholesky decomposi-
tion, Σ = AAT . By having Ai,i = exp(max(λi, λi − 1

dh(λ, c))) and real valued off-diagonal
entries, all assertions used in the proof of Prop. 2 remain valid since the entropy only
depends on the diagonal of A.

Let us now consider the KL constraint. The KL between two Gaussian distributions
π = N (µ,Σ) and q = N (µq,Σq) is given by

KL(π ‖ q) =
1

2

(
(µ− µq)TΣ−1

q (µ− µq) + tr(Σ−1
q Σ)− d+ log

|Σq|
|Σ|

)
.

Let mq(µ) = 1
2(µ − µq)TΣ−1

q (µ − µq) be the part of the KL that measures the change in
the mean. Assume mq(µ) 6= 0, using a projected mean of the shape µ′ = (1 − η1)µq + η1µ
one can find η1 such that the change of the mean in the KL part is equal to some positive

target t1, η1 =
√

t1
mq(µ) . Similarly for rq(Σ) = 1

2(tr(Σ−1
q Σ) − d) the part of the KL that

measures rotation of the covariance matrix, using a projected covariance of the form Σ′ =
(1 − η2)Σq + η2Σ and assuming rq(Σ) 6= 0, one can find η2 such that the change of the
rotation in the KL part is equal to some positive target t2, η2 = t2

rq(Σ) . The remaining term

in the KL is related to the change in entropy which is already bounded by the entropy

constraint, i.e., if H(q)−H(π) ≤ β then eq(Σ) = 1
2 log

|Σq |
|Σ| ≤ β.

The projection for both the entropy and KL constraints of some search distribution π
of mean µ and covariance Σ0 of Cholesky A0 proceeds as follow. First we alter the diagonal
of the Cholesky following Prop. 2 to ensure that the entropy constraint is respected. Let
us denote the resulting covariance by Σ of Cholesky A. Afterwards, if the KL constraint is
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respected we return the current µ and A. Otherwise, assuming β < ε (if it is not the case the
entropy constraint would be superfluous), then we can achieve a target KL of ε by dampening

mq(µ) and rq(Σ). We first dampen rq(Σ) by setting a target t2 = rq(Σ)
ε−max(eq(Σ),0)
mq(µ)+rq(Σ) and

compute the resulting η2 and Σ′, then if necessary we reduce mq(µ) by setting the target
t1 = ε− eq(Σ′)− rq(Σ′) and compute µ′, which completes the projection.

Note that this projection will not always return a search distribution that has KL equal
to ε if the initial search distribution has KL higher than ε. The reason for this is that
when altering rq(Σ) we also alter eq(Σ). For example, if the entropy is maximally reduced,
i.e. H(Σ) = H(Σq) − β, then having Σ′ interpolating between Σ and Σq will result in a
smaller entropy reduction and hence the overall KL might be less than ε. However, solving
rq(Σ

′) + eq(Σ
′) = t3 directly is not feasible as it involves solving equations of the form

x + log x = y. One way to improve the projection is to use approximations of x + log x to
yield a more accurate η2. We are unsure however if this would benefit the policy search
algorithm as with the current projection, gradient ascent returns solutions that have KL
nearly always equal to ε. A further theoretical analysis is necessary to clarify this point.

4. State-of-the-art baselines

We consider two baseline algorithms that solve a similar problem to the one in Sec. 2.
REPS (Peters et al., 2010; Deisenroth et al., 2013) has the same objective but only con-
straints the KL. The closed form solution of the update is given by

π(θ) ∝ q(θ) exp

(
f̄(θ)

η∗

)
,

where f̄(θ) = IE [f(θ)] and η∗ is a dual variable that is computed using gradient descent.
However, π is not necessarily Gaussian and an additional weighted maximum likelihood
step is necessary to obtain the next search distribution. This final step can cause large
violations of the KL constraint.

MORE (Abdolmaleki et al., 2015) solves the same problem as in Sec. 2, but uses f̂ , a
quadratic approximation of f learned by linear regression. The resulting policy is

π(θ) ∝ q(θ)η∗/(η∗+ω∗) exp

(
f̂(θ)

η∗ + ω∗

)
.

As f̂ is quadratic and q Gaussian the resulting search distribution remains Gaussian and
the KL and entropy constraints are never violated.

5. Experiments
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We compare our approach to the two baselines of Sec. 4 for the
optimization of randomly generated and smooth two dimen-
sional objective functions, illustrated in the opposing figure.
The results are reported in Fig. 1 on 11 independent runs and
varying number of samples per iteration. The 11 randomly generated functions are sampled
once and kept fixed for all the algorithms and varying hyper-parameters. For each function,
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Figure 1: Optimization of smooth objective functions with varying number of samples per
iteration, with values of 27, 9, 6, and 3 from left to right columns. First row
shows the average return at each iteration averaged over 11 runs. Second and
third row show the KL divergence between successive policies of two runs.

the reported results are mapped to [0, 1] after computing the minimal and maximal values
reached for this function across all algorithms and hyper-parameters.

First row of Fig. 1 shows the average return at each iteration for the three direct policy
search algorithms. The number of samples per iteration takes values 27, 9, 6 and 3 from
left to right column respectively while the dimensionality of the problem is d = 2. Our
approach, termed ’ProjectionPS’ is very robust to reduction in sample count and changes
moderately across scenarios. While REPS exhibits signs of premature convergence as the
sample count drops, caused by large KL constraint violations as seen in Fig. 1, second and
third row. MORE never violates the KL constraint but the quadratic models are of poor
quality using only 3 and 6 samples which deteriorates performance. Our algorithm nearly
always returns a solution with maximum allowed KL constraint ε = .1 apart from a single
run with a sample count of 3 as seen in Fig. 1.

6. Extension to action-space exploration

We have introduced so far a set of projections to help solve optimization problems involving
Gaussian distributions. The projections allow one to tackle the maximization of an objec-
tive function under entropy and (I-projection) KL constraint. While finding an appropriate
projection for a constraint is not trivial, the advantage of our approach to constrained opti-
mization is that the projection is independent of the objective and can be used to optimize
any objective function. We show in this section how projections for entropy constraints can
be used to add strict entropy constraints to two step-based RL algorithms.
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We consider in this section two approximate policy iteration algorithms, TRPO (Schul-
man et al., 2015) and PPO (Schulman et al., 2017), as they are applicable to both discrete
and continuous action spaces. These two algorithms share the same policy evaluation step
but differ largely in their policy update. TRPO maximizes a loss given by

L(π) =
1

K

∑
(si,ai)∼q

π(ai|si)
q(ai|si)

A(si, ai). (6)

In contrast to Eq. (4), the policies π and q now represent conditional distributions over an
action space A for each s in state space S, and the advantage function A is the objective
function to maximize over. TRPO maximizes this loss under a KL constraint between π
and q, while PPO clips the probability ratio π(ai|si)

q(qi|si) in Eq. (6) as an alternative way to
prevent large deviations between π and q.

Let P (π) be the optimization problem solved by either TRPO or PPO. We investigate
in this section how to introduce an additional entropy constraint to P of the following form

solve for π P (π),

subject to H (π(.|s)) ≥ β, for all s. (7)

To solve this problem we will follow a similar approach to the direct policy search case.
For continuous action space problems, it is usual for π(.|s) to be Gaussian N (fω(s),Σ),
where fω is a parametric function such as a neural network and Σ is a covariance matrix
independent of s. As such, to ensure satisfaction of constraint (7) for Gaussian policies, it
suffices to apply the projection introduced in Prop. 2 to Σ.

For discrete action spaces, a usual choice is for π to be a soft-max distribution π(ai|s) ∝
exp(f iω(s)) where f iω is the i-th output of parameterized function fω. From here on we term
fω the ’logits’ of π, and let H(fω(s)) be the entropy of the associated soft-max distribution.
For a given s, let ri be the probability of action i according to fω, i.e. ri ∝ exp(f iω(s)). To
ensure satisfaction of constraint (7), we derive a projection gβ such that H(gβ ◦ fω(s)) ≥ β
for all s. The resulting policy π of logits gβ ◦ fω is given by

π(ai|s) =

{
ri, if H(fω) ≥ β
αri + (1− α) 1

|A| , otherwise, where α = log(|A|)−β
log(|A|)−H(fω)

This policy will always comply with the constraint H(π(.|s)) ≥ β for all s. It is true by
definition for H(fω) ≥ β and can easily be verified when H(fω) < β since

H
(
αr + (1− α)

1

|A|

)
≥ αH(fω) + (1− α) log (|A|) ,

= β.

The inequality follows from the fact that the entropy of a mixture is greater than the
mixture of entropies (Cover and Thomas, 2006). The mixture being between the probability
distribution defined by r which has entropy H(fω) and the uniform distribution which has
entropy log (|A|). The equality follows from the definition of α. However, as with the KL
projection, the projection of the logits is not on the constraint boundary if H(fω) < β. We
show in Appx. A that it has limited to no effect on a practical case.
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Figure 2: Impact of constraining the entropy of TRPO and PPO on the BitFlip task. Left,
policy return averaged over 11 runs. Right, policy entropy of the first run.

7. Evaluation of action-space entropy constraint

We evaluate the impact of constraining the entropy of TRPO and PPO during policy update
on 4 tasks from OpenAI’s gym (Brockman et al., 2016) for continuous action tasks and on
a toy discrete action task. The discrete action task, named ’BitFlip’, is designed to require
sustained exploration. In BitFlip, the state space is a vector of N bits and there are N
actions, flipping the value of each bit. The reward is given by r(s, a, s′) = −val(s′) if a flips
a bit to 1 and val(s) otherwise, where val(s) is the numerical value of the bit vector s. All
bits of s0 are 0 and the optimal policy is to continuously flip the bits from right to left.
This problem is challenging because the optimal policy has to chooses roughly half of the
time the action that does not provide the highest immediate reward.

In the following, variants of TRPO and PPO with an inequality entropy constraint as
defined in Eq. (7) have a β decreasing linearly every iteration. In addition to the base
version of each algorithm, we add a variant of PPO with an entropy bonus (instead of a
hard constraint). Fig. 2 shows the performance of all 5 algorithms on the BitFlip task
averaged over 11 runs and the policy entropy of the first run. The plot shows that TRPO
without an entropy constraint converges early to a sub-optimal policy and barely improves
over it from there on. The entropy of PPO and PPO-BonusEnt plateaus at a higher level
than TRPO. This allows both baselines to steadily improve, but because of the abrupt
reduction of entropy in the initial iterations, both baselines improve slowly. In contrast, our
linear entropy reduction scheme slows down TRPO-Inq and PPO-Inq initially but allows
both algorithms to sustain a fast increase of the policy return, resulting in a significantly
better final policy. Similar results are observed in Appx. B for continuous action spaces.

8. Conclusion

We have presented in this paper a new direct policy search algorithm that updates the
search distribution under KL and entropy constraint without using the method of Lagrange
multipliers. Instead, we introduced a projection that maps any search distribution to a
distribution satisfying the update constraints, and solve the resulting unconstrained problem
by gradient ascent. We have shown on a toy problem that our approach is more robust
to small sample counts compared to related algorithms from the literature and that the
same tools developped for policy search can be extended to action-space exploration RL.
An interesting direction for future work is to combine the proposed parameter exploration
method with a learned Q-Function in order to optimize higher dimensional policies in a
similar setting to that of Plappert et al. (2017).
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Figure 3: Comparison between the method of projected gradient and our approach using
the same projection for the entropy constraint. Our method is able to find the
optimum even though the projection is not on the constraint boundary.

Appendix A. Numerical evaluation of soft-max entropy projection

We assess the soft-max entropy constraint projection on a simple problem of maximizing
over p the objective

∑
pif(i) for some arbitrary vector f and under entropy constraint

H(p) ≥ β. Using the method of Lagrange multipliers, the optimal solution is of shape
pi ∝ exp(f(i)/η) where η is a dual parameter that can be efficiently computed. We apply
our method by optimizing over the ’logits’ of p using the projection defined in Sec. 6 to
ensure that H(p) ≥ β. Using the same projection, we compare our method to the projected
gradient method that projects the ’logits’ after each gradient update—instead of applying
gradient ascent to the composition of both the objective and projection.

Fig. 3 shows an example run of such comparison. The projection for the entropy con-
straint is not on the constraint boundary, preventing the projected gradient method to
find an optimum whereas our method is able to find the same solution found when using
Lagrange multipliers. We ran 50 independent runs with randomly sampled f and initial
’logits’ parameters; the average KL between the distributions found using our method and
Lagrange multipliers is < 10−7 with similarly small standard deviation. While the average
KL between the distribution found using projected gradients and Lagrange multipliers is
≈ 0.016 with standard deviation ≈ 0.014. Despite the soft-max distribution entropy con-
straint not projecting distributions on the constraint boundary, our method is still able
to find a solution that is close to optimal. In contrast, using the same projection but only
projecting distributions after gradient direction update does not result in a similar accuracy.
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Figure 4: Impact of constraining the entropy of TRPO and PPO on four OpenAI gym tasks.
First row shows the policy return averaged over 11 runs. Bottom row shows the
policy entropy of the first run.

Appendix B. Evaluation of continuous action entropy constraint

We evaluate the effect of the policy entropy constraint on TRPO and PPO on four tasks from
OpenAI’s gym testbed comparing the same 5 algorithm variants described in Sec. 7. Fig. 4
shows similar behavior to what was observed with the discrete action task except that the
improvements of the end policy are more marginal, if at all present as in the RoboschoolAnt
task. This might indicate that rewards are sufficiently informative and exploration in these
tasks is not especially challenging.
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