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Abstract

Although there have been promising advancements in recent years, Reinforcement Learn-
ing is not yet directly applicable to robotics, since the dimensionality of robot movements
is high, so the computation time of the RL algorithms becomes prohibitive. Having a
learning system on real robotics will enable industrial robotics to be easily reprogrammable
to new tasks, and at the same time avoid the need for training in simulated environments.
Engineering expenses to design the simulation can be saved and the reality gap can be
overcome. We propose a new framework that works in parameter space to resolve the
dimensionality of the representation. Our approach takes into consideration the similarity
between movements instead of the redundancy in the kinematic system. Additionally, the
proposed method is independent of the number of chosen features. We empirically show
that the framework we introduce works efficiently for both complex human movement as
well as in a simpler robotic scenario.
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Zusammenfassung

Obwohl es in den letzten Jahren vielversprechende Fortschritte gegeben hat, ist Reinforce-
ment Learning noch nicht direkt auf die Robotik anwendbar, da die Dimensionalität der
Roboterbewegungen hoch ist, so dass die Berechnungszeit der RL-Algorithmen untragbar
wird. Mit einem lernenden System für die reale Robotik kann die industrielle Robotik
leicht auf neue Aufgaben umprogrammiert werden, gleichzeitig wird die Notwendigkeit
des Trainings in simulierten Umgebungen vermieden. Die Kosten für die Entwicklung
der Simulation können eingespart und die Lücke zur Realisierung überwunden werden.
Wir schlagen eine neue Herangehensweise vor, die im Parameterraum arbeitet, um die
übermäßige Dimensionalität der Darstellung zu vermeiden. Unser Ansatz berücksichtigt
die Ähnlichkeit zwischen den Bewegungen und nicht die Redundanz im kinematischen
System. Weiterhin ist die vorgeschlagene Methode unabhängig von der Anzahl der gewähl-
ten Features. Wir zeigen empirisch, dass unsere Herangehensweise sowohl bei komplexen
menschlichen Bewegungen als auch in einem einfacheren Roboter-Szenario effizient
funktioniert.
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1 Introduction

In recent years Reinforcement Learning (RL) has accomplished impressive results [27] in
areas like video games [17] and simulated environments [14]. Reinforcement Learning is
an approach to solve tasks that require decision making [28]. The framework consists of
an agent interacting with an environment in the form of actions, receiving direct feedback
through a reward signal.
RL in robotics has high potential, however, the direct application of RL algorithms to
robotics is challenging because it usually requires the processing of high dimensional data
and scarce demonstration availability. A feasible way to apply RL algorithms to robotics is
by considering abstract actions rather than letting the agent directly control the robot’s
torques. This could lead to dangerous behavior, which could potentially damage the robot
due to bad policies. Therefore, to handle this interaction a framework for separating the
RL agent and the robot is needed.
For many industrial applications, such as object manipulation or assembly of items, it is
enough to consider the state representation as the position of the object and the robot’s
possible movement as a whole action, because the environment is generally static. It does
not change during action execution. The bottleneck of this approach is the action space.
The representation of movement is usually high dimensional, caused by a large number of
time steps and degrees of freedom for complex robot movements. Therefore, a method is
needed for converting trajectories into compact actions and conversely for reconstructing
movements out of compact action representations. Figure 1.1 illustrates this setup.
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Figure 1.1: Learning framework showing the connection of robot and environment
using a method to convert compact action parameters to executable
robot trajectories.

It is common to represent methods of Movement Primitives to parameterize the robot’s
trajectories as a weight vector. A trajectory is a path that a robot will follow while executing
the movement. For some applications, the dimensionality of the parameterized action-
space is too extensive. Therefore, it is desirable to employ methods of dimensionality
reduction in order to decrease the dimensionality of the data while simultaneously keeping
most of the data’s information. Many methods addressing this problem aimed to reduce
the trajectories’ size directly by exploiting coupling between the robot’s joints.
We propose a different approach to reduce a trajectory’s dimensionality by applying
methods of dimensionality reduction (DR) in the parameter-space instead of in the joint-
space. This approach, which we call Principal Movement Primitives, or PriMos for short may
be advantageous for various settings, where a concise action space is of great importance.
We demonstrate that our method enables the representation of complex trajectories using
only small parameter vectors. Furthermore, we show that the proposed method allows for
sampling random, smooth trajectories using only a compact covariance matrix.
As a preliminary, we provide the most essential methods and techniques we will use
throughout this thesis and are therefore necessary prerequisites.
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1.1 Problem Formulation

Describing the RL context more formally, we describe the state of the environment at each
time-step by St ∈ S, t ∈ N+, where S is the state-space. In every state St, the agent selects
an action At ∈ A, receiving an immediate reward Rt+1 ∈ R [28]. It is important to note
that both S and A can embody discrete or continuous sets of states and actions. Similar to
[28], we define p(St+1|St, At) to be the transition probability.
The Markov property asserts that the transition probability only depends on the last state
St and last action At and is therefore independent of every state and action before those.
The RL setting is called a Markov Decision Process (MDP). The action selection is made
according to a policy, the probability distribution of action At, given the current state is St.
We denote this probability distribution with π(At|St). In the discounted infinite-horizon
case, the object of the RL agent is to maximize the expected return

Jπ = E

[︄ ∞∑︂
t=0

γtRt

]︄
, (1.1)

where γ ∈ [0, 1) is the discount factor determining the emphasis on earlier obtained
rewards.
A wide range of algorithms has been proposed in the literature to maximize the objec-
tive in 1.1, for example, policy gradient approaches [29, 3, 7] or value-function based
methods [32]. However, to enhance sample efficiency, the RL-agent ideally relies only
on low-dimensional representations of states and actions. In every time-step, the agent
selects an action α in its low-dimensional action-space according to the current policy
π(α|St). We assume α to be a parameter vector that is then passed to some black box
that handles the movement reconstruction. According to some learned model, it returns a
trajectory, that may directly be passed to the robot for it to interact with the environment.
We use parameterization to represent the trajectories because it enables to account for
movements of varying length as it normalizes the time axis to the space of [0, 1]. For
parameterization of the robot’s trajectories we use Movement Primitives [11]. In recent
years new extensions and variations have been made to this approach [19, 26]. In order to
learn Movement Primitives, a set of weights has to be found, so the feature representation
of the movement does approximate the original trajectory best. To find these weights it is
common to use ridge regression.
As stated earlier it is necessary to reduce the dimensionality of the trajectories or move-
ments. There are numerous techniques and frameworks that address this problem [25,
30]. We chose to use Principal Component Analysis [10] to achieve the reduction since
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it is a well known and popular method. Recent work focused on reducing the data size
before parameterizing the data. We will discuss this in Section 1.5. Considering the overall
background of robotics, it is common to collect trajectories in joint space. A trajectory
in joint-space describes the angular displacement of every joint of the robot for every
time-step. It is a common approach to perform the DR directly on every trajectory in the
dataset.

1.2 Ridge Regression

Let the feature matrix Φ be a representation of yi, i ∈ 1, . . . , n that can be obtained
by multiplying it with a weight vector w. the vector y could, for example, be a robot’s
trajectory. A common evaluation of this models accuracy is the mean squared error

1

n

(︂
Φw − y

)︂⊺(︂
Φw − y

)︂
.

Since the error should be as small as possible, the weights have to be chosen to minimize
the error. This is known as the standard Linear Regression problem

w∗ = arg minw
1

n

(︂
Φw − y

)︂⊺(︂
Φw − y

)︂
. (1.2)

Incautious usage of the problems analytical solution

w∗ =
(︂
Φ⊺Φ

)︂−1
Φ⊺y

can lead to big values for the elements of w with an alternating sign and thus interpolate
the data points. This is known as over-fitting and leads to a model that lacks generality as
it interpolates the training data.
To avoid this shortcoming ridge regression [9] was proposed as a method to penalize
parameter values of great magnitude.
Formally 1.2 is extended by

w∗
ridge = arg minw

1

n

(︂
Φw − y

)︂⊺(︂
Φw − y

)︂
+

λ

d
w⊺w, (1.3)

where we call λ
dw

⊺w the penalization term with its corresponding ridge parameter λ. The
coefficient d denotes the number of dimensions for every trajectory y and I is the identity
matrix of appropriate dimensions. This new modified problem yields the solution

w∗
ridge =

(︂
Φ⊺Φ+

n

d
λI
)︂−1

Φ⊺y. (1.4)
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We will use this solution throughout this work. The solution’s derivation can be found in
the appendix.

1.3 Probabilistic Movement Primitives

The core idea of the Movement Primitive approach [11] is to represent a complex trajectory
with a set of weighted basis functions. Paraschos et al. proposed a framework to parame-
terize trajectories by a number of weights, each corresponding to a Gaussian basis function
[19]. By doing so they were able to introduce several advantageous characteristics like
temporal modulation, perturbation of via-points and combination of distinct Movement
Primitives. These bring practical properties for various tasks in robotics [20] and have
been frequently used for robotics tasks [13, 16].
In order for the ProMP framework to be applicable to datasets with varying numbers of
time steps, the definition of feature matrices is needed. For this let T be the number of
time steps for every dimension and trajectory sampled and f the number of basis functions
to use. We define the feature matrix according to the context of Probabilistic Movement
Primitives, where movements are expressed as a summation of Gaussian basis functions

ϕi(z) =
bi(z)∑︁n
j=1 bj(z)

, i ∈ {1, . . . , f}, (1.5)

bi(z) = exp
(︂
− (z − ci)

2

2h

)︂
, i ∈ {1, . . . , f}. (1.6)

The Gaussian basis functions are centered at ci and have a fixed variance of h, also called
the bandwidth. In order to compactly represent our derivations in closed form fashion,
the basis functions are stored in a matrix, called the feature matrix. For one dimension it
is given by

ϕ =

⎡⎢⎣ϕ1(t1) . . . ϕf(t1)
... . . . ...

ϕ1(tT) . . . ϕf(tT)

⎤⎥⎦ , (1.7)

It should be mentioned that the time dimension was normalized to the interval [0, 1]
as shown in Equation 1.5 and Equation 1.6. We refer to this as the phase space with
z being the corresponding phase variable. This holds for the feature matrices as well,
despite being indexed by ti. This is to emphasize the time dependency. Furthermore, we
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address the placing of the basis functions’ centers ci similar to [19] so that they are placed
equidistantly in [−2h, (1 + 2h)] to smooth the resulting combination of basis functions.
Finally, we set the bandwidth h = 1

f
√
2f
.

For the straightforward application of regression techniques, we extended the definition of
our feature matrix 1.7 for the multidimensional context. For this, we constructed a block
diagonal matrix as follows:

Φ =

⎡⎢⎣ϕ . . . 0
... . . . ...
0 . . . ϕ

⎤⎥⎦ .

This allows for a compact matrix formulation in the multidimensional case. For the sake
of simplicity, we refer to this extended matrix as the feature matrix. Nevertheless, it is still
possible to perform the calculations for every dimension separately using 1.7. Especially
for trajectories with a high number of degrees of freedom or time-steps, this is the more
efficient method with respect to both space and time complexity. This only holds for the
matrix computation not being optimized for computation on the GPU.
With the formulation of feature matrices at hand, it is possible to formalize the method
of calculating every trajectories corresponding weight. In the ProMP approach a set of
weights w∗ is found for every trajectory y ∈ RT×d in the dataset that solves

w∗ = arg minw
1

T

(︂
Φw − y

)︂⊺(︂
Φw − y

)︂
+

λ

d
w⊺w,

where λ is again the ridge parameter in the setting of ridge regression and d is the number
of dimensions or degrees of freedom in the context of robotics. The solution of this
equation is given by

w∗ =
(︂
Φ⊺Φ+

T

d
λI
)︂−1

Φ⊺y.

Having obtained this vector representation, it can be stored as a compact representa-
tion of the trajectory or processed in another way. Furthermore, the movement can be
reconstructed easily using

ŷ = Φw.

1.4 Principal Component Analysis

Principal Component Analysis [23, 10, 12] intends to find a series of linearly independent
eigenvectors that form an orthogonal base on the data. It can be used to reduce the data’s
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dimensionality by selecting the c eigenvectors that contain the most variance.
Formally the initial step is to perform an eigendecomposition on the dataset’s covariance
matrix.
The covariance is estimated by

Σ =
1

n− 1
(X − µ)(X − µ)⊺,

where µ =
∑︁

Xi is the empirical mean over the respective axis. Thereafter we perform
eigendecomposition. This is equivalent to finding E and Λ so that

Σ = EΛE−1.

The square matrix E holds the eigenvectors of Σ in its columns. The diagonal matrix Λ
contains the corresponding eigenvalues as its diagonal elements.
Having obtained the matrices Λ and E, the eigenvectors have to be sorted by the absolute
magnitude of their respective eigenvalue in descending order. In the following, it is
assumed the sorted matrix Ê contains the eigenvectors row-wise.
By definition, the first eigenvectors capture most of the initial data’s information. Therefore
it is sensible to only use a fixed number c of them to reduce the dimensionality. Let C
denote the submatrix with only c components of Ê. It is possible to project our data onto
a lower-dimensional space using

X̂ = CX.

Similarly, the reconstructed data can be calculated by

Xr = C⊺X̂.

By using the subscript notation, we emphasize the fact that the reconstruction will only
approximate the original data.
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1.5 Related Work

Compactly representing movement primitives is a prevalent topic of several publications.
The literature is not limited to the context of robotics. In order to efficiently predictively
model human motion, [4] proposed the representation of Dynamic Movement Primitives
(DMPs) [26] by fitting under complete Deep Autoencoders [2] on movement data. They
evaluated their algorithm on high-dimensional humanoid movements gathered by motion
capturing. They achieve better generalization of the DMPs because of the nonlinear ar-
chitecture of the Autoencoders they make use of but lack a method to sample random
movements.
To improve the computational efficiency of ProMPs, [5] introduced a method of proba-
bilistic dimensionality reduction based on an Expectation-Maximization like algorithm
[18]. The proposed framework enabled them to train the Relative Entropy Policy Search
algorithm [24] more efficiently on a robot system. They did, however, demonstrate a way
of generating trajectories.
Both of the preceding publications perform the reduction in the joint space, compared to
the reduction in parameter-space that our method employs.
Similar to PriMos, [21] used PCA in order to generate basis functions of movement primi-
tives. These basis functions are then turned into trajectories by optimizing a cost function.
They used this framework to efficiently generate approximations of humanoid demonstra-
tions. They compared these generated movements to those generated by B-Splines [6]
and demonstrated that their method generated more natural-looking movements using
less computational time. However, they only evaluated their approach on the generation
of a single movement, with only 4 degrees of freedom.
The above publications focused on movements like walking that do not require fine motor
skills. Tasks that do require these skills are for example humanoid hand movements,
which were studied by [1], who proposed a method to generalize grasping movements for
multi-fingered humanoid hands. They performed PCA on the joint-space data to extract a
low-dimensional grasp-space. Subsequently, they used DMPs to parameterize the grasp-
space hand movements. Additionally, they provided a contact-warping algorithm that
enabled them to perform hand movements with different objects. These objects only had
to be comparable to those shown to the robot in the human demonstrations. Their method
proved to be robust to changes in the environment. Reducing the dimensionality of the
data on the joint-space, however, will generally result in a higher number of parameters
used, to fully describe the trajectories, compared to our proposed framework.
For Robots to be incorporated into certain real-life settings, they need to be able to learn
newmovements, when needed. In order to achieve this, [15] combined Gaussian Processes
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(GPs) and DMPs to create a strategy for active incremental learning that a robot can use
to decide when to request a human demonstration in order to adapt the robot’s model.
They provided an approach to train DMPs on trajectories encoded by GPs, which enables
the DMPs to generalize to different types of movements. With increasing dimensionality
of the demonstrations, the GPs’ computational demand may become too large, as [15] do
not employ dimensionality reduction.
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2 Principal Movement Primitives

Instead of reducing the dimensionality of the data directly in the joint space and subse-
quently computing the ProMP representation on the reduced data set, we perform the
reduction step after the ProMP parameterization. Consequently, we achieve a dimensional-
ity reduction on the movement or parameter space. Furthermore, we extend the approach
by additionally minimizing the squared error

a∗ = arg minα
1

T

(︂
Φµ+ΦM⊺α− y

)︂⊺(︂
Φµ+ΦM⊺α− y

)︂
+

λ

c
α⊺α. (2.1)

This enables us to find a parameter vectorα describing the original trajectory. It weighs the
dimensionality-reduced version of our data’s feature representation so that it reconstructs
our original data better.
The following image shows the seminal steps in both approaches and highlights the
differences by sketching the basic sequence of actions.
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Figure 2.1: Comparison of both compression and reconstruction steps for
parameter-space and joint-space methods. The blue node resem-
bles the representation of lowest dimensionality.

Both approaches will have to start with the same trajectory, but the following step differs.
Whereas the joint-space method projects the trajectory onto a subspace using the process
outlined in Section 2.1, the movement-space approach transforms the trajectory to the
ProMP encoded movement space. The latter method then reduces the resulting movement
parameters, to achieve the highest rate of compression, the former transforms the subspace
trajectory to the movement space.
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2.1 Joint Space PCA

Commonly PCA is performed directly on the gathered data. In the context of robotics,
these are usually trajectories in joint space of the form Yi ∈ RT×d, with T samples per
joint dj . It makes sense to assume coupling between certain joints, so the intention of
joint-space reduction is to use this relation in order to represent the trajectory in a subspace
of a lower dimension. Therefore the reduction is performed on the dimensions to retrieve
the compressed joint space Ŷ ∈ RT×c, where c is the selected number of components or
eigenvectors to use for the PCA. The PCA algorithm can be applied to the whole dataset D
at once, by concatenating all trajectories like

Y =

⎡⎢⎣Y1
...
Yn

⎤⎥⎦ .

With the resulting reduced data set the application of the ProMPs framework is obvious
and the result for every trajectory Yi ∈ D is the parameter vector w ∈ Rc×f , where f is
the number of basis functions to represent the movement with.

2.2 Movement Space PCA

Instead of looking for similarities in the joints of the trajectory, as in Section 2.1, it is
possible to examine the data for resemblance in its movements. Since ProMPs transform
a trajectory into the movement space, PCA can thus be employed to ProMPs to exploit
the coupling of movements. The method of applying PCA on ProMPs is straightforward.
For every trajectory Yi ∈ D, i ∈ {1, . . . ,n} a ProMP is fit on Yi, resulting in a parameter
vector wi. These can be combined in a matrix

Ω =

⎡⎢⎣w
⊺
1
...

w⊺
n

⎤⎥⎦ .

The steps in Section 1.4 are performed on this matrix. After being fit, the dimensionality
reduction can be achieved as αi = Ewi,αi ∈ Rc×1, where E is the eigenvector matrix,
satisfying the conventions detailed in Section 1.4.
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2.3 Scaling The Projection matrix

To account for each eigenvectors contribution to the error we require the data’s variance
they contribute. This is proportional to the square root of their respective eigenvalue. This
represents the eigenvector’s standard deviation

λ̂ =
√
λ.

Since both λ̂ and λ are column vectors we define the square root element-wise.
Furthermore, we determine the mean across all n parameter vectors. Having calculated
theΩmatrix we can simply take the mean over the first axis, which we will refer to by µΩ.
As with the joint-space PCA, we attain the initial projection matrix E and can immediately
formulate the modified projection matrix

M =

⎡⎢⎣E1λ̂1
...

Ecλ̂

⎤⎥⎦ . (2.2)

We note that this scaling is not necessary for achieving an accurate result but leads to
parameter values of smaller magnitude and may thus come with advantageous numerical
stability.

2.4 Derivation of solution

We can calculate our reconstructed parameterized trajectory as

ŷ = Φµ+ΦM⊺α. (2.3)

Since we want to achieve an accurate approximation, it is reasonable to minimize the
mean squared error. Thus we define the loss as

L =
1

T

(︂
Φµ+ΦM⊺α− y

)︂⊺(︂
Φµ+ΦM⊺α− y

)︂
.

Since it is desirable to avoid overfitting we use the ridge regression approach to penalize
complex models. Adding the penalization term gives

L =
1

T

(︂
Φµ+ΦM⊺α− y

)︂⊺(︂
Φµ+ΦM⊺α− y

)︂
+

λ

c
α⊺α.
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In order to derive the solution, it is easiest to first reformulate the problem using the
substitutions

Φ̂ = ΦM⊺

ŷ = y −Φµ.

Subsequently, we can express the loss as

L =
1

T

(︂
Φ̂α− ŷ

)︂⊺(︂
Φ̂α− ŷ

)︂
+

λ

c
α⊺α.

With this modification, the problem is in the form of the ridge regression problem 1.3 and
we can directly utilize the previously derived solution 1.4 to obtain

α∗ =
(︂
Φ̂⊺Φ̂+

T

c
λI
)︂−1

Φ̂⊺ŷ.

Resubstitution yields the problems desired solution

α∗ =

(︃
MΦ⊺ΦM⊺ +

T

c
λI
)︃−1

MΦ⊺ (y −Φµ) . (2.4)

To further outline the difference between the straightforward application of PCA on the
movement space and PriMos, we constructed a simple visual example of the underlying
projections of data onto different sub-spaces, which can be found in Figure 2.2.
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PriMos

MPs

Movement

y y′

Figure 2.2: Projection of a trajectory y onto the different sub-spaces using
parameter-space PCA and PriMos. The dotted line represents the lin-
ear combination of the initial projection on the movement-primitive
subspace and the subsequent projection on the PriMo-subspace.

For any trajectory y in the set of all possible movements, the basic movement-space PCA
first projects it onto the subspace of all movements representable by Movement Primitives.
This is done using the shortest distance to this subset, which is equivalent to minimizing
the mean squared error. From here on y′ is transformed onto the dimensionality reduced
subspace using PCA. The total distance to the PriMos-subset is, therefore, the linear
combination of both previous projections.
PriMos instead seek to minimize the distance to the PriMos subspace directly, by differently
weighing the reduced parameters, conditioned to minimize the distance to the original
trajectory y. Therefore the PriMos projection is always equally good or better than the
linearly combined distances, since minimizing the mean squared error on the original
trajectory y will result in the shortest distance from PriMos set to y.
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2.5 Principal Movement Primitives For Reinforcement Learning

In Section 2.2 we outlined the process of fitting the PCA model in movement space. We
further extended this approach using the results of Section 2.4, to better fit the original
trajectory. This yields a model that is able to compress the robot’s trajectory into a compact
vector representation, as well as reconstruct a smooth trajectory out of a given parameter
vector, that is safe for the robot to execute.

RobotEnvironment

RL w = M⊺α+µ⃗ y = Φw
wα

Trajectory

Action

State

Reward

PriMos

Figure 2.3: PriMo framework in the Reinforcement Learning context. α is a param-
eter action the Reinforcement learning agent computes according to
π(α|s). The fit PCA object then reconstructs the movement parameters
w using M⊺α+µ, where M is the scaled projection matrix, introduced
in Section 2.3. w can subsequently be converted into a trajectory y in
joint space. This trajectory can be executed by the robot, to interact
with the environment.

Referring to the introductory basic framework of Reinforcement Learning in Figure 1.1, we
can utilize the PriMos as a bridge between the parameter actions and smooth trajectories,
a robot may execute to alter the environment.
The RL agent will observe the environment’s state St and compute an action α, according
to the current policy π(α|St). Using α instead of the more common variable name a for
some action, we emphasize the fact that α is not an executable action, but instead the
compressed parameter representation of a movement. The PriMo framework, that has
been fit on a dataset according to the steps in Sections 2.2 and 2.4, is able to generate a
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joint-space trajectory out of α. This can be done sequentially as outlined in Figure 2.3, or
directly by applying equation 2.3. This gives the reconstructed movementy, containing
the corresponding angle for every joint and time step. Having a suitable interface to a
robot system, this is sufficient for the movement to be executed by the robot.
If a suitable action is executed, the environment will be altered. In the case of a simple
manipulation task, the placement of an object on a working table could have changed.
The Reinforcement Learning Agent will then receive a reward for the executed action,
depending on the reward function. The agent will consequently adapt the policy to
π∗(α|St). and repeat the process, until a terminal state ST has been reached.
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3 Experiments

In order to empirically evaluate our approach, we compared Principal Movement Primitives
along different metrics. The reconstruction error is of interest since it indicates how
accurate the reconstructed movements will be. Extending the number of basis functions
f for the MPs to use will generally lower the reconstruction error, as will increasing the
number of eigenvectors c used for the PCA. We want to calculate the reconstruction error
of PriMos using different combinations of f and c. Using higher numbers for f and c comes
at the cost of computational efficiency, so the analysis of the reconstruction error can help
to find a combination that manages a good trade-off between accuracy and efficiency.
Furthermore, we want to compare PriMos to joint-space PCA. Since PriMos aim to describe
movements using only a low number of parameters, we want to study how many total
parameters are needed for PriMos to achieve a reconstruction error that is comparable to
that of the joint-space approach. We want to repeat the experiment of parameter use on
high-dimensional data, as well as low-dimensional data, to identify use cases of PriMos.

3.1 Data Generation

3.1.1 Low Dimensional Data

Our first source of data was the Darias robot, which consists of two Kuka lightweight robot
arms, each with 7 degrees of freedom, used primarily for bi-manual manipulation tasks.
We defined a task of pouring a designated amount of sugar pearls from a plastic cup,
placed in the robot’s hand, into a stationary bowl, at the center of a table in front of the
robot. Originally we wanted to pour liquid, for safety reasons we decided to use pearls, as
they allow for smooth pouring behavior as well. Figure 3.1 is a photograph of this setup,
Figure 3.2 shows the robot performing a pouring movement using a reconstructed PriMos
movement.
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Figure 3.1: Experimental setup of the pouring task. This is the initial position of
the robot. The bowl is placed on a digital scale that will measure the
weight of sugar pearls poured into the bowl accurate to two grams.
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Figure 3.2: Darias robot performing a pouring movement. The movement executed
was parameterized and compressed using the PriMos approach.

After each movement we weighed the bowl, using a digital scale. We reiterated this process
20 times, to obtain the Darias dataset. Since we only used the right robot arm and did
not move the robot’s fingers, the collected trajectories only have 7 joints. Each trajectory
is therefore of dimensionality τ ∈ RT×7, where the number of time steps T depends on
each trajectory’s duration and the sampling frequency the recordings were made with. To
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evaluate our results more accurately, we fixated the cup onto the robot’s hand, to ensure
the placement and tilt of the cup would stay the same for retries. An image of this fixation
can be found in Figure 3.3.

Figure 3.3: Fixation of plastic cup on a saved finger configuration.

3.1.2 High Dimensional Data

Since we wanted to test the algorithms in diverse settings, we sought to incorporate
high-dimensional data. For this, we used various subjects and movements from the
CMU Graphics Lab Motion Capture Database(http://mocap.cs.cmu.edu/). The data this
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database comprises was generated by motion capturing of human subjects performing
diverse tasks like walking, running, jumping or dancing. For an exemplary motion capture
pipeline, see [22]. This is not the exact setup of the CMU Graphics Lab Motion Capture
Database. The placement of the motion capture markers may not be the same. The joint
values of the Mocap data are given in Euler angles. For better comparability with the
Darias data, we converted them to radians. Similar to [4] we used the data of subjects
35, 49, 74, 120 and 143. We will reference these by CMU #subject. The data describes
the movement of the whole body and is therefore high dimensional. Similar to the Darias
robot, we treated the joint data for every axis of rotation separately. In these datasets,
every trajectory has a total of 62 degrees of freedom and is therefore of dimensionality
τ ∈ RT×62.
To evaluate the performance of PriMos compared to a standard movement-space compres-
sion, we compute the mean squared error on the Darias dataset.

3.2 Comparison With Unmodified Parameter-Space PCA

As the Principal Movement Primitives framework incorporates and extends the movement
space PCA method, we decided to start with the evaluation of PriMos by comparing these
two movement-space approaches. In order to achieve this, we considered the Darias
dataset. We evaluated the reconstruction error for both methods. As is possible to observe
in Figure 3.5, both methods have a very high error for less than four basis functions.
This is to be expected, as ProMP representation of the trajectory is not complex enough
to reasonably parameterize it. In addition, the PriMo approach seems to produce more
accurate reconstructions for a small number of components ranging between 2 and 11.
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Figure 3.4: Reconstruction error heat-map on the Darias dataset for both mod-
els. The error was computed for different combinations of components
used in the PCA and numbers of basis functions to use for parameter-
izing the trajectory. The reconstruction error is calculated using the
mean squared difference of demonstrated trajectory y and the corre-
sponding reconstruction ŷ. We averaged this error for all trajectories.

Since the relative performance is of great importance and it is not that easy to see notable
differences in 3.5, it is sensible to illustrate the difference of both error plots. The results
are shown in Figure 3.6.
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Figure 3.5: Depiction of the difference between the two heat-maps in Figure 3.5. It
is the mean squared error, averaged for all trajectories in the dataset.
Higher values indicate that the PriMos outperformed the unmodified
parameter-space PCA by a greater amount.

Notably, there are no values where the movement-space PCA outperforms the PriMo
approach. This is according to expectation, as the calculation of α is constrained on the
reconstruction error on the original trajectories. The evaluation furthermore suggests
that Principal Movement Primitives are especially advantageous with a low number of
components used. In conclusion, the PriMo framework appears to be more accurate
than the movement space PCA and all further comparisons can be done using the PriMo
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approach.

3.3 Comparison With Joint-Space PCA

As Principal Movement Primitives pose an alternative order of performing parameterization
and dimensionality reduction compared to the joint space approach, key differences are
of great interest. At its core, the Principal Movement Primitives approach intends to find a
considerably small representation of movements. Therefore comparing the total number of
parameters to describe the aforementioned trajectory. Reducing the data’s size using the
joint space PCA results in the use of c× f parameters in total, whereas PriMos compress
it into a parameter vector of length c. We evaluated the minimum number of parameters
needed so that the NRMSE stays below a certain threshold. The Normalized Root Mean
Squared Error, or NRMSE for short is obtained by

NRMSE =
RMSE

σD
,

where RMSE is the Root Mean Squared Error of the model’s reconstruction and σD is
the standard deviation of the dataset. This normalization allows for a better comparison
between errors of different datasets. Similar to Section 3.2 we averaged the NRMSE for
all trajectories in the dataset as the basis of the parameter-use analysis. Figure 3.7 shows
the minimum total number of parameters necessary so that the error does not exceed a
certain NRMSE for the Darias data.
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Figure 3.6: Evaluation of both movement space and joint space reduction methods
on number of total parameters necessary for respective error to satisfy
normalized error bound on the Darias dataset.

The empirical evaluation of Figure 3.7 suggests that PriMos use significantly less total
parameters, compared to the joint space method.
However, the Darias set only consists of just 20 trajectories of the right robot arm per-
forming similar movements. A great amount of similarity between the movements seems
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very likely. As PriMos reduce the dimensionality on the movement’s resemblance, we
would expect them to be a suitable approach.
Testing the method on a substantially more high-dimensional set of movements is, there-
fore, necessary to infer the possible use cases for PriMos. For this purpose, we perform
the calculation of the first number of parameters to fall below some normalized error
bound ϵ again on the CMU 143 dataset. We test this on the averaged NRMSE for every
trajectory in the CMU 143 dataset. It contains 42 movements on 62 degrees of freedom,
performing a variety of different actions, like climbing ladders, running and even dancing.
These movements differ significantly from another, so the PriMos approach can not make
use of movement resemblance. Similar to Figure 3.7, we normalized the empirical error
by dividing by the dataset’s standard deviation. The evaluation is depicted in Figure 3.8.
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Figure 3.7: Evaluation of both methods on number of total parameters necessary
for respective normalized error to satisfy error bound on the CMU 143
dataset.

The most notable difference is the smaller error range on high-dimensional data. Fur-
thermore, both methods perform worse on the CMU 143 trajectories. At an NRMSE
threshold of 0.15, joint-space PCA requires almost 60 parameters. On the Darias data,
the same method reached an error of 0.1 with less than 20 parameters. At an error of
approximately 0.225 the PriMos plot stops. This means that the error will not be reached
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anymore, even if using all available components and basis functions. The joint-space
PCA method, however, is still able to work within the error bound. The reason for the
joint-space approach performing better on this high dimensional dataset is caused by a
high coupling in the joint-space executing complex movements with a high number of
degrees of freedom.

3.4 Comparison With ProMPs

Both, ProMPs and PriMos, describe a trajectory in parameter-space and are able to model
the movement’s variance. Therefore it is interesting to compare the respective variance.
We are concerned with the movement’s variance Var(τ ). For the ProMPs this variance is
obtained by

Var(τ ) =Varw(Φw)

=ΦVarw(w)Φ⊺.

Similarly, the movement-variance can be calculated using

Var(τ ) =Varα(Φµ+ΦM⊺α)

=Varα(ΦM⊺α)

=ΦM⊺Varα(α)Φ⊺M .

The respective variances for w and α can be extracted from both parameters’ covariance
matrices. In Figure 3.9 we compare the calculated variance of both methods by plotting
the 95 % quantile of the corresponding standard deviation

√︁
Var(τ ) of some robot joints.
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Figure 3.9 indicates that the ProMPs have the largest variance. This implies that sampling
randomly from ProMPs a larger set of movements can be generated. This can be undesirable
because not every trajectory created in this way is guaranteed to be safe for the robot to
execute. At worst, unsafe movements could damage the environment or the robot itself.
By contrast, the standard deviation of PriMos is smaller, especially while using a low
number of components c, as can be observed in the first column of Figure 3.9. Any
generated trajectory will, therefore, be more similar to the mean movement. These
trajectories are in general safer. With an increasing number of components the standard
deviation of the PriMos increases. If c = f , the PriMos’ standard deviation will be identical
to that of the ProMPs, as can be seen in the second row of Figure 3.9. As a result, the
probabilistic sampling using PriMos is a versatile approach since the number of components
can be selected according to the task at hand.
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4 Discussion

4.1 Conclusion

We introduced Principal Movement Primitives and derived its analytical solution. We
showed that this approach is able to parameterize movements in a very compact way that
is especially advantageous in a setting that uses a set of similar movement behaviors. The
repeated execution of robot manipulation tasks, for example, would be a possible use
case for PriMos. We evaluated PriMos on different datasets. As a set of high-dimensional
data, we used humanoid movements obtained by motion capture techniques. Additionally,
we gathered low-dimensional with high movement-correlation by defining and executing
a robot task. Our experiments on these datasets suggested that PriMos are able to
produce comparable errors using a lower number of parameters compared to a joint-space-
reduction approach. Furthermore, we compared different methods of dimensionality
reduction with PriMos and discussed the results. We described how to employ PriMos in a
probabilistic context and showed the possibility of generating random trajectories using a
compact representation of its covariance matrix. Finally, we presented a setup that would
allow PriMos to be used together with RL agents so they can make use of concise action
representation and therefore work in a computationally more efficient way.

4.2 Future Work

Although we used PCA throughout this work, the PriMos framework is not limited to this
method of dimensionality reduction. There is a large number of algorithms and approaches
that are concerned with dimensionality reduction problems and it would be interesting to
see other methods used in PriMos instead of the standard PCA. One alternative approach
to reducing the data’s dimensionality would be by using an Autoencoder [8, 4]. These
neural networks may be able to find advantageous subspaces since they are nonlinear
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approaches.
Furthermore, the combination of PriMos and RL algorithms remains to be evaluated. Pri-
Mos could be used for the agent’s action representation, so the RL-agent only handles low
dimensional computation. The setup could be an episodic RL task, like grasping or placing
an object. A suitable RL algorithm like Relative Entropy Policy Search [24] could be used
to optimize a suboptimal initial policy, that has been obtained using imitation learning.
The agent then tries to perform an action that is better than the human demonstration it
has been presented.
Likewise, a step-based RL task could be considered by constructing a problem that would
require the agent performing sequential actions. In this setting an off-policy algorithm like
NOPG [31] could be employed in order to make use of a sample efficient policy gradient
method.
Both RL experiments could be evaluated on their sample efficiency as well as the compu-
tational efficiency using PriMos and other methods of dimensionality reduction.
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5 Appendix

5.1 Derivations

5.1.1 Ridge Regression

In the PriMos approach ridge regression is used on trajectories y of different dimensionality.
Let n denote the number of data-points in y. For every y n may vary by a substantial
amount. Similarly, the number of parameters d might differ. The penalization of the ridge
term is affected by these dimensions, so we want to determine a scaling of λ that accounts
for the potential differences.
We seek a vector w so that

w∗
ridge = arg minw

1

n

(︂
Φw − y

)︂⊺(︂
Φw − y

)︂
+

λ

d
w⊺w

holds. To achieve this it is reasonable to form the derivative with respect to our parameters
and set the result equal to zero. The formulation of the gradient can be restructured as
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follows

∇w

[︂ 1
n

(︂
Φw − y

)︂⊺(︂
Φw − y

)︂
+

λ

d
w⊺w

]︂
= ∇w

[︂ 1
n

(︂
w⊺Φ⊺ − y

)︂(︂
Φw − y

)︂
+

λ

d
w⊺w

]︂
= ∇w

[︂ 1
n

(︂
w⊺Φ⊺Φw −w⊺Φ⊺y − y⊺Φw + y⊺y

)︂
+

λ

d
w⊺w

]︂
= ∇w

[︂ 1
n

(︂
w⊺Φ⊺Φw − 2y⊺Φw + y⊺y

)︂
+

λ

d
w⊺w

]︂
=

1

n
(∇w [w⊺Φ⊺Φw]− 2∇w [y⊺Φw] +∇w [y⊺y]) +∇w

[︃
λ

d
w⊺w

]︃
=

1

n
(∇w [w⊺Φ⊺Φw]− 2∇w [y⊺Φw]) +∇w

[︃
λ

d
w⊺w

]︃
=

1

n
(∇w [w⊺Φ⊺Φw]− 2∇w [y⊺Φw]) + 2

λ

d
Iw

=
1

n
(2Φ⊺Φw − 2∇w [y⊺Φw]) + 2

λ

d
Iw

=
2

n
(Φ⊺Φw −Φ⊺y) + 2

λ

d
Iw

The solution is then obtained by

2

n
(Φ⊺Φw −Φ⊺y) + 2

λ

d
Iw = 0

⇔ 2

(︃
1

n
Φ⊺Φ+

λ

d
I
)︃
w =

2

n
Φ⊺y

⇔ w =
1

n

(︃
1

n
Φ⊺Φ+

λ

d
I
)︃−1

Φ⊺y

⇔ w =
(︂
Φ⊺Φ+

n

d
λI
)︂−1

Φ⊺y
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