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Abstract— Direct policy search has been successful in
learning challenging real world robotic motor skills by
learning open-loop movement primitives with high sample
efficiency. These primitives can be generalized to different
contexts with varying initial configurations and goals. Current
state-of-the-art contextual policy search algorithms can
however not adapt to changing, noisy context measurements.
Yet, these are common characteristics of real world robotic
tasks. Planning a trajectory ahead based on an inaccurate
context that may change during the motion often results in
poor accuracy, especially with highly dynamical tasks. To
adapt to updated contexts, it is sensible to learn trajectory
replanning strategies. We propose a framework to learn
trajectory replanning policies via contextual policy search and
demonstrate that they are safe for the robot, that they can be
learned efficiently and that they outperform non-replanning
policies for problems with partially observable or perturbed
context.

I. INTRODUCTION

A popular approach to learn robotic skills is the com-
bination of direct policy search with structured trajectory
representations that can be easily initialized from demonstra-
tions via imitation learning [1], [2]. Successful applications
include the Ball-in-a-cup game [3], pancake flipping [4],
dart-throwing [5] and table tennis [6]. To generalize over
task variations, robotic tasks are often phrased as multitask
problems where the motion trajectory is determined by the
context. Such a context may include features of the initial
and goal configuration. For example, in robot table tennis,
the context could include the ball position at the start of
the motion and a goal position on the opponent’s side of
the table. However, determining an entire trajectory from
just the initial conditions can be difficult in real-world
applications as they might only be partially observable or
subject to later perturbations. In real world table tennis, the
context is typically affected by noise, unobservable states
(e.g. ball spin) and the ball trajectory might be perturbed by
external forces. These issues require the online adaption of
trajectories to such changes in context.

Formulating the problem of learning robot skills in terms
of reinforcement learning and modeling it as a Markov
decision process [7], [8] or partially observable Markov
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decision process [9] is a solution to online adaption. Value-
based methods can yield a control policy that continuously
produces motor actions from the current state of the task.
However, it has become apparent that the resulting model
complexity is often challenging for real-world tasks as the
sample-complexity is often too large for real experiments to
be feasible. Moreover, safety concerns may arise in case of
discrete context changes due to updated measurements.

One approach to robot reinforcement learning is to learn
the Q-function of a time-dependent control policy [10], [11].
Nevertheless, such a trajectory representation can be prob-
lematic. Although it is capable of instant context adaption,
discrete jumps in context can result in dangerous movements
[12]. This is an important issue since in reality, the frequency
of context measurement can be orders of magnitude slower
that the robot control frequency (e.g optical tracking). Fur-
thermore, such a time-dependent policy typically requires a
large number of parameters to produce complex trajectories.

An alternative approach that requires to learn much fewer
parameters is to learn a simple policy that determines the
parameters of a low-dimensional structured trajectory rep-
resentation [3]. For this purpose, a variety of direct policy
search algorithms have been suggested [13]. Many policy
search algorithms are based on gradient ascent [10], [14],
[15]. An example for an information-theoretic approach is
relative entropy policy search (REPS) [16]. Model-based
extensions, such as GPREPS [17] (Gaussian process reward
model) or Model-based relative entropy stochastic search
(MORE)[18] (quadratic reward model) were introduced in
order to improve data efficiency. For this paper we chose
the contextual variant of MORE, but the principles could be
applied to other algorithms as well.

The main contributions of this article are as follows:

1) We propose a policy search algorithm that leverages
the sample efficiency of contextual policy search (Sec.
III) while incorporating a replanning step that takes
into account new context information (Sec. IV), akin
to step-based RL algorithms.

2) We provide a safety constraint to bound the maximum
change in the generated trajectories.

3) The ability of our proposed approach to handle non-
stationary and noisy context measurements is demon-
strated and analyzed on three tasks in simulation and
on a real robot ball tracking task (Sec. VII). This
demonstrates that contextual direct policy search al-
gorithms, when coupled with smooth parameterized
trajectory generators are more powerful than they are
given credit for in the literature.
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II. RELATED WORK

One approach to improve performance under uncertain or
changing contexts is to delay the planning of a trajectory
until enough information is collected or the motion has to be
started because of timing constraints [2], However, this fails
in cases where the context measurements are not accurate
enough at the time a trajectory’s execution must be started
because of timing constraints.

Defining trajectories rigidly (e.g. based on splines [19])
has the disadvantage that trajectories are precomputed and
cannot react online to perturbations. While advanced con-
trol methods like model predictive control [20] can handle
perturbations, they are not capable of large modifications to
the overall trajectory. Therefore, many state of the art ap-
proaches to adapt trajectories online use dynamical trajectory
representations that are formed by attractor landscapes [2],
[12], [21]–[25]. What all these approaches have in common
is the utilization of dynamical systems to generate smooth
trajectories with a low-dimensional parameterization.

Dynamical movement primitives (DMPs) [21], [22] are
widely used for robotic tasks in conjunction with direct
policy search [3], [6], [18], [26]. Our method also builds
on DMPs (see Sec. V). Ude, Gams, Asfour, et al. [27]
demonstrated how DMPs can be adapted online by con-
tinuously updating the goal position of a motion using a
vision system. An alternative approach that was presented
by Kober, Mohler, and Peters [23] is the introduction of
a term that directly couples a DMP to an external state,
demonstrating effective online adaptation to perturbed states.
Similarly, Pastor, Righetti, Kalakrishnan, et al. demonstrated
how DMPs can be used to adapt a grasping motion online by
adding a feedback term in order to match prerecorded forces
[24]. Khansari-Zadeh and Billard introduced autonomous
dynamic systems [25] which is an alternative formulation
of dynamical trajectories that models the dynamical system
with Gaussian mixture models and has the ability to adapt
to perturbations instantly.

State of the art contextual policy search typically assumes
that the context is always completely specified ahead of the
motion execution [13], allowing to pre-generate a trajectory.
The present paper relaxes this assumption.

We address both issues of perturbations in the state and
uncertain state measurements by replanning trajectories after
their execution has started. Replanning steps are introduced
at which the trajectory parameters are updated in order to
adapt to changes in the context.

We propose a combination of replanning policies with
replannable DMPs and show how they can be learned with
policy search by introducing some light assumptions. This
is followed by an experimental evaluation on tasks that are
difficult without rapid adaptation.

III. PRELIMINARIES

The goal of episodic contextual policy search is to learn
a contextual stochastic policy π(θ|c) directly while treating
the problem as a black box. The output parameters of the

policy θ could for example be the parameters of a dynam-
ical movement primitive [21]. The parameters are sampled
dependent on a context c which defines the configuration of
the task at hand. Such a context can contain features of an
observed system state or the definition of a desired goal state.
The distribution of this context is considered unknown. The
policy π(θ|c) is learned by maximizing the expected reward
J(π) = Eθ∼π(θ|c)[R(θ, c)]. The reward function R(θ, c) 7→
R maps parameters, chosen by the policy given the context to
a real number that represents the quality of that choice. It is
defined carefully as a goal definition of the problem at hand.
In other words, if the parameters define a trajectory, R(θ, c)
scores the quality of the generated trajectory. Our choice of
contextual policy search algorithm is Model-Based relative
Entropy Stochastic Search (MORE) [18]. MORE samples a
fixed number of parameters from the current policy πi(θ|c),
executes them on the task and receives the resulting rewards
R(θ, c). This set of parameter samples and their rewards
is then used to improve the expected reward of the policy
distribution, shifting it towards more successful parameters
samples. The updated, improved policy πi+1(θ|c) is obtained
by solving the optimization problem given by

maximize
π

∫∫
µi(c)π(θ|c)R(θ, c)dθdc,

subject to Ec∼µ(c)
[
KL(π(θ|c) ‖ πi(θ|c))

]
≤ ε,

Ec∼µ(c) [H (π(θ|c)))] ≥ β.

with µi(c) being the current empirical state distribution.
The optimization determines the policy that maximizes the
expected reward. Meanwhile, the Kullback-Leibler (KL)
divergence of the policy update is bounded to limit the rate
of convergence. The KL-divergence between distributions p
and q is given by KL(p ‖ q) =

∫
p(x) log p(x)

q(x) . Furthermore,
placing a lower bound on the entropy of the policy update
limits the reduction of the covariance of the policy, which
is needed for exploration. The entropy of a distribution p is
given by H(p) = −

∫
p(x) log p(x).

This optimization problem is solved using the method
of Lagrange multipliers, yielding a closed solution for the
policy update which is given by

πi+1(θ|c) ∝ πi(θ|c)η/(η+ω) exp

(
R(θ, c)

η + ω

)
, (1)

where η and ω are Lagrange multipliers. In order to enable
an analytic solution for the corresponding dual function, a
quadratic reward model is learned from the samples.

R(θ, c)≈
(
θ
c

)T(
Rθθ Rθc/2

Rθc
T /2 Rcc

)
︸ ︷︷ ︸

symmetric

(
θ
c

)
+

(
θ
c

)T(
rθ
rc

)
+r0

(2)

Akrour, Neumann, Abdulsamad, et al. [11] showed that with
this quadratic model and assuming a linear Gaussian policy
π(θ|c) = N (θ|Kc+ b,Σ), the policy update simplifies to

πi+1(θ|c) = N (θ| FL︸︷︷︸
K(i+1)

c+ F f︸︷︷︸
b(i+1)

,F (η + ω)︸ ︷︷ ︸
Σi+1

)
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with F = (ηΣ−1 − 2Rθθ)
−1, L = ηΣ−1K +Rθc and

f = ηΣ−1b + rθ.

IV. REPLANNING POLICIES

Contextual learning often assumes a Gaussian policy
π(θ|c) = N (θ|Kc+ b,Σ) that is linear in context features.
Commonly, such a policy is used to pre-generate a trajectory.
In case there are multiple planning steps k ∈ 1 . . . ρ such a
policy can be divided into one independent linear Gaussian
sub-policy πk(θ|c) = N (θ|Kkc+bk,Σk) for each planning
step. These sub-policies can be evaluated successively with
the current context at their respective planning step. Because
of the simple linear relationship of πk(θ|c), replanning
can happen quasi-instantaneously in the robot controller
whenever a replanning step is triggered. While the initial
planning step must remain at the start of a trajectory, the
following replanning steps can be spaced arbitrarily along the
trajectory’s time frame. This allows the adaption of trajectory
parameters to a changing context.

If the Markov property holds, the sub-policies can be
assumed to be independent because of causality. The Markov
property can be achieved by either including the robot state in
the context or by including the entire history of contexts and
parameters of previous planning steps. However, we make
the simplifying assumption that the sub-policies are always
independent. Thus, replanning policies can be described by
a single multivariate Gaussian distribution

π(θ|c) = N (θ|Kc+ b,Σ) (3)

that is linear in context features with stacked vectors
for the output parameters θ =

(
θT1 ,θ

T
2 , · · · ,θTρ

)T
, context

c =
(
cT1 , c

T
2 , · · · , cTρ

)T
and bias b =

(
bT1 ,b

T
2 , · · · ,bTρ

)T
along with block matrices for the gain and covariance

K=


K1 · · · 0

K2

...
...

. . .
0 · · · Kρ

 Σ=


Σ1 · · · 0

Σ2

...
...

. . .
0 · · · Σρ

.

Clearly, the number of parameters of the replanning policy
π(θ|c) grows linearly with the number of planning steps
ρ. Retaining this block shape during the policy update
requires further constraints on the reward model in equation
2. It is necessary to assume that Rθθ, Rθc and Rcc are
block-diagonal. With this assumption, the policy update
of MORE will trivially preserve the independence of the
policies by preserving the block-diagonality of K(i+1) and
Σ(i+1) which is imperative to preserving the independence
of the sub-policies.

In fact, any policy search algorithm with linear gaussian
policy can be adapted to replanning if the set of learned
parameters and covariances can be restricted to the block-
diagonal while fixing the remaining parameters of the gain
matrix and covariance matrix at zero.

The most powerful replanning policy model is a set of
distinct sub-policies for every possible measurement step.

Yet, increasing the number of parameters increases the search
space and will slow down learning (more on this tradeoff in
Sec. VI-A). We present two approaches to limit the number
of parameters. The first approach uses the same sub-policy
for all planning steps, allowing the number of replanning
steps to be independent of the number of parameters. The
second approach uses one sub-policy per planning step but
limits the number of replanning steps.

A. Stationary Replanning Policy

If replanning has to occur constantly during a trajectory,
the number of parameters for independent sub-policies
becomes very large. In this case, a desirable assumption is
π̂(θ|c) := π1(θ|c) = π2(θ|c) = · · · = πρ(θ|c), keeping the
same number of parameters as the equivalent non-replanning
policy. This means that the same policy is evaluated multiple
times during a trajectory and it enables trajectories with a
varying number of replanning steps. However, this requires
that the context of all planning steps is stationary. This
requirement arises from the fact that we are using a linear
model for generalization. For example, if the context of a
table tennis setup is defined as the current ball position, it
violates this condition. In some cases, this limitation might
be overcome by using a model of the state progression
and defining the context as features of the model (e.g. a
prediction at some point in the future). However, this is only
feasible if 1) a sufficiently good model of the system state
is available, and 2) unpredictable system state perturbations
(external or by the robot itself) can be ruled out until after
the last replanning step. We denote such a policy with equal
sub-policies a stationary policy.

The reward model for the policy update can be learned
from a set of policy samples using linear ridge-regression,
given by

w = (ΦTΦ + λI)−1ΦTY , with

Y =
(
R(1),R(2), ...,R(n)

)T
Φ =

(
φ(θ(1), c(1)), φ(θ(2), c(2)), ..., φ(θ(n), c(n))

)T
where n is the number of samples, R(i), c(i) and θ(i) are
the reward, context and corresponding parameters of sample i
respectively and λ is a regularization constant. The regression
solves for the vector w that contains all parameters of the
reward model in equation 2. φ(θ, c) are the features of the
policy sample (θ, c).

For our stationary policy, solving the reward model for all
model parameters yields the parameter vector

w = (r0,wlinear,wquadratic)
T

with the parameters for the linear part wlinear = (r̂θ
T , r̂c

T )T

and the parameters for the quadratic part wquadratic =

(vech(R̂θθ)
T
, vec(R̂θc)

T
, vech(R̂cc)

T
)T . vec(·) is the vec-

torization function, reordering all elements of a matrix into a
column vector. Due to the symmetry ofRθθ andRcc, we also
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utilize the half-vectorization function vech(·), which reorders
all elements of a lower triangular matrix into a column vector.

The corresponding features for the regression are defined
as

φ(θ, c) = (1, φlinear, φquadratic)
T

with linear features φlinear =
(∑ρ

i=1 θ
T
i ,
∑ρ
i=1 c

T
i

)T
and quadratic features φquadratic = ( vech(

∑ρ
i=1 θi · θTi )

T ,
vec(

∑ρ
i=1 θi · cTi )

T , vech(
∑ρ
i=1 ci · cTi )

T
)
T .

B. Non-Stationary Replanning Policy

The second, more general variant of replanning policy can
utilize differently distributed contexts for different planning
steps, exploiting the independence of the sub-policies. This
implies that even the dimensionality of the context can
differ between planning steps. Because of its capability
to handle non-stationary contexts, we denote this policy
variant as non-stationary. An example for such a task
is robot table tennis, where the ball state distribution is
different at different points in time due to the progressing
motion of the ball. As a result of non-stationarity,
the number of parameters for the regression increases
significantly. The vector of linear parameters for this case
is given by wlinear =

(
rθ
T
1 , · · · , rθTρ , rcT1 , · · · , rcTρ

)T
.

Likewise, the vector of quadratic parameters wquadratic =

( vech(Rθθ1)
T
, · · · , vech(Rθθρ)

T
, vec(Rθc1)

T ,· · · ,
vec(Rθcρ)

T
, vech(Rcc1)

T
, · · · , vech(Rccρ)

T
)
T contains

all elements of the block-diagonal matrices Rθθ, Rθc and
Rcc.

V. REPLANNING CONTROL

To react to unforeseen state changes after the initial plan
for the trajectory, additional replanning steps are introduced.
A common approach to robot reinforcement learning is
to exploit a structured trajectory representation and train
a policy to generalize only a small subset of parameters
(e.g. goal position) that adjust a demonstrated trajectory.
This allows very low-dimensional policies since all relevant
trajectory parameters θ are determined by a small set of
initial conditions c.

For our replanning framework, we build on the formulation
of dynamical movement primitives (DMP) [21], [22]. The
trajectory is produced by the differential equation

ẍ(t) = α(β(g − x(t))− ẋ(t)) + f(t) , (4)

where x is the vector of joint positions and α, β are
constants. As time progresses, the goal attractor becomes
dominant and the trajectory converges at the goal position g.
This representation as a differential equation enables on-the-
fly trajectory generation, which can be exploited to smoothly
adapt online to updated parameters.

Replanning can be achieved by updating the goal position
g or the weights w of the forcing function f that defines
the shape of the motion. At every planning step, the relevant
subset of these trajectory parameters is initialized/updated
by the (re)planned parameters θ1, · · · ,θρ However, in the
original formulation, such an update results in noticeable

jerky trajectories, because it causes discrete jumps in accel-
eration. Such trajectories can cause damage to real robots.
We mitigate jerky behavior by updating the desired goal
position gd and weights wd and smoothly transitioning g
and w with the differential equations ġ = cg(g − gd) and
ẇ = cw(w−wd), where cg and cw are constants that bound
the jerk that is introduced by parameter updates.

A. Safety of replanning

We show in this section, that a trajectory that results
from an update of the goal position can be guaranteed to
be bounded. For this, we assume that the exploratory noise
of the policy is small and we can express an updated goal
position as gi+1 = Kci+1 + b. The DMP equation for this
upated goal position then becomes ẍi+1 = α(β(Kci+1 +
b−xi+1)− ẋi+1)+f . This new trajectory can be expressed
as ẍi+1(t) = ẍi(t) + ḧ(t)K∆c, where ∆c = ci+1 − ci is
the change in context and h(t) is an unknown function of
time. It follows from the definition of the DMP that

ẍi+1(t) = ẍi(t) + [αβ(1− h(t))− βḣ(t)]︸ ︷︷ ︸
ḧ(t)

K∆c.

Solving the differential equation

ḧ(t) = αβ(1− h(t))− βḣ(t),

with initial condition h(0) = 0 (both plans start from
the same position) and with standard setting β = 4α
we obtain h(t) = 1 − exp(−2αt). Since |h(t)| = |1 −
exp(−2αt)| ≤ 1, the maximum joint position deviation
∆max = maxt |xi+1(t) − xi(t)| is bounded and we obtain
∆max ≤ |K∆c|. In other words, provided that the maximum
change ∆c in context is bounded, we can ensure the safety
of the re-planning by bounding a norm on the policy pa-
rameters. In practice one can perform a line-search, starting
from the η returned by the dual function minimization (see
Sec. III) to ensure that |K| < ξ, where ξ is some hand
defined hyper-parameter of the algorithm. Note that such a
value of η always exists since as η goes to infinity, the limit
of the updated policy is the old policy (KL(πi+1 ‖ πi) = 0)
and the linear term of the previous policy has norm smaller
than ξ .

VI. SIMULATION RESULTS

To evaluate the replanning policies, we conducted experi-
ments that compare the performance of stationary and non-
stationary policies, as well as MORE on two variants of a
planar hole reaching task and a simulated hole reaching task.

A. Planar Hole Reaching with State Perturbations

Our first experiment is a planar hole reaching task with
perturbations in the state. A simulated robot arm is tasked
with reaching into a hole in the ground at a randomized
distance in front of it. At a random time during the motion,
the hole position changes a small random amount. This is an
example where replanning is necessary to adapt the motion
to a changing context.
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Fig. 1. Hole Reaching Task
Two variants of the Hole Reaching task with moving hole
position (left) or hole position with noisy measurement
(right). Left: Initial hole position (gray, dashed) and current
hole position (black, solid). Right: Noisy measurement of the
hole position. The amount of noise is inversely proportional
to the distance between end-effector and hole. An end-
effector trajectory that was replanned by a non-stationary
policy is shown in red before the hole position change and
in green after the change.

As pictured in figure 1 we simulated a 3-link robot arm.
It follows the trajectory of a set of DMPs with 3 basis
functions per joint that define the trajectory for each joint
angle, starting from an upright position. The task is to
move the end-effector into the bottom of the hole while
avoiding contact with the floor and walls (black). Therefore,
shortly before the end of the simulation, a reward is given
proportional to the negative squared distance of the end-
effector to the center of the bottom of the hole. Meanwhile,
every step of contact with the floor or hole walls is punished.
Additionally, the problem is regularized by punishing joint
accelerations. After a random time which is drawn from a
uniform distribution, the hole position changes position by a
small random distance. The context is defined as a set of 3
radial basis function features of the hole position, while the
output parameters of the policy are the weights of the DMP
forcing functions and the DMP goal positions (in total 12
parameters per independent planning step).

For the experiments, 10 trials of 1000 episodes were
evaluated. In each episode, 50 samples were generated while
keeping the last 1000 for the policy update.

1) No Replanning (MORE): The black curve in figure 2
shows the performance of the hole reaching task without
replanning. Unable to adapt to a change in the hole position,
it fails to reach adequate performance.

2) Replanning with Stationary Policy: We spaced the
replanning steps uniformly within the simulation interval
for all experiments. The red graph shows that replanning
with a stationary policy improves the performance radically,
although the number of parameters (12) is the same as for
the non-replanning policy. It has 4 replanning steps. The
average rewards are affected by a similar level of noise as
the non-replanning version. This is because the summation of
noisy contexts increases the total noise of the reward model

estimation.
3) Replanning with Non-Stationary Policy: The best per-

formance was reached with a non-stationary replanning
policy (blue). This boost in performance over the stationary
policy can be explained by the more powerful model. The
policies for the different replanning steps differ greatly, al-
lowing advanced strategies like waiting until the hole change
has occurred before moving down into the hole.

We also analyzed the effect of different numbers of
replanning steps. As shown in fig. 3, more replanning steps ρ
are not always better and there exists a task-specific optimum
value for ρ. While increasing ρ yields more powerful models,
the problem also becomes more difficult. Thus, the available
budget for sample generation is an important factor for the
choice of ρ. In the non-stationary case, increasing the number
of planning steps results in a higher number of parameters
that have to be learned, rendering the problem more difficult.
Similarly, increasing the number of planning steps for the
stationary case leads to increased noise in the estimation
of the reward model, likewise making the problem more
difficult. This demonstrates that the number of planning steps
ρ is an important hyper-parameter that needs to be chosen
carefully.
A further consequence of this quasi-bound on ρ (and there-
fore the number of learned parameters) is that the computa-
tional cost of learning is bounded as well. It was observed
that the cost of sample generation is in practice much higher
than the cost of computing policy updates.

B. Hole Reaching with Partial Observability

We performed an additional experiment with a partially
observable variant of the hole reaching task. Instead of
changing the hole position, the hole position remains fixed.
However, for this experiment the context features of the hole
position are affected by additive uniform noise. The noise
level is proportional to the distance of the end-effector to the
entry of the hole. The reasoning behind this is to simulate a
camera that is mounted to the end-effector.

Again, 10 trials of 1000 episodes were evaluated. In each
episode, 50 samples were generated, keeping the last 1000
for the policy update.

1) No Replanning (MORE): The black curve in figure 4
shows the performance without replanning. The noise level
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Fig. 2. Hole Reaching Task with State Perturbations
Average rewards and variances per episode of hole-reaching
with state perturbations for MORE and replanning.
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Fig. 3. Ball Tracking Learning Curves
Average final rewards after 1000 episodes for different num-
bers of replanning steps ρ. While the performance initially
rises du to increased model power, it eventually degrades
because it can’t converge within 1000 episodes.
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Fig. 4. Hole Reaching Task with Partial Observability
Average rewards and variances per episode of hole-reaching
with partial observablity for MORE and replanning.

of the initial context is significant. Thus, it is unable to locate
the hole reliably enough.

2) Replanning with Stationary Policy: The performance
of a replanning policy with a stationary policy is displayed
in red. The performance cannot be improved compared to
the non-replanning policy. Although the mean of the context
feature are the same for each replanning step, variance
differs drastically, which violates the stationarity require-
ment. Policies needs to be aware of the higher accuracy of
updated measurements to plan more precisely, requiring a
non-stationary policy.

3) Replanning with Non-Stationary Policy: As before, the
best performance was achieved with a non-stationary replan-
ning policy (blue). This demonstrates that simple replanning
policies can be used to learn problems that suffer from partial
observable states with non-trivial noise models.

C. Simulated Table Tennis

Another task that we evaluated in this paper is simulated
robot table tennis. In our setup, a ceiling-mounted robot arm
is tasked to return incoming balls to a point on the other
side of the table. This is a difficult problem in the real
world because of imperfect ball tracking and tight timing
constraints. For this reasons it has been used frequently in
reinforcement learning research ([2], [16], [11], [6], [28],
[26]). Ball state measurements tend to increase in accuracy
the closer it gets to the hitting moment due to filtering.
However, the hitting motion must be initiated before a perfect

Fig. 5. Table Tennis Task
Depiction of the simulated table tennis setup. A table tennis
racket is attached to the end-effector of a ceiling-mounted
barret robot.

estimate of the ball state is available, leading to decreased
performance of trajectories that are planned ahead. These
challenges make the table tennis task a good candidate for
the application of replanning.

The setup consists of a table tennis table and a ceiling-
mounted barret robot arm which has table tennis paddle
attached to its end-effector (see Fig. 5). A simulated ball
cannon shoots a table tennis ball in a fixed direction such that
it bounces once on the robot’s side of the table. However, the
trajectories of the ball cannon are affected by noise, similar to
a real ball cannon, requiring the adaption of each hitting mo-
tion to the given ball context. The robot is tasked to perform
a forehand stroke that returns the ball to a specified point
on the opposite side of the table. It is controlled by a PD-
controller that follows a DMP trajectory which is initialized
by imitation-learning. The policy has to adapt the DMP goal
position to the variations in the ball trajectories. The issue
of noisy ball measurements is simulated by adding Gaussian
noise to the simulated ball position. This ball measurement is
then filtered by an extended Kalman filter to maximize the
performance of policy search without replanning, resulting
in the black curve in figure 6. Despite the filtering, the ball
state remains noisy and can never be determined exactly.
Moreover, the uncertainty of the ball state measurement
decreases with time, due to the extended Kalman filtering.
Because the robot’s acceleration is limited, the trajectory
must be initiated before the measurement becomes accurate
enough.

We simulated 7 trials table tennis experiments with 1000
episodes for the non-replanning policy and the non-stationary
replanning policy. Each episode, 100 samples are generated.
For the policy update, the last 500 samples are used.

1) No Replanning (MORE): As shown in figure 6, learn-
ing the table tennis task without replanning only reaches
poor performance. The remaining noise in the filtered mea-
surements renders the generated trajectories very inaccurate.
Furthermore, the achieved rewards are very noisy.

2) Replanning with a Non-Stationary Policy: Because
the context is time-dependent, a stationary policy cannot
be applied to this task. To exploit knowledge about the
measurement uncertainty, we use the trace of the Kalman
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Fig. 6. Table Tennis Learning Curves
Comparison of the average reward of the table tennis task
and its variance per episode for non-stationary replanning
policies and non-replanning policies.

Fig. 7. Ball Tracking Task
The robot has to reach a ball (gray) with a cup on its end-
effector (red). The ball is thrown by an experimenter from
ca. 3 meters in front of the robot. The time from the first
registration of the incoming ball to the moment of contact is
around 0.5s.

filter covariance matrix as additional context. In our ex-
periment, the average performance of the non-stationary
policy significantly improves upon MORE. Moreover, the
variance of the average rewards is greatly reduced, indicating
a reliable policy. This demonstrates that indeed, replanning
can robustly improve the performance of a task with partial
observability.

VII. EXPERIMENT: REAL-ROBOT BALL TRACKING

We also evaluated our replanning policies on a real-world
ball tracking task. A 7-link WAM robot arm is tasked to
reach for flying table-tennis balls with a cup on its end-
effector. (Fig. 7). An experimenter throws the ball in a
variety of different ball trajectories. Balls are tracked by an
optical motion-capture system which offers limited tracking
accuracy. As ball velocity estimates are extremely inaccurate,
the context only consists of the 3d ball position at the
planning step. From this context, a 7-dimensional goal (joint-
)position is planned. For this experiment, we used a variant of
our method, where replanning sub-policies π(θi|ci,θi−1) =
N (θi|Kc+ b + θi−1,Σ) provide additive corrections. The
reward function is proportional to the negative squared
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Fig. 8. Ball Tracking Learning Curves
Blue: average reward per episode for the policy pre-training
in simulation.
Red: average rewards after transferring the policy that was
learned in the simulation to the real robot.
Gray: MORE is unable to converge to a good policy

distance between the ball and cup center at the closest point
with a regularization term that quadratically punishes joint
accelerations. Our experiment shows that our method can
be used to learn reaching motions under these challenging
circumstances. The DMP of the motion was initialized from
a demonstration. In order to reduce the costly real-world
training time, a policy was pre-trained on real recorded
throws in a simulation before continuing with real experi-
ments. As depicted in Fig. 8, the real experiment achieves
similar performance as the simulation, which leads us to the
conclusion that our method can be successfully applied in
real-world tasks. In this difficult setting, our method learned
to generate trajectories that touch the ball in 74% and catch
it in 8% of ball trajectories.

VIII. CONCLUSION

Real-world robotic tasks often suffer from partial observ-
ability or perturbations of their environment state, rendering
trajectories that are planned ahead of the motion inadequate.
In order to adapt online to changes in the environment
state or its measurements, we presented a framework for
learning replanning policies with very little modification to
standard contextual policy search and discussed under which
conditions they can be applied to different scenarios. We
then performed experiments on different tasks, comparing the
performance of stationary and non-stationary policies with
non-replanning policies. Our experiments demonstrate that
replanning policies outperform non-replanning policies for
tasks with partially observable or changing states due to their
ability to adapt online. These results, together with our real
experiment, indicate that replanning offers great potential
to be applied to real-world robotic tasks, as they are often
challenging due to partial observability and perturbations.
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