
Regularizing Reinforcement Learning with State Abstraction

Riad Akrour1, Filipe Veiga1, Jan Peters1,2 and Gerhard Neumann1,3

Abstract— State abstraction in a discrete reinforcement learn-
ing setting clusters states sharing a similar optimal action
to yield an easier to solve decision process. In this paper,
we generalize the concept of state abstraction to continuous
action reinforcement learning by defining an abstract state
as a state cluster over which a near-optimal policy of simple
shape exists. We propose a hierarchical reinforcement learning
algorithm that is able to simultaneously find the state space
clustering and the optimal sub-policies in each cluster. The
main advantage of the proposed framework is to provide a
straightforward way of regularizing reinforcement learning by
controlling the behavioral complexity of the learned policy. We
apply our algorithm on several benchmark tasks and a robot
tactile manipulation task and show that we can match state-of-
the-art deep reinforcement learning performance by combining
a small number of linear policies.

I. INTRODUCTION

Abstraction in reinforcement learning (RL) has long been
seen as a promising direction to combat the curse of dimen-
sionality by exploiting the structure of the problem at hand
[1], [2], [3]. Its application to RL takes two forms: temporal
abstraction [4], [5], [6], [7], [8] and state abstraction [9], [10],
[11]. Temporal abstraction augments the ground action space
with temporally extended actions (actions lasting more than
a single time-step) allowing the agent to reason on a less
granular time-scale and reducing the number of decisions
to optimize for. State abstraction exploits the structure of a
Markov Decision Process (MDP) to derive an abstract MDP
having a compressed state space but a similar optimal policy
to that of the ground MDP.

As computational power significantly increased in the last
decade, exploiting structure to increase sample efficiency has
been outweighed by the appeal of hand-free algorithms that
are able to generalize to several problems without relying on
expertly crafted representations, sub-policies or to a lesser
degree hand tuned hyper-parameters [12], [13], [14]. Adding
structure to the portfolio of deep RL algorithms through
a hierarchical reinforcement learning (HRL) decomposition
should not be at the expense of generality and sub-policies
should emerge from data rather than be handcrafted for
every problem. Unfortunately, when the sub-policies are not
hand-crafted but are learned concurrently to the upper level
policy, it was shown that HRL is not always more efficient
than flat RL in theory [15], [16], [17] and is rarely so in
practice [18]. In this paper, we will not use HRL to improve
sample efficiency of the learning process but as a mean of
controlling the complexity of the learned policy.

1CLAS/IAS, TU Darmstadt, 64289 Darmstadt, Germany
2Max Planck Institute for Intelligent Systems, 72070 Tbingen, Germany
3L-CAS, University of Lincoln, Lincoln, United Kingdom.
Correspondence to Riad Akrour, riad@robot-learning.de

Our work can be seen as an extension of state abstraction.
Structure in state abstraction emerges by grouping together
several states from the ground MDP into an abstract state.
Several criteria were studied to group states together in the
exact case where the optimal policies of the abstract and
ground MDPs coincide [9] and the approximate case [10]
where the optimal policy of the abstract MDP is only near-
optimal in the ground MDP. A policy defined on the abstract
MDP selects a unique action for all the ground states sharing
the same abstract representation. In this paper we extend
state abstraction by assuming that the abstract policy does
not assign a unique action to all the ground states but more
generally defines a policy of simple shape for each of the
abstract states.

The contribution of this paper is to propose a framework
that solves both the abstraction problem (clustering the state
space) and the learning of appropriate sub-policies for each
cluster. The used definition of a state cluster is a set of
states over which a policy of simple shape can be near-
optimal. As neither the sub-policies nor the optimal Q-Value
is known in advance, it becomes clear that the two problems
need to be solved concurrently. As such we introduce a
hierarchical decomposition of the policy and the state space
clustering will be implicitly provided by the upper level
policy. Section II provides an overview of HRL and relates
our HRL decomposition to those already introduced in the
literature.

Section V provides an empirical evaluation of the pro-
posed algorithm on continuous control reinforcement learn-
ing benchmarks and a simulated dexterous manipulation task.
The proposed method is well suited for robotics applications
since the resulting policy will be a mixture of simple
primitives that can be more easily analyzed than a black-
box non-linear function; in the prospect of providing safety
guarantees when the policy is executed on a physical system.
Additionally, the hierarchical structure provides an easy way
of controlling the behavioral complexity of the returned
policy by modifying the functional class of the primitives
(e.g. polynomial in the states) or their number. The main
take away message from our experimental section is that
very competent policies, performing on par with deep RL
policies, can be learned on high dimensional control tasks
by switching between a small number—typically less than
ten—linear policies.

II. RELATED WORK

There are several hierarchical decompositions of RL prob-
lems in the litterature. Perhaps the most ubiquitous decom-
position is the option framework [1], [16], [7], [8] which is

based on the call-and-return paradigm where an upper level
policy selects an option and waits until its termination to
select the next option. The sub-policy associated with an
option can be hand-defined [19], learned from trajectory data
[7] or learned by interaction with the environment [8]. In the
latter case, while theoretical convergence results are long
known [1], the benefits of temporally extended actions on
sample efficiency are not guaranteed.

For instance, [16] showed that convergence speed can be
accelerated by using temporally extended actions only if
some conditions are satisfied such as the expected duration
of executed options being sufficiently long. As such, we
do not focus in this paper on sample complexity but rather
on behavioral complexity and provide an automated way of
answering the question: what is the best performance one
can achieve with the combination of a given number of linear
policies. [20] proposed the linear option framework, but sub-
policies are linear in features of the state and not the state
directly. In this paper, we show that linear in state policies are
indeed sufficient for many control problems if an appropriate
partitioning of the state space is learned. Moreover, unlike
[20] we do not consider termination functions for each
option. In our setting a sub-policy is terminated as soon
as the next state exits the current state cluster. This HRL
decomposition is thus closer to state abstraction.

State abstraction [15], [9], [10] usually consists in the
application of two distinct steps: i) building the abstract MDP
and ii) finding the optimal policy in the abstract MDP. The
abstract MDP is simply a partitioning (i.e. clustering) of the
state space. In [9], [10], four criteria to create the state space
clustering are presented. However, all of these criteria are
hard to use in practice as they often require full knowledge
of the transition probabilities or the optimal Q-Function.
A preliminary work in the literature [21] has investigated
the discovery of abstract states in the absence of transition
model, but the behaviour of such partitioning within a
full reinforcement learning framework remains unclear. We
propose instead in this paper to perform the partitioning and
learning of optimal policy simultaneously in a hierarchical
reinforcement learning (HRL) framework, where the state
partitioning is provided by the gating policy (upper level
policy).

Perhaps the most related work to ours is the Adapted Skills
Adapted Partitions algorithm [11]. In [11], a hierarchical
policy chooses an action according to a mixture of parametric
policies. The weighting of the mixture depends on a set
of parameterized hyper-planes splitting the state space. The
main differentiating factor is that their hyper-plane is linear in
some hand-crafted features whereas we use a neural network
to learn the state space partitioning. Note that, albeit we do
not consider time extended actions, our algorithm can be
straightforwardly extended to this setting if the sub-policies
output parameters of primitives—such as the goal position of
a Dynamical Movement Primitive [22]—instead of a single
action, similar to the hierarchical settings in [4], [6], [23].

III. GENERALIZED STATE ABSTRACTION

The main algorithmic contribution of the paper is to pro-
pose a practical way of performing state abstraction. To do
so, we phrase the state space partitioning and the subsequent
reinforcement learning in the abstracted MDP as a single
learning problem. Specifically, we solve a reinforcement
learning problem on an extended action space where the
policy has to provide for a given state both its cluster
identifier and a primitive action. Within this formulation
RL is performing exploration in order to find both the
optimal clustering and their associated (sub-)policies. In the
following we provide the notations used throughout the
paper in Section III-A, formalize our reinforcement learning
reduction of state abstraction in Section III-B and provide
implementation details for solving the reinforcement learning
problem in Section IV.

A. Notations

We consider tasks framed as discounted Markov Decision
Processes (MDP) defined by the quintuple (S,A, R, P, γ)
where S ⊂ Rds is a state space, A ⊂ Rda the action space,
P (st+1|st, at) the transition probability to state st+1 upon
the execution of action at in st and R(st, at) the associated
reward. A stochastic policy π gives a probability πt(a|s) of
executing a ∈ A in s ∈ S. Our goal is to find the policy
maximizing the policy return

J(π) = IEs0,a0,...

[
T∑
t=0

γtR(st, at)

]
,

where the expectation is taken w.r.t. all random variables st
and at. We will additionally rely on the usual quantities; the
Q-function

Qπ(s, a) = IEs0,a0,...

[
T∑
t=0

γtR(st, at)
∣∣∣ s0, a0 = s, a

]
denoting the expected cumulative discounted reward of per-
forming action a in state s under policy π and Aπ(s, a) =
Qπ(s, a)−IEa′∼πQπ(s, a′) the advantage function giving the
difference between the Q-function and the value function.

To solve the generalized state abstraction problem
we introduce an augmented MDP given by the tuple
(S,A′, R′, P ′, γ). The main difference compared to the
initial MDP lay in the augmented action space A′ = A×C,
where C = {1, . . . ,K} is a set of K cluster identifiers; while
both R′ and P ′ can be rewritten in term of their counterpart
R and P of the original MDP by simply ignoring the cluster
identifier. For example, the reward in the augmented MDP
R′(s, {a, c}) is equal to R(s, a), the reward of the state-
action pair (s, a), ignoring the cluster identifier c ∈ C.

B. RL reduction of state abstraction

State abstraction consists in clustering the state space such
that a policy defined on the state space partition (i.e. a
policy selecting the same action for any state in a given
cluster) remains optimal [9] or near-optimal [10]. We propose
to learn the state clustering concurrently to learning the

action to perform by reinforcement learning in the previously
introduced augmented MDP. The policy decomposition in the
augmented MDP will be given by

π({a, c}|s) = πp(c|s)πc(a),

where πp is the partitioning policy and πc is the sub-policy
in cluster c ∈ C. Note that both πp and the sub-policies
πc are stochastic policies. As the initial partitioning policy
πp(c|s) (which is a discrete action policy implemented using
a softmax distribution and decaying uniform exploration as
will be discussed in Sec. IV-A) starts with a high amount of
exploration, πp only provides a soft partitioning of the state
space. However, as exploration decreases and π converges to
a deterministic policy, πp will converge to a hard partitioning
of the state space where the action executed in each cluster
c ∈ C is given by πc.

The main limitation of this clustering procedure compared
to standard state abstraction clusterings [9], [10] is that
the number of clusters is fixed a priori. While in approx-
imate state abstraction [10] the smallest number of clusters
achieving ε-optimal performance is sought, our practical
state abstraction implementation provides the best achievable
performance with K clusters.

Note that this reinforcement learning formulation of state
abstraction is different from action discretization where a
continuous space is discretized into a finite set of actions a
priori. Here, the RL algorithm continually explores cluster-
action associations by virtue of the stochastic policies until
convergence.

C. Generalized state abstraction with linear sub-policies

Performing the same action for all the cluster’s states
might be limiting and could result in non-smooth behav-
iors due to discontinuities when transitioning between state
clusters. In order to increase the expressiveness of the
policy while keeping the ability of adjusting the behavioral
complexity, we generalize the notion of state abstraction to
finding sub-policies of simple shape πc(a|s)—encompassing
the constant policy in commonly known state abstraction.

The policy on the augmented action space becomes
π({a, c}|s) = πp(c|s)πc(a|s) where we choose the sub-
policy πc(a|s) to be a linear in state Gaussian distribution,
πc(a|s) = N (a|Ls + b,Σdiag), with L a da × ds matrix,
b a da dimensional vector and Σdiag = diag(σ2

1 , . . . , σ
2
da

)
a diagonal variance matrix. This decomposition lays on
the complexity axis between the original state abstraction
formulation πc(a|s) = πc(a) that gives the same action
to all the states in a cluster on one extreme, and on the
other extreme to ’flat’ reinforcement learning with non-
linear policies (e.g. neural networks) that can have large
fluctuations in the actions of neighboring states.

IV. SOLVING THE RL REDUCTION

Because of the limited complexity of the sub-policies,
solving the joint problem of clustering the state space and
learning the linear sub-policies is usually harder than learning
a single flat policy with the same number of parameters.

We found that the main reason of convergence to sub-
optimal solutions was a too fast reduction of exploration.
In the following we detail the exploration strategy for both
the lower level policies πc and the partitioning policy πp
used in order to limit the risk of premature convergence.
Subsequently, the initialization procedure of the sub-policies
is presented before concluding the section by discussing the
RL algorithm used for both our approach and the baseline
’flat’ RL in the experimental section (Section V).

A. Exploration

Exploration is still a largely open research topic in re-
inforcement learning. A badly tuned initial exploration pa-
rameter or an uncontrolled reduction of exploration can be
the cause of premature convergence to sub-optimal solutions.
The importance of exploration is twofold in our setting. Not
only exploration at the action level needs to be preserved; but
a premature convergence to a badly partitioned state space
presents an insurmountable challenge for the simple linear
sub-policies. As such, we adopt a cautious approach for
handling exploration noise in order to reduce variation across
runs. Exploration control of Gaussian policies—such as our

Algorithm 1 Generalized State Abstraction

1: Input: Cluster count K and neural network structure for
the state space partitioning

2: Initialize sub-policies (Section IV-B)
3: repeat
4: Generate trajectories (s0, {a0, c0}, r0, s1 . . . ,

sT , {aT , cT }, rT)
5: Learn the V-Function (Section IV-C)
6: Update the probabilistic partitioning πp and linear sub-

policies πc (Section IV-C)
7: Decrease exploration lower-bounds (Section IV-A)
8: until Iteration limit reached
9: return State space partitioning πp and linear sub-

policies πc

sub-policies πc—in the literature is ensured by the KL update
constraint [13] or by adding a term favoring higher entropy
policies [24], [25]. The latter approach however requires
to manually set a trade-off parameter between reward and
entropy maximization while the former couples the change
of Σdiag to that of the mean (i.e. a smaller KL has the desired
effect of limiting exploration loss but additionally limits
the change of the policy mean). To decouple exploration
control and update rate of the sub-policies we impose a lower
bound σmin to each diagonal entry and let the reinforcement
learning algorithm (Section IV-C) optimize for Σdiag with the
additional constraint that σi > σmin for all i ∈ {1, . . . ,da}.
After each iteration σmin is decreased by a constant factor.

For the partitioning policy πp, having a finite action space
C, we use the softmax distribution with logits outputted
by a neural network to perform exploration. To reproduce
a similar exploration scheme to that of Gaussian policies,
one would lower bound the temperature (instead of σmin)

Fig. 1: Comparison of Deep RL to mixture of linear policies (with varying number of linear policies) on five environments
from OpenAI’s gym [26]. The number of linear policies is a multiple of each task’s action space dimensionality. In most of
the tasks we can learn policies on par with deep reinforcement learning using a small number of sub-policies (half of the
action space dimensionality) except on the Hopper where at least six linear policies are required to solve the task. Plots are
averaged over seven independent runs.

such that the entropy remains over a threshold, and have
the threshold decrease every iteration. Unfortunately, no
closed form expression giving such target temperature exists.
To unsure sufficient exploration we revert to standard ε-
exploration by adding a probability ε of selecting an action
uniformly at random and have ε decrease at each iteration.

B. Sub-policy initialization

Having diversity in the initial sub-policies accelerates the
clustering of the state space and the learning of specialized
sub-policies. We increase diversity by spreading the location
of each sub-policies’ linear-Gaussian bias b within the action
space which is typically of the form [−1, 1]da . Additionally,
the initial exploration noise Σdiag is scaled inversely pro-
portional to the number of cluster K. The rational behind
such a decision is that the higher the cluster count K is, the
more densely the set of b will populate [−1, 1]da and the
less variance the sub-policies need to cover the action space,
while avoiding overlap to favor specialization. Matrices L of
the linear-Gaussian sub-policies are initialized to zero.

C. Base RL algorithm

Our reduction of state abstraction is not specific to a
reinforcement learning algorithm. The action space of our
augmented MDP mixes both discrete decisions for selecting
a cluster and continuous actions given by the associated sub-
policy. Because of the mixed nature of the augmented action
space we used as our base RL learner the Proximal Policy
Optimization (PPO) algorithm as it demonstrated state-of-
the-art empirical performance on both high dimensional

discrete and continuous action problems [27]. The state-of-
the-art performance of PPO makes it a representative baseline
of ’flat’ deep RL. PPO is an approximate policy iteration
algorithm [28], alternating between policy evaluation and
policy update. Letting q denote the current policy, the policy
evaluation step consists in evaluating an advantage function
Aq(s, a). We compute the advantage function from the value
function as described in [27], and use [29] to compute the
value function. The policy update step returns a new policy
π by maximizing an objective function LPPO(π; q) given by

LPPO(π; q) = IEs,a∼q

[
min

(
I(a, s)Aq(s, a),

c (I(a, s), ε)Aq(s, a)
)]
,

where c (I(a, s), ε) = max(min(I(a, s) − 1, ε),−ε) clips
I(a, s) to the interval [1 − ε, 1 + ε] and I(s, a) = π(a|s)

q(a|s)
is short for the importance sampling ratio between π and q.

In addition to its competitive empirical performance, the
advantage of using PPO is that its policy update only
depends on the action probability. Hence, the policy update
of our state abstraction reduction is fully defined from the
decomposition of the policy given in Section III-C, and the
bounding of the exploration noise as discussed in Section
IV-A is done for the sub-policies by fixing the standard
deviation to max(σi, σmin) for all i ∈ {1, . . . ,da} during
the maximization of LPPO.

Algorithm 1 synthesizes our approach to generalized state
abstraction (Section III). First we initialize the sub-policies
by spreading them over the action space, accelerating their
specialization. We then generate trajectories by sampling

Fig. 2: Multiple views of the simulated Allegro Hand in the
V-REP simulator. The task consists of having the cylinder
rotate counter clockwise as much as possible during the
episode. Each episode starts with the index and thumb in
contact with the cylinder and only these two fingers are
enabled during the task execution.

cluster identifiers (soft-max distribution given by the neural
network) and actions (from the associated linear-Gaussian
sub-policy). Then we proceed by evaluating the value func-
tion from the generated data and updating the policy while
ensuring that exploration is not reduced too fast. After suffi-
ciently many iterations, the algorithm returns a partitioning
of the state space and a linear-Gaussian policy associated to
each of the state partition, maximizing the expected return.

V. EXPERIMENTS

We evaluate the performance of our generalized state
abstraction algorithm on five environments from OpenAI’s
gym [26] and a simulated dexterous manipulation task. The
research questions we attempt answering in this section
are: i) can our framework learn mixture of linear policies
competitive with state-of-the-art deep RL algorithms, and ii)
what is the order of magnitude for the number of required
linear policies to mimic the behavior of a neural network on
each of these continuous action tasks.

In all of the experiments we adjust the number of sub-
policies to the dimensionality of the action space. The
underlying assumption is that the complexity of the task is
correlated with the dimensionality of the action space and
harder tasks will require a higher number of linear sub-
policies. We refer to our framework as ”mixture of linear
policies” and the multipliers in e.g. Figure 3 are define by
K
da

. For the dexterous manipulation task in Section V-B, since
da = 8 then a multiplier of .5 indicates that there are 4 sub-
policies.

A. RL benchmarks

We evaluate our algorithm on five RL benchmarks with
action spaces ranging from da = 1 for the inverted double
pendulum environment to da = 8 for the Ant environment.
Figure 1 compares flat deep RL, represented by the PPO
algorithm learning a two hidden layers of size 64 neural
network policy, to our mixture of linear policies. The results
show that most of the tasks can be learned with a number of
sub-policies that is half of the action space dimensionality.

This is however not true for the Hopper environment where
at least six linear policies are required to solve the task.
Note that when the number of sub-policies is four times the
action spaces, it usually results in slowed down performance.
This might be due to each sub-policy having less samples to
perform the update or the policy might be limited by the
neural network structure as we do not alter the structure of
the partitioning policy. As a result, on the Ant environment
where the mixture of linear policies with four times the
action spaces has its worse relative performance, the neural
network output is 32 dimensional while the hidden layers are
only 64 dimensional.

It was already shown in [31] that some of these tasks
can be learned using a linear policy while other tasks
required RBF features. We extend these results by showing
that with our hierarchical structure we can match deep RL
performance only by switching between a small number of
linear policies.

B. Dexterous manipulation

To compare the two approaches on a complex robotic task,
we use the V-REP simulator (Coppelia Robotics) to simulate
a dexterous in-hand manipulation task. The task consists of
having an Allegro hand maximizing the rotation of a cylinder
in the counter clockwise direction for the duration of the
episode. The simulated robot can be seen in Figure 2.

The Allegro Hand (Wonik Robotics), is a four fingered
hand with four joints per finger, for a total of 16 actuated
degrees of freedom. The hand is simulated as being con-
trolled by a PD controller on the joint positions, running at
a frequency of 100 Hz. Tactile sensor arrays, each with 18
sensing elements, are projected onto each of the four fingers
for a total of 72 tactile sensing elements. Each element

Fig. 3: Comparison of Deep RL to mixture of linear policies
(with 2 and 4 linear policies) on the simulated dexterous
manipulation task. The mixture of linear policies is able to
learn good behaviors with only two linear policies. However,
the performance gap to neural network policies is more
pronounced than on the Gym environments.

measures the force applied locally.
During the simulation, the task state is given by the eight

joint positions of the index and thumb and by the average
force captured by the sensing elements of each finger for
a total of ten state variables. The actions consist of small
perturbations to the current joint positions of the two fingers.
The reward is the angular velocity of the cylinder at each
time step, being positive or negative respectively for counter
clockwise and clockwise velocities. There is also a small
penalty on the actions taken by the robot.

Figure 3 gives the cumulative reward achieved by both
PPO learning a neural network (same setting as in Section
V-A) and the mixture of linear policies. The figure shows that
good policies can be learned using only two linear policies
although the difference to a neural network policy is more
pronounced in this task than on the Gym environments.

VI. CONCLUSION

We have proposed in this paper an algorithm for partition-
ing the state space and learning linear sub-policies in each
cluster. We have shown that on several continuous action
control tasks, the mixture of linear policies can learn similar
behaviors than those of a neural network policy with a small
number of linear policies. The number of linear policies
emulating a given neural network provides insight into the
complexity of the learned behavior. However, additional
insights should be gained on the regularity of the neural
network state space clustering in order to achieve a complete
understanding of the learned behavior and provide a human
understandable description of it.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the DFG Project LearnRobotS under the SPP
1527 Autonomous Learning, from the Intel Corporation,
and from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 640554
(SKILLS4ROBOTS). Computing time for the experiments
was granted from Lichtenberg cluster.

REFERENCES

[1] D. Precup, R. S. Sutton, and S. P. Singh, “Theoretical results on
reinforcement learning with temporally abstract options,” in European
Conference on Machine Learning (ECML), 1998, pp. 382–393.

[2] R. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy Gradient
Methods for Reinforcement Learning with Function Approximation,”
in Neural Information Processing Systems (NIPS), 1999.

[3] T. G. Dietterich, “State abstraction in maxq hierarchical reinforcement
learning,” in Neural Information Processing Systems (NIPS), 1999, pp.
994–1000.

[4] G. Konidaris and A. Barto, “Skill discovery in continuous reinforce-
ment learning domains using skill chaining,” in Advances in Neural
Information Processing Systems (NIPS), 2009, pp. 1015–1023.

[5] B. da Silva, G. Konidaris, and A. Barto, “Learning Parameterized
Skills,” in International Conference on Machine Learning (ICML),
2012.

[6] M. J. Hausknecht and P. Stone, “Deep reinforcement learning in
parameterized action space,” CoRR, vol. abs/1511.04143, 2015.

[7] C. Daniel, H. van Hoof, J. Peters, and G. Neumann, “Probabilistic
inference for determining options in reinforcement learning,” Machine
Learning, vol. 104, no. 2-3, pp. 337–357, 2016.

[8] P. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in
Conference on Artificial Intelligence (AAAI), 2017, pp. 1726–1734.

[9] L. Li, T. J. Walsh, and M. L. Littman, “Towards a unified theory of
state abstraction for mdps,” in International Symposium on Artificial
Intelligence and Mathematics (ISAIM), 2006.

[10] D. Abel, D. E. Hershkowitz, and M. L. Littman, “Near optimal be-
havior via approximate state abstraction,” in International Conference
on Machine Learning (ICML), 2016, pp. 2915–2923.

[11] D. J. Mankowitz, T. A. Mann, and S. Mannor, “Adaptive skills adaptive
partitions (ASAP),” in Neural Information Processing Systems (NIPS),
2016, pp. 1588–1596.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
02 2015.

[13] J. Schulman, S. Levine, M. Jordan, and P. Abbeel, “Trust Region
Policy Optimization,” International Conference on Machine Learning
(ICML), p. 16, 2015.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” CoRR, 2015.

[15] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. L. Dean, and
C. Boutilier, “Hierarchical solution of markov decision processes using
macro-actions,” in Conference on Uncertainty in Artificial Intelligence
(UAI), 1998, pp. 220–229.

[16] T. Mann and S. Mannor, “Scaling up approximate value iteration
with options: Better policies with fewer iterations,” in International
Conference on Machine Learning (ICML), 2014, pp. 127–135.

[17] R. Fruit and A. Lazaric, “Exploration-exploitation in mdps with
options,” in International Conference on Artificial Intelligence and
Statistics (AISTATS), 2017.

[18] N. K. Jong, T. Hester, and P. Stone, “The utility of temporal abstrac-
tion in reinforcement learning,” in International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2008, pp. 299–
306.

[19] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” in Neural Information Processing Systems
(NIPS), 2016, pp. 3675–3683.

[20] J. Sorg and S. P. Singh, “Linear options,” in International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2010, pp.
31–38.

[21] R. Krishnamurthy, A. S. Lakshminarayanan, P. Kumar, and B. Ravin-
dran, “Hierarchical reinforcement learning using spatio-temporal ab-
stractions and deep neural networks,” CoRR, vol. abs/1605.05359,
2016.

[22] A. Ijspeert and S. Schaal, “Learning Attractor Landscapes for Learning
Motor Primitives,” in Advances in Neural Information Processing
Systems (NIPS), ser. (NIPS). Cambridge, MA: MIT Press, 2003.

[23] W. Masson, P. Ranchod, and G. Konidaris, “Reinforcement learning
with parameterized actions,” in Conference on Artificial Intelligence
(AAAI), 2016, pp. 1934–1940.

[24] R. J. Williams and J. Peng, “Function optimization using connectionist
reinforcement learning algorithms,” Connection Science, 1991.

[25] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning (ICML), 2016.

[26] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017.

[28] C. Szepesvari, Algorithms for Reinforcement Learning. Morgan &
Claypool, 2010.

[29] R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare, “Safe
and efficient off-policy reinforcement learning,” in Neural Information
Processing Systems (NIPS), 2016, pp. 1046–1054.

[30] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy op-
timization,” in International Conference on Machine Learning (ICML),
2017.

[31] A. Rajeswaran, K. Lowrey, E. Todorov, and S. M. Kakade, “Towards
generalization and simplicity in continuous control,” in Conference on
Neural Information Processing Systems (NIPS), 2017.

