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Abstract: The Nadaraya–Watson kernel estimator is among the most popular nonparameteric regres-
sion technique thanks to its simplicity. Its asymptotic bias has been studied by Rosenblatt in 1969
and has been reported in several related literature. However, given its asymptotic nature, it gives no
access to a hard bound. The increasing popularity of predictive tools for automated decision-making
surges the need for hard (non-probabilistic) guarantees. To alleviate this issue, we propose an upper
bound of the bias which holds for finite bandwidths using Lipschitz assumptions and mitigating
some of the prerequisites of Rosenblatt’s analysis. Our bound has potential applications in fields like
surgical robots or self-driving cars, where some hard guarantees on the prediction-error are needed.

Keywords: nonparametric regression; Nadaraya-Watson kernel regression; bias

1. Introduction

Nonparametric regression and density estimation have been used in a wide spec-
trum of applications, ranging from economics [1], system dynamics identification [2,3],
and reinforcement learning [4–7]. In recent years, nonparametric density estimation and
regression have been dominated by parametric methods such as those based on deep
neural networks. These parametric methods have demonstrated an extraordinary capacity
in dealing with both high-dimensional data—such as images, sounds, or videos—and large
datasets. However, it is difficult to obtain strong guarantees on such complex models,
which have been shown easy to fool [8]. Nonparametric techniques have the advantage
of being easier to understand, and recent work overcame some of their limitations by,
e.g., allowing linear-memory and sub-linear query time for density kernel estimation [9,10].
These methods allowed nonparametric kernel density estimation to be performed on
datasets of 106 samples and up to 784 input dimension. As such, nonparametric methods
are a suitable choice when one is willing to trade performance for statistical guarantees;
and the contribution of this paper is to advance the state-of-the-art on such guarantees.

Studying the error of a statistical estimator is important. It can be used, for example,
to tune the hyper-parameters by minimizing the estimated error [11–14]. To this end,
the estimation error is usually decomposed into an estimation bias and variance. When it is
not possible to derive these quantities, one performs an asymptotic behavior analysis or a
convergence to a probabilistic distribution of the error. While all aforementioned analyses
give interesting insights on the error and allow for hyper-parameter optimization, they
do not provide any strong guarantee on the error, i.e., we cannot upper bound it with
absolute certainty.

Beyond hyper-parameter optimization, we argue that another critical aspect of error
analysis is to provide hard (non-probabilistic) bounds of the error for critical data-driven
algorithms. We believe that learning agents taking autonomous, data-driven, decisions will
be increasingly present in the near future. These agents will, for example, be autonomous
surgeons, self-driving cars or autonomous manipulators. In many critical applications
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involving these agents, it is of primary importance to bound the prediction error in order to
provide some technical guarantees on the agent’s behavior. In this paper we derive a hard
upper bound of the estimation bias in non-parametric regression with minimal assumptions
on the problem. The bound can be readily applied to a wide range of applications.

Specifically, we consider the Nadaraya–Watson kernel regression [15,16], which can be
seen as a conditional kernel density estimate. We derive an upper bound of the estimation
bias under weak local Lipschitz assumptions. The reason for our choice of estimator
falls in its inherent simplicity compared to more sophisticated techniques. The bias of
the Nadaraya–Watson kernel regression has been previously studied by [17], and has
been reported in a number of related work [18–21]. The analysis of the bias conducted
by Rosenblatt (1969) [17] still remains the main reference for this regression technique.
The main assumptions of Rosenblatt’s analysis are hn → 0 (where n is the number of
samples) and nhn → ∞ where hn is the kernel’s bandwidth. Rosenblatt’s analysis suffers
from an asymptotic error o(h2

n), which means that for large bandwidths it is not accurate;
making it inapplicable to derive a hard upper bound. To the best of our knowledge, the only
proposed bound on the bias requires the restrictive assumption that the samples must be
placed evenly on a closed interval [22]. In contrast, we derive an upper bound of the bias
of the Nadaraya–Watson kernel regression that is valid for a large class of design and for
any choice of bandwidth.

We build our analysis on weak Lipschitz assumptions [23], which are milder than
the (global) Lipschitz, as we require only | f (x)− f (y)| ≤ L|x − y| ∀y ∈ C given a fixed
x, instead of the classic | f (x)− f (y)| ≤ L|x− y| ∀y, x ∈ C—where C is the data domain.
Lipschitz assumptions are common in different fields, and usually allow a wide family
of admissible functions. This is particularly true when the Lipschitz is require for only
a subset of the function’s domain (like in our case). Moreover, notice that the classical
analysis requires the knowledge of the second derivative of the regression function m,
and therefore the continuity of m′. Our Lipschitz assumption is less restrictive, allowing
us to obtain a bias upper bound even for functions like m(x) = |x|, at points (like x = 0)
where m′′ is undefined. The Rosenblatt analysis builds on a Taylor expansion of the
estimator and therefore when the bandwidth hn is large, Rosenblatt’s bias analysis tends to
provide wrong estimates of the bias, as observed in the experimental section. We consider
multidimensional input space, and we apply the bound to a realistic regression problem.

2. Preliminaries

Consider the problem of estimating E[Y|X = x] where X ∼ fX and Y = m(X) + ε,
with noise ε, i.e., E[ε] = 0. The noise can depend on x, but since our analysis is conducted
point-wise for a given x, εx will be simply denoted by ε. Let m : Rd → R be the regression
function and fX a probability distribution on X called design. In our analysis we consider
X ∈ Rd and Y ∈ R. The Nadaraya–Watson kernel estimate of E[Y|X = x] is

m̂(x) =
∑n

i=1 Kh(x− xi)yi

∑n
j=1 Kh(x− xj)

, (1)

where Kh is a kernel function with bandwidth-vector h, the xi are drawn from the design fX
and yi from m(xi) + ε. Note that both the numerator and the denominator are proportional
to Parzen-Rosenblatt density kernel estimates [24,25]. We are interested in the point-
wise bias of such estimate E[m̂(x)] − m(x). In the prior analysis of [17], knowledge of
m′, m′′, fX , f ′X is required and f , m′ must be continuous in a neighborhood of x. In addition,
and as discussed in the introduction, the analysis is limited to a one-dimensional design
and an infinitesimal bandwidth. We briefly present the classical bias analysis of [17] before
introducing our results for clarity of exposition.

Theorem 1. Classic Bias Estimation [17]. Let m :R→R be twice differentiable. Assume a set
{xi, yi}n

i=1, where xi are i.i.d. samples from a distribution with non-zero differentiable density fX .
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Assume yi = m(xi) + εi, with noise εi ∼ ε(xi). The bias of the Nadaraya–Watson kernel in the
limit of infinite samples and for h→ 0 and nhn → ∞ is

E
[

lim
n→∞

m̂n(x)
]
−m(x) = h2

n

(
1
2

m′′(x) +
m′(x) f ′X(x)

fX(x)

) ∫
u2K(u)du + oP

(
h2

n

)
≈ h2

n

(
1
2

m′′(x) +
m′(x) f ′X(x)

fX(x)

) ∫
u2K(u)du. (2)

Note that Equation (2) must be normalized with
∫ ∞
−∞ k(u)du when the kernel function

does not integrate to one. The oP term denotes the asymptotic behavior w.r.t. the bandwidth.
Therefore, for a larger value of the bandwidth, the bias estimation becomes worse, as is
illustrated in Figure 1.

3. Main Result

In this section, we present two bounds on the bias of the Nadaraya–Watson estimator.
The first one considers a bounded regression function m (i.e., |m(x)| ≤ M), and allows
for weak Lipschitz conditions on a subset of the design’s support. Instead, the second
bound does not require the regression function to be bounded but only the weak Lipschitz
continuity to hold on all of its support. The definition of “weak” Lipschitz continuity will
be given below.

To develop our bound on the bias for multidimensional inputs is essential to define
some subset of the Rd space. In more detail, we consider an open n-dimensional interval

in Rd which is defined as Ω(τ−, τ+) ≡ (τ−1 , τ+
1 ) × · · · × (τ−d , τ+

d ) where τ−, τ+ ∈ Rd
.

We now formalize what is meant by weak (log-)Lipschitz continuity. This will prove useful
as we need knowledge of the weak-Lipschitz constants of m and log fX in our analysis.

Definition 1. Weak Lipschitz continuity at x on the set C under the L1-norm.
Let C ⊆ Rd and f : C → R. We call f weak Lipschitz continuous at x ∈ C if and only if

| f (x)− f (y)| ≤ L|x− y| ∀y ∈ C,

where | · | denotes the L1-norm.

Definition 2. Weak log-Lipschitz continuity at x on the set C under the L1-norm.
Let C ⊆ Rd. We call f weak log-Lipschitz continuous at x on the set C if and only if

| log f (x)− log f (y)| ≤ L|x− y| ∀y ∈ C.

Note that the set C can be a subset of the function’s domain.

It is important to note that, in contrast to the global Lipschitz continuity, which requires
| f (y)− f (z)| ≤ L|y− z| ∀y, z ∈ C, the weak Lipschitz continuity is defined at a specific
point x and therefore allows the function to be discontinuous elsewhere. The Lipschitz
assumptions are not very restrictive, and in practice require a bounded gradient. They have
been widely used in various fields. Note that when the Lipschitz constants are not known,
they can be estimated from the dataset [26]. In the following we list the set of assumptions
that we use in our theorems.

A1. fX and m are defined on Υ ≡ Ω(x− υ−, x + υ+) and υ−, υ+ ∈ Rd
+;

A2. fX is log weak Lipschitz with constant L f at x on the setD ≡ Ω(x− δ−, x+ δ−) ⊆ Υ

and fX(x) ≥ fX(z) ∀z ∈ Υ\D with positive defined δ−, δ+ ∈ Rd
+ (note that this

implies fX(y) > 0 ∀y ∈ D);
A3. m is weak Lipschitz with constant Lm at x on a the set G ≡ Ω(x− γ−, x + γ+) ⊆ D

with positive defined γ−, γ+ ∈ Rd
+.
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To work out a bound on the bias valid for a wide class of kernels, we must enumerate
some assumption and quantify some integrals with respect to the kernel.

A4. The multidimensional kernel Kh : Rd → R can be decomposed in a product of
independent uni-dimensional kernels, i.e., Kh(x) = ∏d

i=1 ki(x/hi) with ki : R→ R;
A5. the kernels are non-negative ki(x) ≥ 0 and symmetric ki(x) = ki(−x);
A6. for every a, x ∈ R and h 6= 0, the integrals

∫ a
0 ki(x)dx = Φi(a),

∫ a
0 ki(x)e−xL f dx =

Bi(x, L f ),
∫ a

0 ki(x)xe−xL f dx = Ci(x, L f ) are finite (i.e., < +∞).

Assumptions A4–A6 are not really restrictive, and includes any kernel with both finite
domain and co-domain, or not heavy-tailed (e.g., Gaussian-like). Furthermore, Axiom A4
allows any independent composition of different kernel functions. In Appendix B we detail
the integrals of Axiom A6 for different kernels. Note that when the integrals listed in
A6 exist in closed form, the computation of the bound is straightforward, and requires
negligible computational effort.

In the following, we propose two different bounds of the bias. The first version
considers a bounded regression function (M < +∞), this allows both the regression
function and the design to be weak Lipschitz on a subset of their domain. In the second
version instead, we consider the case of an unbounded regression function (M = +∞) or
an unknown bound M. In this case both the regression function and the design must be
weak Lipschitz on the entire domain Υ.

Theorem 2. Bound on the Bias with Bounded Regression Function.
Assuming A1–A3, h ∈ Rd

+ a positive defined vector of bandwidths h = [h1, h2, . . . , hn]ᵀ,
Kh the multivariate kernel defined in A4–A6, m̂n(x) the Nadaraya–Watson kernel estimate using
n observations {xi, yi}n

i=1 with xi ∼ fX, yi = m(xi) + εi and with noise εi ∼ ε(xi) centered in
zero (E[ε(xi)] = 0), n → ∞, and furthermore assuming there is a constant 0 ≤ M < +∞ such
that |m(y)−m(z)| ≤ M ∀y, z ∈ Υ, the considered Nadaraya–Watson kernel regression bias is
bounded by

∣∣∣∣E [ lim
n→∞

m̂n(x)
]
−m(x)

∣∣∣∣ ≤
Lm

d
∑

k=1
ξk(φ

−
k , φ+

k )
d

∏
i 6=k

ζ(φ−i , φ+
i )+M

(
d

∏
i=1

ζ(γ−i , γ+
i )−

d
∏
i=1

ζ(φ−i , φ+
i ) +D

)
∏d

i=1 ψi(δ
−
i , δ+i )

where

ψi(a, b) = hi

(
Bi(b/hi, L f hi)− Bi(−a/hi,−L f hi)

)
, ζi(a, b) = hi

(
Bi(b/hi,−L f hi)− Bi(−a/hi, L f hi)

)
,

ξi(a, b) = h2
i

(
Ci(b/hi,−L f hi) + Ci(−ahi, L f hi)

)
, D= lim

ω→+∞

d

∏
i=1

hiΦi

(
ω

hi

)
−

d

∏
i=1

hi ϕi,

with ϕi = Φi(γ
+
i /hi) + Φi(γ

−
i /hi), and 0 < φ−i ≤ γ−i , 0 < φ+

i ≤ γ+
i can be freely chosen to

obtain a tighter bound. We suggest φ+
i = min(γ+

i , M/Lm), φ−i = min(γ−i , M/Lm).

In the case where M is unknown or infinite, we propose the following bound.

Theorem 3. Bound on the Bias with Unbounded Regression Function.
Assuming A1–A3, h ∈ Rd

+ a positive defined vector of bandwidths h = [h1, h2, . . . , hn]ᵀ,
Kh the multivariate kernel defined in A4–A6, m̂n(x) the Nadaraya–Watson kernel estimate using
n observations {xi, yi}n

i=1 with xi ∼ fX, yi = m(xi) + εi and with noise εi ∼ ε(xi) centered
in zero (E[ε(xi)] = 0), n → ∞, and furthermore assuming that Υ ≡ D ≡ G, the considered
Nadaraya–Watson kernel regression bias is bounded by

∣∣∣∣E [ lim
n→∞

m̂n(x)
]
−m(x)

∣∣∣∣ ≤
Lm

d
∑

k=1
ξk(υ

−
k , υ+k )

d
∏
i 6=k

ζi(υ
−
i , υ+i )

∏d
i=1 ψi(υ

−
i , υ+i )

,
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where ξk, ζi, ψi are defined as in Theorem 2.

We detail the proof of both theorems in Appendix A. Note that the conditions required
by our theorems are mild, and they allow a wide range of random designs, including and
not limited to Gaussian, Cauchy, Pareto, Uniform, and Laplace distributions. In general,
every continuously differentiable density distribution is also weak log-Lipschitz in some
closed subset of its domain. For example, the Gaussian distribution does not have a finite
Lipschitz constant on its entire domain, but there is a finite weak Lipschitz constant on
any closed interval. Examples of distributions that are weak log-Lipschitz are presented in
Table 1.

Table 1. Examples of parameters to use for different univariate random design.

Distribution Density Υ D L f

Laplace(µ, λ) 1
2λ exp

(
− |x−µ|

λ

)
(−∞,+∞) (−∞,+∞) λ−1

Cauchy(µ; γ)
(

πγ + π
(x−µ)2

γ

)−1
(−∞,+∞) (−∞,+∞) 2(z−µ)

γ2+(z−µ)2
1

Uniform(a, b)
{

1
b−a if a ≤ x ≤ b
0 otherwise

(a, b) (a, b) 0

Pareto(α)
{

α
xα+1 ifx ≥ 1
0 otherwise

(1,+∞) (1,+∞) 1 + α

Normal(µ, σ) 1√
2πσ2 exp− (x−µ)2

2σ2
(−∞,+∞) (a, b) fµ,σ(a, b)

4. Analysis

Although the bound applies to different kernel functions, in the following we analyze
the most common Gaussian kernel. It worth noting that for k(x) = e−x2

,

φ(x) =
√

π

2
erf(a), B(a, c) =

√
π

2
e

c2
4

(
erf
(

a +
c
2

)
− erf

( c
2

))
,

C(a, c) =
1
2

(
1− e−a(a+c) − cB(a, c)

)
.

Note that we removed the subscripts from the functions ψ, B, and C, as we consider
only the Gaussian kernel. To provide a tight bound, we consider many quantities that
describe the design’s domain, the Lipschitz constants of the design and of the regression
function, the bound of the image of the regression function, and the different bandwidths
for each dimension of the space. This complexity results in an effective but poorly readable
bound. In this section, we try to simplify the problem and to analyze the behavior of the
bound in the limit.

Asymptotic Analysis: Let us consider, for the moment, the case of one-dimension
(d = 1) and infinite domains and co-domains (M unknown and υ− = υ+ = δ− = δ+ =
γ− = γ+ = ∞). In this particular case, the bound becomes

∣∣∣∣E [ lim
n→∞

m̂n(x)
]
−m(x)

∣∣∣∣ ≤ Lmh

 1

2
√

π exp
L2

f h2

4

+ hL f

(
erf
(hL f

2

)
+ 1
) = A1.

As expected, for h → 0 or for Lm = 0, B1 = 0. This result is in line with (2)
(since Lm = 0 =⇒ m′ = 0, m′′ = 0). A completely flat design, e.g., uniformly dis-
tributed, does not imply a zero bias. This can be seen either in Rosenblatt’s analysis or by
just considering the fact that, notoriously, the Nadaraya–Watson estimator suffers from the
boundary bias. When we analyze our bound, we find in fact that limL f→0 B1 ∝ Lmh. It is
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also interesting to analyze the asymptotic behavior when these quantities tend to infinity.
Similarly to (2), we observe that A1 grows quadratically w.r.t. the kernel’s bandwidth h and
it scales linearly w.r.t. the Lipschitz constant of the regression function (which is linked to
m′). A further analysis brings us to the consideration that Rosenbatt’s analysis is linear w.r.t.
d/ dx log fX(x) (since f ′X(x)/ fX(x) = d/ dx log fX(x)). Our bound has a similar implica-
tion, as the Log-Lipschitz constant is also related to the derivative of the logarithm of the
design function, and A1 = O(L f ).

Boundary Bias: The Nadaraya–Watson kernel estimator is affected by the boundary
bias. The boundary bias is an additive bias term affecting the estimation in the region close
to the boundaries of the design’s domains. Since in our framework, we can consider a
closed domain of the design, we can also see what is happening close to the border. Let us
consider still a one-dimensional regression, but this time υ− → 0, υ− = δ− = γ− and
υ+ = δ+ = γ+ = ∞. In this case, we obtain

∣∣∣∣E [ lim
n→∞

m̂n(x)
]
−m(x)

∣∣∣∣ ≤ Lmh
√

πe
L2

f h2

4

(
1− erf

( hL f
2

)) +
LmL f h2

(
1 + erf

( hL f
2

))
2− 2 erf

( hL f
2

) = A2.

Keeping in account that d/dx erf(x) ∝ e−x and using L’Hôpital’s rule, we can observe
that the bound is now exponential w.r.t. h and L f , i.e., A2 = O(ehL f ), which implies that
it is more “sensible” to higher bandwidths or less smooth design. Interestingly, instead,
the bounds maintains its linear relation w.r.t. Lm.

Dimensionality: Let us now study the multidimensional case, supposing that each
dimension has same bandwidth and same values for the boundaries. In this case,∣∣∣∣E [ lim

n→∞
m̂n(x)

]
−m(x)

∣∣∣∣ ≤ dξ(υ−, υ+)ζ(υ−, υ+)d−1

ψ(υ−, υ+)d ∝ d
(

ζ(υ−, υ+)

ψ(υ−, υ+)

)d−1

.

Therefore, the bound scales exponentially w.r.t. the dimension. We observe an ex-
ponential behavior when x is close to the boundary of the design’s domain. In these
regions, in fact the ratio ζ(υ−, υ+)/ψ(υ−, υ+) is particularly high. Of course, when the
aforementioned ratio tends to one, the linearity w.r.t. d is predominant.

We can conclude the analysis by noticing that our bound has similar limiting behavior
with the Rosenblatt’s analysis, but it provides a hard bound on the bias.

5. Numerical Simulation

In this section, we provide three numerical analyses of our bounds on the bias (the
code of our numerical simulations can be found at http://github.com/SamuelePolimi/
UpperboundNWBias). The first analysis of our method is conducted on uni-dimensional
input spaces for display purposes and aims to show the properties of our bounds in
different scenarios. The second analysis aims instead at testing the behavior of our method
on a multidimensional input space. The third analysis emulates a realistic scenario where
our bound can be applied.

Uni-dimensional Analysis: We select a set of regression functions with different
Lipschitz constants and different bounds,

• y = sin(5x); Lm = 5 and M = 1,
• y = log x which for G ≡ Ω(−1,+∞) has Lm = 1 and M = +∞,
• y = 60−1 log cosh 60x which has Lm = 1, is unbuounded, and has a particularly high

second derivative in x = 0, with m′′(0) = 60,
• y =

√
x2 + 1 which has Lm = 1 and is unbounded.

A zero-mean Gaussian noise with standard deviation σ = 0.05 has been added to the
output y. Our theory applies to a wide family of kernels. In this analysis we consider a

http://github.com/SamuelePolimi/UpperboundNWBias
http://github.com/SamuelePolimi/UpperboundNWBias
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Gaussian kernel, with k(x) = e−x2
, a box kernel, with k(x) = I(x), and a triangle kernel,

with k(x) = I(x)(1− |x|) with

I(x) =

{
1 if|x| ≤ 1,
0 otherwise.

We further analyze the aforementioned kernels in Appendix B. In order to provide
as many different scenarios as possible we also used the distributions from Table 1, us-
ing therefore both infinite domain distributions, such as Cauchy and Laplace, and finite
domain such as Uniform. In order to numerically estimate the bias, we approximate
E[m̂n(x)] with an ensemble of estimates N−1 ∑N

j=1 m̂n,j(x) where each estimate m̂n,j is built
on a different dataset (drawn from the same distribution fX). In order to “simulate” n→ ∞
we used n = 105 samples, and to obtain high confidence of the bias’ estimate, we used
N = 100 models.

In this section we provide some simulations of our bound presented in Theorems 2 and 3,
and for the Rosenblatt’s case we use∣∣∣∣h2

n

(
1
2

m′′(x) +
m′(x) f ′X(x)

fX(x)

) ∫
u2K(u)du

∣∣∣∣.
Since the Rosenblatt’s bias estimate is not an upper bound, it can happen that the

true bias is higher (as well as lower) than this estimate, as it is possible to see in Figure 1.
We presented different scenarios, both with bounded and unbounded functions, infinite and
finite design domains, and a larger or smaller bandwidth choice. It is possible to observe
that, thanks to the knowledge of f , f ′, m′, m′′ the Rosenblatt’s estimation of the bias tends
to be more accurate than our bound. However, it can happen that it largely overestimates
the bias, like in the case of m(x) = 60−1 log cosh(60x) in x = 0 or to underestimate it,
most often in boundary regions. In contrast, our bound always overestimates the true bias,
and despite its lack of knowledge of f , f ′, m′, m′′, it is most often tight. Moreover, when the
bandwidth is small, both our method and Rosenblatt’s deliver an accurate estimation of
the bias. In general, Rosenblatt tends to deliver a better estimate of the bias, but it does
not behave as a bound, and in some situations, it also can deliver larger mispredictions.
In detail, the plot (a) in Figure 1 shows that with a tight bandwidth, both our method
and Rosenblatt’s method achieve good approximations of the bias, but only our method
correctly upper bounds the bias. When increasing the bandwidth, we obtain both a larger
bias and subsequent larger estimates of the bias. Our method consistently upper bounds the
bias, while in many cases, Rosenblatt’s method underestimates it, especially in proximity of
boundaries (subplots b, d, e). An interesting case can be observed in subplot (c), where we
test the function m(x) = 60−1 log cosh(60x), which has a high second-order derivative in
x = 0: in this case, Rosenblatt’s method largely overestimates the bias.

The figure shows that our bound can deal with different functions and random
designs, being reasonably tight, if compared to Rosenblatt’s estimation, which requires the
knowledge of the regression function and the design, and respective derivatives.

Multidimensional Analysis: We want to study if our bounds work in a multidimen-
sional case and how much it overestimates the true bias (therefore, how tight it is). For this
purpose, we took a linear function m(x) = 1ᵀx where 1 is a column-vector of d ones.
This function, for any dimension d, has a Lipschitz constant Lm = 1 and is unbounded
(M = ∞). We set a Gaussian design with zero mean and unit diagonal covariance. Since
in higher dimensions, the estimation’s variance grows exponentially [22], we used a large
number of samples (n = 106), and we averaged over N = 105 independent estimations.
In Figure 2 we show how the “true” bias (estimated numerically averaging over a thou-
sand Nadaraya–Watson regressions) and our bound evolve with a growing number of
dimensions d. Far from the low-density region x = 0 we notice that the bias tends to have
a linear behavior, while close to the boundary the bias tends to be exponential. We can
observe that our bound correctly bounds the bias in all the cases.



Stats 2021, 4 8

m
(
x
)

=
√
x

2
+

1

(a) Gaussian h = 0.1

B
ia

s
C

a
u
c
h
y
(
0
,
1
)

m
(
x
)

=
lo

g
(
x
)

(b) Gaussian h = 0.2

B
ia

s
P

a
r
e
t
o
(
1
,
1
)

m
(
x
)
=

lo
g
c
o
s
h
(
6
0
x
)

6
0

(c) Gaussian h = 0.3

B
ia

s
L

a
p
la

c
e
(
0
,
0
.5

)

m
(
x
)

=
s
in

(
5
x
)

(d) Triangle h = 0.3

B
ia

s
P

a
r
e
t
o
(
1
)

m
(
x
)

=
s
in

(
5
x
)

(e) Box h = 0.4

B
ia

s
U

n
if

o
r
m

(
−

2
,
2
)

Regression

E[m̂(x)]

m(x)

Bias

Tosatto et al.
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|E[m̂(x)]−m(x)|
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fX (x)

Figure 1. We propose some simulations of Nadaraya–Watson regression with different designs,
regression functions, and bandwidths. (a)–(c) use Gaussian kernels, while (d) and (e) use Triangle
and Box kernels, respectively. The regression function m(x) is represented with a solid line, while the
Nadaraya–Watson estimate m̂(x) is represented with a dash-dotted line in the top subplot of each
experiment. In the second subplots, it is possible to observe the true bias (solid line), as well as our
upper bound (dashed line) and Rosenblatt’s estimate (dash-dotted line). The bottom subplots depict
the design used. The bandwidth used for the estimation is denoted with h. It is possible to observe
that Rosenblatt’s estimate often under or overestimates the bias , e.g., subfigures (b) and (c). In all the
different test conditions, our method correctly upper bounds the bias.

Realistic Scenario: Let us consider the regression problem of the dynamics of an
under-actuated pendulum of length l and mass m. In particular, the state of the pendulum
can be described by its angle α and its angular rotation α̇. Furthermore, a force u can be
applied to the pendulum. The full system is described by,

α̈ =
3

ml2 u− 3g
2l

sin(α + π),

where g is the gravitational acceleration. In practice, when this model is discretized in
time, the next state is estimated via numerical integration. Fort this reason, the Lipschitz
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constant Lm is unknown. Notice that also m′ and m′′ required by the Rosenblatt’s analy-
sis are unknown. We estimated the Lipschitz constant Lm by selecting the highest ratio
|yi − yj|/|xi − xi| in the dataset. In our analysis, we want to predict all the states with
fixed α̇ = 0, u = 0, but variable α ∈ [−π, π]. In order to generate the dataset, we use the
simulator provided by gym [27]. To train our models, we generate tuples of α, α̇, u by sam-
pling independently each variable from a uniform distribution i.e., α ∼ Uniform(−π, π),
α̇ ∼ Uniform(−8, 8) and u ∼ Uniform(−2, 2) (hence, L f = 0). We fit 100 different models
with 50,000 samples. We choose a Gaussian kernel with bandwidth h = [0.2, 0.2, 0.2].
Figure 3 depicts our bound and the estimated bias. We notice the bias is low and increases
close to the boundaries. Our upper bound is tight, but, as expected, it becomes overly
pessimistic in the boundary region.
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Tosatto et al.

|E[m̂(x)]−m(x)|

Figure 2. We propose a study on how the bias varies w.r.t. the dimension. While the bias grows
almost linearly in the high density region (i.e., x = 0), it tends to grow exponentially in lower densities
(i.e., x = 0.75). In both cases, our bound perform correctly.
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|E[m̂(x)−m(x)]|

Figure 3. Experiment on the under-actuated pendulum. Our bound gives the possibility to ensure
that E[m(x)− m̂(x)] does not exceed a certain quantity. In this example, it is possible to observe that
the bias is correctly bounded.

6. Applications

Our bound can be applied alongside any use of the Nadaraya–Watson regression
estimate. In this section, we want to point out an interesting application in reinforcement
learning. In reinforcement learning, we aim to approximate, from samples, an optimal
behavior of an agent acting in a given environment. To do so, one can find a so-called “value-
function” that determines how well the agent behaves. This function can be approximated
using dynamic programming combined with functional approximators such as neural
networks [28], but using also regression-trees [29], Gaussian processes [4], etc. In our
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prior work [30], we used the presented bound to subsequently bound the bias of the value
function estimated via Nadaraya–Watson regression.

7. Conclusions

The Nadaraya–Watson kernel regression is one of the most well-known nonparametric
estimator, used in a wide range of applications. Its asymptotic bias and variance are well-
known in the literature. However, to the best of our knowledge, such an estimator’s bias
has never been bounded before. In this paper, we proposed a hard bound of the bias
that requires mild assumptions. Our proposed bound is numerically tight and accurate
for a large class of regression functions, kernels, and random designs. We believe that
providing hard, non-probabilistic guarantees on a regression error is an essential step
in adopting data-driven algorithms in real-world applications. Our future research will
focus on extending the bias analysis to a broader class of kernel functions and with a
finite-samples analysis.

Author Contributions: S.T. conceived of the presented idea, developed the theory and performed
the numerical simulations. R.A. verified the analytical method. Both S.T. and R.A. wrote the paper.
All authors provided critical feedback and helped shape the research, analysis and manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Authors are grateful to three anonymous referees and the editor for their
valuable comments and suggestions, which certainly improved the presentation and quality of
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Theorems Derivation

In order to provide proofs of the stated Theorems, we need to introduce some quanti-
ties and to state some facts that will be used in our proofs.

Proposition A1. With a ∈ R, h 6= 0 and c ∈ R,∫ a

0
ki

( x
h

)
e−xL f dx = Bi(a/h, ch). (A1)

Proposition A2. With a, b ≥ 0, hi > 0 and L f ≥ 0,

∫ b

−a
ki

(
x
hi

)
e−|x|L f dx = hiBi(b/hi, L f hi)− hiBi(−a/h,−L f hi) = ψi(a, b). (A2)

Proposition A3. With a, b ≥ 0, hi > 0 and L f ≥ 0,

∫ b

−a
ki

(
x
hi

)
e|x|L f dx = hiBi(b/hi,−L f hiL f )− hiBi(−a/hi, L f hi) = ζi(a, b). (A3)

Proposition A4. With a ∈ R, h 6= 0 and c ∈ R,∫ a

0
ki

( x
h

)
e−xcx dx = h2

i (Ci(a/h, ch)). (A4)

Proposition A5. With a, b ≥ 0, hi > 0 and L f ≥ 0,

∫ b

−a
k
(

x
hi

)
e|x|L f |x|dx = h2

i

(
Ci(b/h, L f hi) + Ci(−a/hi, L f hi)

)
= ξi(a, b). (A5)

Definition A1. Integral on a d-interval
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Let C ≡ Ω(τ−, τ+) with τ−, τ+ ∈ Rd
. Let the integral of a function f : C → R defined on

C be defined as

∫
C

f (x)dx =
∫ τ+1

τ−1

∫ τ+2

τ−2
· · ·

∫ τ+d

τ−d
f ([x1, x2, . . . , xd]

ᵀ)dxd . . . dx2 dx1.

Proposition A6. There is a function g : Υ→ R such that

fX(x) =
eg(x)∫

Υ eg(x) dx

and, given A2, |g(x)− g(y)| ≤ L f |x− y| ∀y ∈ D.

Proposition A7. Independent Factorization
Let C ≡ Ω(τ−, τ+) where τ−, τ+ ∈ Rd, and fi : R→ R,

∫
C

d

∏
i=1

fi(xi)dx =
d

∏
i=1

∫
C

fi(xi)dx.

Proposition A8. Given C ≡ Ω(τ−, τ+), p : R→ R, q : R→ R,

∫
C

( d

∏
i=1

p(zi)

)( d

∑
k=1

g(zk)

)
dz =

d

∑
k=1

( d

∏
i 6=k

∫ τ+i

τ−i
p(z)dz

) ∫ τ+k

τ−k
p(z)q(z)dz.

Proof. Proof of Theorem 2:∣∣∣∣E [ lim
n→∞

f̂n(x)
]
−m(x)

∣∣∣∣
=

∣∣∣∣E [ lim
n→∞

∑n
i=1 Kh(x− xi)yi

∑n
j=1 Kh(x− xj)

]
−m(x)

∣∣∣∣
=

∣∣∣∣E [ lim
n→∞

n−1 ∑n
i=1 Kh(x− xi)yi

n−1 ∑n
j=1 Kh(x− xj)

]
−m(x)

∣∣∣∣
=

∣∣∣∣E [
∫

Υ Kh(x− z)
(
m(z)− ε(z)

)
fX(z)dz∫

Υ Kh(x− z) fX(z)dz

]
−m(x)

∣∣∣∣
=

∣∣∣∣
∫

Υ Kh(x− z)m(z) fX(z)dz∫
Υ Kh(x− z) fX(z)dz

−m(x)
∣∣∣∣

=

∣∣∣∣
∫

Υ Kh(x− z)
(
m(z)−m(x)

)
fX(z)dz∫

Υ Kh(x− z) fX(z)dz

∣∣∣∣
=

∣∣ ∫
Υ Kh(x− z)

(
m(z)−m(x)

)
fX(z)dz

∣∣∣∣ ∫
Υ Kh(x− z) fX(z)dz

∣∣ .

We want to obtain an upper bound of the bias. Therefore we want to find an upper
bound of the numerator and a lower bound of the denominator.

Lower bound of the Denominator:
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The denominator is always positive, so the module can be removed,∫
Υ

Kh(x− z) fX(z)dz

=
∫

Υ
fX(z)

d

∏
i=1

k
(

zi
hi

)
dz

≥
∫
D

fX(z)
d

∏
i=1

k
(

zi
hi

)
dz (since D ⊆ Υ and the integrand is always non-negative)

=
eg(x)∫

Υ eg(z) dz

∫
D

eg(z)− g(x)
d

∏
i=1

k
(

zi
hi

)
dz (Prop. A6)

= fX(x)
∫
D

eg(x + l)− g(x)
d

∏
i=1

k
(

li
hi

)
dl let l = z− x and D ≡ Ω(−δ−,+δ+)

≥ fX(x)
∫
D

e−|l|L f
d

∏
i=1

k
(

li
hi

)
dl (Axiom A2 + Lipschitz Inequality)

= fX(x)
∫
D

d

∏
i=1

e−|li|L f k
(

li
hi

)
dl

Now considering Propositions A1 and A7, we obtain

∫ +∞

−∞
Kh(x− z) fX(z)dz ≥ fX(x)

d

∏
i=1

ψi(δ
−
i , δ+i ). (A6)

Upper bound of the Numerator:∣∣∣∣ ∫Υ
Kh(x− z)

(
m(z)−m(x)

)
fX(z)dz

∣∣∣∣
≤

∫
Υ

Kh(x− z)|m(z)−m(x)| fX(z)dz

=
∫
G

Kh(x− z)|m(z)−m(x)| fX(z)dz +
∫

Υ\G
Kh(x− z)|m(z)−m(x)| fX(z)dz

≤
∫
G

Kh(x− z)|m(z)−m(x)| fX(z)dz + fX(x)M
∫

Υ\G
Kh(x− z)dz

=
eg(x)∫

Υ eg(z) dz

∫
G

eg(z)− g(x)Kh(x− z)|m(z)−m(x)|dz + fX(x)M
∫

Υ\G
Kh(x− z)dz

≤ fX(x)
(∫
G

eg(z)− g(x)Kh(x− z)|m(z)−m(x)|dz + MD
)

where

D =
∫

Υ\G
Kh(x− z)d = lim

ω→+∞

d

∏
i=1

∫ xi+ω

xi−ω
ki

(
xi − z

hi

)
dz−

d

∏
i=1

∫ xi+γ+
i

xi−γ−i
ki

(
xi − z

hi

)
dz

= lim
ω→+∞

d

∏
i=1

hiΦi

(
ω

hi

)
−

d

∏
i=1

hiΦi

(
γ+

i
h

)
+ hiΦi

(
γ−i
hi

)
. (A7)
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Let F ≡ Ω(x−φ−, x + φ+) ⊆ G, we will later define at our convenience.

fX(x)
(∫
G

eg(z)− g(x)Kh(x− z)|m(z)−m(x)|dz + MD
)

= fX(x)
( ∫
F

eg(z)− g(x)Kh(x− z)|m(z)−m(x)|dz+∫
G\F

eg(z)− g(x)Kh(x− z)|m(z)−m(x)|dz + MD
)

≤ fX(x)
( ∫
F

eg(z)− g(x)Kh(x− z)|m(z)−m(x)|dz

+ M
∫
G\F

eg(z)− g(x)Kh(x− z)dz + MD
)

= fX(x)
( ∫
F

eg(x + l)− g(x)Kh(−l)|m(x + l)−m(l)|dl

+ M
∫
G\F

eg(x + l)− g(x)Kh(−l)dl + MD
)

with l = z− x, F ≡ Ω(−φ−, φ+) and G ≡ Ω(−γ−, γ+)

≤ fX(x)
(∫
F

eL f |l|Kh(l)Lm|l|dl + M
∫
G\F

eL f |l|Kh(l)dl + MD
)

(A2, A3 + Lipschitz Inequality)

The first integral instead can be solved with Propositions A3, A5 and A8,∫
F

eL f |l|Kh(l)Lm|l|dl

=
∫
F

(
d

∏
i=1

k
(

l
hi

)
e|l|L f

)
Lm

d

∑
i=1
|li|dl dl

=Lm

d

∑
k=1

(
d

∏
i 6=k

∫ φ+
i

−φ−i
k
(

l
hi

)
e|l|L f dz

) ∫ φ+
k

−φ−k
k
(

l
h

)
e|l|L f |li|dl (Prop. A8)

=Lm

d

∑
k=1

ξk(φ
−
k , φ+

k )

(
d

∏
i 6=k

ζi(φ
−
i , φ+

i )

)
.

The second integral can be solved using Propositions A1 andA7,∫
G\F

eL f |l|Kh(l)dz =
∫
G

eL f |l|Kh(l)dl−
∫
F

eL f |l|Kh(l)dl

=
d

∏
i=1

ζi(γ
−
i , γ+

i )−
d

∏
i=1

ζi(φ
−
i , φ+

i ).

A good choice for F is φ−i = min(γ−i , M/L f ) and φ+
i = min(γ+

i , M/L f ), as in this
way we obtain a tighter bound. In last analysis,

∣∣∣∣E [ lim
n→∞

m̂n(x)
]
−m(x)

∣∣∣∣ ≤
Lm

d
∑

k=1
ξk(φ

k
i , φk

i )
d

∏
i 6=k

ζ(φ−i , φ+
i ) + M

(
d

∏
i=1

ζ(γ−i , γ+
i )−

d
∏
i=1

ζ(φ−i , φ+
i ) + D

)
∏d

i=1 ψi(δ
−
i , δ+i )

showing the correctness of Theorem 2.

In order to prove Theorem 3 we shall note that Υ ≡ G ≡ F , therefore the lower bound
can be bounded by
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∫
Υ

Kh(x− z) fX(z)dz =
∫

Υ
fX(z)

d

∏
i=1

ki

(
xi − zi

hi

)
dz

≥ fX(x)
∫

Υ

d

∏
i=1

ki

(
li
hi

)
e−li L f dl

= fX(x)
d

∏
i=1

ψi(υ
−
i , υ+i ) (A8)

for the numerator, instead∣∣∣∣ ∫Υ
Kh(x− z)

(
m(z)−m(x)

)
fX(z)dz

∣∣∣∣
≤ fX(x)

∫
Υ

eg(z)− g(x)Kh(x− z)|m(z)−m(x)|dz

≤ fX(x)
∫

Υ
eL f |l|Kh(l)Lm|l|dl where Υ ≡ Ω(υ−, υ+)

and therefore, for the reasoning already made for Theorem 2,

∣∣∣∣E [ lim
n→∞

m̂n(x)
]
−m(x)

∣∣∣∣ ≤
Lm

d
∑

k=1
ξk(υ

−
k , υ+k )

d
∏
i 6=k

ζi(υ
−
i , υ+i )

∏d
i=1 ψi(υ

−
i , υ+i )

where ξAk , ζ, Ψ, ϕ are defined as in Theorem 2 and φ−i = υ−i , φ+
i = υ+i .

Appendix B. Kernels

Appendix B.1. Gaussian Kernel

m
(
x
)

=
√
x

2
+

1

h = 0.1

B
ia

s
C

a
u
c
h
y
(
0
,
1
)

m
(
x
)

=
lo

g
(
x
)

h = 0.2

B
ia

s
P

a
r
e
t
o
(
1
,
1
)

m
(
x
)
=

lo
g
c
o
s
h
(
6
0
x
)

6
0

h = 0.3

B
ia

s
L

a
p
la

c
e
(
0
,
0
.5

)

m
(
x
)

=
s
in

(
5
x
)

h = 0.3

B
ia

s
P

a
r
e
t
o
(
1
)

m
(
x
)

=
s
in

(
5
x
)

h = 0.4

B
ia

s
U

n
if

o
r
m

(
−

2
,
2
)

Regression

E[m̂(x)]

m(x)

Bias

Tosatto et al.

Rosenblatt

|E[m̂(x)]−m(x)|

Design

fX (x)

Figure A1. Same experiment as in Figure 1, with Gaussian Kernels.
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Appendix B.2. Box Kernel

The box kernel, defined as k(x) = I(x), has B(a, c) = gB(a, c)− gB(0, c) and C(a, c) =
gC(a, c)− gC(0, c), where

gB(x, c) =
∫

k(x)e−xc dx =


0 if x < −1
e−c(e2c−1)

c if x > 1,
e−c(ecx+c−1)

c otherwise

(+const),

gC(x, c) =
∫

k(x)e−xcx dx =


0 if x < −1
e−c(ce2c−e2c+c+1)

c2 if x > 1,
e−c(cxecx+c−ecx+c+c+1)

c2 otherwise

(+const),

We show the results of a numerical simulation using the Box kernel in Figure A2.
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Figure A2. Same experiment as in Figure 1, with Box Kernel.
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Appendix B.3. Triangular Kernel

The triangular kernel, defined as k(x) = I(x)(1− |x|), has B(a, c) = gB(a, c)− gB(0, c)
and C(a, c) = gC(a, c)− gC(0, c), where

gB(x, c) =
∫

k(x)e−xc dx =



0 if x < −1
e−cx(ecx+c−c(x+1)−1)

c2 if − 1 ≤ x ≤ 0,
e−cx(c(x−1)−2ecx+ecx+c+1)

c2 if 0 < x ≤ 1,
e−c(ec−1)2

c2 if x > 1,

(+const),

gC(x, c) =
∫

k(x)e−xcx dx =



0 if x < −1
e−cx(−c2x(x+1)−c(ecx+c+2x+1)+2(ecx+c−1))

c3 if − 1 ≤ x ≤ 0,
e−cx(c2(x−1)x−c(ecx+c−2x+1)+2(ecx−c+1−2ecx))

c3 if 0 < x ≤ 1,

− e−c(ec−1)(ec)c+c−2ec+2
c3 if x > 1,

(+const),

We show the results of a numerical simulation using the Triangular kernel in Figure A3.
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Figure A3. Same experiment as in Figure 1, with Triangular Kernel. Note that this particular kernel,
does not have finite bound for L f = 0.
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