
A Gaussian Mixture Model
Approach to Off-Policy Policy
Gradient Estimation
Master-Thesis von Stephane Tekam Feudjo
Tag der Einreichung: 8. Juli 2020

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Prof. Dr. Alexandra Schwartz
3. Gutachten: M.Sc. Samuele Tosatto

A Gaussian Mixture Model Approach to Off-Policy Policy Gradient Estimation

Vorgelegte Master-Thesis von Stephane Tekam Feudjo

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Prof. Dr. Alexandra Schwartz
3. Gutachten: M.Sc. Samuele Tosatto

Tag der Einreichung:

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-12345
URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/1234

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 2.0 Deutschland
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Erklärung zur Abschlussarbeit gemäß §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Stephane Tekam Feudjo, die vorliegende Master-Thesis ohne Hilfe Dritter
und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher
oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs.2 APB) ein Täuschungsversuch vorliegt,
der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird.
Abschlussarbeiten dürfen nur einmal wiederholt werden.
Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte elek-
tronische Fassung überein.

Thesis Statement pursuant to §23 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I, Stephane Tekam Feudjo, have written the submitted thesis
independently. I did not use any outside support except for the quoted literature and other sources
mentioned in the paper. I clearly marked and separately listed all of the literature and all of the
other sources which I employed when producing this academic work, either literally or in content.
This thesis has not been handed in or published before in the same or similar form.
I am aware, that in case of an attempt at deception based on plagiarism (§38 Abs. 2 APB), the
thesis would be graded with 5,0 and counted as one failed examination attempt. The thesis may
only be repeated once.
In the submitted thesis the written copies and the electronic version for archiving are identical in
content.

Datum/Date 8. Juli 2020

Unterschrift des Autors/Signature of author

Abstract
Despite the significant advances in state-of-the-art reinforcement learning, sample efficiency re-
mains an essential issue in the development of reinforcement learning algorithms. This problem
turns out to be more evident when sampling is costly. In theory, Off-policy methods deliver a
learning scheme capable of higher sample efficiency. However, the state-of-the-art off-policy gra-
dient estimation either suffers high bias (semi-gradient approaches) or high variance (importance
sampling). A recent approach, based on non-parametric density estimation, delivers a better bi-
as/variance tradeoff. Still, non-parametric methods do not scale well with dimensionality. Hence
they have limited applicability. Our proposed solution is to approach the density estimation via
Gaussian Mixture Models, which scale better while avoiding the problems of importance sampling
and semi-gradient techniques. We empirically analyze the quality of the gradient estimation on a
set of classical control tasks.

ii

Acknowledgments
I want to thank my thesis advisor M.Sc. Samuele Tosatto for his invaluable support and guidance.
I would also like to acknowledge Prof. Dr. Alexandra Schwartz of the Department of Mathematics
and Prof. Dr. Jan Peters of the Department of Computer Science. They made this thesis possible.
I am grateful for their valuable comments on this thesis.

The experiments could not have been possible without the services of the Lichtenberg High Per-
formance Computer of TU Darmstadt. I am grateful for the computing resources.

Finally I express my profound gratitude to my parents and to my friends for their continuous
encouragement throughout my years of study.

iii

Contents
Erkärung zur Abschlussarbeit . i

1. Introduction 2

2. Foundations 3
2.1. Reinforcement Learning . 3
2.2. Markov Decision Process . 4
2.3. Value Functions and Bellman Equations . 5
2.4. Policy Optimization . 9
2.5. Gaussian Mixture Regression (GMR) . 12

3. Related Works 19

4. Policy Gradient Estimation via Gaussian Mixture Regression 21
4.1. Problem Statement . 21
4.2. Gaussian Mixture Model Bellman Equation . 22

5. Experiment 30
5.1. Software Details . 30
5.2. The Swing-up Pendulum . 30
5.3. Linear Quadratic Regulator (LQR) . 31
5.4. Value Function Prediction . 31
5.5. Gradient Analysis . 35
5.6. Learning Curves . 37

6. Conclusion 39

Bibliography 41

A. Appendix 44
A.1. Pendulum configurations . 44
A.2. LQR Configurations . 45
A.3. Proof of the invertibility of Λπθ . 45

iv

Figures and Tables

List of Figures

2.1. A general RL framework. 3
2.2. An example of a simple Markov decision process. 5
2.3. Type of covariance matrix. 13
2.4. Density estimation via GMM. Using 5 components, the model is partitioned into

different clusters. 15

5.1. A stable pendulum. 30
5.2. Data distribution and density in a grid. 32
5.3. Value function prediction with uniform grid data and 200 Gaussians. 32
5.4. Data distribution and density of samples generated from a random policy. 33
5.5. Policy evaluation of randomly generated data (16000 samples) and 200 components. 33
5.6. Data distribution and density of samples generated from a deterministic linear policy. 34
5.7. Value function estimated in the LQR task with 40000 samples and 70 components. 35
5.8. Gradient direction with respect to ground truth for the pendulum environment.

100 policies parameters are used. 36
5.9. Gradient direction with respect to ground truth for the LQR environment. 40

policies parameters are used. 36
5.10. Average return Jπθ per iteration performed over 6 experiments with 95% confidence

interval on data sampled from a uniform grid. 37
5.11. Average estimated return Ĵπθ per iteration with 95% confidence interval on data

from a uniform grid. 38

List of Tables

A.1. Parameters for policy evaluation under a uniform grid dataset. 44
A.2. Parameters for policy evaluation using data generated randomly. 44
A.3. Configurations for the LQR experiment. 45

v

Abbreviations, Symbols and Operators

List of Abbreviations

Notation Description

BR Bayes rule

eqn equation

GMM Gaussian Mixture Model

GMR Gaussian Mixture Regression

i.i.d. independently and identically distributed

LQR Linear Quadratic Regulator

MDP Markov Decision Process

MRP Markov Reward Process

RL Reinforcement learning

List of Symbols

Notation Description

θ vector of parameters from a probability distribution

List of Operators

vi

Notation Description Operator

ln the natural logarithm ln (•)

1

1 Introduction
RL has made overwhelming progress in recent years [1, 2]. For example, it is being used to teach
computers to control robots in simulation [3]. Moreover, advanced algorithms for strategic games
were successfully designed using this approach [4]. However, the vast majority of RL approaches
are successful in simulated tasks, where it is possible to retrieve a large number of samples and to
safely interact with the environment. For real-world applications, state-of-the-art RL techniques
are not yet able to deliver satisfying results. This limitation is due to the general sample inefficiency
of RL, and to its incapability to deliver safe exploration in early stages.

The main reason is that the vast majority of RL algorithms are on-policy. On-policy techniques
are constrained to use the optimization policy to interact with the system: this is the primary
cause to sample inefficiency as after each policy update, one needs to further interact with the
environment, and at the same time hinders safe interaction.

These limitations can be potentially overcome by off-policy RL. In off-policy techniques the be-
havioural policy is detached to the optimization policy, allowing a safe collection of the sample
from an expert (either a human or a hand-crafted policy), and granting sample reuse in the policy
update process.

One of the main techniques to obtain off-policy updates, is via policy gradient methods, which
update the policy using a gradient ascent algorithm. However the off-policy gradient estimation
is non-trivial. The current state-of-the-art can be divided in two main categories: semi-gradient
estimation (SG), and path-wise importance sampling (PWIS). SG techniques, like OffPAC [5] and
Deep Deterministic Policy Gradient [6, 7] deliver biased estimate of the gradient. Such bias is
critical and causes failure in more complex off-policy datasets [8]. On the other hand, the estimate
delivered by PWIS is affected by high variance, and further more, importance sampling requires
known stochastic behavioral policies, impeding human demonstrations for data collections.

In this thesis we develop a method which overcomes both these limitations. In detail, we propose
a full-gradient estimation of the objective function, which is less subject to both bias and variance.
We build this estimation on a closed form solution of the value function, which allows to express
the full-gradient w.r.t. the policy’s parameters.

We test our method both on classic benchmarks such as the swing-up pendulum as well as a
2-dimensional LQR problem.

2

2 Foundations

2.1 Reinforcement Learning

RL is a decision problem where an agent is interacting in an environment, and at each interaction,
it observes a reward. The goal is to maximize cumulative rewards. More in detail, at each time
step, the agent interacts with the environment by performing an action a. At each time step, it
interacts with the environment by performing an action, which results to a transition in the next
state s’, and a reward (which is a scalar valued function). This reward measures the performance
of the agent at each step. The agent decides which action to take by using a function that describes
its behaviour (policy). A policy can be deterministic or stochastic. A deterministic policy takes
a state as input and outputs a single action, whereas a stochastic policy outputs a distribution
over actions. The agent tries to find the maximum reward while interacting with the environment
through numerous trials and error. The main objective of RL is to define the best sequence of
decisions that allow the agent to solve a problem while maximizing the long term reward (i.e. to
find an optimal policy that maximizes the numerical reward). A Rl can be viewed as a sequential
decision problem under uncertainty. At each sequence, the agent decides on an action to take, thus
the numerous trials and errors results to uncertainty. The figure below illustrates the interaction
of the agent with the environment.

Agent

Environment

action(At)state(St+1)

reward(Rt+1)

Figure 2.1.: A general RL framework.

As an example, let us consider the pendulum task whose target is to keep a frictionless pen-
dulum standing. In this problem, the pendulum’s angle and the angular velocity capture the
state s of the problem. The action u consist of a continuous torque u ∈ [−2, 2]. The reward
is a scalar objective function that depends on the pendulum’s angle, velocity and action. A
function π that generates the torque based on the current angle and angular velocity is called the
policy . The optimal policy will produce a sequence of actions that will keep the pendulum upright.

In the section that follows, we introduce the Markov Decision Process (MDP), which is the formal
definition of the RL problem.

3

2.2 Markov Decision Process

The Markov decision process (MDP) allows us to model how the state of a stochastic system
changes when an agent acts or controls this system by selecting and applying an action. But
before defining an MDP it is important to get some intuition by defining a Markov reward process
(MRP). Both an MDP and an MRP satisfy the Markov decision property.

Definition 1. (Markov Property) A state St satisfies the markov property if and only if

P (St+1 | St) = P (St+1 | S1, · · · , St)

In other words, all the information required to make a decision is included in the present state,
not in the past.

Definition 2. A Markov reward process is a tuple < S ,R , P, γ, µ0 >

• S is the state space.

• P : S × S → [0, 1] is the transition function.

• R: S → R is the reward function.

• γ ∈ [0, 1) is a discount factor.

where S is a set of all possible states of the environment; P (s′|s) represents the probability of
observing the state s′ given that the agent is in state s. R(s) is a random mapping between the
state and the reward signal.

The Markov decision process formally describes the RL problem. It is an MRP with actions. For
a fixed policy, a MDP becomes a MRP.

Definition 3. An MDP is a tuple < S ,A , R, P, γ, µ0 > where S is a set of all possible states
of the environment; A a set of actions that are available to the agent; P (s′|s, a) represents the
probability of observing the state s′ after the application of the action a in state s

P (s′|s, a) = P[St+1 = s′ | St = s, At = a]. (2.1)

R(s, a) is the stochastic mapping between state-action pairs and the real-valued reward signal

R : S ×A 7→ R
(s, a) 7→ R(s, a) = E[Rt+1 | St = s, At = a]. (2.2)

The discount factor γ ∈ [0, 1) determines the importance of immediate versus future rewards.
If this factor is close to 0 the agent is concerned with only maximizing the immediate rewards.
A value of γ close to 1 leads to a strong consideration of future rewards (the agent becomes
far-sighted). µ0 represents the initial state distribution. Associated to an MDP is the maximum
number of time steps T ∈ N∪{∞}. When T ∈ N, the setting is said to be a finite horizon setting.
Else it is referred to as an infinite horizon setting. Furthermore, the state and action spaces can
either be continuous or discrete.

4

Figure 2.2.: An example of a simple Markov decision process.

In this section we represented the Markov reward process and the Markov decision process. The
former captures an environment in which no actions are taken, and the later allows us to model
the evolution dynamics of a stochastic system controlled by selecting and applying actions.
It should be noted that an MDP models the problem, not the solution. A policy π is the solution
to an MDP. A stochastic policy is defined as

π : S → P (A)
s 7→ π(a | s) = P(At = a | St = s),

where P is the probability over the set of actions. While a deterministic policy is given by

π : S → A
s 7→ π(s).

An agents behaviour is determined by the policy, which encodes a deterministic or a stochastic
mapping between the state space and the action space.

2.3 Value Functions and Bellman Equations

The discounted return of a policy in the infinite horizon case at time step t is given by,

Gt =
∞∑
k=0

γkRt+k+1.

The discount factor guarantees the convergence of the infinite sum [9]. Solving an MDP is equiv-
alent to searching for an optimal policy (i.e. a policy that maximizes the expected discounted
return). The expectation here accounts for the stochasticity in the environment as well as in the
policy

Jπ = E
 ∞∑
k=0

γkRt+k+1

 (2.3)

where At ∼ π(St), St+1 ∼ P (·|St, At) and Rt ∼ R(St, At).

5

Value Functions

Value functions are an essential concept for determining optimal policies. For a fix policy π, the
state value function Vπ : S → R of an MDP is the expected return when an agent starts from a
state s, and follows the policy π,

Vπ(s) = E
 ∞∑
k=0

γkRt+k+1 | St = s

 .
Likewise, for some fix policy π, the action-value function Qπ : S × A → R describes the
average discounted cumulative reward when the agent starts in state s, takes action a and then
act according to policy π,

Qπ(s, a) = E
[∞∑
t=0

γkRt+k+1 | St = s, At = a

]
.

Following [10] we define µπ(s) = ∑∞
t=0 γ

tPr(St = s|S0, π) with S0 ∼ µ0, as the state distribution
function induced by policy π.
The state value function and the action-value function respectively indicate how good it is to be
in a state and how good it is to perform an action in a state, while taking into account the future.
The Bellman equations can be used for an efficient computation of the value functions.

Bellman Equation

Value functions can be computed in a recursive way. Because of the Bellman Equation, the state
value function at a specific state can be expressed as a function of the value function computed
in the next state [11]. Given a MDP < S ,A , R, P, γ, µ0 > and a policy π, we obtain an MRP
with

Rπ(s) =
∫
a∈A

π(a | s)R(s, a)da, (2.4)

Pπ(s′ | s) =
∫
a∈A

π(a | s)P (s′ | s, a)da.

Theorem 1. (The rule of iterated Expectations) [12] For random variables X and Y , assuming
the expectations exist, we have that

E [E [Y | X]] = E [Y] .

Generally, for any function r(x, y) we have

E [E [r(X, Y) | X]] = E [r(X, Y)] .

Proof. See [12].

6

We then proceed to derive the Bellman equation as in [11].

Vπ(s) = E [Gt | St = s]
= E

[
Rt+1 + γRt+2 + γ2Rt+3 + · · · | St = s

]
= E

Rt+1 + γ
∞∑
k=0

γkRt+k+2 | St = s

= E [Rt+1 + γGt+1 | St = s]
= E [Rt+1 | St = s] + γE [Gt+1 | St = s] .

From Eqn 2.4 we obtain:

E [Rt+1 | St = s] =
∫
a∈A

π(a | s)E [Rt+1 | St = s, At = a] da.

By the rule of iterated expectations, we have

E [Gt+1 | St = s] = E [E [Gt+1 | St+1 = s′] | St = s] .

Hence

E [Gt+1 | St = s] = E [Vπ(s′) | St = s]

=
∫
s′∈S

Vπ(s′)Pπ(s′ | s)ds′

=
∫
a∈A

π(a | s)
∫
s′∈S

Vπ(s′)P (s′ | s, a)ds′da.

It follows that

Vπ(s) =
∫
A
π(a | s)

(
R(s, a) + γ

∫
S
Vπ(s′)P (s′ | s, a)ds′

)
da

= Rπ(s) + γ
∫
s′∈S

Vπ(s′)Pπ(s′ | s)ds′. (2.5)

Similarly we derive the Bellman equation for the action-value function as follows:

Qπ(s, a) = E [Gt | St = s, At = a]
= E

[
Rt+1 + γRt+2 + γ2Rt+3 + · · · | St = s, At = a

]
= E [Rt+1 + γGt+1 | St = s, At = a]
= R(s, a) + γE [Gt+1 | St+1 = s′]

= R(s, a) + γ
∫
a′∈A

π(a′ | s′)E [Gt+1 | St+1 = s′, At+1 = a′] da′

= R(s, a) + γ
∫
s′∈S

∫
a′∈A

π(a′ | s′)Qπ(s′, a′)dads′ (2.6)

The relation between the action-value function and the state value function is given by the following
equations.

Vπ(s) =
∫
a∈A

π(a | s)Qπ(s, a)da, (2.7)

Qπ(s, a) = R(s, a) + γ
∫
s′∈S

Vπ(s′)P (s | s′, a)ds′. (2.8)

7

Proof. Vπ(s) is the expected return, from a fixed state s. Let the set of actions that can be taken
in state s be A (s). Associated to each a ∈ A (s) is an action value Q(s, a), and the probability
of choosing the action. This probability is defined by the policy π(a | s). It follows that the value
of being in state s is the average over the actions. Hence

Vπ(s) =
∫
a∈A

π(a | s)Qπ(s, a)da.

Conversely, Eqn 2.8 follows directly from Eqn 2.6 and Eqn 2.7:

Qπ(s, a) = R(s, a) + γ
∫
s′∈S

∫
a′∈A

π(a′ | s′)Qπ(s′, a′)dads′

= R(s, a) + γ
∫
s′∈S

Vπ(s′)P (s | s′, a)ds′.

Consider for simplicity a finite state space of dimension ds , and a deterministic policy π. Then
the value function can be viewed as a vector space [13] with coordinates [Vπ(s1), · · ·Vπ(sds)]. The
Bellman operator for the policy π is defined by

Lπ : Rds → Rds

(Lπ)Vπ(s) = R(s, π(s)) + γ
∑
s′∈S

P (s′ | s, π(s))Vπ(s′) s ∈ S .

From Eqn 2.5, Vπ(s) = R(s, π(s)) + γ
∑
s′∈S Vπ(s′)P (s′ | s, π(s)).

Hence we obtain a vector form of the Bellman equation LπVπ = Vπ which is a linear system of
equations, and can directly be solved using methods such as conjugate gradient,

Vπ = Rπ + γPπVπ,

Vπ = (I − γPπ)−1Rπ,

where

Vπ =

Vπ(S1)

...

Vπ(Sds)

 , Rπ =

Rπ(S1)

...

Rπ(Sds)

 , Pπ =

Pπ(S1 | S1) · · · Pπ(Sn | S1)

...

Pπ(S1 | Sn) · · · Pπ(Sn | Sn)

 .

The goal is to compute the optimal policy, not just the value function for a given policy. If we
know the optimal value function, we can easily derive the optimal policy.
The optimal state value function is given by

V ∗(s) = sup
a∈A
{R(s, a) + γ

∑
s′∈S

V ∗(s′)P (s′ | s, a)}. (2.9)

The Bellman optimality operator L∗ : Rds → Rds on a vector V is given by

(L∗V)(s) = sup
a∈A
{R(s, a) + γ

∑
s′∈S

V (s′)P (s′ | s, a)}.

8

As a result of L∗, Eqn 2.9 can be written in compact form.

L∗V ∗ = V ∗

As compared to the linear operator L, L∗ is a non-linear operator, because of the sup function.
Hence V ∗ cannot be solved using linear methods. Exploiting the fact that V ∗ is a fixed point of
L∗ and making use of dynamic programming with the recurrence relation

V k+1
π (s) = R(s, π(s)) + γ

∑
s′∈S

V k
π (s′)P (s′ | s, π(s)), k ≥ 0

a sequence of functions is generated,
Vk+1 = L∗Vk,

and the optimal value function can be obtained in polynomial time. L and L∗ are contractions [13],
and due to Banach’s fixed point theorem, limk→∞ Vk = V ∗.

Theorem 2. (Banach Fixed Point) Suppose U is a Banach space and T : U → U is a contraction
mapping. Then

• there exists a unique v∗ in U such that T v∗ = v∗.

• for an arbitrary v 0 ∈ U , the sequence v k converges to v∗

Proof. The proof of this theorem can be found in [14]

In this chapter, we reviewed the mathematical background of reinforcement learning. An RL
problem is formulated as an MDP. The solution of an MDP is a policy that maximizes Eqn (2.3).
The state value function measures the performance of a policy at a state, while the action-value
function measures the performance of a policy for each state-action pair. One can infer the opti-
mal policy from the optimal value function π∗ = arg maxπ Vπ(s), π∗ = arg maxπQπ(s, a). This
optimal value function can be computed efficiently via the Bellman equations (2.5) and (2.6)).
Thanks to Banach’s fixed point theorem we are sure to find the optimal value function via dy-
namic programming in polynomial time. Algorithms that infer the optimal policy from the value
functions are called value based methods.

For simplicity, we considered a finite MDP. This model has limitations, as the state and action
spaces in the real world are often continuous. We look at algorithms that find the optimal policy
by directly parameterizing the policy function and searching through the policy space.

2.4 Policy Optimization

In the real world where the action and state spaces are continuous and have large dimensions, it
is not possible to enumerate all these spaces in order to get an exact solution. Function approx-
imation solves the problem in large spaces. In the case of policy search methods, the policy is
represented by a parametric function πθ(a | s), where θ is a vector of parameters. In this setting,
searching for the optimal parameter is equivalent to searching for the optimal policy. The optimal
parameter can be found via the gradient ascent algorithm, which is based on the classic gradient
descent algorithm. The difference is at the level of the update rule. While in gradient descent we

9

minimize the gradient by taking steps opposite to the direction of the gradient, in gradient ascent,
we maximize the objective function by moving in the direction of the gradient. The objective
function is the value function averaged over the state distributions.

Jπθ =
∫
s∈S

µ0(s)Vπθ(s)ds,

where µ0 is the initial state distribution.
Computing the gradient ∇θJπθ is problematic since it depends on the state distribution, which in
turn depends depends on the target policy. As a result, the distribution changes after each policy
update [10]. The policy gradient theorem provides an estimate for the gradient of the objective
function Jθ.

Theorem 3. (Policy Gradient Theorem) [10] For any MDP,

∇θJθ =
∫
S

∫
A
µπθ(s)∇θπθ(a|s)Qπθ(s, a)dads.

Proof. We first derive the gradient of the state value function.

∇θVπθ(s) = ∂Vπθ(s)
∂θ

= ∂

∂θ

∫
a∈A

π(a | s)Qπθ(a)da (2.7)

=
∫
a∈A

[
∂πθ(a | s)

∂θ
Qπθ(s, a) + πθ(a | s)

∂

∂θ
Qπθ(s, a)

]
da

=
∫
a∈A

[
∂πθ(a | s)

∂θ
Qπθ(s, a) + πθ(a | s)

∂

∂θ

(
R(s, a) + γ

∫
s′∈S

Vπθ(s
′)P (s′ | s, a)ds′

)]
da (2.8)

=
∫
a∈A

[
∂πθ(a | s)

∂θ
Qπθ(s, a) + πθ(a | s)

(
γ
∫
s′∈S

P (s′ | s, a) ∂
∂θ
Vπθ(s

′)ds′
)]
da.

It follows that

∇θVπθ(s) =
∫
a∈A

[
∇θπθ(a | s)Qπθ(s, a) + πθ(a | s)

(
γ
∫
s′∈S

P (s′ | s′, a)∇θVπθ(s
′)ds′

)]
da

(2.10)

Eqn 2.10 has a nice recursive property since we can also express ∇θVπθ(s′) as a function of
∇θVπθ(s′′). That is the gradient of the value function of the current state is expressed as the
gradient of the value function of the next state.
Let ρπθ(s → x, k) denotes the probability for transitioning from state s to state x after k steps
under policy πθ. When k = 1, ρπθ(s→ s′, 1) = ∫

a∈A πθ(a | s)P (s′ | s, a)da.

10

For simplification let ϕ(s) = ∫
a∈A ∇θπθ(a | s)Qπθ(s, a)da. We obtain

∇θVπθ(s) = ϕ(s) +
∫
a∈A

πθ(a | s)γ
∫
s′∈S

P (s′ | s′, a)∇θVπθ(s
′)ds′da

= ϕ(s) +
∫
s′∈S

∫
a∈A

πθ(a | s)γP (s′ | s′, a)∇θVπθ(s
′)dads′

= ϕ(s) + γ
∫
s′∈S

ρπθ(s→ s′, 1)∇θVπθ(s
′)ds′

= ϕ(s) + γ
∫
s′∈S

ρπθ(s→ s′, 1)
[
ϕ(s′) + γ

∫
s′′∈S

ρπθ(s
′ → s′′, 1)∇θVπθ(s

′′)ds′′
]
ds′

= ϕ(s) + γ
∫
s′∈S

ρπθ(s→ s′, 1)ϕ(s′)ds′ + γ2
∫
s′′∈S

ρπθ(s→ s′′, 2)ϕ(s′))∇θVπθ(s
′′)ds′′

... after expanding ∇θVπθ for several steps

=
∞∑
k=0

γk
∫
x∈S

ρπθ(s→ x, k)ϕ(x)dx

with the initial state denoted as s0, it then follows that

∇θJπθ = ∇θVπθ(s0)

=
∞∑
k=0

γk
∫
s∈S

ρπθ(s0 → s, k)ϕ(s)ds

=
∫
s∈S

η(s)ϕ(s)ds where η(s) =
∞∑
k=0

γkρπθ(s0 → s, k)

=
∫
s∈S

η (s)
∫
s∈S

η(s)∫
s∈S η (s) dsdsϕ(s)ds normalizing η(s) results in a distribution

=
∫
s∈S

η(s)∫
s∈S η (s) dsϕ(s)ds

∝
∫
s∈S

µπθ(s)
∫
a∈A
∇θπθ(a|s)Qπθ(s, a)dads

where µπθ(s) = η(s)∫
s∈S η (s) ds is a stationary distribution.

Here Qπ(s, a) can be estimated via Monte-Carlo sampling[15]. However when the policy is up-
dated, the state distribution changes, in order to apply again this policy update, we need to
interact with the environment. This continual interaction with the environment causes a high
sample complexity. To solve this problem, we make use of an off-policy setting, where the agent
learns a target policy, while using samples collected with a behavioral policy. Off-policy gradi-
ent estimation can be further divided in two main classes: the semi-gradient and the importance
sampling correction. which we present in Chapter 3.

On-Policy and Off-Policy Methods

Sample efficiency plays an important role in RL algorithms. Off-policy algorithms are generally
more sample efficient than off-policy algorithms. In an off-policy setting, the target policy π

11

(policy used to train the algorithm) is non-identical to the behaviour policy β (policy generating
the data.). Examples include Q-learning [16], DDPG [7], NOPG [17]. Conversely, in on-policy
methods like SARSA [18], REINFORCE [15] the behaviour policy is the same as the target
policy.
In policy search, on-policy gradient methods perform only one gradient step per environment
sample, while off-policy gradients use the same samples more than once to improve a policy. Since
off-policy methods enable data reuse, they are more sample efficient.

2.5 Gaussian Mixture Regression (GMR)

In this section we introduce the GMR [19, 20] which is a mixture of linear model (i.e. partitions
the input space into sub-regions and fits a linear model in each such region). The basic assumption
made is that the data can be represented by a mixture of a finite number of Gaussian distribution.
Given the input variable X and the output variable Y, GMR first estimates the joint density
function p(x, y) of the independent variable and the dependent variable and then infers the
probability of the output variable conditioned to the input.

Preliminaries

Here we review some basic definitions and theorems on multivariate Gaussian distribution.

Definition 4. A random variable X has a multivariate Normal distribution X ∼ N (µ,Σ), if its
density is given by

p(x;µ,Σ) = 1
(2π)k/2|(Σ)|1/2 exp

{
−1

2(x− µ)TΣ−1(x− µ)
}

where
µ ∈ Rdx, Σ ∈ Rdx×dx is a positive symmetric, positive definite matrix.

The covariance matrix defines the spread and the orientation of the distribution. The number
of parameters of a multivariate gaussian depends on the type of covariance matrix used. Three
different kinds of covariance matrices are frequently used in the literature:

• A model with full a covariance matrix has dx(dx + 1) · 2−1 + dx parameters

• A model with a diagonal covariance matrix has 2 · dx parameters and 0s in the off diagonal.

• A model with a spherical covariance matrix Σ = σ2I has 1 + dx parameters.

For simplicity, let us consider three Gaussians where dx = 2. Each has mean µ =
[
0 0

]ᵀ
and

covariance matrices

Σ1 =

 1 0.8

0.8 1

 , Σ2 =

0.6 0

0 1

 , and Σ3 =

1 0

0 1

 .

12

Figure 2.3.: Type of covariance matrix.

We mention the application of the various covariance matrices further in this section under density
estimation using Gaussian mixture models.

Suppose Z ∼ N (µ,Σ), if we partition Z as Z = (X,Y) then µ = (µx, µy) and

Σ =

Σxx Σxy

Σyx Σyy

 .

Theorem 4. For Z ∼ N (µ,Σ),

• The marginal distribution of X is X ∼ N (µx,Σxx).

• The conditional distribution of Y given X = x is x

Y | X = x ∼ N
(
µy + ΣyxΣ−1

xx (x− µx) , Σyy −ΣyxΣ−1
xxΣxy

)
.

• X and Y are independent if and only if they are uncorrelated.

Density Estimation with Gaussian Mixture Model(GMM)

Definition 5. Given a random variable X , the density function using k Gaussian mixtures is a
convex combination of normal densities defined as

p(x) =
k∑
i=1

zip(x | i),

where p(x|i) = N (x | µi,Σi), p(i) = zi,
k∑
i=1

zi = 1, 0 ≤ zi ≤ 1.

13

zi is the mixing coefficient. It captures the probability of choosing component i. The greater its
value, the more frequent component i will be selected during sampling.
The model is defined by its parameters. Associated to the model is the posterior probability
p(i | x) known as the responsibilities. Given a point x, p(i | x) is the probability that point x is
from component i (i.e., a distribution on which component generated vector x). Following Bayes
rule (BR), the responsibility is given by

p(i | x) = p(i)p(x | i)∑
j p(j)p(x | j) . (2.11)

The density model is completely defined by the parameters µ =
{
µ1, · · · , µk

}
, Σ =

{
Σ1, · · · ,Σk

}
,

and z = {p(i), · · · , p(k)}. Hence estimating the density is equivalent to finding the set of pa-
rameters that maximizes the log of the likelihood function given by

ln p (X | z, µ,Σ) =
N∑
n=1

ln

K∑
i=1

ziN
(
xn|µi,Σi

) , (2.12)

where X is a dataset of N samples.
Eqn 2.12 is maximized via the expectation maximization (EM) algorithm [21]. The intu-
ition behind is straightforward. Given a dataset from a mixture of Gaussians, the param-
eters of each Gaussian can efficiently be computed if one knows from which Gaussian each
observation was generated. Conversely if the data point’s source is unknown (i.e. the only
information available is that the points are from k different Gaussians. However, we do
not know which point belongs to a specific component) and the parameters of the Gaus-
sians are known, a guess can be made on which component generated a fixed data vector.

1 Initialize parameters z, µ,Σ;
2 repeat
3 Expectation step: Given fix parameters, compute the responsibilities p(i | x) ;
4 Maximization Step: Update the parameters using the current responsibilities
5 until Untill convergence;

Algorithm 1: Expectation maximization for Gaussian mixtures.

• Expectation: compute

p(i | xn) = ziN (xn | µi,Σi)∑
j zjN (xn | µj,Σj) .

• Maximization: Update the parameters

µinew = 1
Ni

N∑
n=1

xn,

Σinew = 1
Ni

N∑
n=1

p(i | xn)
(
xn − µinew

) (
xn − µinew

)T
,

znew
i = Ni

N
,

Ni =
N∑
n=1

p(i | xn).

14

EM converges to a local optimum and is numerically stable since the likelihood increases in each
iteration .
The GMM can estimate any density function if given enough components. However, choosing the
number of components manually can be difficult. The number of Gaussian components k can be
chosen efficiently by setting k that maximizes the Bayesian Information Criteria.

Figure 2.4.: Density estimation via GMM. Using 5 components, the model is partitioned into different
clusters.

The time and computational efficiency of this model depends on the dimension (dx) of the data
vector. Which determines the number of parameters of the model. Hence the choice of the co-
variance matrix is an important issue. For large number of parameters, more samples are needed
to train the model. This results in longer training time. The full covariance matrix allows for
correlation (σx1x2) between the features. For this reason, we can avoid the computation cost
relative to the correlation by enforcing the correlation between the random variables to be zero
(e.g. using Diagonal and Spherical covariance matrices) hence less parameters.

It is important to note that setting the correlation parameters of the model to zero, do not influence
the nature of the correlation in the data set. The model will only set the correlation parameters to
zero, and find the remaining optimal parameters. In this setting the model’s learning ability will
be unchanged by increasing the number of Gaussians as illustrated in Figure 2.5b and Figure 2.5a.

15

(a) Full covariance matrix and 2 Gaussians.

(b) Diagonal covariance matrix and 5 Gaussians.

2.5.1 Gaussian Mixture Regression

The joint probability density of two random variables X and Y can be estimated via GMM. Since
the EM algorithm is unsupervised, no distinction is made between the input observation xn and
the output observation yn. Any link between the two random variables can then be estimated by
using the learned density. We are interested in the relation ship between X and Y . The regression
function

m : Rdx → R,
x 7→ m(x) = E(Y | X = x),

16

summarizes this relationship. Our goal is to estimate the regression function from the set of
observations {xn,yn}Nn=1 via GMM. This function is derived as follows

E(Y |X = x) =
∫
y · p(y|x)dy

=
∫
y · p(y,x)

p(x) dy (2.13)

=
∫
y · p(y,x)dy
p(x)

GMM=
∫
y ·∑k

i p(y,x | i)p(i)dy
p(x)

=
∫
y ·∑k

i p(y | x, i)p(x | i)p(i)dy
p(x)

=
∑k
i

∫
y · p(y | x, i)dy · p(x | i)p(i)

p(x)
BR=

k∑
i

∫
y · p(y | x, i)dy · p(i | x)

Thm.4=
k∑
i

(
µiy + Σi

yxΣi
xx
−1(x− µix)

)
· p(i|x)

p(i | x) is the responsibility (Eqn 2.11). Using the notation from [17], and making the assumption
that dy = 1 the above product is vectorized

E(Y |X = x) = εᵀ(x)χ (2.14)

where

εᵀ : Rdx → R1×((1+dx)·k),

x 7→ εᵀ(x) =
[
p(1|x) · · · p(k|x) p(1|x)(x− µ1

x)ᵀΣ1
xx
−ᵀ · · · p(k|x)(x− µkx)ᵀΣk

xx
−ᵀ
]
,

χ =

µ1
y

...

µky

Σ1
yx
T

...

Σk
yx
T

∈ R((1+dx)·k)×1,

where ε is a feature matrix , and χ a vector of parameters. GMR perform the regression by
conditioning the unsupervised density estimate of the GMM. The GMM makes predictions on
new input features by deriving the conditional distribution from the joint density.

17

(a) GMM with 2 components.

(b) Line fitted by GMR.

18

3 Related Works

Off-Policy Semi-Gradient

An important advance in the off-policy gradient estimation was made by the introduction of the
off-policy gradient Theorem [5]. However, the theorem, in order to deliver a tractable estimate,
introduces two approximations. Firstly, it considers a modified discounted infinite horizon return
objective J̃π = ∫

ρβ(s)Vπ(s)ds where ρβ is the stationary state distribution under the behavioral
policy πβ. Secondly, in the derivation of the gradient,

∇θJπ = ∇θ
∫
S
ρβ(s)

∫
A
πθ(a|s)Qπ(s, a)dads

=
∫
S
ρβ(s)

∫
A
∇θπθ(a|s)Qπ(s, a) + πθ(a|s)∇θQπ(s, a)dads (3.1)

≈
∫
S
ρβ(s)

∫
A
∇θπθ(a|s)Qπ(s, a)dads,

the term πθ(a|s)∇θQπ(s, a) is omitted (Equation 3.1). The authors provide a proof that the semi-
gradient converges to the optimal policy in a discrete MDP setting. However, in more complex
scenarios, where also other sources of error are introduced (such as functional approximation of
the critic), the stability is not guaranteed [8].

Path-Wise Importance Sampling

Another technique to deliver an off-policy estimation is by employing importance sampling. More
in detail, one can use a behavioural policy to collect the samples and then correct the probability
of each trajectory using importance sampling [22, 23, 24]. An example of the gradient estimation
with importance sampling is given by

∇θJπ = E
T−1∑
t=0

ρtQπ(st, at)∇θ log πθ(at|st)
 (3.2)

where ρt = ∏t
z=0 πθ(az|sz)/πβ(az|sz). This technique is restricted only to stochastic policies and

requires the knowledge of the behavioural policy πβ. Additionally importance sampling suffers
from high variance, which grows exponentially in the number of steps.

Non-Parametric Off Policy Policy gradient (NOPG)

In [17], a full gradient estimate that does not suffer from the downside of importance sampling
and semi-gradient methods was introduced. Based on a non-parametric Bellman equation, the
closed form solution of the gradient for both deterministic and stochastic policy was computed. A

19

non-parametric bellman equation was previously computed in [25] where they used kernel density
estimation to represent the system. The closed form solution of the value function was computed
as well. But in contrast to Non-Parametric Dynamic Programming (NPDP) [25] that does not
depend on the policy parameter, NOPG expresses the critic as a function of the policy parameter
θ so that the analytic expression of the gradient is derived.

The problem with NOPG lies in the fact that non-parametric methods are not scalable (as there are
as many parameters as the number of samples). Non-parametric regression requires a sample size
that grows exponentially with the dimension of the sample space, thus reducing the performance
of the algorithm. To circumvent this problem, we use Gaussian mixture models which is more
flexible.

Conclusion

In the discrete state space, it is possible to solve for the value functions of a fixed policy directly
using linear solvers. Furthermore optimal value functions can be obtained in polynomial time using
dynamic programming. Unfortunately, exact methods fail to compute the optimal value functions
in continuous spaces. Policy optimization directly maximize the objective function via gradient
ascent by parameterizing the policy directly. The policy gradient theorem expresses the gradient
of the objective with respect to the policy parameter. Two cases of policy gradient exist: on-policy
gradient and off-policy gradient. The former is less sample efficient than the latter. Designing
off-policy gradient algorithms is challenging. Semi-gradient methods suffer from high bias while
importance sampling experiences high variance. Building a non-parametric Bellman equation and
computing the full gradient estimate offers a better solution. However, the performance of non-
parametric methods decreases as the number of samples increases. In the next chapter, we present
an alternative solution that is scalable.

20

4 Policy Gradient Estimation via Gaussian
Mixture Regression

In this chapter we present an off-policy method, with a full gradient estimate using GMM. Solving
this optimization problem requires the integral of a non-linear function that is generally intractable.
Two approaches are presented to handle this complexity. We follow the notation introduced in
[17] and [26].

4.1 Problem Statement

RL algorithms are not yet able to deliver satisfying results in the real world. One of the reasons
is due to their sample inefficiency (i.e they require a large number of samples to learn). Off-policy
methods are of great importance in the design of RL algorithms. Sample efficient algorithms are
designed via off-policy methods because these methods are able to learn about an optimal policy
while following an exploratory policy, and learn under human guidance [27].

The goal of the learning agent is to maximize the return (Eqn. 2.3). In the off-policy setting the
performance objective is adjusted to be the value function of the target policy averaged over the
state distribution

Jπθ =
∫
S
µ0(s)Vπθ(s)ds,

where µ0(s) is the initial state distribution. The policy πθ is a differentiable function of a weight
vector θ ∈ Rdθ . The value function Vπθ depends on the nature of the target policy. If the
target policy is stochastic, integration is over the state and action spaces and the value function
is obtained by solving the Bellman equation:

Vπθ(s) =
∫
A
πθ(a|s)

(
R(s, a) + γ

∫
S
Vπθ (s′)P (s′|s, a) ds′

)
da.

If the target policy is deterministic, we avoid the integral over the action space:

Vπθ(s) = R(s, πθ(s)) + γ
∫
S
Vπθ (s′)P (s′ | s, πθ(s)) ds′ ∀s ∈ S .

The aim of the optimization problem is to maximize Jπθ subject to the Bellman equation.

max
θ

Jπθ =
∫
µ0(s)Vπθ(s)ds

s.t Vπθ(s) =
∫
A
πθ(a|s)

(
R(s, a) + γ

∫
S
Vπθ (s′)P (s′|s, a) ds′

)
da ∀s ∈ S .

(4.1)

21

For a deterministic policy, the constraint (Eqn. 4.1) becomes

Vπθ(s) = R(s, πθ(s)) + γ
∫
S
Vπθ (s′)P (s′ | s, πθ(s)) ds′ ∀s ∈ S . (4.2)

Gradient ascent is used in the literature to solve the optimization problem. At each iteration, the
update rule is given by

θ ← θ + α∇θJπθ .

Computing the gradient (∇θJπθ) of the objective function analytically is unfeasible, except under
special conditions, e.g when the objective function is quadratic and subject to linear constraints
(section 5.3). The set of constraints in the continuous setting is generally neither guaranteed to
be convex, nor linear. As a result, obtaining an expression of the gradient of the performance
objective function with respect to the policy’ s parameter θ is complex [17]. To circumvent this
problem, a closed form solution of the value function via GMR (Eqn. 2.14) that is dependent on
the policy’s parameter is used.

4.2 Gaussian Mixture Model Bellman Equation

In this section we derive a closed form solution of the value function using GMR and use this
solution to estimate the gradient of Jπθ . Let us assume to have a dataset of n samplesD ≡ {xi}ni=1
where xi = (si, ai, ri, s′i, Q(si, ai)), si, s′i ∈ Rds , ai ∈ Rda , ri ∈ R, Q(si, ai) ∈ R. si, ai, ri, s′i are
sampled from the environment. Several methods can be used to estimate Q(si, ai) (e.g temporal
difference, Monte Carlo, approximate dynamic programming).
In Section 2.2 we saw that given an MDP < S ,A , R, P, γ, µ0 > and a fixed policy πθ we have
an MRP < S , Rπθ , Pπθ , γ, µ0 > with

Rπθ(s) =

R(s, πθ(s)) if πθ is deterministic∫
a∈A R(s, a)πθ(a | s)da if πθ is stochastic,

Pπθ(s
′ | s) =

P (s′ | s, πθ(s)) deterministic policy∫
a∈A P (s′ | s, a)πθ(a | s)da stochastic policy.

From the definition of the reward function, the transition probabilities (Eqn. 2.2 and 2.1), and the
definition of the conditional expectation of a continuous random variable (Eqn 2.13) , it follows
that

R(s, a) = E [R | S = s, A = a]

=
∫
r∈R

p(r, s, a)
p(s, a) rdr,

and

P (s′ | s, a) = p(s′, s, a)
p(s, a) .

22

To estimate the reward function using GMM the mean and the covariance matrix for the ith
Gaussian component decomposes to

µi =

µis,a
µir

 , Σi =

Σi
(s,a),(s,a) Σi

(s,a),r

Σi
r,(s,a) Σi

r,r

 .
Assume for simplicity that the policy πθ is deterministic. We directly estimate the value and the
reward function at each state with GMR (see Eqn 2.14)

Rπθ(s) = R(s, πθ(s))

≈
∫
r∈R

p(r, s, πθ(s))
p(s, πθ(s))

rdr

=
k∑
i

∫
rp(r | s, πθ(s), i)dr p(i | πθ(s))

=
k∑
i

µir + Σi
r,(s,a)Σi

(s,a)(s,a)
−1

 s

πθ(s)

−
µis
µia

 p(i|s, πθ(s))

= εᵀπθ(s)r. (4.3)

Similarly,

Vπθ(s) = Q(s, πθ(s))
= E [V | S = s, A = πθ(s)]
≈ εᵀπθ(s)v. (4.4)

where

r =
[
µ1
r · · · µkr Σ1

r,(s,a)
ᵀ · · · Σk

r,(s,a)
ᵀ
]ᵀ
∈ R((1+ds+da)·k)×1,

v =
[
µ1

v · · · µkv Σ1
v ,(s,a)

ᵀ · · · Σkv ,(s,a)
ᵀ
]ᵀ
∈ R((1+ds+da)·k)×1,

εᵀπθ : Rds → R1×((1+ds+da)·k)

s 7→ εᵀπθ(s) =
[
p(1|s, πθ(s)) · · · p(k|s, πθ(s)) p(1|s, πθ(s))

(
xs,πθ(s) − µ1

s,a

)ᵀ
Σ1

(s,a)(s,a)
−ᵀ · · ·

p(k|s, πθ(s))(xs,πθ(s) − µks,a)ᵀΣk
(s,a)(s,a)

−ᵀ
]
,

(4.5)

with

xs,πθ(s) =

 s

πθ(s)

 , µis,a =

µis
µia

 .

23

We denote the estimate of the reward and the value function as follows:

R̂πθ(s) = εᵀπθ(s)r,
V̂πθ(s) = εᵀπθ(s)v, (4.6)

where επθ is a vector valued function that depends of the parameter θ. Consequently its value
changes after each policy update. The vectors r and v on the other hand are independent of the
parameter θ.
We built a closed form solution of the reward function and the value function using the GMR.
Recall that our goal is to express the set of constraints of our optimization problem as a system
of linear equations. To achieve this goal, it remains to find a linear expression for the term∫
S Vπθ (s′)P (s′ | s, πθ(s)) ds′. Solving this integral is intractable since Vπθ(s′) ≈ εᵀ(s′)v and εᵀ
is a non-linear function. We present two methods to compute this integral.

Taylor series Expansion

∫
s∈S

Vπθ (s′)P (s′ | s, πθ(s)) ds′ =
∫
p(s′, s, πθ(s))Vπθ(s′)ds′

p(s, πθ(s))
GMM=

∫ ∑k
i=1 p(s′, s, πθ(s)|i)p(i)Vπθ(s′)ds′

p(s, πθ(s))

=
∫ ∑k

i=1 p(s′|s, πθ(s), i)p(s, πθ(s)|i)p(i)Vπθ(s′)ds′
p(s, πθ(s))

=
k∑
i=1

∫
p(s′|s, πθ(s), i)Vπθ(s

′)ds′p(s, πθ(s)|i)
p(i)

p(s, πθ(s))

BR=
k∑
i=1

p(i|s, πθ(s))
∫
p(s′|s, πθ(s), i)Vπθ(s

′)ds′︸ ︷︷ ︸
B

(4.7)

The term B is an integral of a non-linear function (Vπθ), which is hard to solve. Function Vπθ
can be linearized using the first-order Taylor expansion at a specific point y. The mean of the
next state seems to be a suitable choice, given that it is the point at which the probability density
function is maximum

Vπθ(s
′) ≈ Vπθ(y) + (s′ − y)ᵀ∇s′Vπθ(s

′)
∣∣∣
s′=y

,

with ∇s′Vπθ(s′)|s′=y = ∇Vπθ(y).
By linearizing in µis′ and substituting the value function in Equation(4.7) we obtain
∫
s∈S

Vπθ (s′)P (s′ | s, πθ(s)) ds′ ≈
k∑
i=1

p(i|s, πθ(s))
∫
s∈S ′

p(s′|s, πθ(s), i)(Vπθ(µ
′i
s)+(s′−µis′)ᵀ∇zVπθ(z))|µi

s′
ds′

where

p(s′|s, πθ(s), i) = N (s′|µ,Σ),

with µ = µis′ + Σis′,(s,a)Σi
(s,a)(s,a)

−1(xs,πθ(s) − µis,a),
Σ = Σs′s′ − Σs′(s,a)Σ(s,a)(s,a)

−1Σ(s,a)s′.

24

It follows that

∫
s∈S

Vπθ (s′)P (s′ | s, πθ(s)) ds′ ≈
k∑
i=1

p(i|s, πθ(s))
(
Vπθ(µ

i
s′) + (µis′ + Σis′aΣi(s,a)(s,a)

−1(xs,πθ(s) − µis,a)− µis′)ᵀ∇zVπθ(z)|z=µi
s′

)

=
k∑
i=1

p(i|s, πθ(s))
(
Vπθ(µ

i
s′) + Σis′,(s,a)Σ

i
(s,a)(s,a)

−1(xs,πθ(s) − µis,a)∇zVπθ(z)|z=µi
s′

)

≈
k∑
i=1

p(i|s, πθ(s))
(
εᵀπθ(µ

i
s′)v + Σis′(s,a)Σ

i
(s,a)(s,a)

−1(xs,πθ(s) − µis,a)∇zεᵀπθ(z)|z=µi
s′
v
)

=
k∑
i=1

p(i|s, πθ(s))
(
εᵀπθ(µ

i
s′) + Σis′(s,a)Σ

i
(s,a)(s,a)

−1(xs,πθ(s) − µis,a)∇zεᵀπθ(z)|z=µi
s′

)
v

= εᵀπθ(s)Pπθv,

where

Pπθ =

εᵀπθ(µ
1
s′)

...

εᵀπθ(µ
k
s′)

Σ1
s′,(s,a)

ᵀ∇zεᵀπθ(z)|z=µ1
s′...

Σks′,(s,a)
ᵀ∇zεᵀπθ(z)|z=µk

s′

∈ R(k+k·(ds+da))×(1+ds+da)k,

εᵀπθ(µ
i
s′) ∈ R1×((1+ds+da)·k),

∇zεᵀπθ(z)|z=µi
s′

=

∂ε1
∂z1

· · ·
∂ε(1+ds′)·k

∂z1
... ...
∂ε1
∂zds′

· · ·
∂ε(1+ds′)·k
∂zds′

 ∈ R
(ds+da)×((1+ds+da)k).

Linearizing using Taylor’s first order approximation results to a simple linear equation with a
tractable integral. However this method introduces an error that grows rapidly away from the
operating point (µs′). To avoid this error, we use Monte Carlo method to estimate the integral.
Taylor’s first order approximation is indeed computationally efficient, but provides a high biased
estimation, while Monte Carlo estimation is unbiased but requires many samples to reduce the
variance, hence more computationally demanding.

25

Monte Carlo Estimation

We want to express the term
∫
s∈S Vπθ (s′)P (s′ | s, πθ(s)) ds′ in closed form.∫

s∈S
Vπθ (s′)P (s′ | s, πθ(s)) ds′ Eqn.4.7=

k∑
i

p(i|s, πθ(s))
∫
p(s′|s, πθ(s), i)Vπθ(s

′)ds′

≈
k∑
i

p(i|s, πθ(s))
∫
p(s′|s, πθ(s), i)εᵀπθ(s

′)vds′

=
k∑
i

∫
εᵀπθ(s

′)p(s′|s, πθ(s), i)ds′p(i|s, πθ(s))v

=
k∑
i

∫
εᵀπθ(s

′)p(s′|s, πθ(s), i)ds′p(i|s, πθ(s))v

Notice that, the correlation parameter of the model between the pair {s′, s} and the pair {s′, a}
can be set to zero. It follows from the third point of Thm. (4) that s′ and s are independent.
Moreover, s′ and a are independent. As a result p(s′ | s, πθ(s), i) = p(s′, i). Hence,∫

s∈S
Vπθ (s′)P (s′ | s, πθ(s)) ds′ ≈

k∑
i

∫
S
εᵀπθ(s

′)p(s′|i)ds′p(i|s, πθ(s))v

= εᵀπθ(s)Pπθv (4.8)

where

Pπθ =

∫
εᵀπθ(s

′)p(s′ | 1)ds′
...∫

εᵀπθ(s
′)p(s′ | k)ds′

O

∈ R(k+(ds+da)k)×(1+ds+da)k, (4.9)

O =

0 0 · · · 0
...

0 0 · · · 0

 ∈ R(ds+da)k×((1+ds+da)k)

The product entry in the matrix Pθ is computed using Monte Carlo∫
εᵀ(s′)p(s′ | i)ds′ ≈ 1

Np

Np∑
j=1

εᵀ(s′j),

with s′j ∼ N (µis′,Σi
s′s′).

With the above estimates, the Bellman equation (Eqn. 4.2) becomes

V̂πθ(s) = R̂πθ(s) + γεᵀ(s)Pπθv

We name the above equation to GMR Bellman equation.

26

Theorem 5. The GMM Bellman equation has a fixed point solution given by
V̂ ∗πθ(s) = εᵀπθ(s)Λ

−1
πθ

r
with Λπθ = I− γPπθ

.

Proof. The results follows directly from the derivation above. We show that v = Λπθ
−1r.

V̂πθ(s) = R̂πθ(s) + γεᵀ(s)Pπθv
εᵀ(s)v = εᵀ(s)r + γεᵀ(s)Pπθv

v = r + γPπθv
v = Λπθ

−1r
It follows directly from Eqn. 4.6 that

V̂ ∗πθ(s) = εᵀπθ(s)Λ
−1
πθ

r

See Appendix A.3 for the proof about the invertibility of Λπθ .
We can now substitute the value function in the objective function by its estimate in closed form.

Jπθ =
∫
S
µ0(s)Vπθ(s)ds

≈
∫
S
µ0(s)V̂πθ(s)ds

=
∫
S
µ0(s)εᵀπθ(s)v

∗
πθ
ds, with v∗πθ = Λ−1

πθ
r

=
∫
S
µ0(s)εᵀπθ(s)ds(v

∗
πθ)

Following the notation in [17] we define εᵀπθ,0 = ∫
µ0(s)εᵀπθ(s)ds. This quantity is approximated

using Monte Carlo simulation.∫
S
µ0(s)εᵀπθ(s)ds ≈

1
N I

NI∑
j=1

εᵀπθ(sj) with sj ∼ µ0(s) (4.10)

4.2.1 Policy Gradient Computation

The gradient of the objective function can now be computed analytically using the closed form
solution of V̂ ∗πθ ,

∇θV̂ ∗πθ(s) = ∂

∂θ

(
εᵀπθ(s)Λ

−1
πθ

r
)

= ∂

∂θ

(
εᵀπθ(s)Λ

−1
πθ

)
r

= ∂

∂θ
εᵀπθ(s)Λ

−1
πθ

r + εᵀπθ(s)
∂

∂θ
Λ−1
πθ

r

= ∂

∂θ
εᵀπθ(s)Λ

−1
πθ

r + εᵀπθ(s)
∂

∂θ
(I− γPπθ)

−1r

= ∂

∂θ
εᵀπθ(s)Λ

−1
πθ

r + γεᵀπθ(s)Λ
−1
πθ

(
∂

∂θ
Pπθ

)
Λ−1
πθ

r

27

With the derivative of the value function we compute the gradient of the objective function. In
the derivation we follow the notation in [17],

∇θJπθ ≈ ∇θĴπθ
= ∇θ

∫
S
µ0(s)V̂πθ(s)ds

=
∫
S
µ0(s)∇θV̂πθ(s)ds

=
∫
S
µ0(s)

(
∂

∂θ
εᵀπθ(s)Λ

−1
πθ

r + γεᵀπθ(s)Λ
−1
πθ

(
∂

∂θ
Pπθ

)
Λ−1
πθ

r
)
ds

=
(∫
S
µ0(s) ∂

∂θ
εᵀπθ(s)ds

)
Λ−1
πθ

r + γ
(∫
S
µ0(s)εᵀπθ(s)ds

)
Λ−1
πθ

(
∂

∂θ
Pπθ

)
Λ−1
πθ

r

=
(
∂

∂θ

∫
S
µ0(s)εᵀπθ(s)ds

)
Λ−1
πθ

r + γ
(∫
S
µ0(s)εᵀπθ(s)ds

)
Λ−1
πθ

(
∂

∂θ
Pπθ

)
Λ−1
πθ

r

= ∂

∂θ
εᵀπθ,0v

∗
πθ

+ γµᵀπθ

(
∂

∂θ
Pπθ

)
v∗πθ ,

where µπθ = Λ−ᵀπθ επθ,0.

In [17], it has been shown empirically that the term µπθ is an estimate of the state distribution.
For a discrete state space, this reduces to the initial state distribution. While the value function
quantifies the expected return obtained from starting at a fixed state s and following the policy πθ,
µπθ quantifies the performance resulting from starting at the initial state distribution, following
policy πθ up to the present state.
The policy gradient obtained by modelling the Bellman equation via GMR is given by

∇θĴπθ = ∂

∂θ
εᵀπθ,0v

∗
πθ

+ γµᵀπθ

(
∂

∂θ
Pπθ

)
v∗πθ . (4.11)

From the estimate of the policy gradient given in the above equation, the optimal policy can be
found in a batch and off-policy setting, provided enough data is given to estimate the reward
function and the critic. The process is formally described in Algorithm 2.
In contrast to the matrix Pπθ in [17] that is stochastic and an estimate of the system’s dynam-
ics in an MDP, the matrix Pπθ in our model (Eqn. 4.11) is not stochastic, but results from the
estimation of the integral of a non-linear function. Furthermore the matrix Pπθ in [17] is of di-
mension n × n where n is the number of samples. While the dimension of the matrix Pπθ in
Eqn. (4.11) is only (1 + ds + da)k × (1 + ds + da)k where k is the number of Gaussian compo-
nents. As a result the complexity of our model is bounded, even if the amount of data is unbounded.

The pseudocode for the algorithm is provided below. We name it Policy Optimization via Experts’
Mixture (POEM). This is because a GMM is a particular case of a machine learning framework,
the mixture of experts [28]. For the GMM, each expert is encoded by a Gaussian.

28

Input:
Dataset D ≡ {si,ai, ri, s′i, }

n
i=1 ;

Parameterized policy πθ;
Learning rate α;
Discount factor γ;
Number of components k.

Output:
Optimized policy π∗θ

1 Estimate the action value function q(si, ai) (e.g. via approximate dynamic programming);
2 Build new dataset D′ ≡ {si,ai, ri, s′i, q(si,ai)}

n
i=1 ;

3 Train GMM on the dataset D′ via EM such that the matrices Σs′,s, Σs′,a are diagonal
matrices.;

4 while not converged do
5 Compute επθ,0 as in Eqn 4.10 and επθ as in Eqn 4.5. ;
6 Compute Pπθ ;
7 Built matrix Λπθ = I− γPπθ ;
8 Solve r = Λπθv

∗
πθ
, and επ,0 = Λ>πθµπθ for µπθ and v∗πθ via conjugate gradient;

9 Estimate the critic V̂ (s) = εᵀπθ(s)v
∗
πθ

;
10 Estimate the objective Ĵπθ = εᵀπθ,0v

∗
πθ
;

11 Update θ using the gradient ascent update θ ← θ + α∇Ĵπθ .
12 end

Algorithm 2: Policy Optimization via Experts’ Mixture (POEM).

29

5 Experiment
In this chapter we present the experimental settings and the results. The chapter begins with
the description of the main technologies used in the implementation of the algorithm. Then we
provide a thorough description of the environments on which the experiments were performed. We
further describe and analyse the results obtained. Our analysis is based on three main aspects:
Predicting the value function Vπθ , the learning behaviour of the algorithm, and lastly the direction
of the gradient computed by the algorithm.

5.1 Software Details

POEM is implemented in python (3) [29]. For efficient Mathematical computation, we use several
libraries. The library Numpy (1.18.3) [30] is used for matrix manipulation. Automatic differen-
tiation and the implementation of neural networks (actor) are provided by Pytorch (1.5.0) [31].
Training an GMM is done with Scikit-learn (0.22.2) [32]. The library "Reinforcement Learning
Helper" (HeRL) is used for RL tasks. In addition to the already mentioned libraries, HeRL is also
based on OpenAI Gym [33], which is a framework for RL tasks. Furthermore, the HeRL libary
provides a framework to analyse RL algorithms.

5.2 The Swing-up Pendulum

The swing-up pendulum is a classic control environment. Under the OpenAI Gym library it is
known as the Pendulum-v0 environment. Following the setting provided by this environment, the
starting position of the pendulum is random, and the goal is to swing the pendulum up so that it
is upright and remains in that position.

Figure 5.1.: A stable pendulum.

The state space is defined by the angle α ∈ [−π, π] and the velocity α̇ ∈ [−8.0, 8.0]. Precisely,
it is given by the 3-tuple (cosα, sinα, α̇). This can be converted to a 2-tuple (α, α̇), with

30

α = arctan 2(sinα, cosα). The action consist of a continuous torque u ∈ [−2, 2]. The reward
equation is given by

R(s, u) = −
(
α2 + 0.1α̇2 + 0.001u2

)
.

The new state is given by
s′ = (αnew, α̇new),

where

α̇new = α̇ +
(−3g

2l sin(α + π) + 3
ml2

u
)
dt,

αnew = α + α̇newdt,

with dt = 0.05, g = 10.0, m = 1.0, l = 1.0.
The default maximum length of an episode is set up to 200. The GMM estimates the probability
in the joint space (α, α̇, u, r, αnew, α̇new, q). The Gaussians of the mixture model are
7-dimensional.

5.3 Linear Quadratic Regulator (LQR)

Another problem on which our algorithm was tested is the LQR problem. The LQR problem is a
special case of an MDP that has an exact solution, regardless of the continuous nature of the state
and action spaces [34]. As a result, several problems in robotics are reduced to this framework.
For this problem we introduce the notations xt and ut, that refer respectively to the state and
action at time t. The problem is defined by quadratic rewards

R(xt, ut) = −x>t Qxt − u>t Rut,

and linear state transitions

xt+1 = Axt + But.

The optimization problem is formulated as

maxut J = −∑∞t=0 γ
t
(
x>t Qxt + u>t Rut

)
dt

s.t. xt+1 = Axt + But ∀t

where xt ∈ Rdx,ut ∈ Rdu,Q ∈ Rdx×dx,R ∈ Rdu×du,A ∈ Rdx×dx,B ∈ Rdx×du, γ ∈
[0, 1), and x0 ∈ Rdx. We consider a 2-dimensional state space S and a 2-dimensional action
space A with xt = (x1, x2) ∈ R2 and ut = (u1, u2) ∈ R2. The GMM estimates the probability
in the joint space (x1, x2, u1, u2, r, x

new
1 , xnew2 , q) . As a result, the Gaussians of the mixture

model are 8-dimensional.

5.4 Value Function Prediction

In this section we illustrate the performance of our algorithm to predict the value function for the
Pendulum problem and the LQR problem.

31

Value Function Estimation for the Pendulum Problem

In the Pendulum-v0 problem, we investigated the ability of the algorithm to predict the value
function under a uniformly generated dataset, because learning in this setting results to a less
biased estimate. However, since most real-world events are random, we further learn the value
function under a randomly sampled dataset.

In the case of the uniformly sampled data, we discretize the state-action space. This setting has
only three distinct actions u ∈ {−2, 0, 2}. Figure 5.2 depicts the obtained state distribution. By

Figure 5.2.: Data distribution and density in a grid.

sampling from a grid with 50 angles, 50 velocities and 3 actions (resulting to a dataset size of
7500), we obtained a satisfying estimate of the value function as presented in Figure 5.3.

Figure 5.3.: Value function prediction with uniform grid data and 200 Gaussians.

Likewise to the uniform grid experiment, we show the ability of POEM to learn the value function
using a dataset sampled from a random policy, as is the case in many real world problems. To
generate the random episodes in this environment, the initial position is chosen randomly, then the

32

actions are selected by sampling from a random policy which in this case, is a uniform distribution
with a low value of −2 and a high value of 2 (Figure 5.4). The maximum episode length is set to
200.

Figure 5.4.: Data distribution and density of samples generated from a random policy.

Figure 5.5.: Policy evaluation of randomly generated data (16000 samples) and 200 components.

In contrast to the first setting where the data is uniformly distributed in a grid, more samples are
needed in the second setting to achieve a valid prediction of the value function, since each action
is not equally likely to be selected in the latter setting. Hence more data is needed to ensure that
the agent visits a sufficient number of regions in the state space.

33

Value Function Estimation for the LQR Problem.

As in the pendulum problem, we demonstrate the ability of the algorithm to predict the value
function of an LQR problem. To achieve this purpose we make use of a linear policy, characterized
by the diagonal matrix

K =

k1 0

0 k2

 .

Furthermore, the matrices A, B, Q and R are also encoded by diagonal matrices. More details
to the instance of the LQR problem are given in Appendix A.2. Figure 5.7 shows the prediction
of the value function obtained by running an experiment with a deterministic experiment. A data
set composed of 2000 trajectories, each of length 20, is used for training the algorithm. The initial
state distribution is stochastic. The state distribution and the density of the training dataset is
illustrated in Figure 5.6. We initialize the GMM model with 30 Gaussians, and select the number
of Gaussians that yields the best value function estimate.

Figure 5.6.: Data distribution and density of samples generated from a deterministic linear policy.

34

Figure 5.7.: Value function estimated in the LQR task with 40000 samples and 70 components.

5.5 Gradient Analysis

We illustrate the quality of the direction for the gradient estimate produced by the algorithm.
Both the pendulum problem and the 2-dimensional LQR problem are considered. To achieve this
we use the framework proposed by the library HeRL. In this method, n different parameterized
policies are considered. For each policy, the ground truth gradient is computed via numerical
gradient computation

∇θĴ(θ) = lim
ε→0

Ĵ(θ + ε)− Ĵ(θ)
ε

.

Then using the algorithm POEM, we also compute the gradient of Ĵπθ for each policies. Since the
gradients are vectors, the angle δ between the ground truth gradient, and the gradient estimated
by POEM is computed for each policy. For a single policy with true gradient dθ and estimated
gradient via Poem dθestimate, the angle is computed as

cos(δ) = dθ · dθestimate
‖dθ‖2 ‖dθestimate‖2

,

where ‖‖2 is the Euclidean norm. If the angle is less than 2−1π, then the direction is considered
to be correct, else the direction is considered to be untrue.

Figures 5.8 and 5.9 show the gradient directions for the pendulum and the LQR problem. The
blue line across the plot represents the density of the angles. It can be observed in Figure 5.8 that
POEM estimates a good direction. Out of 100 policies, most computed angles are less than 2−1π.
This fact is explicitly displayed by the mean estimate and the density, which is higher in the range(
2−1π, 0

]
. In Figure 5.9, even though the angle between the true gradient and the mean estimate

is significant, the resulting estimate is still able to take steps in an acceptable direction.

35

Figure 5.8.: Gradient direction with respect to ground truth for the pendulum environment. 100 policies
parameters are used.

Figure 5.9.: Gradient direction with respect to ground truth for the LQR environment. 40 policies
parameters are used.

36

5.6 Learning Curves

Swing-up Pendulum
To analyze the performance of the algorithm in learning an optimal controller, we conduct an
experiment under uniformly sampled datasets generated from a grid over state and action spaces
of the Pendulum environment. We generate six datasets from a grid, with the same granularity.
Moreover, a policy that is characterized by a neural network with one hidden layer of 50 neurons
and ReLU activation functions is optimized for 105 iterations. After every 103 iterations, the
learning control agent is evaluated on trajectories of 15 × 103 steps starting from the initial
position of the pendulum (hanging down). This position is chosen because it is the worst case
scenario of the environment. Figure 5.10 illustrates the learning curve of the objective function
Jπθ per iteration steps. It can be observed that the algorithm learns an acceptable controller, and
the convergence is fast and stable.

Figure 5.10.: Average return Jπθ per iteration performed over 6 experiments with 95% confidence
interval on data sampled from a uniform grid.

37

Figure 5.11.: Average estimated return Ĵπθ per iteration with 95% confidence interval on data from a
uniform grid.

38

6 Conclusion
This thesis aimed to design and investigate an off-policy algorithm based on Gaussian mixture
models. For Rl problems, where the state and action spaces are continuous, learning the probability
density function in the joint space of the states, actions, rewards, next-states, and q-values is
advantageous.
In discrete states and actions spaces, the Bellman equation can be solved in polynomial time
via dynamic programming. However, in real-world applications, the state and action spaces are
continuous. Value-based methods solve for the optimal policy indirectly by learning the value
function and inferring the policy based on the learned values. Conversely, policy gradient methods
learn the policy directly by encoding the policy by a parameterized function with respect to θ
and maximizing the expected return via gradient ascend. However, computing the gradient of the
objective function is hard because it involves computing the gradient of a stationary distribution
over states. This gradient is not straight forward to estimate. Hopefully, the policy gradient
theorem provides a simple expression for the gradient of the objective function. The inconvenience
is that learning is on-policy. Hence sample inefficient.
Off-policy methods, on the other hand, are sample efficient. However, the state-of-art off-policy
methods are limited (suffers from hi bias, high variance). Furthermore, the non-parametric off-
policy method in [17] does not scale well with high dimensions.
Following the work in [17] we designed an off-policy algorithm that analytically expresses the
full gradient estimate of the objective function. In contrast to [17], the reward function and the
environment’s dynamics can be estimated using a Gaussian mixture model. However, building
the GMM-Bellman equation requires an integral over a non-linear function. Two approaches were
presented to circumvent this problem. Firstly, we linearized the value function at an operator
point. Secondly, by enforcing the Gaussians correlation parameters Σs′,s, and Σs′,a to zero, we
are able to obtain a better estimate of the integral term. This estimation, leads us to a GMM-
Bellman equation that can be solved analytically. Our algorithm takes advantage of the scalability
of Gaussian mixture models to solve an MDP with fewer parameters. We tested our algorithm on
classic control tasks, obtaining promising results.

Outlook

Because of the limited amount of time and scarce computational resources, several different con-
figurations and experiments have been left for future consideration. Further research could be
done on the comparison of POEM with baselines. It could be interesting to test the algorithm
on trajectories generated by humans. Additionally, some analysis could be made to study the
correlation between the number of training samples, the performance of the algorithm and the
number of Gaussians. Furthermore, the way the algorithm is implemented can be changed. In-
stead of using a batch method, an online version of the algorithm could be designed, as it would
aloud for better exploration in the environment. Deciding how many components k to use is
computationally expensive, since the algorithm is runned for different number of Gaussians, and

39

the k yielding the optimal value is selected. The Dirichlet Process Mixtures of Generalized Linear
Models(DP-GLM) could be investigated, since it avoids the specification of the parameter k by
automatically finding the number of components required by the data.

40

Bibliography
[1] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust Region Policy Optimiza-

tion,” in Proceedings of the 32nd International Conference on Machine Learning, pp. 1889–
1897, 2015.

[2] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor,” in Proceeding of the 35th
International Conference on Machine Learning, pp. 1856–1865, 2018.

[3] P. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei, “Deep reinforcement
learning from human preferences,” 2017.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-Level Control Through
Deep Reinforcement Learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[5] T. Degris, M. White, and R. S. Sutton, “Off-Policy Actor-Critic,” in Proceedings of the 29th
International Coference on Machine Learning, pp. 179–186, Omnipress, 2012.

[6] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic
Policy Gradient Algorithms,” in Proceedings of the 31 st International Conference on Machine
Learning, 2014.

[7] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous Control with Deep Reinforcement Learning,” in International Conference on
Learning Representations, 2016. arXiv: 1509.02971.

[8] S. Fujimoto, D. Meger, and D. Precup, “Off-Policy Deep Reinforcement Learning without Ex-
ploration,” in Proceeding of the 36th International Conference on Machine Learning, pp. 2052–
2062, 2019.

[9] O. Sigaud and O. Buffet, Markov Decision Processes in Artificial Intelligence. Wiley-IEEE
Press, 2010.

[10] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy Gradient Methods for
Reinforcement Learning with Function Approximation,” in Advances in Neural Information
Processing Systems, pp. 1057–1063, 2000.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT Press,
second ed., 2018.

[12] L. Wasserman, All of Statistics: A Concise Course in Statistical Inference. Springer Publish-
ing Company, Incorporated, 2010.

41

[13] C. Szepesvári, Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intel-
ligence and Machine Learning, Morgan Claypool Publishers, 2010.

[14] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming.
USA: John Wiley Sons, Inc., 1st ed., 1994.

[15] R. J. Williams, “Simple Statistical Gradient-Following Algorithms for Connectionist Rein-
forcement Learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[16] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3, pp. 279–292,
1992.

[17] S. Tosatto, J. Carvalho, H. Abdulsamad, and J. Peters, “A nonparametric off-policy policy
gradient,” in Proceedings of the 23rd International Conference on Artificial Intelligence and
Statistics (AISTATS), 2020.

[18] G. A. Rummery and M. Niranjan, “On-line q-learning using connectionist systems,” tech.
rep., 1994.

[19] F. Stulp and O. Sigaud, “Many regression algorithms, one unified model — a review,” Neural
Networks, vol. 69, 06 2015.

[20] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system modulation for robot
learning via kinesthetic demonstrations,” IEEE Transactions on Robotics, vol. 24, pp. 1463–
1467, Dec 2008.

[21] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Berlin, Heidelberg: Springer-Verlag, 2006.

[22] N. Meuleau, L. Peshkin, and K.-E. Kim, “Exploration in Gradient-Based Reinforcement
Learning,” tech. rep., Massachusetts Institute of Technology, 2001.

[23] C. R. Shelton, “Policy Improvement for POMDPs Using Normalized Importance Sampling,”
in Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, UAI’01,
pp. 496–503, Morgan Kaufmann Publishers Inc., 2001. event-place: Seattle, Washington.

[24] L. Peshkin and C. R. Shelton, “Learning from Scarce Experience,” in Proceedings of the
Nineteenth International Conference on Machine Learning, 2002. arXiv: cs/0204043.

[25] O. B. Kroemer and J. R. Peters, “A non-parametric approach to dynamic programming,” in
Advances in Neural Information Processing Systems 24 (J. Shawe-Taylor, R. S. Zemel, P. L.
Bartlett, F. Pereira, and K. Q. Weinberger, eds.), pp. 1719–1727, Curran Associates, Inc.,
2011.

[26] A. Agostini and E. Celaya, “Reinforcement learning with a gaussian mixture model,” in The
2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2010.

[27] W. D. Smart and L. Pack Kaelbling, “Effective reinforcement learning for mobile robots,”
in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat.
No.02CH37292), vol. 4, pp. 3404–3410 vol.4, 2002.

42

[28] Z. Ghahramani and M. I. Jordan, “Supervised learning from incomplete data via an em ap-
proach,” in Advances in Neural Information Processing Systems 6 (J. D. Cowan, G. Tesauro,
and J. Alspector, eds.), pp. 120–127, Morgan-Kaufmann, 1994.

[29] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA: CreateSpace,
2009.

[30] T. E. Oliphant, A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural Information Processing Sys-
tems 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[33] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, andW. Zaremba,
“OpenAI Gym,” arXiv:1606.01540, 2016. arXiv: 1606.01540.

[34] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid Systems.
Cambridge University Press, June 2017. Google-Books-ID: 7NUoDwAAQBAJ.

[35] R. A. Horn and C. R. Johnson, Matrix Analysis. USA: Cambridge University Press, 2nd ed.,
2012.

43

A Appendix
We present the configurations for the different experiments carried out. Then we provide a proof
for the invertibility of matrix Λπθ .

A.1 Pendulum configurations

dataset size 7500

discount factors 0.95

number of Gaussians 100, 70

policy
neural network with parameter θ, one hidden layer of 50 units,

Relu activation function

policy output function 2tanh

optimizer adam

Np 2000

Table A.1.: Parameters for policy evaluation under a uniform grid dataset.

dataset size 16000

rollouts 80

max episode length 200

discount factors 0.95

number of Gaussians 200

policy
neural network with parameter θ, one hidden layer of 50 units,

Relu activation function

policy output function 2tanh

optimizer adam

Np 2000

Table A.2.: Parameters for policy evaluation using data generated randomly.

44

A.2 LQR Configurations

dataset size 40000

rollouts 2000

max episode length 20

discount factors 0.5

number of Gaussians 70

policy Linear policy with parameter θ, encoded as diagonal matrix K

Np 2000

Table A.3.: Configurations for the LQR experiment.

The matrices A, B, Q, R, K are set as:

A =

1.2 0

0 1.1

, B =

1.0 0

0 1.0

, Q =

0.4 0

0 0.8

, R =

1.0 0

0 1.0

, K =

k1 0

0 k2

,
with k1 ∼ N (−1.2, 0.3) and k2 ∼ N (−1.1, 0.3).

A.3 Proof of the invertibility of Λπθ

In this section we proof that the matrix Λπθ = I − γPπθ with Pπθ defined as in (4.9). We want
to show that Λπθ = I− γPπθ is regular with γ ∈ [0, 1).
By Neumann Series [35, Chapter 5], if a matix A has the property that limi→∞(I−A)i = 0 then
A is regular and A−1 = ∑∞

i=0(I−A)i.

Thus we show that limi→∞(I−Λπθ)i = 0

Proof.

(
I−Λπθ

)i
=
(
I−

(
I− γPπθ

))i
= (γPπθ)

i.

We then show that (γPπθ)i → 0 as i→∞.
Notice the matrix Pπθ is of the form

A B

0 0

 ,
45

where A is a stochastic matrix, B a matrix, and 0 a matrix of zeros. Computing successive powers

of Pπθ, we have P2
πθ =

A2 AB

0 0

 , P3
πθ =

A3 A2B

0 0

 , P4
πθ =

A4 A3B

0 0

 . Hence in general

Pi
πθ

=

Ai Ai−1B

0 0

 .
Because A is a stochastic matrix,∥∥∥Ai

∥∥∥
∞
¶ 1,

∥∥∥AiB
∥∥∥
∞
¶ ‖B‖∞.

Thus ∥∥∥Pi
πθ

∥∥∥
∞
¶ ‖B‖∞.

It follows that
lim
i→∞

∥∥∥γiPi
πθ

∥∥∥
∞

= lim
i→∞

γi
∥∥∥Pi

πθ

∥∥∥
∞
≤ lim

i→∞
γi‖B‖∞ = 0

46

	Erkärung zur Abschlussarbeit
	Introduction
	Foundations
	Reinforcement Learning
	Markov Decision Process
	Value Functions and Bellman Equations
	Policy Optimization
	Gaussian Mixture Regression (GMR)

	Related Works
	Policy Gradient Estimation via Gaussian Mixture Regression
	Problem Statement
	Gaussian Mixture Model Bellman Equation

	Experiment
	Software Details
	The Swing-up Pendulum
	Linear Quadratic Regulator (LQR)
	Value Function Prediction
	Gradient Analysis
	Learning Curves

	Conclusion
	Bibliography
	Appendix
	Pendulum configurations
	LQR Configurations
	Proof of the invertibility of

