
Towards learning to balance with iCub

Jan Geukes† Moritz Nakatenus† Roberto Calandra
TU Darmstadt TU Darmstadt TU Darmstadt

Abstract

Balancing is important for many robotic ap-
plications, especially for humanoid robots
like iCub. For improving the balancing be-
haviour of the iCub the skin can be used
to make more precise measurements, because
the sensors on the joints doesn’t get exactly
the orientation of the applied forces. More-
over the skin can be used to add an addi-
tional reflex behaviour. To learn such a be-
haviour with reinforcement learning we need
to do tests in a simulator. In the simulator
provided for the iCub, called Gazebo, is still
no skin provided. This report deals with how
we did include the skin in the simulator.

1 Introduction

Robot balancing is an important issue which is essen-
tial for several kinds of robots which are interacting
with their environment, especially in new unknown
scenarios. So the robot gets more stable and the proba-
bility to insure itself or humans surrounding is smaller.
Solving such a problem is a challenge which is an im-
portant and ambitious topic in the current research.
ICub is a project founded by the Italian Institute of
Technology [1]. As base capabilities it can crawl, has
image processing, object recognition and manipulation
skills. The iCub looks like a four year old child and
has a complex technology: It has 53 degrees of free-
dom, own artificial sensor skin with over six thousand
force and torque sensors, a dual core machine within
its head and much more. The skin is placed on hands,
arms, legs and the torso. For cognition of its visual
and acoustics environment iCub has two cameras and
microphones[2]. To control iCub has its own software
’Yarp’ [3] and to extend the robot there is more soft-
ware avalaible which is open source. Yarp stands for

† These authors equally contributed to this work.

Figure 1: The composition of our framework

’yet another robot platform’ and is constructed for the
communication between modules of the robot. The
’whole body interface toolbox’ uses Yarp and can get
thereby sensor data from the robot which is important
for creating the controllers, change torques of the robot
and make the results visible on the Gazebo simulator.
The WBI Toolbox is implemented in Matlab/Simulink
and has some blocks for building the controllers. The
WBI Toolbox was created due to the CoDyCo Project
which is about cognitive understanding and motion in-
teraction with multiple contacts[4]. For simulation of
the robot we are using Gazebo 5. To run the balancing
controllers on the Gazebo model of the iCub the WBI-
Toolbox communicates with Gazebo via Yarp. We had
problems with the framework because there are many
bugs and inconsistencies (e.g. the gains depend on the
hardware). Because of that we could not continue with
our goal to improve the balancing controller. This is
why we decided to just include the skin of the iCub
in Gazebo. In this report we explain how we compute
the sensor position data and how we used this data to
add the skin to the iCub Gazebo model. Futhermore
we report how we have written an improvement of the
Yarp driver to get the skin data from the model and
mention how we coded a plugin to send the skin data
from the iCub model to Yarp.



Manuscript under review by AISTATS 2012

Figure 2: Idea to improve the balancing controller

2 Balancing with the iCub

The current version of the iCub is already able to bal-
ance. The approach controls the CoM of the robot and
tries to estimate the force and torques which are ap-
plied on the robot. The Codyco project showed good
results (see [5]) and the WBI Toolbox provides con-
trollers for this kind of balancing. But these balancing
controllers are rather slow in the way they react to
pushes. One major problem is how to compute the
external forces and its direction from the sensor input.
Because the current controller wants to compensate
the external forces. It is critical to compute the forces
as exact as possible. And like Del Prete et al. explain
it is not so easy to get the right position for the single
sensor parts [6]. The main idea how to improve these
controllers is to use just the skin data without explicit
computing the force. So at the beginning we wanted to
combine the current controller with an open loop con-
troller. This new controller uses the skin data from
the iCub and adds a certain amount to the current
controller. In a way simulate some kind of reflex.

2.1 Technical Issues

In our work we suffered from the unstable WBI Tool-
box because the results that we saw on the Gazebo
simulator are depending on the hardware (the con-
trollers are optimized to run on the real robot). More-
over, the controllers got a lot of bugs. For this reason
the gains must be specified on the current system so
our robot first falls on the ground or flies around trig-
gered by some little impact. Trying to fix this costs us
much time and we only managed that the robot does
not fly around the simulator and stands on its posi-
tion but the movements are still looking strange. So
we decided to focus on how to implement the skin of
the iCub in gazebo, because there is basically no skin
simulation provided right now.

3 Skin of the iCub

The skin of the iCub is composed of thousands of
small tactile elements, called taxels. These taxels are
grouped into triangles like you can see in Figure 3. Up

Figure 3: Structure of the skin from [7]

Figure 4: Skin data process from [7]

to 12 such triangles shape a patch. There are skin
patches for most body parts of the iCub.

The ouput of the skin data is a byte per taxel. So it
can have values between 0 and 255. In the case of raw
skin data information 255 means high pressured and
low values signals low impact on the skin sensor [8].
The user can get this information via Yarp ports. The
output is a vector with up to 192 values per patch. A
list of the current output ports can be found in [7].
The real iCub also needs to deal with thermal drift
compensation and different thresholds for each taxel.
Therefore there are some ports which expose filtered
skin data for each patch, these are called compensated
skin data. Furthermore it is important to know that
not all values of such an output vector are used for
measuring the pressure, some are used to transport
configuration information or some are just zero. How
all the values should be interpreted can be found at
[7]. The complete processing step for the skin data of
the iCub is shown in Figure 4.

3.1 Skin Gui

In the original iCub Simulator you can use an element
called SkinGui. It displays a 2D representation of the
skin. After starting the program you get a new Yarp
port. The next step is to connect this port with a Yarp



Manuscript under review by AISTATS 2012

Figure 5: Skin Gui from [9]

port which contains the skin data. In order to read and
interpret the skin data in the right way, SkinGui uses
some configuration files and templates ([9]). SkinGui
can use either raw skin data or compensated skin data.

4 Gazebo Yarp Plugin

As described above Yarp is the main control unit for
the iCub. In order to use the Gazebo Simulator it is
necessary to define a connection between these two ele-
ments. Hodicky et al, descried a basic framework how
to achieve this connection [10]. Additional to define
the architecture of this gazebo-yarp-plugins they also
implement a few plugins. For example to use force
and torque sensors within the simulation [11]. Our
task was to understand this architecture and then im-
plement such a gazebo-yarp-plugin for our skin simu-
lation. The goal was to do it in such a way, that we
are as close as possible to the real iCub output.

4.1 Gazebo Yarp Plugins Structure

In general three steps are needed in order to get the
Gazebo sensor data working together with Yarp. First
the current model of your robot has to be modified.
Second you have to write a Gazebo Plugin class and
last a Yarp device driver has to be implemented. There
are several different sensors which are part of Gazebo.
The behaviour of these sensors is defined within the
Gazebo plugin class. The connection between model,
in our case a SDF file and the Gazebo plugin and the
Yarp device is organised by the ’plugin’ tag as well as
the ’yarpConfigurationFile’ tag [12]. The third part
a Yarp device is the implementation of an interface
which connects the sensors in the Gazebo simulation
with the Yarp control unit and provides the possibility
to access the sensor data with a Yarp port [13]. The
main idea is to use Gazebo sensors and its plugins,
then Yarp device drivers create a connection to Yarp.

Figure 6: Model Gazebo Yarp Plugin from [14]

The final output of such a gazebo-yarp-plugin should
be a port in the Yarp network.

4.2 Gazebo Yarp Plugins Implementation

In our implementation we use the contact sensors
which are given in Gazebo. These sensors provide
information for each contact. You can get the posi-
tions of the contacts. Furthermore information about
the two involved collision objects are provided as well
as applied forces during a collision [15]. Moreover an
URI pointing to a configuration file has to be added
between the YarpConfigurationFile tags. This file con-
sists of several key value pairs which are needed to
initialize the the gazebo-yarp-plugin.

After modifying our model in the next step a Gazebo
plugin for the contact sensor has to be implemented
as a C++ class. Furthermore, we need a Yarp device
driver class which is also a C++ class. Both classes are
quite close coupled. First the Gazebo sensor has to be
loaded and registered. Then a connection to the Yarp
framework is created according to the configuration
file which is defined in the Gazebo model. The second
important part is the behaviour of the gazebo-yarp-
plugin on update steps. The frequency of the sensor is
set in the configuration file. If the function ’onUpdate’
is called, we have to calculate the skin value for every
taxel of our current skin patch. These values between
0 and 255 are written to a vector and then posted to
the Yarp port (name of the port is also defined in the
configuration file).

The Gazebo collision boxes can measure the forces dur-
ing a contact. This force value is used to compute the
strength of the contact. In the next step a mapping
between these force values and the desired output val-
ues from 0 up to 255 is needed. For simulation tests
we use an incomplete beta function (1) with x = 0.8



Manuscript under review by AISTATS 2012

Figure 7: Incomplete beta function

and p = 0 − 100 and q = 9.

Bx(p, q) =
1

beta(p, q)
∗
∫ x

0

tp−1(1 − t)q−1 dt (1)

The beta function returns values between 0 and 1 so we
can adapt this function to get integer values between
0 and 255. The function is part of the C++ boost
library.

According to the documentation for the real iCub the
default value is 235 (no pressure on the skin), there-
fore the output vector is initialized with 235. Then
a list with all current contacts can be used to deter-
mine which parts of the skin are involved in a collision.
Because every taxel has its unique identifier you can
conclude its position in the vector.

5 Implement the skin in Gazebo

As there is no provided framework for simulating the
skin of the iCub in Gazebo, we had to implement our
own. The first idea was to use ’SkinSim’ but this was
unrealistic to achieve in the short time. Moreover Skin-
Sim needs much computation time because it not only
emulates the force and torques on the skin but also the
surface with some kind of spring-damper system[16].
So our method is to simulate the skin sensors with
tiny collision boxes in Gazebo. To achieve this we
have written a Java program which gets the positions
of the sensors from our computed and from provided
data (the provided data has some noise due to a cali-
bration process), and generates collision boxes for the
iCub sdf Gazebo file. The data was not always cor-
rect so we had to change it. To get the collision data
from the boxes every box is associated with a sensor
which sends its data to Yarp. For the torso and legs
we had no sensor data provided so a script must be
written in Matlab which gets the data from the 2D
skin gui as positions and orientation of the texal tri-
angles and with that data we compute the sensors of
the torso and the sensors for the legs. As the skin gui

(a) Collision boxes from provided data

(b) Manually generated skin sensor data

(c) Torso data generated with matlab

Figure 8: Skin sensors as collision boxes

is in 2D the data of the manually computed sensors are
lying in a layer. So we must compute the bulge. For
reaching this, our idea was to use two cosine functions,
each one for vertical and horizontal bending. To com-
pute the sdf files needed for the Gazebo simulator we
had to transfer the generated data from Matlab to the
robot definition file. To achieve this we have written a
Java program which uses the xml open source library
’JDOM’ for creating this files, because the sdf file is
in a xml format. In the program we defined the col-
lision boxes, their associated sensors and included our
Gazebo plugin for sending the collision data to Yarp.

bending = a ∗ cos(
πx

width
) (2)

Figure 9: Cosine function for bending



Manuscript under review by AISTATS 2012

6 Future work

The implemented skin model provides first possibili-
ties to use the iCub skin in simulations. But compared
with the real iCub some rather strong simplifications
have been made. In the next steps the skin model can
be improved. For example more physical properties of
the skin could be included into the model. Depending
on the application, a better estimate of the position
of the tactile sensors on the robot is necessary. One
way to do this is to use the calibration methode like
Prete el suggested [6] or use CAD information. Ad-
ditional tests for calibrating the mapping function of
the force in simulation have to be done. Neverthe-
less these improvements can be done on top of the
current gazebo-yarp-plugins. Then we can start with
reinforcement learning in the simulator and learn some
balancing controllers.

7 Conclusion

To reach the goal to improve the balancing of the iCub
with the help of skin data we first have to implement
a skin model in the simulator. In order to do so we
created gazebo-yarp-plugins which insures the commu-
nication between Gazebo and Yarp. We have imple-
mented a skin model in Gazebo, used a Yarp plugin for
communications and put some logical into a Gazebo
plugin. The artificial skin is an important feature of
the iCub. With our model of the skin first applications
like improving balancing are possible.

8 Appendix

8.1 How we installed our environment

For our development environment we used Ubuntu
14.04. Yarp is the basis software to interact with
the robot, so we downloaded and installed it from
GitHub[4]. After that we installed the latest version of
Gazebo (Gazebo 5) [17] with the Gazebo Yarp plugins,
so the Gazebo simulator gets data from Yarp to con-
trol the robot. For this plugin there must be defined
some environment variables. The next step was to
get the iCub model with its configuration files. With
this files you can see the iCub model on the simula-
tor by opening the icub.world file with gazebo in the
related folder. Besides this its important too to in-
stall the iCub software itself. To do this the related
dependencies must be installed with the package ’icub-
common’. Note: Yarp and the iCub software must be
installed from sources. If this is done we had to install
the Codyco superbuild package which contains all nec-
essary dependencies to install and the WBI Toolbox
itself. In here there must be again defined some en-

vironment variables and dependencies. The last step
was to setup Matlab/Simulink for the toolbox (again
environment entries are necessary). To do this we had
to include some paths in Matlab. Now we were able
to work with the toolbox if we set the path from the
controller which we want to use in Matlab and define
the parameters before starting the controller:

robotName=’icubGazeboSim ’
localName=’ s imul ink ’
Ts=0.01
ROBOT DOF=25

8.2 Detailed description of our controller
problems

As mentioned in ’Introduction’ we had problems to
control the robot with gains which are depending on
the system hardware. To solve this problem we first
tried to use different gains. We divided all gains by dif-
ferent factors like five or ten, varied the weights of the
several gains, set them to zero and much more. As this
didnt work we tested to set the output torques of the
controller output by hand. So we made it to localize a
division factor for the torques so the robot stood on the
ground and made for estimated five seconds no strange
movements (like flying around the simulator), but only
if we let the feet be fixed. With additional adaptions
the robot doesn’t fly around but rests in a strange po-
sition. This result was very unsatisfying, so we tried to
limit the joints, which had no valuable impact on the
results. As new controllers were be uploaded we im-
mediately tested them, but they had many bugs which
the developers admitted in the GitHub issue that we
opened. So none of the controllers are working cur-
rently.

References

[1] IIT. iCub, 2015. http://www.icub.org/, last
visit: 09.02.2015 16:02 Uhr.

[2] IIT. iCub Bazaar, 2015. http://www.icub.org/
bazaar.php/, last visit: 09.02.2015 16:04 Uhr.

[3] IIT. Welcome to Yarp, 2015. http:

//wiki.icub.org/yarpdoc/index.html/, last
visit: 09.02.2015 16:07 Uhr.

[4] IIT. Whole Body Interface Toolbox (WBI-
Toolbox v0.2) - A Simulink Wrapper for Whole
Body Control, 2015. https://github.com/

robotology-playground/WBI-Toolbox/, last
visit: 09.02.2015 16:10 Uhr.



Manuscript under review by AISTATS 2012

[5] Francesco Nori and Daniele Pucci. iCub bal-
ancing on one foot while interacting with hu-
mans, 2015. https://www.youtube.com/watch?

v=VrPBSSQEr3A, last visit: 08.03.2015 16:29 Uhr.

[6] Andrea Del Prete and Simone Denei. Skin spa-
tial calibration using force/torque measurements.
In Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, pages
3694–3700. IEEE, 2011.

[7] IIT. Tactile sensors, 2015. http://wiki.icub.

org/wiki/Tactile_sensors_(aka_Skin), last
visit: 07.02.2015 16:34 Uhr.

[8] Andrea Del Prete. iCub Skin Tutorial,
2015. http://eris.liralab.it/images/6/6e/

Skin_tutorial.pdf, last visit: 07.02.2015 16:34
Uhr.

[9] IIT. iCubSkinGui, 2015. http://wiki.icub.

org/brain/group__icub__iCubSkinGui.html,
last visit: 07.02.2015 16:34 Uhr.

[10] Jan Hodicky. Modelling and Simulation for Au-
tonomous Systems: First International Work-
shop, MESAS 2014, Rome, Italy, May 5-6, 2014,
Revised Selected Papers, volume 8906. Springer,
2014.

[11] Daniele E. Domenichelli. gazebo-yarp-plugins
structure, 2015. https://github.com/

robotology/gazebo-yarp-plugins/wiki/

Design, last visit: 07.02.2015 16:34 Uhr.

[12] Silvio Traversaro. Embed gazebo yarp plugins
in an SDF model, 2015. https://github.

com/robotology/gazebo-yarp-plugins/wiki/

Embed-gazebo-yarp-plugins-in-an-SDF-model,
last visit: 07.02.2015 16:34 Uhr.

[13] IIT. Getting Started with YARP Devices,
2015. http://wiki.icub.org/yarpdoc/note_

devices.html, last visit: 07.02.2015 16:34 Uhr.

[14] Alessio Rocchi. YARP Plugins for Gazebo
Simulator:development and application on the
iCub and COMAN robots, 2015. http://www.

icub.org/other/files/rocchi-gazebo.pdf,
last visit: 07.02.2015 16:34 Uhr.

[15] OSRF. Contact sensor, 2015. http:

//osrf-distributions.s3.amazonaws.com/

gazebo/api/dev/classgazebo_1_1sensors_1_

1ContactSensor.html, last visit: 07.02.2015
16:34 Uhr.

[16] Kyle Shook Ahsan Habib, Isura Ranatunga
and Dan O. Popa. SkinSim: A Simulation

Environment for Multimodal Robot Skin,
2015. http://www.mae.cuhk.edu.hk/~cmdl/

activity/201406_ICRA%20Soft%20robot%

20workshop/SkinSim_uta.pdf/, last visit:
09.02.2015 16:12 Uhr.

[17] OSRF. Gazebo Simulator, 2015. http://

gazebosim.org//, last visit: 09.02.2015 16:29
Uhr.


