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Abstract
In robot manipulation tasks, tactile sensor is important in order to provide tactile feedback from grasped objects. The
tactile information such as forces, mircovibrations and temperature is able to be detected, having similar sensory capa-
bility of human fingertips. While the complex, non-linear and high-dimensional tactile data is hard for control policy to
learn, incorporating this feedback into a policy is challenging in more than one aspect.

First, tactile sensors rely on complex physical interactions that preclude the use of an accurate simulator, and hence
model-based RL. Model-free RL has been successfully applied to robotics using low dimensional representation of
movement primitives. However, these movement primitives are often executed in open-loop and cannot process tac-
tile feedback. In recent years, there has been progress in learning complex policies from raw sensor data in a model-free
way, but the sample complexity of such methods prevents them to run on a physical robot. For this purpose, we propose
to learn the transferable representation of the tactile data, which can be utilized into the policy search in the simulator
and further transfered on the physical robot.

Representation learning can reduce the dimensionality of the problem. However the learned latent representation by
applying unsupervised learning is not able to transfer. As in the simulator we don’t have the corresponding accurate
tactile model to obtain the latent representation. We will propose supervised representation learning to infer variables of
tactile representation distribution. As the tactile feedback often provides implied information about physical properties of
grasped object, we learn the pose of manipulated object as representation from tactile data. The representation, namely
the object pose, is available in the simulator and served as observation for learning the control policy. Afterwards we
deploy the policy on the physical robot for evaluation. Meanwhile using the prediction of our supervised learning model
by feeding in the tactile data, the representation can be successfully transfered on the real robot.
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1 Introduction
Since the robot systems assist human to accomplish more and more challenging task and some also equipped with
anthropomorphic hands, having the ability of in-hand manipulation is crucial to achieve the real-world tasks. In order to
perform object or tool manipulation task in unstructured environments, it is important for robot to make use of tactile
information. In our work, we will learn the representation of the tactile feedback, which is one of the observations in
the reinforcement learning phase and with which the policy can be successfully transfered from the simulator to the real
world.

Figure 1.1: We learn the object pose, which tracked using Aruco marker, as representation mapping from BioTac tactile
feedback. Then use this representation as the observation to learn object translation task by applying deep
reinforcement learning in the simulator. At last, we deploy the policy on the real robot with this transferable
representation.

We introduce the status quo of the in-hand manipulation with tactile feedback, includes the work others have done and
the issue still need to be solved. In addition we proposed our method to solve it.

When the visual feedback is not available during manipulation, or due to partial occlusion by other hand, then the
tactile feedback can provide implied information about physical properties of grasped object. In addition, tactile sensing
can provide robustness and adaptation to variation in object properties [7], also it can detect slippage and instability[4].
With the help of tactile information, irreversible event is less likely to happen. Thus tactile feedback is necessary for us
to provide more stable grasping performance.
On the other side, high-dimensional and non-linear tactile sensory pose a major challenge and is hard to train the
learning algorithm on the real robot adopting raw data directly. Furthermore, it’s not possible to build a accurate model
of as delicate tactile sensory in the simulator as in the real world. Researches such as [8, 3] proposed using Variational
Autoencoder [9] to learn latent variables of probabilistic generative models of the tactile feedback to solve the problem.
Such latent representation can be used when the control policy trained on the real robot.
However we want the control policy that based on the representation be applied on the real robot, while training it in the
simulator to save the trial and error time on the real physical environment. Thus we proposed the supervised learning to
capture the object physical properties from tactile information. Unlike unsupervised learning, the proposed method will
learn directly important features of object manipulation task, e.g. object pose, object material or internal physical state,
and is able to transfer such representation from the simulator to the real world. The object properties we used here is
object pose, which can be easily obtain via marker tracking algorithm. The supervised learning method we used here to
learn the tactile representation is recurrent neural network with memory, namely LSTM [10], whose output depends on
historical inputs, and it’s able to avoid gradient vanish problem occurred on the traditional recurrent neural network [11].
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We also need to solve the robot hand manipulation problem in order to evaluate the representation of tactile infor-
mation we learned. Reinforcement learning has recently achieved significant progress. [12] shows the RL agent has
the ability to master Atari Game with only video input. Bots trained using massively-scaled version of Proximal Policy
Optimization also win against the world’s top professionals at Dota 2, which has long time horizons, a partially-observed
state and a high-dimensional continuous action space. Compared to such complex game decision making, in-hand ma-
nipulation task also needs to face difficulties such as dynamic partially-observed state and high-dimensional continuous
action space. [13, 14, 15] deals with manipulation task with model-based RL method, which optimizing the policy by
estimating the dynamics models. They are either 7 degrees of freedom robot (PR2), or using human demonstration or
assuming simple linear model from data, which infers such method is not suitable for our case. In contrast, model-free
RL methods do not require a dynamic model when optimizing the policy.

In this work, we focus on actor-critic model-free reinforcement learning, which includes policy search methods and
function approximation methods. Both approaches have recently been combined with deep neural networks for learning
in-hand manipulation task. We apply here concretely TRPO and PPO reinforcement method to train the policy based on
the representation of tactile information, and learn to translate object to the target position. And we further deploy the
policy to the real robot to evaluate the performance of object pose estimator.

1.1 Related work

In the next paragraph, we discuss related work on in-hand manipulation with tactile sensing, as well as reinforcement
learning method used for different kinds of object manipulation task.

Tactile Sensing for robot object manipulation

Although using the image data as robot perception pay more attention in the literature [15, 16, 17, 18], human ma-
nipulation control and reaction rely heavily on the tactile sensory information [19], so does the robot manipulation.
[20, 21] used the sensor feedback to learn a predictive model of task outcome. It allows much safer interaction with the
environment, which share the same workspace with human, if the robot can predict the failure before it happens. In our
case, we terminate the interaction if robot looses contact on the fingertips, and utilize tactile feedback mainly on robot
trajectories generation.

[1] uses tactile feedback for in-hand object localization and object manipulation task. They learned a manipulation action
by dynamic motor primitives incorporated with tactile feedback. And reducing the number of tactile feedback parameters
by performing PCA on the tactile images. The result showed that the tactile feedback can significantly improves the
movement execution in an altered task environment. However the tactile sensor they used is 8x8 dynamical matrix
analog pressure sensors equipped on the robot gripper. It is coarse tactile sensor compared to Biotac sensor we used. [2]
also solves the problem of localizing the pose and shape of an object by applying particle filtering. The object state is
estimated during manipulation by integrating the likelihood of contact measurements over possible contact positions. But
the sensor is on the Robonaut 2 hand, having a different setup from us. The same tactile sensor (BioTac [22, 23]) as we
used here are [4, 8, 3]. [4] uses biomimetic tactile feedback for slip detection and contact force estimation. Since Biotac
is a high dimensional tactile sensor, it may include strongly correlated or non-relevant dimensions. A better strategy is
to use its compact low dimensional representation, like [8, 3]. They use Autoencoder to learn state representation for
tactile and visual data. The result showed the reinforcement learning with learned state representation performs better
in the presence of noise from raw data. The detailed setting shows in the Figure 1.2.

We consider also use the tactile information to assist our manipulation task, and learn its representation due to high
dimensionality of tactile senor. However different from the above mentioned manipulation tasks which are trained
either on the real-robot or in the simulator using visual information, we want to obtain the representation of the tactile
feedback learned from the simulator, and which is further able to be transfered on the real robot. The reason is that
first the space between the finger epidermis and rigid core is inflated with conductive liquid, such BioTac sensor is hard
to model. Second, the reinforcement learning we used later is model-free policy search. It requires large number of
trajectory samples. If they are generated on the real robot, it needs not only human supervision but also more time
compared with working with simulated system. So if we can learn the policy based on the representation, which can
be transfered between real world and simulated system, the exploration time can be largely shorten. Therefore we
propose the supervised learning method to learn the representation of biomimetic tactile feedback. As tactile information
provides additional cues about the object state, such as its position and orientation, we try to learn the explicit mapping
from tactile information to object pose.
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Figure 1.2: Different setup of the object manipulation using tactile sensing. Top left is [1], which uses two dynamical
matrix analog pressure sensors binded on the gripper to perform a scraping task. Top right is [2], which
applying particle filtering to estimate the pose of an object that is captured by the Robonaut 2 hand. Bottom
left is [3], using a 5-DoF robot with 228-dimension sensor data to learn to manipulate using a learned three-
dimensional feature space. Different contact states, shown on the left, yield different latent-space values.
Bottom right is [4], showing robotic arm grasping a fragile object using the proposed force grip controller.

Reinforcement learning for robot object manipulation

In prior robot learning work, reinforcement learning (RL) has been used to explore both model-based and model-free
learning algorithm. Model-based algorithm has the method estimating a variety of dynamics models such as local linear
model [13], hidden Markov model [14], dynamic motor primitives [24] or guided policy search based on the trajectories
[15] and so forth. While the model-based policy search has the potential to require fewer interactions with the robot
and to efficiently generalize to unforeseen situations, inaccurate model can lead to control strategies that are not robust
to model error since learned policy is based on internal simulation with learned models [25]. It’s also hard to transfer
to real-world manipulation, since learning complex models on real world systems with significant contact dynamics is
difficult.

In contrast, model-free RL methods do not require a dynamics model when optimizing the policy. In addition with
human demonstration imitation learning results in policies that exhibit natural and robust trajectories. Using actor-
critic model-free RL method deep deterministic policy gradient (DDPG) incorporating human demonstrations, [5] shows
success on various dexterous manipulation skills on the simulator such as object relocation, in-hand manipulation, tool
use, and opening doors. Although we can do imitation learning for our manipulation task, the learned policy will highly
dependent on the trajectory we demonstrated. What we want is to let policy dependent on the representation from the
tactile feedback, therefore imitation learning is not appropriate in our task. [6] used the model-free method learning
without any prior knowledge. They presented asynchronous variant of Normalized Advantage Function algorithm (NAF)
for door-opening task. The experiment showed the model-free method can learn stable non-linear policy to accomplish
complex robotic manipulation tasks. The detailed setting of both experiment shows in Figure 1.3.
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Figure 1.3: Here shows using RL to learn manipulation tasks. Left one is [5], which uses imitation learning to learn dex-
terous manipulation skills such as object relocation, in-hand manipulation, tool use, and opening doors. Right
one is [6], which demonstrates two robots learning door opening task by asynchronous deep reinforcement
learning algorithm.

We will then also use model-free method to learn in-hand manipulation skills from scratch by using Proximal Policy Op-
timization Algorithms (PPO) [26] and Trust Region Policy Optimization (TRPO) [27], since PPO and TRPO outperforms
other methods like Vanilla PG, A2C and Cross-Entropy Method with comparison on almost all the continuous control
environments (Roboschool) [26].

The thesis is structured as follows. The second section introduces background information on LSTM, PPO and TRPO
we used. Third section brings our approach to solve tactile manipulation task based on representation. Fourth section
includes experiment setup. Fifth section is the result we experienced. Last section we conclude with a discussion and
future works.
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2 Background
In this chapter we will introduce the technical background of method we used. In order to learn the representation of
the tactile information, namely the object pose, we use recurrent neural network with memory, that is Long Short Term
Memory (LSTM). It’s one kind of the recurrent neural network, that can in addition capture long distance dependencies
between input data. The mathematical form and its advantage over traditional recurrent neural network will be given in
first section.

In the second section, we will introduce reinforcement learning (RL). The method is used to learn our control policy to
manipulate the object. We will first briefly introduce the reinforcement learning. It includes the fundamental mathemat-
ical form of RL learning problem, which is Markov decision process. And the objective of reinforcement learning. Last
types of RL algorithms, which mainly includes policy gradient, value-based, actor-critic RL method. The RL method we
used is PPO, which is actor-critic type. The actor-critic method estimates the Q-function or values function, and uses it
to calculate the gradient of the policy, which separately denotes policy evaluation and policy update. Policy evaluation
estimates the accumulated expected rewards for a particular state. Policy update improves the policy by calculating the
gradient of the objective of RL learning problem.

2.1 Representation Learning
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Figure 2.1: The recurrent network can be explained, if we unfold it in time sequence. It’s a feed-forward neural network,
with distinction that activation of the current hidden state is dependent on its last state concatenated with
the input of current time step. Note here the weight matrix U,V,W is shared in the RNN.

To deal with time series data, recurrent neural network (RNN) could be considered. It’s a class of neural network having
recursive connection between nodes. This allows it to present dynamic behavior for a time sequence. The computational
graph of RNN shows in Figure 2.1. We denote input vector x t , hidden layer vector ht , output vector ot , parameter matrix
W, U, V and activation function σ. RNN can be present in following mathematical form.

ht = σh(x tU+ ht−1W)

ot = σo(htV)
(2.1)

However in the traditional recurrent neural network, the gradient signal can end up being multiplied a large number
of times by the weight matrix during learning process. And it leads to the vanishing gradients or exploding gradients
problem [11]. This issue could be solved by Long Short Term Memory [10](LSTM) (Figure 2.2).
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Figure 2.2: Illustration of an LSTM memory cell. The memory cell is composed of four elements: an input gate, a neuron
with a self-recurrent connection, a forget gate and an output gate. The gates serve to modulate the inter-
actions between the memory cell itself and its environments. The input gate can allow input signal to alter
the state of memory cell or not. The output gate, on the other way, can allow the state of memory cell to
influence the neurons on the next time step or not. Finally, the forget gate can allow the cell to remember or
forget its previous state. 1

The idea behind the LSTM model is to keep around memories to capture long distance dependencies using memory cell.
We denote F(x , h;θ ) = σ(xW + hU) The memory cell is composed of four elements: an input gate it = F(x t , ht−1,θi),
a neuron with a self-recurrent connection, a forget gate ft = F(x t , ht−1,θ f ) and an output gate ot = F(x t , ht−1,θo). In
the beginning, we have new memory cell C̃t = tanh(x tW+ ht−1U) depends on input and last hidden state as gates. The
gate serve to modulate the interactions between the memory cell Ct itself and its environments. The input gate can allow
input signal to alter the state of memory cell or not. The output gate, on the other way, can allow the state of memory
cell to influence the neurons on the next time step or not. Finally, the forget gate can allow the cell to remember or forget
its previous state. In the mathematical form it’s

Ct = ft · Ct−1 + it · C̃t

ht = ot · tanh(Ct)
(2.2)

Figure 2.3 from [28] illustrate the gradient information propagate in the RNN and LSTM. The shading of the nodes
indicates their sensitivity to the input unit at time one. In LSTM the state of the input, forget, and output gate states are
displayed below, to the left and above the hidden layer node, which corresponds to a single memory cell. For simplicity,
the gates are either entirely open (‘O’) or closed (‘—’). The memory cell ‘remembers’ the first input as long as the forget
gate is open and the input gate is closed, and the sensitivity of the output layer can be switched on and off by the output
gate without affecting the cell. Since LSTM could long distance dependencies along time series, we use here LSTM model
to learn the representation. We assign the manipulated object pose as learning representation that could be transfered
from the simulator to the real robot experiment.

(a) Vanishing gradient problem for RNNs (b) Preservation of gradient information by LSTM

Figure 2.3: Comparison gradient information of LSTM with RNN. The shading of the nodes indicates their sensitivity to
the input unit at time one. The sensitivity in RNN decays exponentially over time as new inputs overwrite the
activation of hidden unit and the network ’forgets’ the first input. However LSTM can preserve of gradient
information by owning the gate.

1 http://deeplearning.net/tutorial/lstm.html
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2.2 Reinforcement Learning

We introduce first briefly the idea of reinforcement learning. It includes the definition of Markov decision process, it’s
fundamental mathematical form of Reinforcement Learning (RL), then provide the objective we need to optimize in RL,
at last is the overview of RL algorithm type. Second we discuss policy evaluation, which estimates the Q function, value
function or advantage given specific state and action and policy update method, which updates the policy to improve the
objective.

Agent Environment

action

observation, reward

Figure 2.4: Agent-Environment Loop

The agent-environment interaction loop in Figure 2.4 shows how the agent to learn the policy by interacting with the
environment. At each time step, the agent chooses an action according to its current observation or the state when it’s
fully observed, and the environment returns an observation or state and a reward base on the action the agent choose.
The agent is aimed to optimize the policy, so that the accumulated expected rewards it gets is maximum.

Markov decision process M = {S, A, T, r}, which is mathematical form of reinforcement learning problem, see Fig-
ure 2.5. S denotes state space, the state s in the set can be discrete or continuous. A denotes action space. T is transition
operator, it’s the probability of entering the new state given current state and action, that is p(st+1|st , at). r is the reward
function, mapping from the set of state, action space to real number. At each time step t, the process is in state st . The
decision maker can take any action at in A (action space), and receives the reward r(st , at). MDP satisfies the Markov
property, that means the prediction of future state st+1 only depends on the current state action pair (st , at), independent
of its future or past state action pair.

st−1 st st+1

at−1 at

πθ (at−1|st−1) πθ (at |st)

p(st |st−1, at−1) p(st+1|st , at)

Figure 2.5: The Graph of Markov decision process, s denotes the state, a denotes the action. The state depends on the
previous state and action given the probability p(st+1|st , at) and the policy πθ (at |st) relates the state to the
action.

We form the policy as πθ (a|s), and the environment has the transition operator p(s′|s, a). Below is the probability over
trajectories, when agent experiences in the environment:

πθ (τ) = pθ (s1, a1, s2, a2, . . .) = p(s1)
T
∏

t=1

πθ (at |st)p(st+1|st , at) (2.3)

The objective of reinforcement learning is trying to optimize the policy, so that it maximizes the expected accumulated
trajectory reward J(θ ) = Eτ∼πθ [r(τ)], where the reward is given by r(τ) :

∑T
t=1 r(st , at). When infinite horizon case is

considered, the reward r(τ) =
∑∞

t=1 γ
t−1r(st , at).

Next we introduce several types of RL algorithms, mainly includes policy gradient, value-based, actor-critic, model-
based RL method.
Policy gradient method directly calculates the gradient of observed accumulated reward, that is ∇θ J(θ ) =
Eτ∼πθ (τ) [∇θ logπθ (τ)r(τ)]. Methods include REINFORCE, Trust region policy optimization.
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Model-based RL method will estimate the transition, and learn a model of system dynamics. Afterwards the model
generates the trajectory for policy learning. In contrast, model-free algorithm learn the policy based on the trajectory
sampled from the robot. They’re often easier than learning a accurate forward model. However real robot interaction is
time consuming and would cause wear and tear in robots. Methods include Dyna, Guided policy search.
Value-based method will estimate the Q-function Q(st , at) = Eτ∼π(θ )[r(τ)|s0 = s, a0 = a] or value function V (st) =
Eτ∼π(θ )[r(τ)|s0 = s] of the optimal policy. And acts by maximize these function. However value function approximation
will a very difficult problem in high-dimensional state and action space. And often only used in discrete space. Methods
include Q-learning, DQN, Temporal difference learning.
Actor-critic method estimates the Q-function or values function, and use it to calculate the gradient of the policy. Methods
are Asynchronous advantage actor critic (A3C), Deep Deterministic Policy Gradient(DDPG), Proximal Policy Optimiza-
tion(PPO).

2.2.1 Policy Evaluation

We talk here how to evaluate the policy using neural network. The value function is the expected reward given particular
state Vπ(st) =
∑T

t′=t Eπθ [r(st′ , at′)|st]. We can approximate the value function by neural network. The true target value
is yt ≈ r(st , at) + γV̂π

φ
(st+1), φ is neural network parameter. The estimated value is V̂π

φ
(st). Then we can use supervised

learning method to minimize the loss between them.
Combined with policy gradient, which both approximated by neural network, is called actor-critic method. The algo-
rithm looks like so: first sample {si , ai} from πθ (a|s) by running the policy, then fit V̂π

φ
(s) we discussed above using

supervised learning, meanwhile calculate the policy gradient ∇θ J(θ ) ≈
∑

i∇θ logπθ (ai |si)Âπ(si , ai), finally use the gra-
dient to update the policy θ ← θ +α∇θ J(θ ). The whole process can be iterated until the policy converged.
One of the estimators computing variance-reduced advantage-function making use a learned value function V (s) is
generalized advantage estimation (GAE). The generalized advantage estimation [29] is designed to reduce the variance
of policy gradient estimate. The k-step advantage estimator Â(k) formed below, is involves a k-step estimate of the
returns, minus a baseline term −V (st).

Â(k)t =
k−1
∑

l=0

γlδV
t+l = −V (st) + rt + γrt+1 + . . .+ γk−1rt+k−1 + γ

kV (st+k)

where δV
t = −V (st) + rt + γV (st+1)

(2.4)

And the generalized advantage estimator GAE(γ,λ) is defined as the exponentially-weighted average of Â(k):

ÂGAE(γ,λ)
t = (1−λ)

�

Â(1)t +λÂ(2)t +λ
2Â(3)t + . . .
�

=
∞
∑

l=0

(γλ)lδV
t+l

(2.5)

By setting γ= 0 and γ= 1, there are two special case of the formula:

GAE(γ, 0) : Ât = δt = rt + γV (st+1)− V (st)

GAE(γ, 1) : Ât =
∞
∑

l=0

γlδt+l =
∞
∑

l=0

γl rt+l − V (st)

GAE(γ, 1) use the sum of true reward, does not include bias but has high variance. GAE(γ, 0) use an approximate value
function, which induces bias but has much lower variance. The advantage estimator controlled by two parameter γ and
λ makes a compromise between bias and variance.

2.2.2 Policy Update

We have talked about the objective of reinforcement learning, and the expected accumulated rewards J(θ ) =
Eτ∼πθ (τ) [r(τ)] =

∫

πθ (τ)r(τ)dτ. We assume having the random variable x and its function, knowing the identity

∇ log f (x) =
∇ f (x)
f (x)

=⇒ ∇ f (x) = f (x)∇ log f (x) (2.6)
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Then using identity (2.6)

∇θ J(θ ) =

∫

∇θπθ (τ)r(τ)dτ

=

∫

πθ (τ)∇θ logπθ (τ)r(τ)dτ

= Eτ∼πθ (τ) [∇θ logπθ (τ)r(τ)]

(2.7)

Remember that the trajectory distribution is given by (2.3), and we take log of both sides, we got logπθ (τ) = log p(s1)+
∑T

t=1 logπθ (at |st) + log p(st+1|st , at). Insert the form into Equation 3.3, we got

∇θ J(θ ) = Eτ∼πθ (τ)

�

� T
∑

t=1

∇θ logπθ (at |st)

�� T
∑

t=1

r(st , at)

�

�

(2.8)

The way evaluate the expectation from (2.8) is by approximating it using Monte-Carlo method, which repeats random
sampling on the dynamic system to obtain numerical results. Other method to evaluate the policy is using neural network
to approximate the value function. We will discuss it in section 2.2.1. Monte-Carlo method are unbiased, however, they
typically exhibit a high variance. We talk about how to reduce the variance of policy gradient later. So we could
approximate the equation (2.8):

∇θ J(θ )≈
1
N

N
∑

i=1

� T
∑

t=1

∇θ logπθ (ai,t |si,t)

�� T
∑

t=1

r(si,t , ai,t)

�

(2.9)

This part 1
N

∑N
i=1

�

∑T
t=1∇θ logπθ (ai,t |si,t)

�

is actually the gradient of maximum likelihood method in supervised learn-
ing. The REINFORCE [30] algorithm introduced by Williams in 1991 is the first policy gradient method. It first samples
the trajectories by running the policy, then uses (2.9) to compute the gradient, at last updates the parameter of the policy
by gradient accent θ ′ = θ + α∇θ J(θ ). And repeats the whole process until the policy converged. The intuition here is
to increase the probability of trajectory returns higher reward, and decrease the probability of trajectory returns lower
reward.
In order to reduce the variance of the gradient, we introduce here two tricks. First, we know the policy at time t cannot
affect the reward at time t ′, if t ′ < t, so

Eτ∼πθ (τ)

�

T
∑

t=1

�

∇θ logπθ (at |st)
t
∑

t′=1

r(st′ , at′)

�

�

= 0 (2.10)

We can then reform the equation (2.9) like this:

∇θ J(θ )≈
1
N

N
∑

i=1

T
∑

t=1

∇θ logπθ (ai,t |si,t)

� T
∑

t′=t

r(si,t′ , ai,t′)

�

(2.11)

Because we sum up fewer numbers, the overall variance decreases. Some denotes
∑T

t′=t r(si,t′ , ai,t′) as Q̂ i,t . If we use
true expected accumulated rewards instead without sampling, this part should be Qπ(st , at) =

∑T
t′=t Eπθ [r(st′ , at′)|st , at].

Rewrite the gradient from (2.8), we got

∇θ J(θ ) = Eτ∼πθ (τ)

�

T
∑

t=1

∇θ logπθ (at |st)Q
π(st , at)

�

(2.12)

Another trick is called baselines. That is subtract the trajectory reward with some constant,

∇θ J(θ ) = Eτ∼πθ (τ)
�

∇θ logπθ (τ)
�

r(τ)− b
��

(2.13)

And the policy gradient estimate remains unbiased. The average value of Qπ(st , at) is Vπ(st), as the definition Vπ(st) =
Eat∼πθ (at |st )[Q

π(st , at)]. So value function is a suitable baseline. And Qπ(st , at)− Vπ(st) is called advantage, denote as

Aπ(st , at). So ∇θ J(θ ) = Eτ∼πθ (τ)
�

∑T
t=1∇θ logπθ (at |st)Aπ(st , at)

�

.
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Note that the policy gradient is on-policy method. It’s inefficient, and we need to draw new trajectories when each time
the policy changes. This could be changed to off-policy method using importance sampling. Importance sampling is the
technique to estimate the property of a distribution, when having samples from another different distribution.

Ex∼p(x)[ f (x)] =

∫

p(x) f (x)d x

=

∫

q(x)
p(x)
q(x)

f (x)d x

= Ex∼q(x)[
p(x)
q(x)

f (x)]

(2.14)

So we only have samples from old policy πθ ′(τ), the objective could be estimated as J(θ ) = Eτ∼π(θ ′)
�

πθ (τ)
πθ ′ (τ)

r(τ)
�

.
Combine with (2.3), the form can be expended as:

J(θ ) = Eτ∼π(θ ′)

�

p(s1)
∏T

t=1πθ (at |st)p(st+1|st , at)

p(s1)
∏T

t=1πθ ′(at |st)p(st+1|st , at)
r(τ)

�

= Eτ∼π(θ ′)

�

T
∏

t=1

πθ (at |st)
πθ ′(at |st)

r(τ)

�
(2.15)

The importance sampling weights will explode or vanish, when t goes to infinity.

Trust Region Policy Optimization (TRPO)

Except the issue we talked above in section 2.2.2 when we use importance sampling, another issue of the policy gradient
method is that, it updates the policy in the parameter space. However small changes in the policy parameter may
unexpectedly lead to big changes in the policy. So updating the policy according to parameter will lead to excessively
large policy update. We need to bound the policy performance to solve the issue.
Consider now an infinite-horizon discounted Markov decision process (MDP), η(π) = Eτ∼π(θ )

�∑∞
t=0 γ

t r(st)
�

, where
s0 ∼ ρ0(s0), at ∼ π(at |st), st+1 ∼ p(st+1|st , at). In [31] derived an useful identity to express the expected return of other
policy π̃ in terms of advantage over π.

η(π̃) = η(π) + Eτ∼π̃

�∞
∑

t=0

γtAπ(st , at)

�

(2.16)

Let ρπ(s) =
∑∞

t=0 γ
t p(st = s|π) be the unnormalized discounted visitation frequencies. The Equation 2.16 can be

rewritten without timesteps:

η(π̃) = η(π) +
∞
∑

t=0

∑

s

p(st = s|π̃)
∑

a

π̃(a|s)γtAπ(s, a)

= η(π) +
∑

s

∞
∑

t=0

γt p(st = s|π̃)
∑

a

π̃(a|s)Aπ(s, a)

= η(π) +
∑

s

ρπ̃(s)
∑

a

π̃(a|s)Aπ(s, a)

(2.17)

This equation implies that if at each state s, the expected advantage is nonnegative when update from π to π̃ , then it’s
guaranteed to increase the policy performance η, or keep constant if expected advantage is zero everywhere. Another
thing the equation brings is, it solves the importance sampling weights exploding or vanishing problem when uses
importance sampling, due to independence of time right now. However using the ρπ̃(s) on π̃ is hard to optimize directly.
A local approximation form is below to replace ρπ̃(s) with ρπ(s), denoted as Lπ(π̃).

Lπ(π̃) = η(π) +
∑

s

ρπ(s)
∑

a

π̃(a|s)Aπ(s, a) (2.18)

And the good news is Lπ matches η to first order [31], if the policy is parameterized.
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TRPO [27] proposed the policy update scheme uses KL constraint, also called trust region constraint. So it can be
converted to optimization problem:

max
θ

Lθold
(θ )

subject to Dθold
KL (πθold

,πθ )≤ δ

where Lθold
(θ ) = E(s,a)∼πθold

�

πθ (a|s)
πθold

(a|s)
Aθold

(s, a)

�

(2.19)

And this optimization problem is solved by conjugate gradient algorithm followed by line search. The search direction
is computed by approximately solving the equation H x = g, where H is the Fisher information matrix, here equals to
Hessian matrix of KL divergence. The quadratic approximation to the KL divergence constraint: D̄KL(θold,θ ) ≈ 1

2 (θ −
θold)T H(θ−θold), H =∇2

θ
D̄KL(θold∥θ ) and approximate the objective Lθold

(θ )≈ Lθold
(θold)+gT (θ−θold), g =∇θ Lθold

(θ ),
resulting the following problem:

max
θ

gT (θ − θold)

s.t.
1
2
(θold − θ )T H(θold − θ )≤ δ

(2.20)

After using conjugate gradient algorithm to approximate the search direction s ≈ H−1 g, the maximal step length β is
computed such that θ + βs will satisfy the KL constraint. Therefore δ = 1

2 (βs)T H(βs)→ β =
p

2δ/(sT Hs). Last use the
line search to ensure the improvement of surrogate objective and satisfy the KL constraint. So start with maximal value
of β , if not meet the condition that D̄KL(θold,θ ) ≤ δ and Lθold

(θ ) improves, then shrink the β exponentially until the
condition meets. Other tricks used in practice such as Monte-Carlo method and importance sampling are omitted here, if
interested, could see [27]. TRPO showed that optimizes a local approximation to the expected return of the policy with
a KL divergence constraint achieves good empirical results on a range of challenging policy learning tasks.

Proximal Policy Optimization (PPO)

Unlike TRPO uses KL constraint to keep new policy near old policy, PPO uses a simpler way.
Let rt(θ ) denote the probabilty ratio rt(θ ) =

πθ (at |st )
πθold

(at |st )
. The main object they propose is:

LCLIP(θ ) = Eτ∼π

�∞
∑

t=0

�

min(rt(θ )Ât , clip(rt(θ ), 1− ε, 1+ ε)Ât)
�

�

(2.21)

By clipping the probability ratio, makes the new policy not far from the old one. Finally, taking the minimum of the
clipped and unclipped objective leads the final objective to a pessimistic bound. The PPO algorithm first collect the
trajectories on the old policy. And estimatess the advantages using any advantage estimation algorithm. Then optimize
the surrogate objective 2.21 by gradient ascent with K epochs. And loop the whole process. These methods have the
stability and reliability of trust-region methods but are much simpler to implement [26], requiring only few lines of code
modifying a vanilla policy gradient code, and have better overall performance.
Another approach is to use adaptive KL penalty instead of clipped surrogate objective. First define the target value of KL
divergence δ we expect to achieve each policy update. It optimizes the KL-penalized objective

LKLPEN(θ ) = Êt

�

πθ (at |st)
πθold

(at |st)
Ât − βDθold

KL (πθold
,πθ )

�

(2.22)

Denote d = Êt[D
θold
KL (πθold

,πθ )], if d < δ/1.5, β ← β/2, if d > 1.5δ, β ← 2β . The updated β is used for the next policy
update.
The PPO learning algorithm that uses fixed-length trajectory segments is shown below. Each iteration, each of N actors
collect T timesteps of data. Then the algorithm constructs the surrogate loss on these N T timesteps of data, and optimize
it with minibatch SGD for K epochs.
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3 In-hand Manipulation with Tactile Representation
We will explain here the whole framework of in-hand manipulation with tactile representation. In robot hand manipu-
lation task, tactile feedback is as important as visual feedback, especially when the visual information is occluded by the
hand. The tactile feedback can provide robustness and adaptation to the environment and makes irreversible event like
slipping or falling less likely to happen.

However on the one hand, learning such control policy based on the tactile feedback on the real robot is impossible.
The model-free reinforcement learning needs millions of transitions, it is inefficient and needs human supervision when
training directly on the real robot. It will also cause wear and tear in robots. On the other hand, when modeling the
interaction in the simulator, the accurate high dimensional, liquid inflated tactile sensor is hard to model. However the
explicit representation of the tactile information is able to be transfered. Therefore, we train the policy in the simulator
based on the object pose and transfer the policy on the real robot based on the tactile representation. Those dependency
is identical and can be transfered.

We use supervised learning to learn the mapping from the tactile information to its representation, which is the pose
of manipulated object. The non-linear model, which is neural network we trained, can predict the representation by
feed in the tactile data. We also train the control policy in the simulator based on the object pose, which is provided by
physical engine. In the end, we deploy the policy on the real robot. The policy observes the current joint state and the
tactile representation, which is the prediction of trained neural network, and can accomplish in-hand manipulation task
based on the representation of tactile feedback.

3.1 Supervised Learning for tactile representation

In order to apply supervised learning, we need the input-output, or feature-label pair. The learning function optimized on
the training data by minimizing the loss between the true label and predicted label mapping from the features. And the
optimal trained model is able to predict correctly on the unseen instances. In our case, the input is tactile data, output
is object pose. More precisely, we predict the object pose based not only on the current tactile feedback but the last k
tactile feedback. It leads to more robust prediction and steady learning process.

Figure 3.1: The left figure shows how we record the data. Using the glove to demonstrate the translation task and
Aruco to track the object pose, we record BioTac electrodes, robot joint states, joint command from glove
and tracked object pose. The right figure shows how we preprocess the data. The rectangle represents each
trajectory file. We preprocessed the data such that they have aligned at the same time sequence and discard
the data after the hand grasped the object.

We gather the data by demonstration the object translation task to learn the representation of tactile information. The
robot hand is controlled by the glove, however due to the different construction of human hand and robot hand, we
cannot easy rotate robot finger based on its root. What in-hand manipulation task we can demonstrate using the glove is
the object translation task. The objective is obtain by augment reality marker tracking algorithm using additional camera
mounted in front of object. Then we recorded all the data into rosbag, including tactile information, robot joint states,
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joint command from glove and tracked object pose. Afterwards, preprocessing was made to ensure all the data is aligned
and has frequency of 300 Hz. Also we chop the data starting from the point when all fingers were grasped on the object
by checking the tactile values. The Figure 3.1 shows this process, and the rectangle is each trajectory rosbag file. We
have here 76 dimensional tactile electrodes, 16 dimensional joint states of robot hand and 16 dimensional joint states
command as features, also 7 dimensional object pose as objective.

(a) Generate data sequence

input

dropout

LSTM

dropout

mean stddev

(b) Neural network structure

Figure 3.2: Representation Learning technical details. The left figure shows the process of generating the date sequence
feed in the RNN. The right figure is the network structure for learning the representation.

The recurrent neural network is based on the time sequence data, in another word, the prediction is based on the
historical observation. So we need to reform the data in such data sequence. We using sliding window method to obtain
data based on time sequence, it can not only meet the input shape for RNN but also reuse the old observation data. So
given the window size W , we create the data sequence shows in Figure 3.2a by shifting the window one by one. In this
example, W = 3. In order to obtain true data sequence, the window only wrap within the data, it leads to the training
data has lag of W − 1 time steps. For testing data, it requires to predict at the beginning, so we use padding to fill the
repeated observation in the missing time steps. The initial window sequence is filled with data at first time step. After
new data comes, the oldest data will pop up from the window, like the structure of queue.
After preparing the data sequence, we feed them into the recurrent neural network. Its structure shows in Figure 3.2b.
It’s simple LSTM with two dropout layers surrounding in order to prevent overfitting. And the network outputs the
normal distribution of object pose. It is optimized by maximizing the log probability

J(θ ) =
∑

t

logN (yt ;µt ,σ
2
t ) (3.1)

here yt is the true object pose (x , y, z,α,β ,γ). µt is the predicted mean value of the object pose distribution, σt is the
standard deviation of the distribution. Note we use here euler angle to predict the orientation, because the quaternion
(qx , q y, qz, qw) defined by axis-angle representation is

qx = ax ∗ sin(angle/2)

q y = a y ∗ sin(angle/2)

qz = az ∗ sin(angle/2)

qw= cos(angle/2)

(3.2)

the quaternion also satisfied qw2 + qx2 + q y2 + qz2 = 1, it’s hard for the prediction whereas euler angle doesn’t have
such constraint, thus easier to be predicted.
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3.2 Reinforcement Learning from learned representation for in-hand manipulation

Meanwhile, the representation, that is object pose, can be present in the simulator for the reinforcement learning. We
train the object translation task using TRPO and PPO algorithm. The actor-critic method contains value network and
policy network, they have the same observation. The policy network is two hidden layer with tanh activation and outputs
the Gaussian distribution of continuous action command. The policy network is two hidden layer with relu activation and
outputs the estimated values. And they don’t share parameters with each other. At the beginning, the network has high
entropy of actions by including an entropy bonus in the optimization objective to explore the action space as possible,
and the entropy decreases with time.
But before applying the learning algorithm, we developed the manipulation environment based on the openai gym li-
brary. It’s better for the further benchmarks and easy to apply RL baseline algorithm. We have already shown the agent
environment interaction cycle in Figure 2.4. Here we defined the detailed observation in the simulator. The observa-
tion includes the position of 16 hand joint (rad), the position and orientation of current object, and the position and
orientation of the desired target. Whereas in the real robot the observations are the position of 16 hand joint (rad), the
predicted object pose mapped from the 76 Biotac electrodes and its target pose.

The exploration process is started by calling reset() function, which reset everything and return the initial observa-
tion. Reset process includes resetting the target pose, initial object pose and choosing number of fingers to manipulate
the object. At the initial state the object is already held in the hand. The algorithm simply grip the object by starting
all fingers horizontal towards the object, and inwards themselves until they touch the object. The step(action) function
is called when the agent chooses an action, and will return an observation and reward. We will terminate the episode
when the hand looses contact with the object or the manipulation duration is longer than 2 seconds.

We give here mathematical form, how the reward is calculated. The reward at each step t is calculated by

rt = rO
t + rP

t + r F
t + b (3.3)

The object pose reward rO
t penalizes the sum of exponential difference of distance and orientation. The norm in distance

is 2-norm. It obtains the euclidean distance in 3D space. ⊖ is the operation to calculate the quaternion difference
q1 ⊖ q2 = q−1

1 q2, the norm here is the angle from its axis-angle representation using Form 3.1.

rO
t = exp
�

− ∥p̂t − pt∥
�

+ exp
�

− ∥ôt ⊖ ot∥
�

(3.4)

The perturbation reward rP
t encourages smoother joint movement and lower joint velocity. wp is the weight for pertur-

bation reward. We use here wp = 0.001.

rP
t = −wp

∑

(q̇2) (3.5)

The force reward penalize the difference between normal force applied on the object and desired force. The desired
moderate force in the simulator is 140.

r F
t =
∑ | ft − 140|

50
(3.6)

The bonus encourages the agent to move the object towards the target. Each time the object is within the thresholds
range from the target, the agent gets extra reward. Also penalize when the agent loose contact with the object.

For randomization, the object initial position is able to be randomized. However changing the object position also
effects the hand configuration, so we pseudo randomize the object position by any point in 7x7 grids. And store all the
corresponding hand configuration in advance. The desired reaching target position is also randomized around the initial
object position.

3.3 Representation Transfer from simulator to real robot

After the policy is learned, we have policy network and value network shown in the right part in Figure 3.3. The value
network is used to estimate the expected rewards by given the observation. While applying the policy we don’t need to
update the policy, thus don’t need the value network. However the policy network is needed to output the joint command
based on the current observation. In the policy learning part, the observation of the policy is object pose, target pose
and joint state. When we transfer the policy on the real robot, the object pose is replaced with the output of the trained
representation learning model. It predicts the object pose by feed in the tactile information.
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Figure 3.3: Transfer the representation. After learned the representation of the tactile feedback and trained the policy
for object translation task, we just replace the object pose in the observation space with the representation.
It’s the prediction of the recurrent neural network by feed in the current tactile information.

The transfer process in Figure 3.3, shows how to transfer the representation of the tactile feedback to the real world
object manipulation task. Instead of directly utilizing the high dimensional tactile information as observation, we just
transfer its representation to the real robot, which is the pose of object in the hand. The representation is obtained using
the trained recurrent neural network that can predict the object pose by feed in the past BioTac electrodes sequence.

Thanks transferable representation of the tactile data, we avoid to large training time on the physical robot, also
avoid to model the physical interaction of tactile sensor. Meanwhile the policy is no need to deal with high dimen-
sional noisy raw tactile data. Deploy the policy based on the representation of tactile feedback providing more stable
observation.
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4 Experiments
In this section, we describe the experiment setup, including hardware and software. We then state the experiment details.
At last report the experiment results. The experiment includes two parts: pose prediction and reinforcement learning
for simulated in-hand manipulation. We predict the tactile representation, that is object pose by using recurrent neural
network with memory. The object pose is obtained by marker tracking algorithm. And we use PPO and TRPO to learn
the robot in-hand manipulation task in the simulator. The policy we trained is based on the tactile representation and
joint state, so that is able to transfer on the real robot.

4.1 Hardware Description

The hardware we use is mainly the allegro hand equipped with BioTac tactile sensor. The tactile sensor is used in the
representation learning and representation transfer part, not involved in the reinforcement learning part. What else
hardwares are the glove to control the allegro hand for representation learning and camera for tracking the AR marker
attached on the object.

Allegro Hand
We use the Allegro Hand from WONIK ROBOTICS, it has lightweight and portable anthropomorphic design, can perform
low-cost dexterous manipulation. It has 16 independent current-controlled joints, totally four finger, and each has four
degrees of freedom. Each joint is actuated by DC motor. And we control the hand by position control. Also the fingertips
can adapt different kinds of tactile sensors. It communicates via CAN at 333 Hz frequency.

BioTac
We equipped the allegro-hand with biometric tactile sensor BioTac [32]. Each BioTac consists of a rigid core housing
with 19 electrodes surrounded by an elastic skin filled with conductive liquid 4.1. The curved, deformable nature of both
the BioTac and biological fingertips provides mechanical features that are desirable for the manipulation of objects. The
BioTac mimics the senory function of the human fingertip, and is able to detect the tactile information such as: forces,
mircovibrations and temperature.

Figure 4.1: BioTac Structure. The BioTac is a unique tactile sensor capable of acquiring sensory modalities that mimic
the full range of capabilities in the human fingertip. It consists of a rigid core that houses all of the sensory
electronics and an elastomeric skin made of low-cost silicone. The space between the skin and core is inflated
with a liquid giving the sensor a compliance very similar to the human fingertip.

The sensor provides different channels of information, includes 19 electrodes voltages (when pressing down over an
electrode the measured voltage will decrease), DC pressure (increases linearly when the fluid pressure increases), AC
pressure (allow for high resolution of vibrations), AC Temperature (decreases as the device is cooled), DC Temperature
(decreases as the device warms up). We will purely use 19 electrode voltages for each finger, and learn the representation
based on them.
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Glove

Figure 4.2: The glove we used

The glove is self developed glove with additional photosensitive strip on each finger, which used to detect the extent of
finger bending. The glove is used to control the allegro hand for demonstration of object manipulation. However the
glove can only detect movement for each finger, but not each joint. And different from allegro hand, human finger can
not rotate based on its root. So combine with algorithm, other joint values command has linear correlation with glove
data. Thus such restriction allows us only to demonstrate translation task.

Cameras
We use Kinect for Xbox 360 to track the object during manipulation. However we don’t use its depth sensor but only RGB
camera for tracking marker. THe RGB video stream has 640 × 480 resolution at 30 Hz frame rate.

4.2 Software Description

Here we describe the software setup. They’re mainly the simulator includes the V-REP and Pybullet providing the physical
environment for reinforcement learning. Other software includes the Aruco algorithm to track the object pose and the
ROS system to communicate between software and hardware.

Marker Tracking Algorithm
For object pose estimation we use Aruco [33] Augment Reality marker detector library, a popular library for detection of
square fiducial markers. The main benefit of these markers is that a single marker provides enough correspondences (its
four corners) to obtain the camera pose. Also, the inner binary codification makes them specially robust, allowing the
possibility of applying error detection and correction techniques. We also did camera intrinsic and extrinsic calibration.
The extrinsic calibration, or eye-on-base calibration, is based on hand-eye calibration [34]. It’s able to compute the static
transform from a robot base to the optical frame of a camera. We can then get directly the Cartesian coordinates of the
object when publish all the transformation we need via ROS.

ROS
ROS is an open-source, meta-operating system for the robot. It provides the service including hardware abstraction,
low-level device control, message-passing between processes and so on. We publish the robot joint command to control
the robot. And use rosbag to record all the published topics we need during hand manipulation for supervised learning.

V-REP
The robot simulator V-REP is based on a distributed control architecture: each object/model can be individually controlled
via an embedded script, a plugin, ROS nodes, BlueZero nodes, remote API clients, or a custom solution. This makes V-REP
very versatile and ideal for multi-robot applications. It can simulate real-world physics and object interactions, also has
full interaction with the object during simulation. We use this simulator to evaluate the precision of the representation
prediction, since it has nice visualization comparing true object pose and predicted object pose.
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Pybullet
PyBullet is an easy to use Python module for physics simulation for robotics, games, visual effects and machine learning.
With PyBullet you can load articulated bodies from URDF, SDF, MJCF and other file formats. PyBullet provides forward
dynamics simulation, inverse dynamics computation, forward and inverse kinematics, collision detection and ray inter-
section queries. After our comparison we found RL training time is more shorter on the Pybullet than V-REP. Thanks to
the lightweight design of Pybullet, for 8 million transition Pybullet needs 30 minutes whereas V-REP needs 8 hours in
our experiment.

4.3 Experiments

The experiments include the supervised learning for object pose prediction task and reinforcement learning in the simu-
lator. Their details are discussed in the following section.

4.3.1 Pose Prediction

Before we collect the manipulation data, we did hand-eye calibration on the system. By attached the Aruco maker on
the finger, we can get the transform of the fingertip by forward kinematics. Also we have the position of maker based on
camera. By several sampling the hand-eye algorithm can compute the static transform from a robot’s base to the optical
frame of the camera. So we can get the object pose based on the robot base.
Then we gather the data by rosbag command recording demonstration the object translation task on the real robot. The
experiment setup is shown in Figure 4.3. We totally has 10 trajectories, and after chopped into windows we have 55362
transitions (each includes 60 time steps). We reserve one trajectory for testing and one for evaluation. The LSTM network
is feed in 76 dimensional BioTac electrodes and 16 dimensional joint position, outputs object pose including position and
orientation. The network is optimized on the log probability of object pose by Adam optimizer. We also add position
error and orientation error between predicted and true object pose. The network will stop training if the position error
on the development data set is not improved for 5 epochs. The hyperparameter is shown in Table 4.1.

Figure 4.3: The setup for representation learning.

Hyperparameter of LSTM Value

training sample numbers 48783

testing sample numbers 3509

hidden units 300

dropout rate 0.2

batch size 32

epochs 20

early stopping patience 5

optimizer Adam

learning rate 1e-3

beta_1 0.9

beta_2 0.999

window size 60

Table 4.1: The table of hyperparameter of recurrent neural
network

Afterwards we evaluate the learning performance by visualizing in the V-REP simulator, see in Figure 4.4. The red box
represents the objective we recorded, and the white one is the box we predicted. The error between prediction and
objective can be clearly seen through the simulator.
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Figure 4.4: We evaluate the learning result in the V-REP, the prediction error can be straightforwardly seen in the simula-
tor. The red box represents the objective we recorded, and the white one is the box we predicted.

We also quantify the position error and orientation error both on the training data and development data. Separately
shown in Figure 4.5 and 4.6. On the training data the network can predict object position on the precision 0.005 meter,
and object orientation above the precision 0.004 radiant. The learning curve is converged very fast. We tried also with
and without joint position feature to check the learning performance. The plot shows that both data with and without
joint position can converge fast, also the difference between them is tiny.

Figure 4.5: Comparing the learning curve of predicting the position and orientation on the training data. The orange line
is the input only with tactile feedback. The blue one is the input with joint position and tactile feedback. The
left plot shows the position error with unit meter. The right one shows the orientation error with unit radiant.

Figure 4.6 shows the performance on perdition of unseen data. The model with joint state feature performs better than
without joint state overall, however the gap on the position error is not huge. At the 2 epoch, the position error reached
at the minimum point nearly 0.005 meter, and stopped training after 5 no improving epochs, also the orientation error
reached at the bottom at fourth epoch with 0.1. Interesting to see the gap of orientation error with and without joint state
is not so big, maximum 0.02 radiant. It means if we predict the object orientation without joint state, the performance
difference will not be obvious.
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Figure 4.6: Comparing the learning curve of predicting the position and orientation on the development data. The or-
ange line is the input only with tactile feedback. The blue one is the input with joint position and tactile
feedback. The left plot shows the evaluation position error with unit meter. The right one shows the evalua-
tion orientation error with unit radiant.

Due the our prediction model is the normal distribution, we not only obtain the mean of the prediction value but also the
variance of the distribution. With a run on the different training data, the figure 4.7 shows the variance of the prediction
distribution. By the way, the curve shows the learning phase also converge fast both on the position and orientation
prediction, and keeps stable from fifth epoch. The standard deviation of position distribution is around 0.003. The
standard deviation of orientation keeps around 0.02.

Figure 4.7: Comparing the learning curve of predicting the position and orientation with error on the training data. The
left plot shows the evaluation position error with unit meter. The right one shows the evaluation orientation
error with unit radiant. The shade denotes one standart deviation of the prediction distribution.

In the Figure 4.8 shows the variance of the prediction distribution on the development data. The learning curve on
the development data is more twisted than on the training data, because they’re unseen in the training process. The
prediction on the position has 0.007 meter lowest error. And on the orientation prediction the error is nearly 0.12
radiant, equals 7 degrees. Both position and orientation error of development data are higher than on the training data
in the anticipation. The standard deviation of position distribution is around 0.003. The standard deviation of orientation
keeps around 0.02. Interesting to find out that the standard deviation of the prediction distribution on the development
data doesn’t go worse, which means the performance of our object pose prediction will be as steady as on the training
phase.
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Figure 4.8: Comparing the learning curve of predicting the position and orientation with error on the development data.
The left plot shows the evaluation position error with unit meter. The right one shows the evaluation orienta-
tion error with unit radiant. The shade denotes one standart deviation of the prediction distribution.

From the result we can conclude the representation of tactile data can be well predicted with lower bias and variance
using LSTM model. Both position and orientation of predicted object accuracy can meet our requirements for transferring
the representation.

4.3.2 RL for Simulated In-hand Manipulation Policy

We simulated the object manipulation task in the Pybullet shown in Figure 4.9. The white line draws the bounding box
of target position. In order to make irreversible event less likely to happen at the learning start, we freeze the object
and control the fingers inwards from the expanded state to the grasped state until all manipulating fingers touching the
object. The simulation then starts with this grasped gesture preventing object from falling. Also every joint command is
the action adding on the initial grasped joint position (absolute joint command). We also tried the joint command adding
on the current joint position (relative joint command), but by comparison the absolute joint command performs better
on the real robot.

Figure 4.9: Here shows manipulating the object in the Pybullet with two fingers by performing reinforcement learning.
The tea box is simpfied as the cube to accelerate the rendering speed. The white line draws the bounding box
of the target position.
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We also randomize the finger configuration at the start of each epoch and randomize the target position and initial object
position to generate different manipulation task.

The table 4.2 and 4.3 shows the hyperparameter we used separately on the PPO and TRPO algorithm. The network
structure is keeps same on both of them, that is MLP with two hidden layer with 64 neurons.

hyperparameter value

manipulate object cube

max manipulation time steps 600

iteration 500

minimum transition 1600

PPO clipping parameter 0.2

gradient norm clipping coefficient 0.5

discounting factor 0.99

advantage estimation discounting factor 0.95

optimizer Adam

learning rate 5e-4

Table 4.2: The table of hyperparameter of PPO

hyperparameter value

manipulate object cube

max manipulation time steps 600

iteration 500

minimum transition 1600

max KL divergence 1e-3

conjugate gradient damping 1e-3

discounting factor 0.98

advantage estimation discounting factor 0.95

Table 4.3: The table of hyperparameter of TRPO

On the object manipulation task, we tried the task with fixed initial object pose and fixed target pose, task with random
initial object pose and the task with random target pose. The learning curve of each manipulation task shows separately
in Figure 4.10, 4.11 and 4.12. The result shows the for the simple manipulation task without randomization, the PPO
algorithm performs better than TRPO algorithm. However when brings with the randomization, the both algorithm
performs also worse. When randomize the initial object pose, PPO goes to flat early as same as TRPO on the first
manipulation task. On the third task, when we randomize the target pose, TRPO performs better than PPO within the
1e6 timesteps.

Figure 4.10: Here shows the comparison of the learning curve of PPO and TRPO on object manipulation task with fixed
initial position and fixed target position. The line value is the average reward at one episode. The shade
draws the standard deviation with the sliding window on the single seed. We see that PPO overperforms
TRPO on this task within 1.6e6 timesteps.
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Figure 4.11: Here shows the comparison of the learning curve of PPO and TRPO on object manipulation task with random
initial position and fixed target position. The line value is the average reward at one episode. The shade
draws the standard deviation with the sliding window on the single seed. We see that the PPO also goes
back to the average reward around -20 same as TRPO.

Figure 4.12: Here shows the comparison of the learning curve of PPO and TRPO on object manipulation task with fixed
initial position and randomized target position. The line value is the average reward at one episode. The
shade draws the standard deviation with the sliding window on the single seed. In this task the PPO is worse
than TRPO with about 20 reward value.

With the learned policy on the simulator for in-hand object manipulation task, we combine its observation which is
the prediction model of object pose. Then the policy can be successfully applied on the real robot based on the tactile
representation instead of the high dimensional tactile data, without any additional learning phase on the real robot.
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5 Discussion
In our work, we first study the literature on the related work about tactile sensing and reinforcement learning for object
manipulation task. We then give the introduction about the technical background, that is supervised learning and rein-
forcement learning. Afterwards we demonstrated an approach to learning the robot in-hand manipulation task based on
the tactile representation, which is also transferable on the real robot.

While the high-dimensional tactile data with complex physical properties is hard to be model, we need model-free
reinforcement learning way to solve the manipulation task based on the tactile feedback. However the huge amount of
transitions needs for RL training prevent us from interaction directly on the real robot. As the tactile feedback often pro-
vides implied information about physical properties of grasped object, the physical properties of object as representation
from tactile data can be reasonable. They provide the possibility to transfer them from the simulator to the real robot,
also decrease the dimensionality of the agent observation in the environment.

With the structure that the supervised learning model predicting the tactile representation and reinforcement learning
policy that can deal with hand manipulation task based on the tactile representation, the policy can finally be smoothly
applied on the real robot based on the trained supervised learning model providing the transferable tactile representation.

Future work will be using Leap motion controller to demonstrate the representation learning data so that the object
manipulation task can be diverse. Also we can try to learn the control policy with different object shape and size to
validate the robustness and adaptation of the tactile representation.
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