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Abstract— While reinforcement learning has led to promising
results in robotics, defining an informative reward function
can sometimes prove to be challenging. Prior work considered
including the human in the loop to jointly learn the reward
function and the optimal policy. Generating samples from a
physical robot and requesting human feedback are both taxing
efforts for which efficiency is critical. In contrast to prior
work, in this paper we propose to learn reward functions
from both the robot and the human perspectives in order to
improve on both efficiency metrics. On one side, learning a
reward function from the human perspective increases feedback
efficiency by assuming that humans rank trajectories according
to an outcome space of reduced dimensionaltiy. On the other
side, learning a reward function from the robot perspective
circumvents the need for learning a dynamics model while
retaining the sample efficiency of model-based approaches. We
provide an algorithm that incorporates bi-perspective reward
learning into a general hierarchical reinforcement learning
framework and demonstrate the merits of our approach on
a toy task and a simulated robot grasping task.

I. INTRODUCTION

Autonomous robots equipped with dexterous manipulation
skills yield great potential for improving our lives. For
example, household robots could empty the dish washer or
hand over everyday items, agricultural robots could pick
vegetables, and disaster robots could segregate waste. Such
robots need not only to grasp known objects but generalize
their knowledge to unseen ones. While robotic grasping has
been a long-standing research area [1], [2], grasping arbitrary
objects remains a challenging problem for which data-driven
approaches constitute a promising direction.

Data-driven approaches address the issue of generalization
by utilizing prior grasp experience to synthesize grasps for
unseen objects. While most of these approaches assume that
a complete grasp database is given, reinforcement learning
(RL) allows to collect grasp experiences from trial and error.
However, learning a grasping policy through RL requires
to specify a reward function. Most of the proposed quality
measures were motivated by grasp analysis in simulation.
But the outcome of a grasp in a real dynamic and noisy
environment can be very different from simulation. In fact,
Balasubramanian et al. [3] showed that grasps produced by
optimizing such traditional grasp quality measures performed
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worse than kinesthetic teach-in on real systems. Moreover,
Roa and Suárez [4] point out that there is no single mea-
sure suitable for every situation because those metrics only
encode a subset of criteria defining a good grasp, such as
stability or dexterity. While more complex reward functions
could be engineered, such reward shaping practices can lead
to undesirable robot behavior [5]. These findings suggest that
designing a reward function by hand is not trivial.

Alternatively, inverse reinforcement learning [6], [7] can
be used to recover the underlying reward function from
expert demonstrations. Demonstrations are usually provided
by humans through tele-operation or kinesthetic teaching.
Presenting optimal or near-optimal demonstrations can how-
ever be challenging without prior training. For example,
differences between the human hand and robot hardware
complicate the generation of human demonstrations for the
robot grasping task. To lighten the assumption on the ex-
pertise of the human teacher, we consider instead to learn
the reward function from human preferences [8]. In learning
from human preferences, the human assesses the quality
of demonstrations executed by the robot (e.g. attempts at
grasping an object) instead of providing the demonstrations
themselves. Humans are particularly apt at comparing items
[9], [10], making preference feedback more reliable than ab-
solute feedback. We take advantage of this fact by modeling
the reward function as a latent function to be inferred by
preference learning.

The main contributions of this paper are two-fold. First,
we employ a novel reward learning scheme from human
preferences that combines the perspectives of the human and
the robot. Taking both perspectives into consideration allows
to improve on both sample and feedback efficiency at the
same time. From the robot’s perspective, sample efficiency
can be greatly improved if the expected reward of a decision
(e.g. a particular motion parameter) can be predicted before
it is executed. On the other side, the human teacher assesses
the outcome of executing the motion parameters, not the
motion parameters themselves. Such an outcome (e.g. how
much the grasped object moved or how ’natural’ the grasping
appeared) is of significantly lower dimension than the motion
parameters. Thus, we will learn from human preferences on
the lower-dimensional outcome space and back-propagate
information on the human’s preferences to a reward model
defined on the motion parameter space. Feedback efficiency
can be further increased by only querying the human if the
preference is expected to improve the model.

The second contribution of this paper is to incorporate
the proposed bi-perspective reward learning scheme into a
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hierarchical reinforcement learning (HRL) framework. We
chose the HRL framework for its generality and its ability
to tackle complex learning problems. For instance, a task
such as robot grasping requires to cover a broad range of
motions. Prior knowledge of the task can be incorporated by
imposing a hierarchy where first a grasp type is selected (e.g.
pinch grasp or power grasp), which is then used to generate a
grasping motion. Such a decomposition will greatly dampen
the data requirements. In Sec. III, we will additionally show
how the reward models from the robot’s perspective can be
used in different levels of the hierarchy to efficiently solve
the exploitation-exploration dilemma.

II. RELATED WORK

Learning from human feedback has been extensively stud-
ied in the RL community. The tackled problems range from
classical RL benchmarks with tabular or linear-in-features
policies [11]–[16] to more complex environments requiring
the use of deep neural networks [17]. While special care is
taken in some of these approaches to reduce the amount of
human queries [14]–[16], the number of rollouts generated
by the learning agent is relatively high and would prohibit
the application of any of these methods to physical robots.

To learn under a more restrictive sample constraint, the
usual trade-off in robotics is to replace general purpose high-
dimensional policies with specialized low-dimensional ones.
In [18], global Bayesian optimization (BO) from human
preferences is used to tune the control gains of a controller.
However, such a global approach is known to not scale
favorably and experiments were limited to three dimensional
search spaces. In [19], a similar preference Gaussian Process
(GP) [20] is used to model the human preferences but a local,
more scalable policy search method is employed in order
to optimize the policy parameters. However, as in [18], the
human preference model is learned on the same parametric
space of the policy. While it is appealing to do so as it
allows the robot to predict the expected reward of a policy
without generating additional rollouts, it has the drawback of
requiring an excessively high number of feedback to learn
the human preference model since GPs with the usual kernels
are poor extrapolators (see [21], Sec. III.E.3).

Perhaps the closest work to ours is that of [22], which
also learns the human preferences on the outcome space
(which is significantly lower dimensional than the policy
parameter space), employs local policy search to optimize
the policy and tackles the problem of grasping for which a
reward function is hard to hand-define. The key differences
are in i) the use of preference feedback instead of absolute
feedback (scores)—for which existing evidence suggest that
it is in general a more robust human feedback [9], [10] and
that in particular, humans prefer to give preference feedback
when teaching robotic tasks [23], ii) the best of two worlds
combination of [22] and [19] by back-propagating the reward
model learned on the outcome space to a reward model on
the parameter space in order to improve on both feedback
and sample efficiency. The latter reward model is then used in
iii) the hierarchical reinforcement learning scheme, allowing

us to tackle more complex grasp problem than that of [22]
where only a single grasp type was considered.

As for data-driven approaches to robot grasping, several
authors have already considered the use of RL. Stulp et al.
[24] employ RL to learn the goal and shape parameters of
a movement primitive. They achieve robust grasps by taking
position uncertainty into consideration. Krömer et al. [25]
propose a hierarchical architecture comprising an upper-level
reinforcement learner for predicting the grasp location and a
low-level reactive controller that generates the grasp motion.
Osa et al. [26] instead propose a hierarchical RL architecture
that is able to generalize grasps to multiple grasp types and
objects. We use the same basic architecture as Osa et al. [26],
but propose a novel way to learn the rewards.

III. APPROACH

In a contextual policy search setting [27] our goal is to
find the policy π, defining a distribution π(ω|s) over motion
parameters ω ∈ Ω (e.g. the goal position of a dynamical
movement primitive [28]) for a given context s ∈ S (e.g. a
description of the object to grasp), maximizing the expected
return J(π) =

∫
Rs,ωp(s)π(ω|s); where Rs,ω is the reward

for executing ω in s.
Learning in this paper relies on three working hypotheses

within the general policy search framework: i) the reward
function is not assumed to be known beforehand but learned
from human preferences, while structural assumptions on
ii) the action and iii) the context spaces are introduced in
order to reduce the sample complexity of high-dimensional
robotics applications. On the action space, we assume that
a hierarchical decomposition of the policy is available such
that the policy can be written as the mixture of K lower level
policies of simpler shape, π(ω|s) =

∑K
k=1 πu(k|s)πk

l (ω|s);
where πu is the upper level policy or the gating and

{
πk
l

}K

k=1
is a set of lower level policies (also referred to as sub-policies
or options). This structure is widespread in the hierarchical
reinforcement learning (HRL) literature [29]–[31].

On the context space, we assume the availability of a
function S that takes as input a context s̃ and returns a
set of local contexts—typically of reduced dimensionality—
{si}Ni=1 and over which the lower level policies are defined.
Such assumption does not alter the generality of the algo-
rithm as S can simply return {s̃}. A more interesting function
S is described in Sec. IV-B for the grasping problem. From
here on, the global context of the task will be denoted by s̃
while a local context over which sub-policies are defined is
denote by s.

Algorithm 1 provides an outline of the approach. At the
start of each episode, a global context s̃ ∼ µ(s̃), specifying
the task, is observed. The upper level policy, implicitly
defined in line 4 to 8 of Alg. 1 then selects the most
promising pair of local context s∗ and sub-policy k∗ within
the set S(s̃)×K. The upper level policy, further described in
Sec. III-B.1, trades-off exploitation and exploration based on
the expected reward of choosing option k in local context s
and its associated variance. Note that both these estimates
are computed from the context-parameter reward models
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Algorithm 1 Hierarchical Reinforcement Learning with Bi-
Perspective Reward Learning from Preferences

1: Input: Option count K, active learning threshold λ
2: repeat
3: Observe global context s̃ ∼ µ(s̃)
4: for all (s, k) ∈ S(s̃)×K do
5: µs,k = E[Rsw|Dk, s, πk

l ]
6: σ2

s,k = Var[Rsw|Dk, s, πk
l ]

7: end for
8: s∗, k∗ = argmaxs,k CGP-UCB (µs,k, σs,k)
9: Rollout τ ∼ p(τ |s∗,ω) with ω ∼ πk∗

l (ω|s∗)
10: Observe outcome o = φ(τ )
11: if E�[KL(p(Ro|D�+)||p(Ro|D�)] > λ then
12: Query human for preference feedback
13: end if
14: Update reward models
15: Update lower-level policies πk

l

16: until Task learned
17: return Learned policies πk

l and reward models

(reward from the robot perspective) and do not necessitate the
generation of rollouts on the robot. The learning procedure
for these reward models is described in Sec. III-A.1.

The selected sub-policy samples a motion parameter ω ∼
πk∗

l (ω|s∗), and a trajectory τ is obtained by performing a
rollout. This trajectory is further compressed by applying
the feature function φ containing aspects of the trajectory
the human is likely basing their feedback on. In line 11,
we decide whether to ask for human feedback based on the
expected change of the distribution of the outcome reward
(reward model from the human perspective) had the feedback
been requested. If a feedback is requested, the outcome
reward model is update, whereas the context-parameter re-
ward models are always updated upon the generation of a
trajectory. Learning the outcome reward model and the active
selection criterion is further described in Sec. III-A.2. Finally
the lower level policies are updated as described in Sec. III-
B.2.

A. Reward Learning

The selection of (s∗, k∗) depends on the expected re-
ward E[Rsw|Dk, s, πk

l ] of each local context-option pair and
their variance. A sample estimate of both quantities can
be obtained by performing rollouts but would dramatically
increase the sample complexity of the algorithm due to the
high number of local context-option combinations. Instead,
we will frame a regression problem and learn a probabilistic
context-parameter reward model p(Rsω|Dk, s,ω). As the
true reward is unknown, the targets of the regression problem
are given by a second probabilistic model p(Ro|D�,o),
modeling the human preferences on the outcome space.

The outcome o = φ(τ) is defined as a compression of
a trajectory τ by the hand defined function φ. Intuitively,
humans judge the quality of a trajectory on a small subset
of effects the robot has caused on its environment instead
of the internal parametric representations of the context and

the planned motion of the robot. Learning on such a space
drastically improves the feedback efficiency at the expense
of manually defining the compression function φ.

1) Context-Parameter Reward Model: We learn a prob-
abilistic reward model p(Rsω|Dk, s,ω) for each policy πk

l

from dataset Dk = {si,ωi,oi, R̄(oi)}i=1:Nk
, where R̄(o) =

E[Ro|D�,o] is the predicted mean reward for outcome o as
provided by the outcome reward model. Letting x = (s,ω)
denote the context-parameter pair, we note that even if R̄(o)
is the true reward (instead of being estimated from human
feedback), it would still be a noisy estimate of R(x) due to
the environment noise. As such we assume that the regression
targets are corrupted by a Gaussian noise of deviation σn.
The magnitude of σn depends on the stochasticity of the en-
vironment and will be estimated by hyper-parameter tuning.
We use GP regression [32] to model the reward function, i.e.

R(x) ∼ GP(m(x), k(x,x′)), (1)

where the mean function m(·) is assumed to be zero and
the covariance function k(x,x′) is given by the squared
exponential covariance function,

kSE(x,x
′) = σ2

f exp
(
(x− x′)TM(x− x′)

)
, (2)

where M = diag(`) is a diagonal matrix containing positive
bandwidth parameters `, which determine the contribution
of each dimension of the input. The hyper-parameters θ =
{σf , σn, `} are estimated by maximizing the marginal like-
lihood [32]. The latent rewards r = [R(x1), . . . , R(xNk

)] of
the input data and the latent reward R(x∗) at a test point x∗
are jointly Gaussian distributed,[

r
R(x∗)

]
∼ N

(
0,

[
K k∗
kT
∗ k∗∗

])
, (3)

where the ij-th element of the Nk×Nk matrix K is defined
as k(xi,xj), k∗ = [k(x1,x∗), . . . , k(xNk

,x∗)]
T and k∗∗ =

k(x∗,x∗). The predictive distribution p(R∗
sω|Dk,x∗) =

N (µR, σ
2
R) is Gaussian with

µR = kT
∗ (K+ σ2

nI)
−1Rsω, (4)

σ2
R = k∗∗ − kT

∗ (K+ σ2
nI)

−1k∗, (5)

where I is the identity matrix. It is taken into consideration
by the upper-level policy πu to decide which context-option
pair (s, k) to choose for each episode (line 5 and 6 in Alg. 1).

2) Outcome Reward Model: After each rollout, the quality
of the actual trajectory τ has to be evaluated. We learn a
separate reward model p(Ro|D�,o = φ(τ )) from human
pairwise preferences. Let O = {o1, . . . ,oN} be the out-
comes of N rollouts across all K options, and D� = {v1 �
u1, . . . ,vM � uM} with vj ∈ O,uj ∈ O be the learning
set containing M pairwise preferences over outcomes. The
outcomes are assumed to be valued according to a noisy
utility function y(o) = Ro(o) + ε, where Ro is the latent
utility function of the human and ε ∼ N (0, σ2

h) is i.i.d.
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Gaussian noise. Using a probabilistic GP preference learning
model [20], the latent rewards can be modeled as

Ro(o) ∼ GP(m(o), k(o,o′)), (6)

where the mean function m(·) is set to zero, and the squared
exponential covariance function kSE(·, ·) is employed (Eq. 2).

In definite, we are looking for a function Ro such
that Ro(vi) > Ro(ui), for i ∈ {1 . . .M}. However,
this does not yield a Gaussian likelihood function and
hence the posterior distribution is not trivial to obtain.
To compute the posterior we follow [20] and perform
a Laplace approximation at the maximum a posteriori
(MAP) estimate rMAP = [Ro(o1), . . . , Ro(oN )]|Ro=rMAP .
The posterior p(Ro|D�) can be approximated as a Gaus-
sian N (rMAP, (K

−1 + ΓMAP)
−1), where ΓMAP = ∇2 −

log p(D�|Ro)|Ro=rMAP is the Hessian of the negative log
likelihood at the MAP estimate.

Therefore, the predictive distribution p(R∗
o|D�, r, s) for

two test instances r ∈ O, s ∈ O with R∗
o = [R∗

o(r), R
∗
o(s)]

T

becomes Gaussian as well, N (R̄∗,Σ∗), with

R̄∗ = [R̄∗
r , R̄

∗
s ]

T = KT
∗ K

−1rMAP, (7)

Σ∗ =

[
Σ∗

rr Σ∗
rs

Σ∗
sr Σ∗

ss

]
= K∗∗ −KT

∗ (K+ Γ−1
MAP)

−1K∗, (8)

where K, K∗ and K∗∗ are defined analogously to Eq. 3. The
predictive preference p(r � s|D�) can be obtained by

p(r � s|D�) = Φ

(
µ∗
r − µ∗

s

σ∗

)
, (9)

where Φ(·) is the standard normal cumulative distribution
function, and σ2

∗ = 2σ2
n +Σ∗

rr +Σ∗
ss − Σ∗

rs − Σ∗
sr.

We use the predictive distribution p(Ro|D�,o) in two
ways. First, to estimate the reward of outcome o, which
is added to dataset Dk = {si,ωi,oi, R̄(oi)}i=1,...,Nk

of
option k and used as a regression target for the training of
the context-parameter reward model. Secondly, the predictive
preference p(r � s|D�) can be used to decide whether it is
necessary to query the human for preference feedback. Since
repeatedly giving feedback is a tedious task, it is desirable
to minimize the number of queries. Thus, we only query the
human if the expected information gained from a preference
is larger than some threshold λ.

The information gain of including a preference r � s
can be expressed as the Kullback-Leibler (KL) divergence
KL(p(Ro|D�+)||p(Ro|D�)) between the posterior after and
before adding the preference, where D�+ = D� ∪ {r �
s} is an updated dataset that includes the new preference.
Analogously, D�− is defined by adding s � r to D�.
Weighting the information gain by the predictive preference
in each of the two cases yields the following active learning
criterion

p(r � s|D�)KL [p(Ro|D�+)||p(Ro|D�)]

+ p(s � r|D�)KL [p(Ro|D�−)||p(Ro|D�)] > λ,

If the criterion is under the threshold λ, no human feedback
is requested. The user-defined threshold parameter λ allows

to trade off accuracy and data-efficiency, i.e. higher λ values
lead to less feedback requests whereas lower λ values prompt
many preferences but might lead to reward models with
reduced bias.

B. Policy Learning

This section describes the policies used in the hierarchical
framework. The upper-level policy πu decides which
context-option pair should be selected, whereas the lower-
level policy πk

l (ω|s) of option k generates policy parameters
ω.

1) Upper-Level Policy: Prior to each rollout, the robot
has to decide which context-option pair (s, k) to choose
in order to maximize the cumulative reward. The selec-
tion is performed by upper-level policy πu using rewards
[µR(s,ω), σ

2
R(s,ω)]. Having a probabilistic model of the

reward function at hand, it is possible to use multi-armed
bandits techniques as a way to trade off exploration and
exploitation. We use the contextual GP-UCB acquisition
function [33], [34]

CGP-UCB(s,ω) = µR(s,ω) +
√
βσR(s,ω), (10)

where β > 0 is a trade-off parameter. To account for the
uncertainty about the policy parameters ω, the expectation
w.r.t. lower-level policy πk

l needs to be considered, yielding

πu : (s∗, k∗) = argmax
s,k

Eω∼πk
l
[CGP-UCB(s,ω)] (11)

≈ argmax
s,k

1

M

M∑
j=1

CGP-UCB(s,ωj), (12)

where the expectation of the acquisition function is
approximated by samples ωj ∼ πk

l (·|s).

2) Lower-Level Policy: Our goal is to learn K lower-
level policies πk

l (ω|s), such that every policy maximizes
the expected long-term reward given the observed data
Dk = {si,ωi,oi, R̄(oi)}i=1,...,Nk

. As each policy πk
l (ω|s)

depends on context s, we employ contextual relative entropy
policy search (REPS). Information-theoretic approaches like
REPS attempt to stay close to the data while optimizing
the policy. This behavior can be achieved by bounding
the relative entropy or KL divergence between the context-
parameter distribution p(s,ω) and the observed joint distri-
bution q(s,ω). The whole constrained optimization problem
is given by

max
p

∫
p(s,ω)Rsωdωds (13)

s.t. KL(p(s,ω)||q(s,ω)) ≤ ε, (14)∫
p(s,ω)ψ(s)dωds = ψ̂,

∫
p(s,ω)dωds = 1, (15)

where ε is the desired KL bound and ψ(s) ∈ RM are context
features. We use the squared exponential function for defin-
ing the context features using M random context samples
sm, i.e. the m-th element is defined as ψm(s) = kSE(s, sm).
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Eq. 15 ensures that the expected context features match the
average context features ψ̂ of the sample distribution. As
shown in the original work [35], [36], it is possible to obtain
a closed-form solution for this optimization problem using
the method of Lagrangian multipliers,

p(s,ω) ∝ q(ω|s)µ(s) exp
(
Rsω − φ(s)Tν

η

)
, (16)

where ν and η are Lagrangian multipliers, and µ(s) is the
context distribution. The lower-level policies are assumed to
be Gaussian, πk

l (ω|s) = N (ω|ψ(s)Tw,Σω), where w are
linear weights on the context features ψ(s).

IV. EXPERIMENTS

In order to allow for reproducible evaluations, we synthe-
size preference feedback as follows. Given two subsequent
outcomes u and v, preference u � v is generated if
R(u)+εu > R(v)+εv , and v � u otherwise. ε ∼ N (ε|0, 1)
is standard Gaussian noise and R(·) is a task-specific reward
function.

A. Ball Throwing Task

The aim of this task is to learn how to throw a ball to a goal
position pgoal ∈ R2 on a hilly landscape given the horizontal
coordinate of the goal position as context s ∈ [2, 10]. The
simulated robot consists of three revolute joints of equal
length. Depending on the context, the robot can decide
between K = 2 options: the robot can throw the ball either
from left

(
pbase = [−4, 0]T

)
or right

(
pbase = [16, 0]T

)
of the

landscape. An example of a ball throw is depicted in Fig. 1.
In this task the global and local contexts coincide. Hence, the
task of the upper-level policy πu reduces to selecting the best
option k∗ given context s. Each of the two options uses a
separate lower-level policy πk

l (ω|s). The motion parameters
ω = (q, q̇) ∈ R6 consist of the goal joint angle and velocity
of each of the three joints at ball release. The true reward R
of a throw τ with context s is given by

R(τ , s) = −∆p− c1v
2
0 + c2 (17)

where ∆p = ||pgoal − phit||2 is the distance to the goal
position, v0 is the initial ball speed, and c1 and c2 are
constants. The second term is a proxy for the required energy,
such that in general higher rewards can be obtained by
choosing the option that is closer to the context. Since above
reward function is not provided to the learner, we learn an
outcome reward model p(Ro|D�,o) with o = (∆p, v0).

In the first experiment, we performed four trials with 500
rollouts. The reward models and policies were initialized
from 25 random rollouts, where contexts for the left policy
were uniformly sampled from the left side of the landscape,
s ∼ U(2, 6), and contexts for the right policy were sampled
from the right side, s ∼ U(6, 10). The policies and reward
models are updated after every 5 and 50 rollouts, respec-
tively. We compare our algorithm to two baselines:

• K = 1: We use the left policy for all rollouts, and
provide contexts uniformly sampled from the landscape

Fig. 1: Ball throwing example using the left policy(
pbase = [−4, 0]T

)
. The red line depicts the trajectory of the

ball after the end-effector (black square, left) has released the
ball. The ball lands on the goal position pgoal (black circle).

for initialization, i.e. s ∼ U(2, 10). This modification
makes the use of a hierarchical architecture obsolete.

• no ORM: The outcome reward model (ORM)
p(Ro|D�,o) is omitted and the context-parameter re-
ward models p(Rsω|Dk, s,ω) are directly learned from
preferences. This version of the algorithm is thus closely
related to the algorithm introduced in [19] where the
reward is learned from human preferences directly on
the context-parameter space.

The results are shown in Fig. 2. Our approach combining the
reward learning from both the robot and the human perspec-
tive achieves the best performance with a reward of 2.1 after
500 rollouts. It also shows a more stable learning behavior
compared to the baselines as indicated by the faster conver-
gence and smaller error bars. If no outcome reward model is
used, the context-parameter reward models p(Rsω|Dk, s,ω)
have to be learned directly from preferences, which is much
harder due to the higher dimensionality of the input space
and uncertainty about the outcomes. Because errors in the
reward estimation subsequently misguide the policy search,
the performance of this variant is worse and suffers from
high variance. As depicted in Fig. 2b, our approach chooses
the correct policy 97% of the time after 500 rollouts. This
percentage drops to 75% if no outcome reward model is
used. The results suggest that learning multiple policies and a
separate outcome reward model are important for efficiency.

In the next experiment, we evaluate the active learning
component. We compare the number of requested queries
as well as task performance using λ = 0.3, λ = 0.5 and
λ = 0.9 for 200 rollouts in four trials. As shown in Fig. 3a,
the number of feedback requests is reduced significantly as λ
increases. For λ = 0.3 the amount of queries is cut to about
60, whereas a threshold of λ = 0.9 leads to a reduction to
about 10 requests. It is worth noting that for all values of λ,
less feedback is requested over time as the outcome reward
model becomes more accurate. As depicted in Fig. 4, the
large reduction of feedback requests for higher λ only leads
to a moderate decrease in performance. Note that 3b shows
that the variant with λ = 0.9 is even faster at selecting the
correct option (i.e. to shoot with the arm closest to the goal)
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Fig. 2: Performance on ball throwing task compared to
baselines. Our approach (blue) uses K = 2 options and a
separate outcome reward model (ORM). The first baseline
(yellow) omits the outcome reward model and directly learns
the reward models on the context-parameter space as in [19].
The second baseline (green) learns only a single lower-level
policy (no hierarchical policy). (a): Average reward. Our
proposed algorithm outperforms the baseline approaches and
quickly surpasses a reward of 1.9. (b): Average percentage
of selecting the correct policy. Our approach is able to select
the correct policy almost every time after 400 rollouts.
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Fig. 3: (a): Average number of feedback requests for different
values of λ. The higher λ, the less feedback was obtained.
(b): Average percentage of time the correct policy is selected
for different values of λ. After 50 rollouts, the correct policy
was chosen more than 90% of the time across all thresholds.

with less variance between the runs. We hypothesis that this
is due to a faster convergence to a biased reward model that
allows to choose the correct arm from which to shoot but
does not result in the same precision of shots obtained with
a smaller λ as depicted by the reward difference in Fig. 4.

B. Grasping Task

We apply our framework to learn pinch grasps, power
grasps and medium wrap grasps [37] using the KUKA
Light Weight Robot with a DLR/HIT II Hand. The motion
parameters ω = (ppre,pgrasp,qgrasp) ∈ R10 consist of a pre-
grasp and grasp position of the hand palm in task space, and
the orientation during the grasp. The finger motion is fixed
for every grasp type to reduce the number of parameters.

Grasp location candidates are generated by locally match-
ing the point cloud of an object to contact parts collected
from successful grasps. Given a database of M contact
parts C = {C1, . . . ,CM}, the Iterative Closest Points (ICP)
algorithm [38] can be used to find the best match between
the point cloud of an object and contact part Cj .
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Fig. 4: Performance on ball throwing task for different active
learning thresholds λ. Left: In all three cases, average re-
wards of 1.5 and above are reached after 100 rollouts. Right
(magnified version): The variance in the rewards decreases
most quickly for λ = 0.9, but the algorithm converges
prematurely with a mean reward of 1.85. In contrast, mean
reward values of about 2.05 are achieved with lower λ values.

Once an object point cloud P is obtained, we randomly
sample a partial point cloud pi ⊂ P. ICP iteratively
estimates a homogeneous transformation matrix Hij , such
that the transformed point cloud HijCj is most similar
to pi according to matching error dij . We choose the
transformation matrix Hij∗ with the lowest error across all
stored contact point clouds Cj ∈ C. A potential grasp part
p̂i ⊂ P on object point cloud P is then found in the vicinity
of Hij∗Cj∗ . See Fig. 5 for results of the grasp part estimation
using ICP. In order to reduce the dimensionality, we represent
each grasp part p̂i by a grasp location vector si consisting
of the center and normal vectors extracted from p̂i for the
thumb and index finger. By repeating the procedure multiple
times, a set of potential grasp locations is produced (the
local contexts over which sub-policies of each grasp type
are defined). This sampling procedure is applied to each
grasp type separately, where each grasp type maintains its
own set of contact parts. Since grasp locations are estimated
locally, this approach is also feasible on a real system where
a complete point cloud might not be available.

(a)
(b) (c)

Fig. 5: Grasp part estimation. (a) Contact points (red) and
contact part in the neighborhood of contact points C (green)
on the point cloud of an object P (blue). If the contact led
to a successful grasp, the contact part is added to dataset C.
(b) - (c) ICP result for partial point cloud pi of an object
(blue). The matched contact part Cj from dataset C is shown
in red, whereas the best transformation of the ICP algorithm
Hij∗Cj∗ is highlighted in yellow. The estimated grasp part
p̂i is shown in green.

We utilize the matching error dICP of each grasp location
candidate ski to guide the selection of a grasp type and
location. The matching error is included directly into the
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Fig. 6: Objects used for learning pinch grasps (left), power
grasps (middle) and medium wrap grasps (right).

acquisition function of upper-level policy πu, yielding

πu : (s∗, k∗) = argmax
s,k

E[CGP-UCB(s,ω)] + γdICP, (18)

where γ > 0 is a scaling constant. To generate preferences
from simulated grasps, we assume the following true reward
function R for grasp τ given object s̃:

R(τ , s̃) = c1δlift − c2∆q+
1

2
log(γgraspγlift), (19)

where ∆q = ||qgrasp − qlift||2 is the change in orientation
of the object after it was lifted, γgrasp and γlift are the
number of contacts when the fingers are closed and the hand
is subsequently lifted (with log(0) := 0), and c1 and c2
are positive constants. δlift ∈ {0, 1} indicates whether the
object was lifted at all. It is set to 1 if there are more than
five contact points after lifting the object, γlift > 5, and 0
otherwise. The outcome features o = [∆pxy,∆pz,∆q]T ∈
R3 are the horizontal displacement, the vertical displacement
and the change in orientation of the object after the grasp.

Throughout the experiments, each of the grasp types
is initialized with 12 demonstrations, which are provided
by fixing the motion parameters ω by hand. For every
subsequent rollout, an object point cloud is generated from
which potential grasp locations are extracted per grasp type.
Based on the estimated rewards, the robot selects a grasp type
k∗ and location s∗, and generates the motion parameters ω
for grasping the object. Once the fingers are closed, we lift
the arm and ask for feedback if necessary. Each lower-level
policy πk

l is updated after every 12 rollouts. To reduce the
computational complexity, the reward models p(Ro|D�,o)
and p(Rsω|Dk, s,ω), including the hyper-parameter opti-
mization step, is performed every three iterations, i.e. after
every 36 rollouts.

In this experiment, the goal is to learn how to grasp the
objects shown in Fig. 6. Each of the three grasp types is
initialized with demonstrations of two of the objects. The ICP
prior used in the upper level policy is a good prior explaining
the high initial probability of selecting the correct grasp type
(Fig. 7b). However, the lower level policies for each grasp
type need to be optimized to improve the success rate of the
overall policy (Fig. 7a).

As can be seen in Fig. 7, the upper policy is initially near
optimal due to the strong prior given by the ICP while the
reward model have initially zero mean. As the robot starts
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Fig. 7: (a): Average success rate (performance of the overall
policy). (b): Average percentage where the correct policy
was selected (performance of the upper level policy). ICP
prior provides a good initialization for the upper level policy.
The learning of the reward models from preference feedback
initially deteriorates the upper level policy, but after 250
rollouts, the reward models yield an upper level policy
that recovers the performance of the ICP prior while they
additionally allow for refinements of the lower level policy
from 58% success rate to 89%. Plots are averaged over three
runs.

exploring and learning the reward models from preference
feedback, the upper level policy initially deteriorates but it
allows for the lower level policies to be refined. After 250
rollouts, the learned reward models allow the upper level
policy to recover a similar success rate as when it was solely
depending on the ICP prior while the refinements of the
lower level policies allows to reach a significantly higher
success rate (from 58% success rate to 89%).

V. CONCLUSION
We proposed in this paper a new framework for reinforce-

ment learning from human feedback that aims at increasing
both the sample and feedback efficiency so that the approach
can be applied to physical systems with a human teacher. We
demonstrated on a toy task that learning reward models from
both the robot and the human perspectives can achieve the
goal of improving on both efficiency metrics and constitutes
an improvement over prior work that forced the reward
model to be on a shared space. While we demonstrated on
a grasping task how our reward learning approach can be
incorporated into a hierarchical reinforcement algorithm to
tackle more complex problems. In future work, larger scale
experiments involving human teachers should be considered
to assess the robustness of the reward models towards
noise that might not be of Gaussian form. On a more
technical note, one can also consider learning the outcome
representation in an unsupervised way for tasks over which
the trajectory compression function φ is not trivial to hand
define.
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