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Abstract—Exploring high-dimensional state spaces and finding
sparse rewards are central problems in reinforcement learning.
Exploration strategies are frequently either naı̈ve (e.g., simplistic
ε-greedy or Boltzmann policies), intractable (i.e., full Bayesian
treatment of reinforcement learning) or rely heavily on heuristics.
The lack of a tractable but principled exploration approach
unnecessarily complicates the application of reinforcement learn-
ing to a broader range of problems. Efficient exploration can
be accomplished by relying on the uncertainty of the state-
action value function. To obtain the uncertainty, we maintain an
ensemble of value function estimates and present an optimistic
Bellman equation (OBE) for such ensembles. This OBE is derived
from a relative entropy maximization principle and yields an
implicit exploration bonus resulting in improved exploration
during action selection. The implied exploration bonus can be
seen as a well-principled type of intrinsic motivation and exhibits
favorable theoretical properties. OBE can be applied to a wide
range of algorithms. We propose two algorithms as an application
of the principle: Optimistic Q-learning and Optimistic DQN
which outperform comparison methods on standard benchmarks.

Index Terms—Reinforcemen Learning; Exploration; Model
Ensemble; Optimism

I. INTRODUCTION

In recent years, RL has made enormous advances, especially
on high-dimensional tasks, such as Atari games [21]. One of
the open problems in such complex domains is how to explore
the environment in order to uncover sparse valuable states.
Before seeing these states the agent does not necessarily have
much information to base its decisions on. For example, an
agent may always perceive a null reward except for a terminal
state that is particularly difficult to reach. Before the agent
reaches the terminal state and observes the subsequent reward,
it cannot connect its actions to rewards. In this particular case,
the traditional quest for solving the exploration/exploitation
trade-off (near)-optimally makes no sense since the agent has
no information to reason about possible rewards that it has
not yet observed. A classical way to solve this problem is to
explore randomly. However, classical exploration approaches

such as ε-greedy may fail as the probability of reaching the
positive reward can be low. A more effective strategy should
take into account the underlying uncertainty and try to mini-
mize it, in order to maximize the information gain. Bayesian
approaches consider the uncertainty in a principled way but are
often computational demanding [8], [40]. Recently, computa-
tionally feasible algorithms inspired by Bayesian principles
have been introduced [2], [25]. Bootstrapped DQN (BDQN)
[25] uses an ensemble of value functions in order to have
different estimates of the Q-value function approximating pos-
terior sampling [35]. However, to the best of our knowledge,
there is no algorithm among these approximate techniques that
is particularly suited for very sparse rewards in high dimen-
sional state space. Our hypothesis is that Bayesian methods
are in general more focused on balancing between exploration
and exploitation while they cannot achieve deep exploration.
The broad category of algorithms based on intrinsic motivation
(IM) [34], have less theoretical guarantees than Bayesian
approaches, yet they have obtained impressive results for
example in the challenging Montezuma’s Revenge task [3]. IM
algorithms define an additional intrinsic reward, which acts as
an exploration bonus. Often, the additional reward is defined
using heuristics, such as counting state visits and rewarding
less visited states [27], or by “surprise”, that is, the error in
predicting future states [28]. The drawback of IM techniques
is their lack of a principled definition of the intrinsic reward
for exploration.

Another related class of techniques is based on optimism;
which provides an optimistic estimation under uncertainty,
encouraging in this way exploration of uncertain region. Opti-
mism can be categorized in 1) optimistic initial values, where
the main concept is to initialize the Q-value function with high
values in order to ensure enough exploration [9], [37]; and
2) methods that require confidence interval estimation, such
as IEQL+ [19] which directly estimates Q-value confidence
intervals.



a) Contribution.: We introduce a novel Optimistic Bell-
man Equation (OBE). The OBE results in an optimistic Q-
value estimate from an ensemble of value functions where
the optimistic estimate is obtained from a maximum-entropy
principle. For the exploration bonus that OBE implicitly
defines, we can prove that the bonus decreases consistently
with the number of state visits. Our proposed algorithm can
be seen as a mixture of different techniques: as an approxi-
mated Bayesian method, we estimate the uncertainty with an
ensemble; like optimism-based methods, we select optimistic
estimates, and like IM, we propagate an implicit exploration
bonus. Nevertheless, OBE can be applied to a wide range of
algorithms, introducing an ensemble for the estimation of the
critic (as it is done in [25], [6]), and a softmax for updating
the entries.

A. Problem Statement and Notation

An infinite-horizon discounted time-discrete Markov
Decision Process (MDP) is defined by a tuple of
<S,A, R, P, γ, µ0> where S is the set of the states,
A is a finite set of actions, R : S × A → M(R) where
M(Z) denotes the sets of probability measures over the
space Z, P : S × A → M(S) is the transition distribution,
γ ∈ [0, 1) denotes the discount factor and µ0 is the initial
state distribution. We define the set of deterministic policies
as Π : S → A. Our goal is to find the optimal policy π∗ ∈ Π
that maximizes the expected return Jπ

Jπ = E

[
T∑
t=1

γ(t−1)rt

]
,

where rt ∼ R(st, at), st ∼ P (·|st−1, at−1), at = π(st), s1 ∼
µ0. A common approach to solve such a problem is to find the
so-called optimal Q-value function Q∗, which is the solution
to the optimal Bellman equation (BE):

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a′∈A

Q∗(s′, a′), (1)

where R(s, a) = E[R(s, a)] and the summation could be
replaced by an integral, depending on whether S is discrete
or continuous. Once the optimal Q-value function Q∗ is
found, we know that the optimal policy is equivalent to
π∗(s) = arg maxaQ(s, a).

B. Related Work

The algorithm we propose could be considered as a mix-
ture of different techniques: as an approximated Bayesian
method [8], [40], we estimate the uncertainty with an ensem-
ble [25]; like optimism [2], [4], [15], [16], we select optimistic
estimates, and like intrinsic motivation (IM) approaches [31],
[34], [42], we propagate an implicit exploration bonus. Unlike
many IM techniques, our bonus is defined implicitly in a so-
called optimistic Bellman equation (OBE), by selecting an
optimistic estimate from an ensemble of value functions.

Intrinsic motivation algorithms define an additional intrinsic
reward often using heuristics, such as counting state visits
and rewarding less visited states [3], [27], or by “surprise”,

that is, the error in predicting future states [28]. Approaches
based on the optimism in the face of uncertainty principle [4],
[15], [16] add an additional reward term to state-action pairs
proportional to the amount of uncertainty. The amount of
uncertainty, and thus the additional reward, usually depends
on the amount of information collected of a state-action pair.
Due to explicit uncertainty modeling these methods are able
to restrict exploration to regions where the policy is still
far from the optimal solution. Often these methods provide
performance guarantees. However, in practice the method may
not always converge [13], [25]. Bayesian posterior sampling
has shown performance improvements over optimism in the
face of uncertainty methods [10], [26], [35].

There is a broad range of recent work on exploration in high
dimensional state-spaces. UCB Exploration via Q-Ensembles
[6], similarly to our approach, uses M different estimates of
the Q value function in order to infer the uncertainty of the
estimate. In particular, [6] use an optimistic bound for the
policy:

a ∈ arg max
a

µ(s, a) + λσ(s, a).

compute directly an estimate of the standard deviation over
multiple estimations of the Q function, and use it to guide
the exploration. However, such methods do not propagate
the variance through the Bellman equation, and thus the
agent is not able to be foresighted w.r.t. future exploration
possibilities. Contrary to these approaches, the recent “un-
certainty Bellman equation” (UBE) [23] propagates variance
estimates of the Q-value with a Bellman recursion and uses
the estimates for posterior sampling (our action selection is
deterministic). For tabular policies, UBE estimates local un-
certainty proportional to the inverse visitation count similarly
to count based approaches and for neural network policies a
linear uncertainty approximation is used. Instead, our implicit
state/action specific uncertainty estimation is based on the
diversity in the Q-function ensemble fwhile taking future Q-
function uncertainty into account. Moreover, contrary to our
approach, UBE assumes that the MDP is a directed acyclic
graph. Entropic regularization has been extensively used in
reinforcement learning, either for ensuring stability [20], [29],
[32] and sample efficiency or for providing risk awareness
[11], [17], [30]. However, this entropic regularization, is
usually performed on the state-action distribution [22], and it
is thus applied to the so-called “aleatoric” uncertainty. This
kind of uncertainty is related to the intrinsic stochasticity
of the MDP and to the distribution of state-action space
inducted by the policy. The Boltzmann policy [14], [38] or
the soft Bellman equations are derived from this principle.
On contrary, our entropic regularization is applied to the
“epistemic” uncertainty, or, in other words, on the uncertainty
about the model (in this specific case about the Q-function).
At the best of our knowledge this is the first attempt to use an
entropic regularization on the epistemic uncertainty to drive
exploration.



II. LEARNING VALUE FUNCTION ENSEMBLES WITH
OPTIMISTIC ESTIMATE SELECTION

Ensemble methods [24] are a prevalent machine learning
technique where multiple models are used to learn the same
target function. In addition to being commonly used to im-
prove the generalization of the prediction, ensemble methods
offer a simple way to estimate the uncertainty of the prediction.
We consider the application of ensemble methods in the RL
framework with the purpose of approximating the action-value
functions. Indeed we want to obtain a cheap estimate of the
uncertainty of action-values, in order to apply the optimism in
the face of uncertainty (OFU) principle in action selection.

A. An Optimistic Bellman Equation for Action-Value Function
Ensembles

The core of our work consists of a BE for action-value
ensembles which incorporates the information about the uncer-
tainty provided by a Q-function ensemble. In more detail, we
want to overestimate the action-value functions with the result
of encouraging exploration. Thus, we propose an optimistic
Bellman equation (OBE) which propagates an optimistic esti-
mate of the action-value function. We want to emphasize that
when all the Q-functions of the ensemble are identical, we
assume that there is no uncertainty, and under this condition
the OBE will behave exactly equivalently to the classic BE.
The solution Q∗ of OBE is the same of the classic BE. In
other words, the OBE differs from the classic BE when it
is not satisfied, and more precisely when approximation is
introduced either by limited availability of samples and/or
functional approximation. This makes sense, since when the
perfect solution is available there is no need of optimism and
exploration. The optimistic Bellman operator derived from the
OBE, enjoys the classical properties, like contractivity and the
existence of a unique fixed point, enabling its usage in value-
based or actor-critic reinforcement algorithms. The diversity
in the Q-value ensemble should be ideally consistent with the
uncertainty of the estimation; e.g. when the estimate is certain,
all the values in the ensemble should agree on the same value,
otherwise the ensemble should have discordant values.

Given an ensemble of Q-value functions {Qm}Mm=1, we
want to work out an optimistic estimate from the diverse
estimates provided by the ensemble. The simplest and most
optimistic solution is to select the highest value

max
m

Qm(s, a).

However selecting the highest estimate makes poor use of the
information provided by the ensemble and can be sensible to
noise. In order to mitigate this effect, we introduce a notion
of belief over the estimates where bm(s, a) is the belief of
Qm(s, a). The main idea is to add an entropic regularization
term to the objective (i.e., maxb(s,a)

∑
m bm(s, a)Qm(s, a)−

c
∑
m pm log pm); or to bound the information loss (i.e., -∑

m pm log pm ≥ ψ). Hard constraint on the information
loss is more appealing since the introduced hyper-parameter
does not depend on the magnitude of the rewards but has no

closed-form solution. In contrast, the penalization weighting
constant introduced by the soft-constraint regularization term
is sensitive to the magnitude of the rewards, but admits a
closed-form solution. We define two different problems where
we use an optimistic estimate of the Q-value function.

a) Entropy-Regularized Optimistic Q Selection.: We de-
fine here a Bellman equation over the Q-function ensemble
by introducing an optimistic estimate penalized by an entropic
regularization term.

Problem 1 (Regularized version).

Qi(s, a) = max
b(s,a)∈PM

f
(
s, a; b(s, a)

)
− 1

ηDKL

(
p(s, a)

∥∥u)
s.t.
∑M
m=1 bm(s, a) = 1

∀s, a, i ∈ S ×A× {1, . . . ,M}

where f(a, s; p) = R(s, a) + γ
∑
m bm(s, a)V ′m(s, a),

V ′m(s, a) =
∑
s′ P (s′|s, a) maxa′ Qm(s′, a′),um = 1/M ,

DKL(b(s, a)‖u) is the Kullback-Leibler divergence between
the belief b(s, a) and the uniform distribution u.

The choice of using the relative entropy instead of the
absolute one has two main advantages: it admits a solution
for η → 0 and provides a normalization factor. Since problem
definition 1 is a convex constrained problem, it is solvable by
dual optimization. Introducing λ as Lagrangian multiplier for
the constraint, we write the Lagrangian

Li(s, a) = f(s, a; b(s, a))− 1

η
DKL

(
b(s, a)

∥∥u)
+λ

(∑
m

bm(s, a)− 1

)
. (2)

Requiring the partial derivatives of Li w.r.t pm and λ to be
zero yields

bm(s, a) =
eηγV

′
m(s,a)∑M

k=1 e
ηγV ′k(s,a)

. (3)

By substituting bm in (2), we obtain the solution to the problem
(a detailed derivation is provided in the Supplement)

Optimistic Bellman Equation 1. 1

Qi(s, a) =

{
R(s, a) + 1

η log
∑M
m=1 e

ηγV ′m(s,a)

M ifη 6= 0

R(s, a) + γ
M

∑M
m=1 V

′
m(s, a) otherwise

.

(4)

Notice that η > 0 leads to a positive (optimistic) biased
estimation, while η < 0 will leads to a negative (pessimistic)
estimate; in this work we will always assume η > 0 (and
therefore we refer to the equation as optimistic). However,
in general, the choice of η is difficult since it depends on the
magnitude of the reward function. For this reason we introduce
the constrained version of the proposed problem.

1We extend the solution for η = 0 by computing the limit.
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Fig. 1: Left: Different estimates of a function. Right: The
entropic-map combines the function estimates to obtain an
optimistic estimate where η controls the level of optimism.

b) Optimistic Q Selection Bounding the Information
Loss.: We bound the information loss between the distribution
bm and the uniform distribution to maintain compatibility with
Problem 1. The information loss is bounded between − logM
and 0 where − logM stands for complete information loss
(i.e., only one model is selected) while 0 corresponds to no in-
formation loss (i.e., uniform belief distribution). Constraining
the information loss has succeeded in prior work, for instance
in policy search methods such as [29].

Problem 2 (Constrained version).

Qi(s, a) = max
b(s,a)∈PM

f(s, a; b(s, a))

s.t. DKL

(
b(s, a)

∥∥u) ≤ ιmax∑M
m=1 bm(s, a) = 1

∀s, a, i ∈ S ×A× {1, . . . ,M}

By letting β be the Lagrangian multiplier associated with
the KL constraint, we obtain the Lagrangian

Li = f(s, a; b(s, a)) + β
(
DKL

(
b(s, a)

∥∥u)− ιmax

)
+λ

(∑
m

bm(s, a)− 1

)
. (5)

Substituting β with −1/η we note that (5) becomes identical
to (2) except for a constant factor. Since we can not solve
η (or β) analytically, we obtain an approximate solution by
iteratively optimizing η (or β) and bm subsequently. OBE
takes its name from the fact that when η > 0, the log-sum-
exp acts as a soft-max operator. Such operator is also well
known as an entropic mapping, as it can be derived from a
maximum-entropy principle. Figure 1 shows how the entropic
mapping works. The use of the entropic mapping is not new in
reinforcement learning: [1] propose an interesting use of the
entropic mapping as a soft-max over the action in the Bellman
equation; [29] instead obtain it from an entropic regularization
over the state-action distribution. However, as we discussed in
Section I-B, differently from the mentioned approaches, our
entropic regularization is applied on the epistemic uncertainty.

c) Relation to Intrinsic Motivation: In order to highlight
the connection between OBE and IM, we reformulate OBE
utilizing the unbiased average of the estimates instead of
the log-sum-exp, and by introducing the resulting exploratory
bonus U which includes the positive bias

Qi(s, a) = R(s, a) + U(s, a) + γ

M∑
m=1

V ′m(s, a)

M
(6)

with

U(s, a)=
1

η
log

M∑
m=1

eηγV
′
m(s,a)

M
− γ

M∑
m=1

V ′m(s, a)

M
. (7)

Noticing that
∑N
i=1 e

ηxi/N is the sample moment generator
w.r.t. samples {xi}Ni=1 we can rephrase the exploration bonus
as

U(s, a) = lim
N→+∞

1

η
log

[
1 +

N∑
n=2

(ηγ)n

n!
Mn(s, a)

]
= ηγM2(s, a) +O(η2) (8)

where Mn is the nth central moment of the random variable
V ′m (Proof in Supplement)

Mn(s, a) = M−1
M∑
m=1

[(
V ′m(s, a)− V (s, a)

)n]

with

V (s, a) = M−1
M∑
m=1

V ′m(s, a).

Equation (6) shows that OBE is equivalent to BE with an
additional bonus defined by Equation (8). The bonus U (for
any positive η) is always positive, and provides a measure of
the uncertainty w.r.t. Q. This is why OBE can be interpreted
as a special principled form of IM.

d) Explicit Exploration.: A general problem affecting
intrinsically motivated algorithms, is that the policy greedy
to the obtained Q-value function, is not optimized for the
original problem. As a solution to this issue we approximate
two functions: Q̃, which will be updated using the true reward
and QE which will be updated using only the intrinsic reward
[39]. In this way we obtain both the intrinsically motivated
policy πo(s) = arg maxa Q̃(s, a) + QE(s, a) and the classic
policy πu(s) = arg maxa Q̃(s, a). Define

Q̃i(s, a) = R(s, a) + γ

M∑
m=1

Ṽ ′m(s, a)

M
with (9)

Ṽ ′m(s, a) =
∑
s′

P (s′|s, a) max
a′

Q̃m(s′, a′) (10)



to obtain an unbiased estimate of the Q-value function, yield-
ing

QE(s, a) =

T∑
t=0

γtU(st, at) where s0 = s, a0 = a

= η−1 log

∑M
k=1 e

ηγmaxa′ Q̃k(s
′,a′)+QE(s′,a′)

M

−
∑M
k=1 γmaxa′ Q̃k(s′, a′)

M
. (11)

By a simple equation rearrangement, it is possible to show
that Q̃i(s, a) + QE(s, a) is equivalent to Qi(s, a) as defined
in the OBE (4).

B. Optimistic Value Function Estimators

The OBE offers a theoretical framework in which it is
possible to develop optimistic value based algorithms. In fact,
OBE enjoys all the desirable properties of the BE (e.g. max-
norm contractivity), as shown in the supplement. We present
briefly two practical applications of the OBE, an optimistic
variant of Q-learning (OQL) and DQN (ODQN).

a) Optimistic Q-Learning.: Motivated by the idea of
employing an ensemble of regressors as is done in BDQN
[25], we assume to have M randomly initialized Q-tables.
Inspired by the well known Q-learning update rule, we derive
an optimistic version which is consistent with the OBE.

Definition 1 (Optimistic Q-learning). 2

Qi,t+1(s, a) = (1− αt)Qi,t(s, a)

+ αt

(
rt +

1

η
logM−1

M∑
j=1

eγmaxa′ Qj,t(s
′,a′)
)
.

We show that, with the update rule proposed, given infinite
visits of each state-action pair, all the tables will converge to
the same values, and more precisely, after each update, the
nth central moment of the updated cell is scaled exactly by
(1− αt)n:

Mn,t+1(s, a) = (1− αt)nMn,t(s, a) (12)

where

Mn,t(s, a) = M−1
M∑
i=1

(
Qi,t(s, a)−

M∑
k=1

Qk,t(s, a)

M

)n
.

This implies that a cell updated N times, with learning
rates {αi}, will have the nth central moments scaled by
Παi(1 − αi)

n w.r.t. the initial one. This leads us to some
interesting considerations: 1) the bonus decrease accordingly
to the number of state visits; 2) differing from several count-
based approaches, our algorithm takes into account the impact
of the learning rate; 3) in the limit of an infinite number
of visits, the exploration bonus converges to zero. Further
details, including a proof of convergence, are given in the
supplemental material3. All the considerations done so far

2We use αt as a shortcut for αt(s, a).
3We based our convergence proof for OQL on the works of [18] and [12]

provide a deeper insight about how the algorithm works
and its properties. However, in a more complex settings,
(e.g., function approximation) the convergence to zero of the
exploratory bonus is not guaranteed in general.

b) Optimistic DQN.: In addition to the novel OQL algo-
rithm described previously that can be used for limited discrete
state spaces, we propose another algorithm for continuous state
spaces based on our optimistic Bellman equation (OBE). We
take inspiration from the framework provided by Bootstrapped
DQN (BDQN) [25] that uses an ensemble of neural networks
as estimator for the Q value function. BDQN minimizes the
loss

LB(s, a)=

M∑
k=1

(
r + γmax

a′
QTk (s′, a′)−Qk(s, a)

)2

,

where QTk is the target network of the kth approximator.
To get an unbiased performance evaluation, we decided to
update M − 1 components of the ensemble with the update
rule provided by BDQN. We make this choice in order to
maintain diversity between the approximations of the ensemble
as shown in [25]. We use the remaining single component of
the ensemble to approximate QE . Using the first component
to approximate QE , we get for our new algorithm optimistic
DQN (ODQN) the loss

LO(s, a) =

(
η−1 log

∑M
k=2 e

ηγmax
a′ Q

T
k (s′,a′)+QT1 (s′,a′)

M

−
∑M
k=2 γmaxa′ Q

T
k (s
′,a′)

M −Q1(s, a)

)2

+
∑M
k=2

(
r + γmaxa′ Q

T
k (s′, a′)−Qk(s, a)

)2

. (13)

The exploratory bonus represented by QE = Q1 in the
proposed OQL and OQDN algorithms is needed to guide
exploration during learning. During evaluation, we use ma-
jority voting on the remaining M − 1 components {Qk}Mk=2.
While we always select an optimistic policy in OQL during
the training phase, in ODQN the neural network function
approximator may have problems learning to approximate the
optimal policy: if there are not enough unbiased samples
the approximator may learn to model only the optimistic
biased samples. Note that in the tabular case, this is not a
problem since there is no Q-function approximation. In order
to mitigate this problem, we introduce a hyper-parameter χ
which denotes the probability to select an optimistic policy πo
in place of the unbiased one πu. In this way, we can balance
the number of unbiased and optimistic samples. Algorithm 1
shows the pseudocode of ODQN.

c) Automatic Hyper-parameter Adaptation.: Recalling
that the regularization coefficient η in the OBE is hard to
tune, we want to focus our attention on Problem 2. Inspired
by proximal policy optimization (PPO) [33], we propose an
heuristic to optimize η. One of the optimization techniques
proposed in [33] is to measure the “degree” of constraint
violation and to update the Lagrangian multiplier accordingly.
We have to adapt the technique to multiple constraints since



Algorithm 1 Optimistic DQN

Input: {Qk}Kk=1, ιmax, ηinit, χ, N , C
Let B be a replay buffer storing the experience for training.
η = ηinit.
Let i ∼ Uniform{1 . . .M} and ψ = 1 w.p. χ otherwise
ψ = 0
for N epochs do

for C steps do
Observe s
Choose a = arg maxaQi(s, a) + ψQ1(s, a)
Observe reward r, next state s′, end of episode t
If t is terminal, i ∼ Uniform{2 . . .M} and

ψ = 1 w.p. χ otherwise ψ = 0
Store < s, a, r, s′, t > in buffer B
Sample mini-batch Bbatch

Update {Qk}Kk=1 using equation (13)
V ← V + | violated constraints (14) in Bbatch|

end for
Let ρ = V

C∗batch size
Update η by (15)
Update target network

end for

the problem is defined for each state-action pair. The idea is to
count the number of times the constraints have been violated
and then update η. In more detail, suppose to have N state-
action pairs and for each pair (si, ai)∑

m

bm(si, ai)(log bm(si, ai) + logM) ≤ ιmax, (14)

where ιmax is defined in Problem 2, while bm(si, ai) is defined
by (3). We define ρ as the ratio of violated constraints. We
update η according to the following rule

ηT+1 =
ηT

(0.5 + 10ρ)
. (15)

In ODQN, we decided to count the number of constraints
violated every C time-steps (basically every update of the
target network), using the samples of all the extracted mini-
batches. See Algorithm 1 for further details.

d) Ensuring a Prior Distribution.: As already discussed,
it is important to maintain diversity in our ensemble, and
this diversity should reflect the degree of uncertainty. For this
reason, we should introduce a sort of prior distribution, as
happens in the Bayesian framework. In the case of OQL,
we observe that it is sufficient to randomly initialize each
element of the ensemble, since diversity between estimates is a
sufficient condition to obtain positive bonus. For ODQN, as is
done in BDQN, we choose to maintain the diversity between
approximation, by a random initialization of each component’s
parameters and by using the bootstrapping technique, so by
adding a mask in the replay memory which is sampled by
and use different data samples per regressor.

III. EXPERIMENTAL EVALUATION

In the experiments, we compare in the tabular Q-function
case our new optimistic Q-learning method (OQL) with the
well-known state-of-the-art bootstrapped Q-learning method
(BQL) [25], classical Q-learning [41], and Q-learning with
optimistic initialization [37] in the 50-Chain [25], Taxi (also
known as Maze) [7] and Frozen Lake [5] environments.
For neural-network based Q-functions, we compare our new
optimistic deep Q-learning (ODQN) method with bootstrapped
deep Q-learning (BDQN) and classical deep Q-learning
(DQN) in the Taxi and Acrobot [36] environments. The
environments are chosen to cover different types of dynamics,
have sparse rewards, and include both discrete and continuous
states. For Acrobot and Frozen Lake, we used the implemen-
tation provided by OpenAI Gym [5]. First, we will discuss
the environments in more detail, then we will provide some
details on the initialization of the methods, and finally finish
with an analysis of the results.

The N-Chain environment [25] requires a long sequence
of non-rewarding actions to achieve the optimal reward. The
MDP consists of a chain with N states {si}Ni=1, and two
actions that move the agent to state si+1 or si−1. The agent
always starts in state s2. In state s1 the agent observes a
small reward r(s1) = 1/1000, while in the N th state the agent
observes r(sN ) = 1. The reward function is zero elsewhere.
The agent needs to explore until reaching state sN even if
state s1 looks promising.

The Taxi environment, also known as Maze [7], consists
of a 8 × 8 grid-world where a taxi has to collect passengers
and take them to the goal position where the only non-null
reward is observed. For 0, 1, 2 and 3 passengers collected, the
reward is 0, 1, 3 and 15, respectively. The agent must explore
to 1) discover that reachin the goal position with less than 3
passengers is not optimal, 2) to find the optimal path.

The Frozen Lake environment is a 8 × 8 grid-world, in
which the agent has to reach a goal position without falling
into some holes. The stochastic perturbation of the agent’s
movement makes the environment challenging. The Acrobot
environment was firstly proposed by [36] and consists of
two linked robotic arms that hang downward with only one
actuated joint between the two arms. The agent swings the
robotic arms until the end of the second link exceeds a certain
height. At each step the agent perceives a negative reward of
−1. The environment requires significant exploration to find
a way to swing the robotic arms at defined height.

a) Initialization of the Q-functions.: In the tabular set-
ting, for optimistically initialized Q-learning (OIQL), we ini-
tialize the Q-function to 15 in Taxi and to 1 in N -Chain
and Frozen Lake. For the other algorithms, we initialize
Q(s, a) ∼ N (µ = 0, σ = 2), except QE of OQL is initialized
to 0. In the taxi environment, for both ODQN and BDQN,
we use a shared convolutional layer with multiple heads as
described in [25]. For the Acrobot, each component of the
ensemble corresponds to a one-layer neural network. For
ODQN, in both the environment, we initialize the output layer
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Fig. 2: Illustration of the environments, from the left to the right: N -Chain, Taxi, Frozen Lake and Acrobot.
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Fig. 3: The first row shows the average return for each tabular algorithm in the N -Chain, Taxi, and Frozen Lake environments
and for each neural network based algorithm in the Taxi and Acrobot environments together with 95% confidence intervals.
The second row shows the distribution over the number of time steps before observing the maximum reward in the MDP.

corresponding to QE to small values of the parameters, in
order to obtain initially QE ≈ 0.

b) Hyper-Parameter Tuning.: For the tabular settings, we
did not run any hyper-parameter optimization. With neural
networks we performed a small grid search over the number of
neurons of the network, and whether to use bootstrapping or
not. More specifically, we selected hyper-parameters maximiz-
ing the mean return averaged over the whole learning curve,
using 20 different seeds. In the plots; we compare ODQN and
BDQN using the best hyper-parameter setup found for BDQN.
In OQL we use η = 10 and for ODQN, we use χ = 0.25 and
ιmax = 1. For further details about the implementation of the
algorithms, and the grid search, please see the Supplement.

A. Results
Figure 3 summarizes the results obtained by averaging over

64 different seed the tabular alrogithms, and 100 seeds BDQN
and ODQN (more details, e.g. results for different hyper-
parameter settings, can be found in the supplement). OQL
learns faster than the other tabular algorithms. In the Chain
environment, and in Taxi, our algorithm OQL finds the highest
reward faster than BQL or QL. On the other hand, also OIQL
seems to find high rewards fast, as shown in the box-plots.
However, OIQL requires more training epochs to escape the
high initial optimistic values of the value function. In contrast,
OQL finds high values fast in all the problems (50-Chain, Taxi,
Frozen Lake) using the optimistic Bellman equation while

converging to a near-optimal solution as suggested by our
convergence proofs.

With neural network approximation of the value function,
ODQN outperforms BDQN in the Taxi environment demon-
strating that the principles of OBE work even with function
approximation. In the Cartpole environment, the learning
curves of BDQN and ODQN are nearly identical, possibly,
due to the simplicity of the environment.

IV. CONCLUSION

The main contribution of our work is the introduction of
the optimistic Bellman equation (OBE) which provides an
optimistic estimate of the value function over uncertainty. Our
approach can be viewed as a principled IM technique where
the agent is intrinsically rewarded by uncertainty and which,
similar to approximated Bayesian methods, estimates the an
ensemble. We propose two algorithms: OQL for the tabular
case and ODQN for the neural network case. Given the usual
assumptions on the learning rate and state visits, we show that
OQL convergences to the optimal policy, analyze the implicitly
defined exploration bonus in OQL and show the relationship to
intrinsic motivation based approaches. In empirical evaluations
on a variety of tasks where exploration is crucial, OQL and
OQDN outperform comparison methods due to being able to
find high rewards earlier.
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[39] I. Szita and A. Lőrincz. The many faces of optimism: a unifying
approach. In Proceedings of the 25th international conference on
Machine learning, pages 1048–1055. ACM, 2008.

[40] N. Vlassis, M. Ghavamzadeh, S. Mannor, and P. Poupart. Bayesian
reinforcement learning. In Reinforcement Learning, pages 359–386.
Springer, 2012.

[41] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

[42] M. White and A. White. Interval estimation for reinforcement-learning
algorithms in continuous-state domains. In Advances in Neural Infor-
mation Processing Systems, pages 2433–2441, 2010.


