Projections for Approximate Policy Iteration Algorithms

Riad Akrour, Joni Pajarinen, Gerhard Neumann, Jan Peters

Abstract

Approximate policy iteration is a class of reinforcement learning algorithms where both
the value function and policy are encoded using function approximators and which has been
especially prominent in continuous action spaces. However, by encoding the policy with a function
approximator, it often becomes necessary to constrain the change in action distribution during
policy update to ensure increase of the policy return. Several approximations exist in the literature
to solve this constrained policy update problem. In this paper, we propose to improve over such
solutions by introducing a set of projections that transform the constrained problem into an
unconstrained one which is then solved by standard gradient descent. Using these projections, we
empirically demonstrate that our approach can both improve the policy update solution and the
control over exploration of existing approximate policy iteration algorithms.

1 Introduction

Reinforcement learning (RL) formulates a general machine learning problem in which an agent has to
take a sequence of decisions to maximize a supervision signal (Sutton & Barto, 1998} [Szepesvaril 2010)).
Because the agent’s decisions influence the data gathering process, RL violates the typical assumption
of machine learning that data is independent and identically distributed . To cope
with this challenge, several RL algorithms constrain the agent’s behavior to only slowly change. In
trajectory optimization and optimal control, a new policy is made close to the policy around which
the dynamics of the system have been approximated through mixing Todorov & L. (2005)); |Tassa et al.|
or by a Kullback-Leibler (KL) constraint Levine & Abbeel (2014b). In policy gradient, a key
breakthrough was the use of natural gradient that follows the steepest descent—i.e. maximal change
of the output with minimal change of the input—in behavioral space rather than parameter space
[Bagnell & Schneider| (2003); [Peters & Schaal| (2008)); Bhatnagar et al.| (2009).

Constraining successive policies to be close to each other in Approximate Policy Iteration (API) is
justfied in the seminal work of [Kakade & Langford|[2002| by the mismatch between what the policy
update should optimize and what is optimized in practice. As in optimal control this can be achieved by
mixing policies (Kakade & Langford, |2002; Pirotta et al., 2013)), limiting deviation of their probability
ratio to one (Schulman et al., [2017) or constraining their KL (Schulman et al.| [2015; |Abdolmaleki
let al., 2018; Tangkaratt et al., 2018). To solve KL constrained policy updates, [Schulman et al.[2015
use a quadratic approximation of the KL which augments natural policy gradient algorithms with
a line-search step critically ensuring KL constraint satisfaction; while [Abdolmaleki et al.|[2018] and
[Tangkaratt et al|2018| rely on the method of Lagrange multipliers to derive a general solution in closed
form before using sample-based approximations to fit the policy to this solution.

We propose in this paper an alternative approach to policy update under KL and entropy constraints.
The core of our approach lies in deriving a projection g mapping the parametric policy space to a
subspace thereof complying with the constraints. The constrained maximization of the policy update
objective f is then solved by an unconstrained maximization of f o g. The projections derived in
this paper are independent of f and are shown to be relevant in several scenarios pertaining to RL
such as Direct Policy Search (DPS) and API which are introduced in Sec. and respectively.
We derive a projection for entropy and KL constraints of Gaussian search distributions in Sec.
before extending it to state-conditioned policies in Sec. 3.2l In the experimental section we show for

DPS that our more direct approach to constrained optimization sidesteps the need for sample based
approximations, yielding an algorithm more robust to low sample counts. We additionally show that
the same optimization scheme results in large performance gains by improving the policy update step
of two existing API algorithms.

2 Problem definition

We briefly introduce DPS and API and two optimization approaches from the literature to tackle each
setting. The optimization problem for API is a straightforward extension of the DPI problem to state
conditioned distributions. Similarly, the projections derived in Sec. for API will be an extension of
those derived for DPS but are more easily understood in the context of the simpler, state-independent,
distributions of DPS.

2.1 Direct policy search

Among the wide variety of approaches in policy search (Deisenroth et al., 2013), a distinguishing
property of DPS is its reliance on parameter-space exploration as opposed to action space exploration.
In parameter-space exploration, a search distribution samples parameters of deterministic policies. In
contrast, action space exploration adds noise to every time-step. We refer the reader to [Deisenroth
et al|[2013] Sec. 2.1, for a more in-depth discussion on exploration strategies in policy search. DPS
has applications in robotics for its less jerky exploration scheme, causing less wear and tear to the
robot. When combined with specialized low dimensional policies, DPS can solve complex tasks in
a model-free fashion, running directly on robotic platforms (Parisi et al. |2015). It was also shown
in simulation that parameter exploration can be used to train larger, neural network based, policies
(Plappert et al., [2017)).

Formally, DPS seeks a policy parameter maximizing the noisy reward signal R. To this end it
usually maintains a search distribution 7 = A (u,) of Gaussian shape (Heidrich-Meisner & Igell
2009; |da Silva et al., |2012; |Abdolmaleki et al., 2015)), from which policy parameters are sampled
and evaluated before 7 is update. We will focus on a simple and well founded formulation of direct
policy search that maximizes the expected return L under KL constraint between successive search
distributions. The KL constraint is akin to specifying a learning rate, trading-off between exploration
and exploitation and preventing the search distribution from collapsing to a point-mass after a single
iteration.

Search distribution update optimization problem. At each iteration having sampled and
evaluated K parameters from a search distribution ¢, the algorithm updates g by solving the following
constrained optimization problem

arg max L(m), (1)
subject to KL(7 || ¢) <€, (2)
H(m) =5, 3)

where ¢ € RT, 3 € R and H denotes the entropy of a distribution. L(w) is approximated using
importance sampling and the K parameters sampled from ¢ yielding

L 5 O g

The use of importance sampling in Eq. behaves well in practice because constraint enforces m
and ¢ to be close to each other.

This problem is identical to the one solved by MORE (Abdolmaleki et al., [2015) which adds to
the parameter exploration version of REPS (Deisenroth et al.[2013] Sec. 2.4.3) an entropy constraint
given by The problem solved by MORE is sufficiently general to have other applications in
e.g. variational inference (Arenz et al., 2018)). Using the method of Lagrange multipliers, one can
solve the aforementioned optimization problem in closed form but the resulting distribution is not
necessarily Gaussian and requires an additional sample-based approximation to yield a Gaussian m—as
further discussed in App. B. To avoid an additional sample-based approximation step, we derive in
Sec. projections that will ensure compliance with constraints and , allowing for a more direct,
gradient-based, approach to this optimization problem.

2.2 Approximate policy iteration

The optimization problem in API (Bertsekas, [2011; [Scherrer, |2014)) can be surprisingly close to
that of DPS although the justification of the problem constraints are different. To formalize the
API policy update problem we make use of the standard notation of a Markov Decision Process
(MDP), MDPNv1 Thomas & Okall (2015). Additionally, for policy = we define the Q-function
Qr(s,a) = E[X 2oV R(st,ar) | so = s, a0 = a], where the expectation is taken w.r.t. random vari-
ables s; and a; for ¢ > 0; the value function Vi (s) = Eqwr(|s) [@=(s,a)] and the advantage function
Ar(s,a) = Qn(s,a) — Vi(s). The goal in API is to find the policy maximizing the policy return
J(m) = Vi(sp) for some starting state sg. In the following we abuse the notation s ~ 7 to mean
sampling from the (y-discounted) state distribution associated with the execution of .

Policy update optimization problem. Once the advantage function of current policy ¢ is estimated,
the policy update in API seeks 7 such that J(mw) > J(¢). The policy update in API usually proceeds
by maximizing L(7; q) = Egwy [Eamr [A4(s, a)]], as described in e.g. Kakade & Langford 2002; |Pirotta
et al[2013. L(7;q) is a proxy to the more direct maximization of L(7;q) = Eeur [Eqmr [A4(s,a)]]
where the leftmost expectation is w.r.t. the state distribution of 7 instead of ¢. It is a more direct
objective since L(m;q) = (1 —) (J(m) — J(q)) as shown in Kakade & Langford||2002, Lemma 6.1, and
hence maximizing L is equivalent to maximizing J. Unfortunately, L is significantly more expensive to
evaluate since state samples from 7 are not available. Because of this discrepancy in state distribution,
an unconstrained maximization of L may yield a policy with a worse policy return than that of q.

On the other side, if m and ¢ are close enough so will their state distribution and [Kakade & Langford
2002 showed that a positive L will imply a positive L in this case. Closeness between m and ¢ was
enforced in prior work by mixing the greedy update policy with ¢ (Kakade & Langford, 2002} [Pirotta
et al., 2013)) or by bounding the KL divergence between 7 and ¢ (Peters et al.l |2010; [Levine & Abbeel,
2014a; |Schulman et al.| |2015; [Achiam et al.l |2017)). It is the latter approach that we will consider, with
the following optimization problem

arg7rrnax L(m;q), (5)
subject to Egq [KL(m(.|s) [| ¢(]s))] <€, (6)
Eyg [H(m(.]5))] > P, (7)

Compared to the DPS optimization problem introduced earlier, the optimization here carries over
a state-conditioned distribution and the KL and entropy constraints are expressed in average of the
state distribution. Handling this expectation will be the main difference between projections for DPS
and API.

1The practical interest of the entropy constraint is to allow the mean and covariance of the search distribution to
update at different rates.

3 Constraint projections

We derive in this section projections—i.e. idempotent mappings—of the parameteric policyﬂ space
to a subspace thereof complying with the update constraints introduced in the previous section.
Projections for Gaussian policies in the DPS case are derived in Sec. before being extended in
Sec. to state-conditioned Gaussian distributions for API. For clarity of exposition we focus in this
paper on Gaussian policies and discuss projections for discrete action spaces in App. A. The focus
on state-conditioned Gaussian distributions is motivated by the fact that API, as opposed to value
based methods, is especially prominent in continuous action spaces which are generally combined to
state-dependent Gaussian policies.

3.1 Direct policy search

To solve the optimization problem defined in Sec. we will use a series of projections that will ensure
that all parameterizations of a search distribution comply with constraints and . To fix ideas,
let us first consider an entropy equality constraint where the inequality sign in is replaced with an
equality for a diagonal covariance matrix.
Let 7 = M(i,X) be a Gaussian with diagonal covariance . We recall that the entropy of a
Gaussian distribution only depends on its covariance matrix and the notation H(X) will be used
1

interchangeably with #(7) and is given by H(X) = 5 log(|27eX]). Finally we define

h(\ c) = (;l log(2me) + Z)\1-) - B, (8)

where the inner most term is the entropy of some diagonal covariance matrix having vector exp(2)) € R¢
in its diagonal and S is the target entropy. The first parameterization that transforms a constrained
problem to an unconstrained one is given by the following property.

Proposition 1. Optimizing any function L(w) w.r.t. mean vector p and diagonal matriz ¥ of a
Gaussian m = N (u, X) under entropy equality constraint H(w) = B is equivalent to the unconstrained
optimization of L(m) w.r.t. mean vector p and the real valued parameter vector A such that ¥, ; =

exp?(\; — %h()\,ﬂ)) with h as define in Eq. ,

Proof. We show that any value of \ will yield a Gaussian distribution that satisfies the entropy equality
constraint and that for any Gaussian distribution N (u,Y.) satisfying the entropy constraint there
is a parameter vector A representing it. The first implication is verified through straightforward
computation, using the definition of h to conclude that the resulting Gaussian has entropy of exactly f;
while for any ¥ such that H(X) = 3, setting A; = 1 log(%; ;) will yield back ¥ since h(), 3) = 0. Hence
optimizing L(7) w.r.t. ¥ under constraint H(m) = § is equivalent to the unconstrained optimization of
L(m) wr.t. A O

Prop. [I] defines a projection g that maps any diagonal covariance matrix to a diagonal covariance
matrix having an entropy of exactly 8 by rescaling it with exp(%h()\,ﬂ))). As this projection is
differentiable, and assuming L is also differentiable—which is true for Eq. —one can use gradient
ascent for the unconstrained maximization of L o g. In the following, we propose differentiable
projections (differentiable at least outside of the constraint boundary) to the inequality constraint
H(w) > B, to full covariance matrices and to the KL constraint.

Proposition 2. Optimizing any function L(m) w.r.t. mean vector p and diagonal matriz ¥ of a
Gaussian m = N (1,), under entropy inequality constraint H(m) > 8 is equivalent to the unconstrained
optimization of L(m) w.r.t. mean vector (v and the real valued parameter vector A such that 3;; =

exp?(max(A;, \i — Sh(X, 8))) with h defined in Eq. (8).

2From here on, policy will also refer to the search distribution in DPS.

Algorithm 1 DPS Gaussian policy projection
Input: g, A\, Aot diag: ¢ = N (1g, Zg), € and
Output: m = N (i,) complying with KL and entropy constraints
¥ = Entropy_projection(X, Ao _diag, 3)
if KLV (i, X) || ¢) > € then

g = i) tre (D) Feg (D)
Y=g+ (1- Wg)zq
end if
if KLV (1, X) || ¢) > € then
e—rg(X)—eq(¥)

Tim = mq(H)
p=Nmpt+ (1= nm) g
end if

Proof. 1f ¥; ; = exp?(max(X\;, \; — 2h(X, B))) and 2} ; = exp?(A; — 5h(X, B)) then H(X) > H(¥') and
we have shown that H(X') = 8. Now let a diagonal Gaussian distribution # = N (u, X) such that
H(X) > B and let A be the parameter vector such that \; = 1 log(X;;), then h(, 3) > 0 implying
that max(\;, A; — %h()\, ¢)) = A;. Hence the parameter vector A will yield ¥. As a result, optimizing
L(m) w.r.t. ¥ under constraint H(m) > § is equivalent to the unconstrained optimization of L(m) w.r.t.
A O

Prop. |2| extends to full covariance matrices > where A is its Cholesky decomposition, ¥ =
AAT | by having A;; = exp()\;), real valued off-diagonal entries Aoff_diag, and by multiplying A with
exp(—2h(A, B)) if the entropy constraint is violated. This finalizes the projection for constraint (3.

KL constraint. Let us now consider the KL constraint completing constraints of the DPS
optimization problem. The KL between two Gaussian distributions 7 = N'(u, X) and ¢ = N (ug, X4) is
given by KL(7 || ¢) = mq(u) +74(2) +¢e4(X) where my(u) = %||u—uq||22q,1 = %(,u—uq)TEq_l(u—uq) is

the change in mean, ry(X) = 1 (tr(X,'%) — d) is the rotation of the covariance and e4(¥) = 1log @"ll

is the change in entropy.

Proposition 3. Optimizing any function L(m) w.r.t. mean vector i and covariance ¥ of a Gaussian
7 = N(u,X), under entropy inequality constraint H(w) > B and KL constraint KL(7 || q) < € for
Gaussian q such that H(q) > B is equivalent to the unconstrained optimization of L(w) w.r.t. the
parameterization given by Alg. [1]

Proof. The assumption that H(q) > 0 ensures that the optimization problem admits a valid solution
that satisfies both KL and entropy constraint. Let us first show that Alg. [I] returns Gaussian
distributions satisfying both constraints irrespective of the input values. Alg. [1| starts by using the
entropy projection which from Prop. [2f will result in H(X) > . The remainder of the algorithm simply
interpolates the current covariance and mean with that of ¢ to ensure that KL(7 || ¢) < €. Letting
E, =nX+ (1 —-n)X,, for n € [0,1], the value of n, and 7,, are derived by trying to upper bound
rq + eq and my respectively. For e, (X))

|En\5 > [n3)7 + |(1— U)Zqﬁ, (Minkowski determinant inequality)
log |X,| > nlog |X] + (1 —n)log|%,|, (concavity of log)
eq(En) < meq(X).

Exploiting linearity of the trace operator, one can straighforwardly show the same property for rq(2,).

As a result we have that 7¢(2,) + eq(E,) < n(rq(X) + e4(X)). Note that the entropy constraint is
satisfied by ¥, for any n € [0, 1] since the second inequality derived from the concavity of the log shows

Algorithm 2 API linear-Gaussian policy projection

Input: A’ X\, Aot diag, ¢(.|s) = (A§¢q(s),2q), AT), € and B

Output: 7(.|s) = N(AT(s),%) complying with KL @ and entropy constraints
¥ = Entropy_projection(X, Ao _diag, 3)

if E;KLNV(AT9(s),3) || ¢(.|s)) > € then

— e—mq(
g = mq(A)+7q(2)+eq(X)
=02+ (1-n9)%,

end if
if E;KL(NV (A y(s),X) || q(.|s)) > € then
a = SIE;|| ATy (s) — ATy (s)]I3,-
b= SE[(AT(s) - ATl/}(S)) (AT¢() = A Yg(s))]
¢ =mg(A) +1q(X) + eq(X) —
N = —b+\/afac
A =np A"+ (1 —npm)A

end if

that the entropy of ¥, cannot be lower than the entropy of the covariances it interpolates. Similarly
for the mean, letting p, = nu + (1 — n)ug for n € [0, 1], we have mg(u,;) = n*mg(p). As a result, using
the property that the KL is non-negative—which implies non-negativity of m, and r, + e,—one can
verify that 7, and 7,, are both in [0, 1] and by direct computation using the value of 1, and 7,, in
the above inequality and equality, that Alg. [I] returns a distribution satisfying both KL and entropy
constraint. Conversely, if N(u,X) satisfies the KL constraint then it will be unaltered by the KL
projection part of Alg. [1] while we know from Prop. [2 that there is a set of parameters to represent any
. satisfying the entropy constraint. O

In Prop. We have assumed H(q) > 8 which ensures that ¢ satisfies both entropy and KL constraints
and that interpolating a mean and covariance with those of ¢ will reliably return a policy satisfying
these constraints. This assumption is rather mild as one would expect entropy to reduce in both DPS
and API as data is gathered and hence 7 shouldn’t be constrained to have a higher entropy than gq.

The projection defined by Alg. [I] does not necessarily return a search distribution that has KL equal
to € if the initial search distribution has KL higher than €. Indeed, when interpolating the covariance
matrix one cannot find an interpolation coefficient such that r,(X,) + eq(%,) is equal to a given target
in closed form, which would require solving = + logz = y in closed form. The projection we derive in
App. A for discrete distributions also relies on concavity of the log to compute an upper bound of
the KL. However we show empirically in Sec. [d] for both continuous and discrete distributions that
even though the projection is not always on the constraint boundary, optimizing L o g will drive the
solution to be on the constraint boundary.

3.2 Approximate policy iteration

We extend the previously defined projections to the API case. The policy is now given by
m(als) ~ N(¢(s),X) for state s and arbitrary “mean” function ¢. In this setting, the covariance matrix
is state-independent and since the entropy only depends on the covariance matrix, the expectation in
constraint vanishes. As a result the projection for the entropy constraint is similar to DPS and
follows from Prop. 2} For the KL constraint in (), let m,(.|s) be the Gaussian distribution of mean
Nm®(8) 4+ (1 —1m) dq(s), with ¢4 the mean function of previous policy ¢, and covariance 73X+ (1—14)3,.
Following the proof of Prop. and by linearity of expectation

E; [KL(m, (.[s) || 4(-|5))] < nnEs [m(6(5))]
+ 1 Es [rg(X) + eq(2)], 9)

ours
—— Projected gradient
+— Optimal

Figure 1: Depiction of a linear optimization problem in probability space under an entropy constraint,
and comparison with the projected gradient method (right).

for interpolation parameters 7,, and 7y of the mean and covariance respectively. For the mean, mj is

given by mg(¢(s)) = o(s) — d)q(s)H;;l which can be computed from samples. Since the covariance is

state independent, the rightmost expectation in Eq. @ vanishes. The projection of the KL constraint
for state-conditioned Gaussian distributions simply follows by computing 7,, and 1, after replacing
mq(p) with B, [m$(4(s))] in Alg. However the resulting algorithm would be impractical in a
reinforcement learning setting. While, in DPS the interpolated mean for a Gaussian distribution can be
computed compactly, in API unless ¢ and ¢, are linear functions, one would need to store both ¢ and
¢q. This scheme would be possible if the policy is built incrementally by adding new components—for
example new neurones—but in this paper we focus on training policies of fixed policy class.

To this end we employ a similar scheme to the two time-scale RL algorithms [Levine et al.| (2017));
Chung et al. (2019)), and split the mean function ¢(s) = AT (s) into the feature part 1) and the
linear part A. We then use standard APT algorithms to update the policy including the feature part
before using the optimization tools we develop in this section to further optimize the linear part and
covariance matrix of the distribution. We experiment this scheme with two APT algorithms discussed
in Sec. Starting from the data generating policy ¢ of mean function ¢, = Aquq(s)7 API is used to
update ¢ and obtain an intermediary policy ¢ = AT+). The only assumption on the API algorithm is
that the intermediate policy does not violate the constraints—which can be enforced by e.g. being
overly conservative with the step-size and backtracking if necessary. For the following proposition let

mq(A) = By [mi(AT(s))].

Proposition 4. Optimizing any function L(w) w.r.t. parameters A" and X of linear in feature
Gaussian policy 7(.|s) = N(A'T(s),), under constraint entropy and KL constraint (6]) to linear
in feature Gaussian policy q(.|s) = N (ALpy(s),Sq) such that i) H(q) > 8 and ii) there exist A such
that my(A) < e, is equivalent to the unconstrained optimization of L(m) w.r.t. the parameterization
given by Alg. [3

Proof. The additional assumption (ii) on ¢ compared to Prop. [3| ensures that the feature change from
14 to ¢ does not preclude the existence of a solution to the optimization problem. In Alg. |2| the
mean projection requires an 7, such that mg (nm A" + (1 — 1nm)A) + 74(X) + €4(X) = € in case of KL
violation, i.e. to solve f(n) = an?® + 2bn + ¢ = 0 with coefficients given in Alg. The solution is
given by 7, € [0,1] as defined in Alg. 2} Indeed, f(0) < 0 from the definition of 3 and f(1) > 0
because the KL is violated and since f is continuous and convex (a > 0) then the quadratic function f
accepts a root in [0, 1] and is given by the greater root as in Alg. [2 The rest of the proof follows as for
Prop. 3| O

To summarize our contributions, two RL formulations with constrained updates were considered. To
solve the constrained problem we proposed parameterizations and associated projections to transform
the update problems to unconstrained one. The biggest advantage of these projections is that they are
differentiable—at least outside of the constraint boundary. The practical interest of this property will
be made apparent in the experimental section.

Number samples per iteration: 27 Number samples per iteration: 9 Number samples per iteration: 6 Number samples per iteration: 3
—— 10 10
W o8 o8
o o /
0 0
02
o

(o M
@ @ @ w0 1m0 10 T 2 @ @ s w0 mo 1 A T T % @ @ s w0 10
Iteration Iteration Iteration Iteration

06 /,'J\/V

Aaverage retur;
Aaverage return
Average return
Igverafge ?tuv;

—— ProjectionPs.
—— MORE
—— REPS

Figure 2: DPS performance on smooth objective functions. Left to right, samples per iteration of 27,
9, 6, and 3. Averaged over 11 runs.

4 Experiments

Our first set of experiments is on simple optimization problems to assess the validity of our proposed
optimization scheme for constrained problems. Most of the introduced projections g are not on the
constraint boundary, at the exception of the entropy constraint of a Gaussian distribution. Thus, it
remains to be seen if optimizing L o g by gradient ascent can match the quality of solutions obtained
via the method of Lagrange multipliers on simple problems.

The first considered problem is that of maximizing L(p) = > p;v; over a discrete distribution p
under entropy constraint H(p) > 3, for some arbitrary vector v. Following the method of Lagrange
multipliers, the optimal solution has shape p; « exp(v;/n) where 7 is a dual parameter that can be
accurately computed by optimizing a uni-dimensional, convex, dual function. Using our method we
optimize the unnormalized log probabilities [and use the projection g in App. A to ensure that
H(g(l)) > B for any parameter [. Whereas we optimize L o g, we compare our method to the Projected
Gradient method |Bertsekas| (1999) that projects back to the acceptable region after each gradient step.
We use for that the same projection g.

Fig. shows in probability space an example run of such experiment for a three dimensional
parameter [. While the projection g is not on the constraint boundary, gradient of L o g drives the
optimizer to the optimal point whereas using the same projection, the method of projected gradient
stops at a point where it bounces in and out of the valid region without moving towards the optimum.
This experiment was repeated over 50 independent runs with randomly sampled v and an initial point
in the valid region. Our method always converged to the optimal distribution with average KL to
the optimal distribution—computed using the method of Lagrange multipliers—of less than 10~7
with similarly small standard deviation. While the average KL for the projected gradient method is
of ~ 0.016 with standard deviation ~ 0.014. Despite g not projecting on the constraint boundary,
optimizing L o g finds near-optimal solutions. In contrast, using the same projection but projecting
after gradient updates does not yield as good results.

Secondly, we evaluate the use of the projection in Alg. [1| for the optimization of randomly generated
smooth functions. Our approach is compared to two baselines, REPS (Peters et al., [2010) and MORE
(Abdolmaleki et al., [2015) that solve a similar problem to the one introduced in Sec. For this
problem the method of Lagrange multipliers provides a closed form solution but not when the search
distribution is constrained to be Gaussian. REPS and MORE use sample based approximations to
exploit the closed form solution for arbitrary distributions. We consider a more direct approach that
optimizes L o g where g is given by Alg. [I] termed "ProjectionPS’. Fig. [2| shows that all three methods
perform similarly when the sample count per iteration is high but that our direct approach is more
robust to low sample counts. Additional figures in App. B show that despite g not projecting on the
constraint boundary of the KL constraint, the returned distributions have almost always a KL close to
the constraint limit e. Additional details for this experiment are provided in App. B.

Table 1: Average trajectory reward of the initial 100 iterations (Init.) and average reward of best
window of 500 trajectories (Best) averaged over 11 runs. Bolded are significantly better according to
Welch’s t-test with p-value < .05.

RSHopper-v1 | RSWalker-v1 | RSHalfCheetah-vl | RSAnt-vl
Init. Best ‘ Init. Best ‘ Init. Best ‘ Init. Best
PAPI-PPO 121 £ 8 2237 £56 | 75+ 4 1426 +£434 | 55 £ 4 2353 £ 67 497 +£ 29 1924 + 110

PAPI-TRPO 757 2166 =204 | 60 5 1712 + 382 | 32+ 4 2524 + 113 | 456 + 29 1684 + 233
PAPI-0-TRPO | 61+5 2122 +225 | 51 +£3 1633 342 | 20 £2 2202 £ 158 415 £ 17 1610 £ 201
TRPO 8711 2180 +123 | 656 +3 1183 £372 | 40 £2 1882 + 172 443 + 28 1575 + 220
PPO 68 £8 2024 £ 175 | 58 £ 1 1016 £ 359 | 30 £ 2 2265 £ 85 420 £ 18 1871 + 86

- TRPO = PPO (conservative) - TRPO = PPO (conservative)
PAPI-TRPO 1 PAPI-PPO w— PAPI-TRPO PAPI-PPO

I-I I-‘ -IIIII.I I | |
D T T T R 7 T T R T TR T o
L

KL K

i om am om0
Objective improvement Objective improvement

Figure 3: Effect of additional optimization steps using our optimization approach on solutions returned
by TRPO and a conservative version of PPO. Results show that our method finds policies closer to
the KL constraint with higher objective improvement.

4.1 API continuous action benchmarks

The use of the projections proposed in Sec. [3]in improving existing API algorithms is now assessed.
We combine the projection of Alg. [2[to both TRPO |Schulman et al.| (2015) and PPO |Schulman et al.
(2017)). TRPO solves the same API problem defined in Sec. except for the entropy constraint
and is thus a natural baseline to compare to. The tools we have introduced can be integrated to several
other API algorithms. PPO was chosen as the second base for our projections because Prop. [requires
the features to only slowly change. While PPO does not impose a hard constraint on the change in
distribution between successive iterations, the clipped loss still proved useful in controlling the latter.

Indeed, the clipped loss of PPO discourages

g((g“j)) - 1‘ to be too large. This quantity when taken
zel) — 1] = [Im(als) — g(als)lde,
the total variation between w(.|s) and ¢(.|s). Hence, the clipped loss of PPO provides no incentive in
changing the policy past a certain total variation threshold. By adjusting the step-size of the gradient
descent algorithm we were able to reliably update the non-linear part of the policy such that the KL
constraint is respected while relevant features are learned.

We implement our projections within OpenAl’s code base |Dhariwal et al.| (2017). The reported
results for the baselines are also obtained from this implementation. The only modification we make
to the implementation of TRPO and PPO is to use a Gaussian policy with a full covariance matrix to
match our setting. All our experiments use neural network policy with two hidden layer of 64 neurones.
We implement the optimization of the last layer and the covariance matrix over a conservative version
of PPO obtained by saving the policy after each epoch and upon completion, backtracking to the last
set of parameters that has a KL less than e. If the selected policy is not part of the last 4 epochs the
step-size of PPO’s optimizer is reduced. We then proceed by doing several optimization steps using
Alg. 2| to optimize the last layer of the neural network, i.e. the linear part, and the covariance matrix
of the Gaussian policy. TRPO on the other did not require special modifications and our optimization
where performed after the standard TRPO update which always ensures that the KL is less than €. In
the following, each of PPO and TRPO are prefixed with PAPI (for Projected API) to indicate that
additional optimization steps were performed.

in expectation of g, as is the case in PPO, is no other than E,.,

We study first the behavior of each algorithm in solving the constrained policy update of Sec.
For this we run each of the base algorithms on an RL task (here RoboschoolHopper) and record the
average KL and the improvement in the update objective L(mw) — L(q). We then optimize L o g using
the projection of Alg. [2] and record the new KL and objective improvement on the same update data
set. Fig. 3] shows a clear improvement of PAPI-TRPO and PAPI-PPO over their base algorithm in
optimizing the policy update objective. Notably, PAPI-TRPO finds solutions closer to the KL constraint
boundary and with higher objective value than those obtained by the quadratic approximation of the
KL constraint used by TRPO.

In DPS, we noticed that performing additional gradient descent steps during search distribution
update would only help the overall performance of the algorithm. We did not observe the same relation
in API. It was already known that an unconstrained maximization of L could lead to poor performance.
However, even by constraining the KL between successive policies, obtaining a better solution to the
policy update problem as defined in Sec. does not necessarily translates to better end performance.
We observed that an important indicator to track was the matrix norm of A, the linear part of the
policy mean. If the norm increases too fast, it would lead to premature convergence of the algorithm.

A remedy was to use mini-batches when optimizing L o g which had a regularizing effect on A. For
all of the experiments—including Fig. B} - PAPI-PPO refers to performing 20 epochs with mini-batches
of size 64. For the entropy constraint, we adopt a two phase approach where we initially do not
constrain the entropy until it reaches half of the initial entropy and then decrease the linearly by a
fixed amount of e. Using the same parameters for PAPI-TRPO would result in improvements over
TRPO for some tasks but the entropy of the final policy was always relatively high. We obtained
best performance for PAPI-TRPO by enforcing an entropy equality constraint using Prop. [I] and only
optimizing A for 10 epochs with mini-batches of size 64. To isolate the impact of the entropy equality
constraint we additionally report performance of PAPI-0-TRPO which does not do any additional
optimization of the policy but performs the TRPO update under entropy constraint using Prop. [I] As
for baselines, from here on PPO refers to the default version of the algorithm and not the conservative
version which is only used for PAPI-PPO.

We run a first set of experiments on four benchmark tasks from Roboschool’][Brockman et al.
(2016)). Tab. [1] reports two metrics for each task. The average trajectory reward of the initial 100
iterations (equivalent to 320K samples) to measure learning speed and average reward of best window
of 500 trajectories to measure peak performance of each algorithm. Results are averaged over 11 runs.
We observe that the additional optimization steps of L o g provide a clear performance boost in the
initial learning iterations both from the performance of PAPI-PPO and from the improvements of
PAPI-TRPO over PAPI-0-TRPO which does not perform any additional optimization step. As for peak
performance we did not observe big discrepancies between the base versions and the PAPI versions
except for the Walker (PPO and TRPO) and HalfCheetah (TRPO only). In both cases we hypothesize
that the biggest improvement in peak performance is the result of the entropy constraint, judging by
the performance of PAPI-0-TRPO. More challenging problems are tackled in the next section.

4.2 Problems with hard exploration

We extend the study of the previous section to more challenging tasks of the Roboschool testbed.
For these tasks we let the RL agents collect up to 10 million samples and launch 5 independent runs
for each algorithm. Other hyper-parameters are kept as in the previous section. Fig[4] shows a clear
improvement of both PAPI-TRPO and PAPI-PPO over their base algorithm with special mention to
PAPI-PPO that consistently learns good policies on both tasks.

Finally, we tackle a discrete action task designed to require sustained exploration, termed BitFlip.
In BitFlip, the state space is a vector of N bits and there are N actions, flipping the value of each bit.
The reward is given by r(s,a,s’) = —val(s’) if a flips a bit to 1 and val(s) otherwise, where val(s) is

3The tasks are not directly comparable to their analogue in Mujoco [Erez et al.| (2015). Please see for example |Srouji
et al.|2018 for a comparison between the two testbeds.

10

RoboschoolHumanol v

PAPI-PPO
—— PAPITRPO

PAPI-PPO

Cumulative reward
Cumulative reward

o o M o« o e
samples Samples

Figure 4: Comparison between PAPI-PPO and PAPI-TRPO with their base counterpart on complex
RL tasks.

BitFlip Bitlip

—— PAPI-O-PPO
PAPI-0-TRPO

—— PAPLO-PPO
PAPIO-TRPO

Entropy

Cumulative reward

o 0 M 1o P R VR
samples Samples

Figure 5: Impact of constraining the entropy of TRPO and PPO on the BitFlip task. Left, policy
return averaged over 11 runs. Right, policy entropy of the first run.

the numerical value of the bit vector s. All bits of sy are 0 and the optimal policy is to continuously
flip the bits from right to left. This problem is challenging because the optimal policy has to choose
roughly half of the time the action that does not provide the highest immediate reward.

We compare TRPO and PPO with variants having a strict entropy constraint, using the projection
defined in App. A, and linearly decreasing constraint lower bound . A variant of PPO with an
entropy bonus [Schulman et al.| (2017)), instead of a hard constraint, is also included. Fig. [5| shows
that TRPO converges early on to a sub-optimal policy. The entropy of PPO and PPO-BonusEnt
plateaus at a higher level than TRPO which allows both baselines to steadily improve, but because of
the abrupt initial entropy reduction the improvement is very slow. The entropy bonus, while having a
clear effect on the entropy of the policy is not as transparent as the imposed hard constraint. Because
the balancing between L and the entropy bonus is fixed, it initially has no effect on the policy entropy
before reaching a point where it dominates the objective. In contrast, the effect of the linear decrease
of B is clear in Fig. [p| on the entropy plot. As for its impact on the return, it slows PAPI-0-TRPO and
PAPI-0-PPO initially but sustains a fast increase of the policy return, resulting in a significantly better
final policy. Although exploration in RL is complex, we have showed that the proposed projections
to control the entropy of both continuous Gaussian and discrete policies can prove useful in several
scenarios. These projections can also be integrated to virtually any RL algorithm.

5 Conclusion

We introduced a set of projections to tackle constrained optimization problems common in RL. These
projections were empirically evaluated on a variaty of settings from simple optimization problems to
complex RL tasks. The practical interest of the adopted optimization scheme has been demonstrated
against many baselines such as projected gradient descent and several DPS and APT algorithms. Our
work can be extended in several ways. The introduced projections could prove useful in adapting the
isotropic Gaussian noise of [Plappert et al|[2017] for parameter exploration or in the variational setting
of [Arenz et al]2018| Finally, Eq. (9) suggests an incremental way of increasing policy complexity, and
since the interpolation parameters are in (0, 1], this approach might also prune obsolete components
and adapt policy complexity to each task.

11

References

Abdolmaleki, A., Lioutikov, R., Peters, J., Lau, N., Pualo Reis, L., and Neumann, G. Model-based
relative entropy stochastic search. In Advances in Neural Information Processing Systems (NIPS).
2015.

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., and Riedmiller, M. Maximum
a posteriori policy optimisation. In International Conference on Learning Representations, 2018.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained policy optimization. In International
Conference on Machine Learning (ICML), 2017.

Arenz, O., Zhong, M., and Neumann, G. Efficient gradient-free variational inference using policy
search. In International Conference on Machine Learning (ICML), 2018.

Bagnell, J. A. and Schneider, J. C. Covariant Policy Search. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2003.

Bertsekas, D. P. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.

Bertsekas, D. P. Approximate policy iteration: a survey and some new methods. Journal of Control
Theory and Applications, 9(3):310-335, Aug 2011.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and Lee, M. Natural actor-critic algorithms.
Automatica, 2009.

Bishop, C. M. Pattern Recognition and Machine Learning. Springer-Verlag New York, 2006.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
Openai gym, 2016.

Chung, W., Nath, S., Joseph, A., and White, M. Two-timescale networks for nonlinear value function
approximation. In International Conference on Learning Representations, 2019.

da Silva, B., Konidaris, G., and Barto, A. Learning Parameterized Skills. In International Conference
on Machine Learning (ICML), 2012.

Deisenroth, M. P., Neumann, G., and Peters, J. A Survey on Policy Search for Robotics. Foundations
and Trends in Robotics, pp. 388—403, 2013.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S.,
and Wu, Y. Openai baselines. https://github.com/openai/baselines) 2017.

Erez, T., Tassa, Y., and Todorov, E. Simulation tools for model-based robotics: Comparison of bullet,
havok, mujoco, ODE and physx. In International Conference on Robotics and Automation (ICRA),
2015.

Heidrich-Meisner, V. and Igel, C. Hoeffding and bernstein races for selecting policies in evolutionary
direct policy search. In International Conference on Machine Learning (ICML), 2009.

Kakade, S. and Langford, J. Approximately optimal approximate reinforcement learning. In Interna-
tional Conference on Machine Learning (ICML), pp. 267-274, 2002.

Levine, N., Zahavy, T., Mankowitz, D. J., Tamar, A., and Mannor, S. Shallow updates for deep
reinforcement learning. In Neural Information Processing Systems (NIPS), 2017.

Levine, S. and Abbeel, P. Learning Neural Network Policies with Guided Policy Search under Unknown
Dynamics. Advances in Neural Information Processing Systems, pp. 1-3, 2014a.

12

https://github.com/openai/baselines

Levine, S. and Abbeel, P. Learning neural network policies with guided policy search under unknown
dynamics. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. (eds.),
Advances in Neural Information Processing Systems 27, pp. 1071-1079. Curran Associates, Inc.,
2014b.

Parisi, S., Abdulsamad, H., Paraschos, A., Daniel, C., and Peters, J. Reinforcement learning vs human
programming in tetherball robot games. In International Conference on Intelligent Robots and
Systems (IROS), 2015.

Peters, J. and Schaal, S. Reinforcement learning of motor skills with policy gradients. Neural Networks,
2008.

Peters, J., Miilling, K., and Altiin, Y. Relative entropy policy search. In National Conference on
Artificial Intelligence (AAAI), 2010.

Pirotta, M., Restelli, M., Pecorino, A., and Calandriello, D. Safe policy iteration. In Dasgupta, S.
and McAllester, D. (eds.), Proceedings of the 30th International Conference on Machine Learning
(ICML-13), volume 28, pp. 307-315. JMLR Workshop and Conference Proceedings, May 2013.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T., Abbeel, P.,
and Andrychowicz, M. Parameter space noise for exploration. CoRR, 2017.

Scherrer, B. Approximate policy iteration schemes: A comparison. In Proceedings of the 31th
International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pp.
1314-1322, 2014.

Schulman, J., Levine, S., Jordan, M., and Abbeel, P. Trust Region Policy Optimization. International
Conference on Machine Learning (ICML), pp. 16, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

Srouji, M., Zhang, J., and Salakhutdinov, R. Structured control nets for deep reinforcement learning,
2018.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An Introduction. MIT Press, Boston, MA,
1998.

Szepesvari, C. Algorithms for Reinforcement Learning. Morgan & Claypool, 2010.

Tangkaratt, V., Abdolmaleki, A., and Sugiyama, M. Guide actor-critic for continuous control. In
International Conference on Learning Representations, 2018.

Tassa, Y., Mansard, N., and Todorov, E. Control-limited differential dynamic programming. In
International Conference on Robotics and Automation (ICRA), 2014.

Thomas, P. S. and Okal, B. A notation for markov decision processes, 2015.

Todorov, E. and L., W. A generalized Iterative LQG Method for Locally-Optimal Feedback Control of
Constrained Nonlinear Stochastic Systems. In Proceedings of the 24th American Control Conference,
volume 1 of (ACC 2005), 2005.

13

	Introduction
	Problem definition
	Direct policy search
	Approximate policy iteration

	Constraint projections
	Direct policy search
	Approximate policy iteration

	Experiments
	API continuous action benchmarks
	Problems with hard exploration

	Conclusion

