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Abstract
In this thesis we investigate the performance of two trajectory kernels used by Bayesian optimization to solve robotic

reinforcement learning tasks. Furthermore, we contribute a trajectory kernel to a Bayesian optimization algorithm,

which optimizes over a local search space. Bayesian optimization has proven to be particularly effective in the area of

reinforcement learning tasks in recent years [1], but also has some disadvantages. When it comes to higher dimensional

problems, Bayesian optimization does not scale well due to the search space that needs to be optimized globally. In

addition, commonly used standard kernels in Bayesian optimization only detect similarities in policy parameters, but

not in behaviour patterns. For this reason, we implement trajectory kernels to the Gaussian process used by Bayesian

optimization. These kernels exploit trajectory data generated by the reinforcement learning agent, to derive a more

precise measure than policy parameter values.

To compensate for the global nature of Bayesian optimization, we use the algorithm proposed by [2], which restricts the

search space to a local area. In this thesis we show that restricting the search space enhances the learning performance

in the reinforcement learning tasks of Cart Pole, Acrobot and Mountain Car. Based on our results, our trajectory kernel

performs slightly better at its peak performance level compared to the standard kernels squared exponential and Matérn

5/2. The trajectory kernel adapted from [1] performs worse than the standard kernels.
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Symbols and Notation
Matrices are noted as capital letters, and vectors as bold lower case letters. Scalars and constants are denoted by lower

case letters.

Symbol Meaning

t time step of the simulation

tmax maximum time step of the simulation

st ∈ S states

at ∈ a actions

pt ∈ p state transitioning probabilities

rt ∈ r rewards

r̄ cumulative reward, sum of all rewards from one trajectory

ns number of initial sample points before starting the Bayesian optimization

nBO number of total Bayesian optimization steps

n number of training points currently present

n∗ number of sample test points

d number of dimensions of the problem

x training point vector of length d

x∗ test point vector of length d

X n× d matrix of n points x⊤

X∗ n∗ × d matrix of n∗ test points x⊤∗

y vector of n evaluated objective function values

y′ vector of standardized values of y

K(X , X ) = K n× n covariance matrix

K(X , X∗) = K∗ n× n∗ covariance between training and test points

K(X∗, X ) = K⊤∗ same as K(X , X∗)
⊤

K(X∗, X∗) = K∗∗ n∗ × n∗ covariance matrix

Kn noise regarding prior covariance matrix

◦ Hadamard product, element-wise product

diag(V ) returns the diagonal elements of the square matrix V as a vector

O(n) big O notation - linear algorithmic performance

O(n2) big O notation - quadratic algorithmic performance

σ2
n

noise variance

σ2
f

signal variance hyper parameter

σ2
l

length scale hyper parameter

σ2
a

action selection variance for continuous policies

v



Symbol Meaning

ε Gaussian distributed error with noise variance σ2
n

f objective black-box function

I Identity matrix

m, m mean values of the Gaussian process from test points X∗

V whole variance matrix of test points X∗

v, v variances from test points X∗

sdv vector of standard deviations from test points X∗

g vector of random Gaussian distributed values with zero mean and unit variance
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1 Introduction
The science of machine learning aims at creating well-functioning systems that are programmed to learn from data.

This enables such systems to continuously improve their performance autonomously in order to accomplish a certain

task. Machine learning is particularly important for tasks where manual design shows poor performance, such as image

or speech recognition, effective web search or realization of self-driving cars. Considering the huge amount of data to

be processed, machine learning algorithms easily surpass deterministic design. The advantage stems from generalizing

learned examples. Accordingly, patterns in the learning data can be recognized and transferred to future situations with-

out human supervision.

The goal of reinforcement learning, a sub-area of machine learning, is to teach an agent how to improve its be-

haviour [3]. In order to achieve a certain result, behaviour that contributes to the desired result is reinforced and

behaviour that is not needed to achieve this result will be discouraged. The following example illustrates this. As an

agent let us assume a robot arm with a table tennis racket and a ball. If our goal is to balance the ball for as long as

possible, the agent will be penalized if it drops the ball, and rewarded for each successful time step of balancing. At the

end of an evaluation episode all rewards received are summarized to get the cumulative reward as a measurement of

performance.

The agent’s behaviour can be defined by a set of policy parameters. These parameters tell the agent which action to

perform depending on its current state. State parameters of the table tennis agent, for example, would contain the angle

of the racket and the position of the ball. A well-tuned policy could tell the robot arm when and to what extent it should

rotate in order to prevent the ball from falling. Finding such a well performing policy is the goal of our reinforcement

learning task.

One approach of maximizing the performance of an agent could try random policies until finding a sufficient one.

Unfortunately, this would take a very long time because it is highly unlikely to find suitable policy parameters by

accident. Especially in more complex environments with higher dimensional policies. Besides the huge number of

evaluations necessary, we would have to deal with wear and the limited movement speed of our robotic equipment.

For this reason, we need a more efficient search process to find properly functioning policies. A search process,

which can learn from collected data, and extrapolate future behaviour. In recent years the Bayesian optimization ap-

proach has been shown to be very efficient in this field [4, 5, 6]. It tries to find an optimum of a black box function in as

few steps as possible. In our reinforcement learning task the black box function would be the cumulative reward of an

episode generated by a specific policy. In this case the optimum would be the policy with the highest cumulative reward

achievable.

The modelling of the black box function and thus the prediction of future behaviour is based on measuring the dis-

tance between already evaluated policies with known results. The outcome of a new policy is then estimated by applying

the learned distance metric. Out of many new policies Bayesian optimization selects one with the most promising en-

hancement. A good enhancement measure will include policies of uncharted areas in the search space and policies with

high expected cumulative rewards as well. This balancing act is known as the exploration exploitation trade-off [4]. Only

exploiting policies with a high expectation value can lead to a local optimum and thus to a result not as good as the best

possible one. Whereas excessive exploration will cover the entire search space, but maybe will not find an optimum at all.

When using standard kernels, the distance between policies is usually measured by calculating the Euclidean distance be-

tween corresponding policy parameters [7]. A more significant measure would compare the resulting behaviour patterns

stemming from certain policies instead of just comparing the parameters of the policies. Such a behaviour measurement

is utilised by the trajectory kernel [1], which uses the trajectory data generated by our agent during an evaluation pro-

cess. This data, consisting of state and action values, relate the respective policies for modelling the black box function.

The relation of behavioural patterns has the advantage that different policies with similar results are recognized, and

therefore less prioritized by the search. As a consequence, the trajectory kernel can make the search process more effi-

cient, but also has the disadvantage that the effort for kernel computations is greatly increased.

When it comes to higher-dimensional problems, Bayesian optimization tends to explore too much because of its fo-

2



cus on global optimization. As a result, the optimum may not be found. Therefore, we use Bayesian optimization with a

locally restricted search area [2] in addition to the commonly used global Bayesian optimization. The restriction of the

search area is adjusted throughout the search process to cover the most promising parts of the search space. Consequently,

we only have to optimize locally, which is more robust against high-dimensional problems and also computationally less

demanding than global optimization. In order to perform this local optimization proposed by [2], a suitable trajectory

kernel is also needed. Therefore we will contribute an additional trajectory kernel to the one we adapted from [1].

Accordingly, we will compare the performance of trajectory kernels with standard kernels in both global Bayesian

optimization and Bayesian optimization in a local context. The robotic reinforcement learning environments will be

given by the classic control tasks of Cart Pole, Mountain Car and Acrobot [3].
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2 Foundations
Our reinforcement problem is described by a black-box function that only provides discrete values at the evaluation

points. Bayesian optimization is well suited to solve such an optimization problem that does not supply any derivatives.

2.1 Bayesian optimization

To find the maximum point of a costly black box target function, we use Bayesian optimization [4, 5, 6]. It makes the

search process more efficient by incorporating a Gaussian process model to anticipate the objective function’s behaviour.

This model, containing estimates of the function’s returns depending on points, is used by a so called acquisition function

to guide the exploration for promising new points. Each selected point is evaluated by the objective function and the

results are included in the Gaussian process model. Optimally these steps are repeated until found function values con-

verge at the maximum possible function value. In reality (algorithm 1) we iterate over nBO steps and analyse the results.

The change of the Gaussian process model affecting the acquisition function during Bayesian optimization iterations is

illustrated in figure 2.1.

input : X = ns uniformly random samples from the search space

nBO = number of Bayesian optimization iterations

set hyper parameters to 1

output: xnBO+ns

y = evaluations of the objective at the training points X

for n = ns to nBO + ns do
optimize hyper parameters (optional)

prepare a Gaussian process model depending on X , y and hyper parameters

xn+1 = point at the optimum of the acquisition function that uses the Gaussian process model

yn+1 = evaluation of the objective at the point xn+1

X = {X ,xn+1}

y = {y,yn+1}

Algorithm 1: Global Bayesian optimization

The optimization of hyper parameters is optional and depends on the Gaussian process kernel as mentioned in chapter

6. Also the noise level parameter σn (2.1) is not considered as hyper parameter in this context.

2.1.1 Gaussian Process Regression

The Gaussian process finds a prior distribution over the possible functions that are consistent with the training data.

From the regression we get a posterior mean and variance, which describe our model of the objective function [7]. The

mean represents a prediction of the true objective at a given point and the variance represents the uncertainty at that

point. The more training points our model incorporates the smaller the variance, and the more precise the predictions,

in the proximity around training points.

In real world applications we always have some noise in the objective observations. Therefore a Gaussian distributed

error term,

ε∼N(0,σ2
n
),

with zero mean and σ2
n

variance is added to the function value. Ergo the observed target

y= f (x) + ε

4



acquis ition max

acquis ition function 

observation (x)
objective  fn (f ( ·))

n= 2

new observation (xn)

n= 3

pos terior mean (µ( ·))

pos te rior uncertainty
(µ( ·)±�( ·))

n= 4

Figure 2.1: Visualization of the change in the Gaussian process model and the resulting acquisition function [4]. The x-

axis contains the search space over a one-dimensional example problem. With every Bayesian optimization

iteration step a new observation point at the maximum of the acquisition function is added to the training

data. This new observation and its evaluation update the Gaussian process model. Thus the model becomes

increasingly accurate in the vicinity of each observation. The number of observations is equal the number of

iterations and is denoted by n.

regards this noise [4, 5, 6, 7]. The knowledge our training data provides is represented by the covariance matrix K(X , X ).

With the matrix of test points X∗ we get the joint distribution of the target values and the estimated function values at

the test locations [7]:





y

f∗



 ∼N



0,





K(X , X ) +σ2
n
I K(X , X∗)

K(X∗, X ) K(X∗, X∗)







 .

For further simplification we define K = K(X , X ), K∗ = K(X , X∗), K⊤∗ = K(X , X∗)
⊤ = K(X∗, X ), and K∗∗ = K(X∗, X∗). Now

we can calculate the posterior mean and variance at given test points X∗:

Kn = K +σ2
n
I (2.1)

m= K∗K
−1
n

y (2.2)

V = K∗∗ − K∗K
−1
n

K⊤∗ (2.3)

v= diag(V ) (2.4)

sdv =
�

v. (2.5)

The resulting vectors m and v contain the means and variances for all corresponding test points. Also we get the whole

covariance matrix V .

2.1.1.1 Standard kernels

The similarity between points is measured by the covariance function. The better this covariance function is suited for

our objective function the more precise is the resulting model. We use two standard kernels [7] to compare them to the

5



trajectory kernel (section 2.2.2). In those standard kernels the distance metric for two points is given by the Euclidean

distance:

D(xi ,x j) = (xi − x j)
⊤(xi − x j).

Which we then use in the squared exponential kernel,

K(xi ,x j ,σ f ,σl) = σ
2
f

exp

	

−
D(xi ,x j)

2σ2
l




,

and the Matérn 5/2 kernel,

K(xi ,x j ,σ f ,σl) = σ
2
f

	

1+

�
5D

σl

+
5D

3σ2
l




exp

	

−
�

5D

σl




,

where σ f denote the signal standard deviation and σl the characteristic length scale. These so called hyper parameters

can be tuned by hand or set with hyper parameter optimization.

2.1.2 Hyper parameter optimization

Selecting proper hyper parameters for the Gaussian process regression can reduce the number of objective function

evaluations necessary.

The likelihood function of the Gaussian process describes the probability of the Gaussian process model being suited for

the black box function. To find an optimum for the signal deviation hyper parameter σ f and the length scale hyper

parameter σl we maximize the log likelihood function depending on those parameters [6]:

log p(y= f |X ,σ f ,σl) = −
1

2
y⊤K−1

n
y− 1

2
log |Kn|−

n

2
log 2π, (2.6)

The number of observations is n, X is the d×n dataset of input points and Kn is the covariance matrix for the noisy target

y.

2.1.3 Acquisition function

The basis of the Bayesian optimization consists of selecting the next evaluation point in our search space. This point is

at the optimum of the acquisition function, which depends on the current Gaussian process model. We choose expected

improvement [4] during the global Bayesian optimization and in the local optimization (section 3.1) we use Thompson

sampling [2]. Both acquisition functions take the mean and the variance generated by the Gaussian process model into

account to guide the exploration process. The difficulty lies in avoiding excessive exploration or exploitation. Exploration

seeks points with a high variance and exploitation selects points with a high mean instead. The latter one would result in

a local optimum whereas too much exploration may not improve at all. An exemplary comparison of acquisition function

is shown in figure 2.2.

2.1.3.1 Expected improvement

To get an expected improvement function value at a test point x∗, we need the mean value m(x∗), and the standard

deviation value sdv(x∗) =
�

v (x∗) from the Gaussian process model. Also we need the maximum of all observations

ymax and a trade-off parameter τ. For the cumulative distribution function, we write Φ(.) and for the probability density

function we write φ(.). They are both Gaussian with zero mean and unit variance. We adopt the expected improvement

function

EI(x∗) =

�

(m(x∗)− ymax −τ)Φ(z(x∗)) + sdv(x∗)φ(z(x∗)) if sdv(x∗)> 0

0 if sdv(x∗) = 0

where

z(x∗) =

�

(m(x∗)−ymax−τ)
sdv(x∗)

if sdv(x∗)> 0

0 if sdv(x∗) = 0

as suggested in [4]. The trade-off parameter τ can be set to zero or above to gain more exploration. To get the next

evaluation point,

xn+1 = arg max
x∗

EI(x∗),

we optimize the expected improvement function over the whole search space.
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2.2.1 Markov decision process

We use the Markov decision process model to describe the agent’s decisions making [3]. This model consists of a tuple

(S, A,p, r,γ), holding all states st ∈ S, all actions at ∈ a, all state transitioning probabilities pt ∈ p, and all corresponding

rewards rt ∈ r. The discount factor γ is set to 1 because we have a finite horizon Markov decision process where the

timing of the reward is irrelevant. Otherwise γwould have a value between 0 and 1 to reduce the rewards with increasing

time steps. Since the transitioning probabilities and the rewards are unknown, they are accessed through simulation runs

of our environment. Assume the agent executing a policy x for tmax time steps, producing a trajectory ξ, and therefore

receiving the final reward

r̄(ξ) =

tmax∑

t=1

γt r(st−1,at−1, st),

as the sum of all immediate rewards given by a rewarding function r(st−1,at−1, st). The explicit probabilities correspond-

ing to actions and state transitionings are also obtained (see 4.5) throughout the simulation run.

2.2.2 Trajectory kernel

Standard kernels like the squared exponential kernel, relate policies by measuring the difference between policy pa-

rameter values. Therefore policies with similar behaviour but different parameters are not compared adequately. The

behaviour based trajectory kernel fixes this, by relating policies to their resulting behaviour [1]. This makes our policy

search more efficient, since we avoid redundant search of different policies with similar behaviour.

2.2.2.1 Behaviour based measurement

For relating policies to their resulting behaviour we use the Markov decision process transitioning probabilities. We

formulate the conditional probability of observing trajectory ξ given policy x as proposed in [1]:

p(ξ|x) = p0(s0)

tmax∏

t=1

p(st |st−1,at−1)pπ(at−1|st−1,x).

Trajectory ξ = (s0,a0, ..., stmax−1,atmax−1, stmax
) contains the sequence of state, action tuples and policy x a set of d pa-

rameters. The probability of starting in the initial state s0 is denoted by p0(s0), and p(st |st−1,at−1) is the probability of

transitioning from state st−1 to st when action at−1 is executed. The stochastic mapping pπ(at−1|st−1,x) is the probability

for selecting the action at−1 when in state st−1 and executing the parametric policy x.

2.2.2.2 Distance metric

To examine the difference between two policies xi and x j the discrete Kullback-Leibler divergence

KL(p(ξ|xi)||p(ξ|x j)) =
∑

ξinξi

p(ξ|xi) log
p(ξ|xi)

p(ξ|x j)
.

is applied to the policy-trajectory mapping probabilities p(ξ|xi) and p(ξ|x j) [1]. The Kullback-Leibler divergence mea-

sures how the two distributions diverge from another.

In general KL(p(ξ|xi)||p(ξ|x j)) is not equal to KL(p(ξ|x j)||p(ξ|xi)). But we need a symmetric distance measure. So we

sum up the two divergences

D(xi ,x j) = KL(p(ξ|xi)||p(ξ|x j)) + KL(p(ξ|x j)||p(ξ|xi)),

to achieve that D(xi ,x j) = D(x j ,xi). An additional requirement for the kernel is the resulting matrix to be positive semi-

definite and scalable[1]. Therefore we exponentiate the negative of our distance matrix D. We also apply the hyper
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parameters σ2
f

to compensate for the signal variance and σ2
l

to adjust for signal length scale. This gives us the covariance

function

K(xi ,x j ,σ f ,σl) = σ
2
f

exp

	

−
D(xi ,x j)

2σ2
l




. (2.7)

In addition to the distance metric proposed by [1] we included the signal variance hyper parameter σ2
f
.

2.2.2.3 Estimation of Trajectory Kernel Values

To reduce the computational effort an estimation of kernel values is applied. The approximation with the Monte-Carlo

estimate

D̂(xi ,x j) =
∑

ξ∈ξi

log

	

p(ξ|xi)

p(ξ|x j)




+
∑

ξ∈ξ j

log

	

p(ξ|x j)

p(ξ|xi)




(2.8)

is sufficient to measure the divergences between policies with already sampled trajectories [1]. ξi is the set of trajectories

generated by policy xi . For our Gaussian process regression, we also need a distance measure between a policy with

known trajectories and new policies with unknown trajectories. Since there is no closed form solution to this we use the

importance sampled divergence

D̂(x∗,x j) =
∑

ξ∈ξ j

�

p(ξ|x∗)

p(ξ|x j)
log

	

p(ξ|x∗)

p(ξ|x j)




+ log

	

p(ξ|x j)

p(ξ|x∗)


�

to estimate the divergence between the new policy x∗ and the policy x j with already sampled trajectories ξ j [1].

Since we only have a ratio of transitioning probabilities present in our trajectory kernel we can reduce the logarithmic

term to:

log

	

p(ξ|xi)

p(ξ|x j)




= log

�

p0(s0)
∏tmax

t=1
ps(st |st−1,at−1)pπ(at−1|st−1,xi)

p0(s0)
∏tmax

t=1
ps(st |st−1,at−1)pπ(at−1|st−1,x j)

�

= log

�

tmax∏

t=1

pπ(at−1|st−1,xi)

pπ(at−1|st−1,x j)

�

=

tmax∑

t=1

log

	

pπ(at−1|st−1,xi)

pπ(at−1|st−1,x j)




.

Summing up the logarithms of the probability ratios in the end is also numerically more stable than computing the

logarithm of the products.

9



3 Contributions
As we will see in the Experiments, the local Bayesian optimization technique is more efficient than the commonly used

global one. We implement this local Bayesian algorithm developed by [2] and we also contribute a trajectory kernel

suited for the Thompson sampling acquisition function used by the proposed algorithm.

3.1 Local Bayesian optimization

Modelling the objective function for a higher dimensional search space is challenging. Also global Bayesian optimization

tends to over-explore. To perform a more robust optimization we use local Bayesian optimization as stated in [2].

It restricts the search space of the acquisition function to a local area which is moved, resized, and rotated between

iterations. This local area is defined by a Gaussian distribution in which the mean and variance represent the centre

and the exploration reach respectively. To update that mean and variance properly we minimize the Kullback-Leibler

divergence between the current search distribution πn and the probability p∗
n
= p(x = x

∗|Dn) of x
∗ being optimal. This

results in a search area which neglects poorly performing regions.

To prevent the mean from moving too fast from the initial point and to avoid the variance becoming too small quickly

the minimization is constrained with the hyper parameters α and β . Therefore our optimization problem is given by

arg min
π

KL(π||p⋆
n
),

subject to KL(π||πn) ≤ α, (3.1)

H(πn)−H(π) ≤ β , (3.2)

where KL(.||.) denotes the Kullback-Leibler divergence H(p) = −
∫

p(x ) log(p(x ))dx is the entropy of p. We implement

the local Bayesian optimization as suggested in [2].

3.1.1 Constraint Thompson sampling

To perform Thompson sampling on the variable search distribution we first sample a number of points from the current

search distribution (algorithm 2). Then we compute the Mahalanobis distance for each test point to discard samples,

which are at the outer edge of the search space. The Mahalanobis distance is used to regard the covariance of the current

search distribution in distance computations.

input : X = n already evaluated points

X∗ = random samples from the search distribution

dt = distance threshold

output: xn+1: next evaluation point

compute the Mahalanobis distance from test points to current search distribution

keep samples, which are inside the distance threshold dt of the distribution density

get mean and covariance matrix from the Gaussian process

get values from Thompson sampling

xn+1 = sample at the maximum of Thompson sampled values

Algorithm 2: Thompson sampling acquisition for local Bayesian optimization

3.1.2 Trajectory kernel for local Bayesian optimization

If using Thompson sampling as the acquisition function, the whole covariance matrix V of test points is needed. To

compute this covariance matrix, we need a distance measure between unknown trajectories. The kernel proposed by [1]

does not support a measurement between unevaluated policies. We therefore implement our own distance metric based
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on states, which are already present in the training data. First we filter a random subset from the training data and save

it to Ssub. For the continuous action space we then calculate each mean

mi = fs(Ssub)
⊤xi and m j = fs(Ssub)

⊤x j

for the given policies xi and x j . The difference between the two policies is measured by the squared Euclidean distance

between the means:

D(xi ,x j) = (mi −m j)
⊤(mi −m j).

For the discrete action space we sample the actions a from p(a|Ssub, x) for the given policies xi and x j from (4.3). The

sampled actions then select the associated probability values. We compare the sets of probability values for each policy

by applying the discrete Kullback-Leibler divergence

D(xi ,x j) =
∑

p(ai) log
p(ai)

p(a j)
+
∑

p(a j) log
p(a j)

p(ai)
,

where ai denotes the actions sampled from the probabilities p(a|Ssub,xi) and p(ai) the corresponding probabilities. As

in the other trajektory kernel (section 2.2.2) we add the both Kullback-Leibler divergences to get a symmetric distance

measure.

3.2 Numerical stability and efficiency

Due to numerical instabilities, errors may occur during calculations. These errors are caused by the discrete implemen-

tation of continuous mathematical formulas. Sometimes numerical instabilities lead to negative values for covariances.

To avoid getting complex numbers we assume negative values as zero before applying the square root on covariances

when computing the standard deviation from the Gaussian process model (2.5). Negative values can also occur for the

distance between two trajectories, and are thresholded to zero, too.

When computing the symmetrical distance matrix D̂(X , X ) (2.8) only the upper triangle matrix D̂u is calculated. That

halves the computational effort. We obtain D̂ = D̂u + D̂⊤
u

, since the diagonal elements of D̂ are zero and D̂(xi ,x j) =

D̂(x j ,xi).

To gain robustness we use the lower Cholesky decomposition instead doing matrix inverse calculation. Therefore, the

matrix to decompose must be positive definite. We achieve this by doubling the noise variance added to the diagonal

elements of the original matrix as shown in algorithm 3.

input : K , σn

output: L

Kn = K +σ2
n
I

while Kn not positive definite do

double σ2
n

Kn = K +σ2
n
I

L = lower Cholesky of Kn

Algorithm 3: Lower Cholesky with variance doubling

When doing hyper parameter optimization, we do not double the noise variance. Instead our log marginal likelihood

function (2.6) returns negative infinity for hyper parameters, which produce a non positive definite matrix Kn. Therefore,

such hyper parameters do not come into consideration when maximizing.

3.2.1 Gaussian process regression

Since the prior covariance matrix Kn (and therefore its Cholesky decomposite L) does not change during the acquisition

function optimization it can be pre-computed to make the Gaussian process regression more efficient. Additionally we

customize the computation of the variance vector to lower the computational effort.
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3.2.1.1 Inverse of prior covariance matrix

Instead of calculating the inverse of Kn in (2.2) we use the Cholesky decomposed matrix:

LL⊤ = Kn

This is considered faster and numerically more stable [7]. The mean vector m is then computed as follows:

m= K−1
n

y = (L L⊤)−1 y= (L−⊤ L−1)y= L−⊤ (L−1 y) = L⊤ \ (L \ y). (3.3)

The backslash operator denotes the matrix left division, so the solution x = A\ b satisfies the system of linear equations

Ax = b. Matrix Kn must be positive definite for the Cholesky decomposition. So we double the noise variance hyper

parameter σ2
n

as shown in algorithm 3.

3.2.1.2 Variances

For the expected improvement function, we only need the vector of variances. Instead of calculating the whole covariance

matrix V and taking the diagonal elements (2.4) we can take a shortcut. All elements on the diagonal of K(X∗, X∗) equal

σ2
f

because the difference between one x∗ and the same x∗ is zero. Therefore we can write:

Lk = L \ K(X∗, X ) (3.4)

v = σ f −
∑

rows

(Lk ◦ Lk). (3.5)

This adaptation is inspired by [8] and reduces the computational effort drastically from O(n2) to O(n).

For the whole covariance matrix for Thompson sampling we also avoid calculating the matrix inverse:

V = K(X∗, X∗)− (L⊤k Lk)
⊤

3.2.2 Action selection

In continuous action space our stochastic policy is Gaussian distributed (4.1). Therefore the resulting probability density

of the action selection,

Pπ(a|s,x) =
1
�

2πσ2
a

exp

	

− (a− fs(s)x)
2

2σ2
a




,

allows us to do the computations of the logarithm of the probability ratios in the trajectory kernel more efficient:

tmax∑

t=1

log

	

Pπ(at |st ,xi)

Pπ(at |st ,x j)




=

tmax∑

t=1

log







1
�

2πσ2
a

exp

�

− (at− fs(st )xi )
2

2σ2
a

�

1
�

2πσ2
a

exp

�

− (at− fs(st )x j )
2

2σ2
a

�







=

tmax∑

t=1

log

	

exp

	

− (at − fs(st)xi)
2

2σ2
a

−
	

−
(at − fs(st)x j)

2

2σ2
a






=
1

2σ2
a

tmax∑

t=10

�

(at − fs(st)x j)
2 − (at − fs(st)xi)

2
�

.
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3.2.3 Hyper parameter optimization

Especially for the trajectory kernel we want a hyper parameter optimization, because all the values of the distance matrix

D may get very big. When dividing by a well tuned hyper parameter σl before applying the exponential function (2.7),

we avoid getting a diagonal matrix K or a zero matrix K∗.

When calculating log(|Kn|) for the hyper parameter optimization (2.6), again we use the Cholesky decomposition of K .

Thus the determinant transforms to

|Kn|= |L LT |= |L| |LT |= |L| |L|= |L|2.

Since the determinant of the Cholesky decomposed matrix,

|L|=
∏

i Lii ,

is the product of its diagonal elements, we can transform this into a numerically more stable version:

log(|Kn|) = log(|L|2) = 2 log(|L|) = 2 log(
∏

i Lii) = 2
∑

i log(Lii).

The computation of K−1
y

y in (2.6) is done by the same method we already use in the Gaussian process (3.3).

For debugging purposes and for estimating the quality of the hyperparameter optimization, we plotted a grid of values

generated by the log marginal likelihood function during development and testing. Figure 3.1 contains a very stable

example of the hyper parameter space.

3.2.3.1 Independent log-normal prior

The log marginal likelihood maximization will sometimes succeed at the borders of our search space resulting in very

high high or very low hyper parameters. We prevent this by adding an independent log-normal prior term as introduced

in [6]:

∑

i= f ,l

	

− log(σi)
2

2 · 102
− log
�

10
�

2π
�




.

Since the suggested prior is centred at the point of origin with standard deviation 10, but we want our search space to

adapt between iterations, we make the mean and the standard deviation adjustable. We write:

∑

i=1,2

	

−(hi − ci)
2

2(bui
− bli

)2
− log
�

(bui
− bli

)
�

2π
�




,

where bl and bu denote the lower and upper bounds of the search space and c its center. And since we optimize over the

logarithmic space h1 = logσ f and h2 = logσl .
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4 Experiments
Each of the classic control environments has its unique features described below. For the MATLAB Cart Pole implementa-

tion we use the starting conditions, the rewarding function and boundary parameters from the OpenAI Gym [9].

4.1 Cart Pole

OpenAI Gym Cart Pole

The Cart Pole environment consists of a cart with a pole attached to its top. The cart is

accelerated to the left or the right to balance the pole for as long as possible. An episode starts

with small random state values and it ends when the maximum of time steps or a specific

state is reached. The state values contain the position and the velocity of the cart, and the

angle and the angular velocity of the pole. Each of these four state values are set uniformly

random between -0.05 and 0.05 at the beginning. The episode ends after 200 time steps or if

the pole falls below 12 degrees relative to the vertical. It also ends when the cart is more than

2.4 meters away from the center. For each completed time step a reward of 1 is returned. The

cart pole implementation from OpenAI Gym (’CartPole-v0’) accepts a discrete action value, -1

or 1, for either applying force to the left or to the right. With the four state values and an

additional bias value we have five dimensions for each discrete action resulting in a total of

ten dimensions. In our own cart pole simulation, we only use the four state parameters for

calculating an continuous action value between -1 and 1. It turned out that adding a bias value would make the policy

search slightly more difficult here. Therefore, this policy has only four dimensions. Also we let an episode end after a

maximum of 1000 timesteps.

4.2 Acrobot

OpenAI Gym

Acrobot

The Acrobot consists of two joints and two pendulums. The upper joint has a fixed position. It connects

to the first pendulum, which is attached to the second joint. A torque can be applied to that second joint,

which controls the second pendulum. The pendulums start in equilibrium position and the goal is to gain

enough momentum and swing the end of the second pendulum above a certain mark. If the Acrobot

passes that mark that is one pendulum length above the upper joint, the episode ends. A reward of -1

is received for every timestep needed. The angle between vertical and the first pendulum and the angle

between the two pendulums form the six state parameters. Four parameters are the sine and the cosine

of these two angles each, whereas the last two parameters are the angular velocities 4.1. The discrete

action can have the values -1, 0 or 1. Each value stands for the amount of torque applied to the joint

between the two pendulum links. With the six state values, an additional bias value, and three discrete

action possibilities we get 21 dimensions for the Acrobot policy. We use the OpenAI Gym implementation

of Acrobot (’Acrobot-v1’).

4.3 Mountain Car

OpenAI Gym Mountain Car

During the Mountain Car task, an underpowered car tries to drive uphill. It can

only reach the goal on the right side if it uses both hills to gain momentum. The

end of the left hill is an inelastic wall, so if the car hits it, the velocity is set to

zero. The reward for the discrete version of Mountain Car is -1 for every time

step to the goal. In the continuous setup the reward starts at 100. After an

episode the squared count of performed actions is subtracted. Since the hills are

formed by a sine curve, it is sufficient that the position of the car is only one-

dimensional. The vertical position of the vehicle can be easily derived from the

horizontal position with the sine function. The horizontal position and the car’s

velocity are cubically expanded (table 4.1) to get nine state values. Also a bias

parameter is added as a tenth state value. In the continuous setting, we therefore

receive ten dimensions. In the discrete setting we have three action values for
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either applying acceleration to the left or right (-1,1) or doing nothing (0). In this case we receive 30 dimensions. We use

the OpenAI Gym implementation of the continuous Mountain Car task (’MountainCarContinuous-v0’) and the discrete

one (’MountainCar-v0’).

Environment Description Action State feature d maximum time steps

Cart Pole p: cart position

θ : pole angle

continuous: [-1,1] (p, ṗ,θ , θ̇ ) 4 1000

discrete: {-1,1} (p, ṗ,θ , θ̇ , 1) 10 200

Acrobot θ1: angle of

pendulum 1

θ2: angle between

pendulum 1 and

2

discrete: {-1,0,1} (cos(θ1), sin(θ1),

cos(θ2), sin(θ2),

θ̇1, θ̇2, 1)

21 500

Mountain Car p: horizontal car

position

u: car velocity

continuous: [-1,1] (p, u, p2, u2, pu, p2u,

pu2, p3, u3, 1)

10 999

discrete: {-1,0,1} (p, u, p2, u2, pu, p2u,

pu2, p3, u3, 1)

30 200

Table 4.1: Environment parameters of the experiments. Column d contains the number of dimensions of each problem.

4.4 Implementation of the environments

Because we developed the Bayesian optimization algorithm in MATLAB, we first implemented a MATLAB version of Cart

Pole that was adapted from [10]. Then we also implemented the OpenAI Gym [9] to provide a wide range of problem

environments. To use the simulations written in Python we prepared a python module which is imported to MATLAB.

After loading the python module with py.importlib.import_module(moduleName) we can call every method it contains

via the py.moduleName. prefix. It is vital to convert our MATLAB data correctly before calling the python subroutine with

it. The MATLAB variables containing whole numbers are converted from Double to Int. Also all the vectors received by

the python module have to be converted to an array through numpy.asarray().

To cut the time for experiment runs we vectorized every suited operation to speed up calculations in MATLAB. In addition,

we tuned the code to run on a parallel pool so we could run experiments on the cluster efficiently. Unfortunately, calling

python modules does not work if we use the parallelization of MATLAB. So we used the OpenAI Gym environments only

with the less computationally demanding local Bayesian optimization.

4.5 Action selection

In continuous action space we use a linear policy to action mapping

a = fs(s)
⊤x+σa, (4.1)

with a small Gaussian noise σa needed for stochastic policies. So the Gaussian distributed actions,

a ∼N( fs(s)x,σ2
a
),

result in the probability measure by the Gaussian density:

pπ(a|s,x) =
1
�

2πσ2
a

exp

	

− (a− fs(s)x)
2

2σ2
a




. (4.2)

In discrete action space environments we use a parametric soft-max action selection policy:

p(a|s,xa) =
exp( fs(s)

⊤xa)
∑

a∈A exp( fs(s)
⊤xa)

. (4.3)

16



Again it consists of a linear mapping fs(s)
⊤xa. The resulting action is sampled from the probability of action a given state

s. The policy xa for a discrete action a is a subset of parameters from the policy x.

The state feature function fs(s) depends on the environment as listed in Table 4.1.

4.6 Initial settings

For the trajectory kernel, we proposed in section 3.1.2, a maximum of 500 random states as the subset Ssub are used.

For the continuous action selection the noise parameter σa is set to 10−3. We adapted the action selection strategies from

[1]. Unfortunately, they do not provide any parameters. Therefore this error deviation value was guessed after a few test

runs.

The noise variance σ2
n

is set to 10−8 for all performance tests.

4.6.1 Global context

In the global search context the policy parameter boundaries are set to -10 and 10 for each dimension resulting in a d

dimensional hypercubic search space.

For the Bayesian optimization we select the initial samples set Xn from a bunch of sample sets such that the Euclidean

distance between points of the selected set is maximized. This grants us a well covered search space as a starting

condition. We also set the number of initial samples to ns = 10 and the iteration count to nBO = 200.

In the expected improvement function, the trade-off parameter τ is set to 0.01 as proposed by [4].

The hyper parameter optimization runs every fifth Bayesian optimization step or if the found maximum of the expected

improvement function drops below 10−6. In test runs this threshold near zero was a good indicator for poorly suited

hyper parameters.

4.6.2 Local context

The Bayesian optimization in the local context starts with a hypersphere centred at the origin with radius 10 as the policy

search space boundary. The starting point for the search is set to the origin accordingly.

We run the hyper parameter optimization every time the search space is adjusted. In total we carry out 400 Bayesian

optimization steps, in which the search space is adapted every four steps.

Before doing Gaussian process regression we transform our observations to zero mean and uniform variance:

y′ :=
y−mean(y)

std(y)
.

This standardization proposed by [2] affects the Thompson sampling exploration exploitation trade-off. In algorithm 2

we only use 300 samples for the Thompson sampling due to its quadratic computational effort. The distance threshold

dt for the sample filtering during Thompson sampling is set to 80%.
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5 Results
We plot the mean and the standard deviation of the cumulative reward for all kernel runs. One kernel run consists of

a number of trials depending on the experiment. We use more than one trial per kernel to compensate for the variable

result one run can produce. Also, due to high variations between iteration steps, all plots are smoothed by a moving

mean of 15 steps. And the standard deviation values are divided by five to maintain readability when three or four

different kernel plots are present in one graph. Each plot includes the mean of every kernel’s outcome as a line and the

corresponding standard deviation as a shaded area above and below. The green and blue graph show the two standard

kernels, squared exponential and Matérn 5/2, and the magenta and red graph show the trajectory kernels. The trajectory

kernel proposed by [1] is marked as the magenta one, whereas the trajectory kernel we come up with (Section 3.1.2)

is marked as the red one. Also a table is provided for each experiment showing the benchmark data for corresponding

kernels. The column mean(time) contains the mean value of the minutes needed for each trail and the column std(time)

the associated standard deviation. The column time performance relates the time needed for the whole run to the time

needed for the squared exponential kernel run. If the percentage is negative the associated kernel took more time than

the squared exponential kernel. The last column, learning performance, compares the summarized cumulative rewards

to those of the squared exponential kernel. If the percentage is positive then the overall learning performance is better

than the squared exponential kernel ones. The discrete version of the OpenAI Gym Mountain Car (’MountainCar-v0’)

stayed at the lowest possible reward during all experiments, therefore we plot no results.

Environment Optimizer Action space Kernels Simulation

Cart Pole globally continuous S, M, TW, TO MATLAB (cluster)

Cart Pole locally continuous S, M, TO MATLAB (cluster)

Cart Pole locally discrete S, M, TO OpenAI Gym (laptop)

Acrobot locally discrete S, M, TO OpenAI Gym (laptop)

Mountain Car locally continuous S, M, TO OpenAI Gym (laptop)

Table 5.1: Overview of all performance experiments. The abbreviations in the column kernels stand for: S = squared

exponential, M = Matérn 5/2, TW = trajectory (Wilson 2014), TO = trajectory (own work). The part of the TU

Darmstadt cluster we used for parallel runs is equipped with Intel Xeon E5-4650 processors with 2.7 GHz each.

The runs involving the OpenAI Gym were performed on my laptop’s Intel Core i5-7200U processor operating at

2.5 GHz.
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6 Discussion and Conclusion

6.1 Learning performance

The continuous Cart Pole MATLAB experiment on global Bayesian optimization (figure 5.1) shows a learning performance

advantage of our trajectory kernel. It finds well performing policies faster than the other kernels. The Wilson kernel per-

formed far worse than the others. The other kernels have a promising start, but after 20 iterations they stop improving

constantly. Instead they find very good and very bad policies, resulting in quite constant mean with a high deviation. This

could be an issue of the expected improvement acquisition function, exploring too much after a while. Unfortunately,

none of the kernels converges during the 200 Bayesian optimization steps at the maximum possible cumulative reward

of 1000. As listed in Table 5.2 a single trial for our trajectory kernel takes almost seven hours on the cluster on average.

Therefore we only did 200 iteration steps for the very time consuming runs with the global Bayesian optimization.

The continuous Cart Pole MATLAB experiment on local Bayesian optimization (figure 5.2) shows a slight performance ad-

vantage of our trajectory kernel. Each kernel converges at the maximum after about 400 black-box function evaluations.

Presumably due to the well suited Thompson sampling acquisition function in the local optimization context and the

autonomously adjusting local search space. Comparing it with the same experiment (figure 5.1), the local optimization

clearly outperforms the global one.

The discrete Cart Pole OpenAI Gym experiment on local Bayesian optimization (figure 5.3) shows a slight perfor-

mance disadvantage of our trajectory kernel. In this experiment we have a maximum of 200 time steps per episode,

and therefore the highest possible cumulative reward is 200.

The discrete Acrobot OpenAI Gym experiment on local Bayesian optimization (figure 5.4) converges at roughly -100.

The Acrobot has no definition of solving, but reaching the goal in 100 time steps is fairly good. Our kernel performs

worse than the standard kernel in the beginning but catches up towards the end.

The continuous Mountain Car OpenAI Gym experiment on local Bayesian optimization (figure 5.4) shows a major

performance drawback compared to the standard kernels. But the result is not conclusive because the environment

did not solve. The received cumulative rewards on the best runs converge at zero, which means that the agent learns to

do nothing. This is due to the rewarding function that discourages any action taken. A successful continuous Mountain

Car run would receive a reward around 90. In this experiment we also do not use any hyper parameter optimization,

because it fails constantly. In this case we set σ f and σl to 1.

6.2 Model parameters

Due to the high variations in the plots, we divide the standard deviations by five before visualizing them in order to main-

tain the clarity of the graph. Not only the variance between trials is high, but also between iteration steps. Therefore

we apply a moving mean of 15 steps on each plot too enhance readability. Maybe these high variances are an indicator

for poorly selected model parameters. As shown exemplary in figure 5.6 tuning of the noise level parameter σn can

have a huge impact on the results. To show this impact we did some continuous Cart Pole runs with different noise level

parameters.

When computing the continuous action space trajectory distance metric, proposed by [1], hyper parameter optimization

is mandatory to compensate for high distance values. These values occur because of the Gaussian distribution density

used as the probability measure for actions (4.2). Since we exponentiate the negative of the distance values, very high

distance values will result in covariance values that are zero. The optimization of the scale length hyper parameter σl

will prevent all-zero covariance matrices. Experiments have shown that tuning the signal deviation parameter σ f is

also helpful, because we simulate a policy only once for a result. Since a policy will not produce the exact same result

after repeated evaluations, we have to assume a high variation on each result. This variation is regarded by σ f . For

consistency we do the hyper parameter optimization on each kernel.

25



6.3 Conclusion

The results show that trajectory kernels can have some advantage if computation time is not expensive compared to

evaluations including robotic movement. Unfortunately, we were not able to reproduce the outstanding results with

the trajectory kernel from [1]. Maybe because they do not provide any parameters, environment settings or rewarding

functions. In our experiments the overall learning performance of the trajectory kernels was either worse or slightly

better than the learning performance of standard kernels. If you take the computing efficiency into consideration they

perform far worse than standard kernels. Depending on the setup, the trajectory kernels took between 3 and 22 times

more computational time than the squared exponential kernel (the measured times of continuous Mountain Car are not

considered, because it did not solve).

Maybe the bad learning performance of the trajectory kernel is a problem of poorly tuned hyper parameters σ f and

σl , the noise level parameter σn, the expected improvement trade-off parameter τ or other model constraints. Apart

from that, the trajectory kernel would only be worthwhile on black box functions that are quite expensively to evaluate

compared to the computational effort needed for trajectory kernel calculations.
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7 Outlook
Future test runs could include a higher Bayesian optimization iteration count to receive more precise results. Also more

than ten kernel trials per run would be helpful to get more expressive data.

Implementing the OpenAI Gym provides the classic control problems like Cart Pole, Mountain Car, and Acrobot. Further-

more a lot of more complex environments like a humanoid walker or some Atari games are provided [9]. This could

facilitate future research if working with higher dimensional problems.

Dealing with more complex environments, will also include non-linear action mappings and more than one-dimensional

actions. The trajectory kernels would have to be modified accordingly.

Sometimes the hyper parameter optimization fails to maximize the log marginal likelihood. To gain more robustness

the maximization with partial derivatives could be implemented as proposed by [7, 6].

Computing the Gaussian distribution density for the continuous action selection probability measure has lead to nu-

merical problems. Instead, a sigmoid function, for example the Gaussian cumulative distribution function, could be used

for probabilities of continuous actions.
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