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1 Introduction

This supplement provides details on all the proofs presented in the paper “Exploration Driven by an Optimistic
Bellman Equation” and shows experimental details that have been left out of the main paper due to space
constraints. We refer to equations and definitions that are presented in the main paper with their assigned
numbers.

First, we introduce additional notation for the classic Bellman operator and our optimistic version. We show
how to derive the optimistic Bellman equation from an entropic regularized version of the bellman equation
defined on aQ-value ensemble. Subsequently, we show how to interpret the optimistic Bellman equation under an
intrinsic motivation perspective; we will show how the exploration bonus is related to the central moments of the
approximations made. We then analyze two algorithms: Optimistic Value Iteration (OVI), which is presented
mainly for theoretical reasons, introducing the optimistic Bellman operator and its properties, and optimistic
Q-learning (OQL). For both algorithms we provide convergence proofs. We also show that the exploration
bonus decreases according to the learning rate and state visits. Finally, we report the hyper-parameters used
in our experimental setting.

1.1 Notation

This section presents the mathematical notation used in the proofs.

Definition 1 (Bellman operator). We define the Bellman operator T : (S ×A → R)→ (S ×A → R) as:

(T Q)(s, a) = R(s, a) + γ

∫
P (s′|s, a) max

a′
Q(s′, a′) d s′ ∀s, a ∈ S ×A

for each Q : S ×A → R.

Definition 2 (Optimistic Bellman operator). We define the optimistic Bellman operator T̊ Mη : (S × A →
R)M → (S ×A → R)M as:

(T̊ηQ)i(s, a) = R(s, a) + η−1 log

M∑
m=1

eηγ
∫
P (s′|s,a)maxa′ Qm(s′,a′) d s′

M
∀s, a, i ∈ S ×A× {1, . . . ,M}

for each Q : S ×A → R.

Definition 3 (Optimal Q). We define the optimal Q∗ as the solution:

T Q∗ = Q∗.

We know from dynamic programming that Q∗ exists and it is unique.

Definition 4 (Optimistic Value Iteration (OVI)). Let Q = {Qi}Mi=1 be an arbitrary set of Q-functions, let T̊ Nη Q

denote the application of T̊η N times on Q, let OVI be the procedure that computes Q̃ = T̊ Nη Q.

1.2 Derivation of the Optimistic Bellman Equation

In this section, we derive the optimistic Bellman equation (OBE) from an entropic-regularized version of the
bellman equation. The entropic-regularization is defined on a set of Q-value function.

Theorem 1. Consider the problem:

Qi(s, a) = max
b(s,a)∈PM

f
(
s, a; b(s, a)

)
− 1

ηDKL

(
p(s, a)

∥∥u)
s.t.

∑M
m=1 bm(s, a) = 1

∀s, a, i ∈ S ×A× {1, . . . ,M}

where f(a, s; p)=R(s, a)+γ
∑
m bm(s, a)V ′m(s, a), V ′m(s, a)=

∑
s′ P (s′|s, a) maxa′ Qm(s′, a′),um = 1/M , DKL(b(s, a)‖u)

is the Kullback-Leibler divergence between the belief b(s, a) and the uniform distribution u. From Problem 1, we
can derive the optimistic Bellman equation (OBE)

Qi(s, a) = R(s, a) +
1

η
log

∑
m e

η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm(s′,a′)

)
M

∀i ∈ {1, . . . ,M}.
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Proof. Let Li be the Lagrangian of the ith problem:

Li(s, a) = R(s, a)+γ
∑
m

(∑
s′

P (s′|s, a) max
a′

Qm(s′, a′)
)
bm(s, a)− 1

η

∑
m

bm(s, a) log
bm(s, a)

M−1
+λ(

∑
m

bm(s, a)−1)

(1)
To find the maximum of the Lagrangian, set the partial derivatives to zero. First, w.r.t. pm:

∂bm(s,a)Li(s, a) = γ
∑
s′

P (s′|s, a) max
a′

Qm(s′, a′)− 1

η
log

bm(s, a)

M−1
− M−1

η
+ λ = 0

=⇒ 1

η
log

bm(s, a)

M−1
= γ

∑
s′

P (s′|s, a) max
a′

Qm(s′, a′)− M−1

η
+ λ

=⇒ bm(s, a) = M−1e
η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm(s′,a′)−M−1

η +λ

)
. (2)

Next, set partial derivative w.r.t. λ to zero:

∂λLi(s, a) =
∑
m

bm(s, a)− 1 = 0

=⇒ 1 =
∑
m

M−1e
η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm(s′,a′)−M−1

η +λ

)

=⇒ e−λη =
∑
m

M−1e
η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm(s′,a′)−M−1

η

)

=⇒ λ = −1

η
log
∑
m

M−1e
η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm(s′,a′)−M−1

η

)
. (3)

Let’s substitute (3) into (2):

bm(s, a) =
M−1e

η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm(s′,a′)−M−1

η

)
∑
m′M

−1e
η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm′ (s

′,a′)−M−1

η

)

=
e
η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm(s′,a′)

)
∑
m′ e

η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm′ (s

′,a′)

) .
Now that we have solved for the Lagrangian multipliers, substitute bm(s, a) into Equation (1):

Li(s, a) = R(s, a) + γ
∑
m

(∑
s′

P (s′|s, a) max
a′

Qm(s′, a′)
)
bm(s, a)(s, a)− 1

η

∑
m

pm(s, a) log
pm(s, a)

um
(4)
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to get

Li(s, a) = R(s, a) + γ
∑
m

(∑
s′

P (s′|s, a) max
a′

Qm(s′, a′)
)
bm(s, a)

−1

η

∑
m

bm(s, a) log
e
η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm(s′,a′)

)
∑
m′ e

η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm′ (s

′,a′)

) − logM

η

= R(s, a) + γ
∑
m

(∑
s′

P (s′|s, a) max
a′

Qm(s′, a′)
)
pm(s, a)

−1

η

∑
m

bm(s, a)

(
log e

η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm(s′,a′)

)
− log

∑
m′

e
η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm′ (s

′,a′)

))

− logM

η

= R(s, a) +
1

η

∑
m

bm(s, a) log

∑
m′ e

η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm′ (s

′,a′)

)
M

= R(s, a) +
1

η
log

∑
m e

η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm(s′,a′)

)
M

(5)

Therefore (5) implies:

Qi(s, a) = R(s, a) +
1

η
log

∑
m e

η

(
γ
∑
s′ P (s′|s,a)maxa′ Qm(s′,a′)

)
M

∀i ∈ {1, . . . ,M}.

1.3 Exploration Bonus

We can show that OBE can be seen as an intrinsic motivation technique. More in detail, is it possible to see,
that the optimistic over-estimation of the Q-ensembles is equivalent to an unbiased estimation of the ensemble
plus a positive term which is connected with the uncertainty between values of the ensemble. We consider the
unbiased estimate of the value of the next state

V
′
(s, a) =

M∑
m=1

V ′m(s, a)

M
. (6)

The exploration bonus can then be expressed as

U(s, a) =
1

η
log

( M∑
m=1

eηγV
′
m(s,a)

M

)
− V ′(s, a)

=
1

η

(
log

( M∑
m=1

eηγV
′
m(s,a)

M

)
− ηV ′(s, a)

)

=
1

η
log

( M∑
m=1

eηγV
′
m(s,a)

M
e−ηV

′
(s,a)

)

=
1

η
log

M∑
m=1

eηγ(V
′
m(s,a)−V ′(s,a))

M
. (7)

Note that the average over the exponential function is the sample moment generating function. Thus, Equa-
tion (7) can be rephrased as

U(s, a) = lim
N→+∞

1

η
log

[
1 +

N∑
n=2

(ηγ)n

n!
Mn(s, a)

]
.
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where

Mn(s, a) = M−1
M∑
m=1

[(
V ′m(s, a)− V (s, a)

)n]
= ηγM2(s, a) +O(η2) (8)

(9)

denotes the nthsample central moment. Note that the further simplification come from the expansion w.r.t. η.

1.4 Convergence of Value Iteration with the Optimistic Bellman Equation

In this Section, we show that value iteration using the optimistic Bellman equation (OBE), which we call
optimistic value iteration (OVI), converges. First, we show that the fixed point of value iteration with OBE is
identical to the fixed point of the classic Bellman equation (BE). Next, we show the max-norm contractivity of
the optimistic Bellman operator. Finally, we use the fixed point and max-norm contractivity results to show
that value iteration with OBE converges.

Lemma 1 (Fixed point of OBE). If Qi = Q∗ then (T̊ηQ)i = Q∗ ∀i ∈ {1, . . .M} where Q∗ is the unique fixed
point of the classic BE .

Proof.

(T̃ ∗Q∗)(s, a) = R(s, a) +
1

η
log

1

M

M∑
i=1

eηγ
∫
P (s′|s,a)maxa′ Q

∗(s′,a′) d s′

= R(s, a) +
1

η
log eηγ

∫
P (s′|s,a)maxa′ Q

∗(s′,a′) d s′

= R(s, a) + γ

∫
P (s′|s, a) max

a′
Q∗(s′, a′) d s′

= (T ∗Q∗)(s, a)

= Q∗(s, a)

Lemma 2 (Max-Norm contractivity of the optimistic Bellman operator). Given {Q1,k}Mk=1, {Q2,k}Mk=1, and
δ > 0 such that

‖Q1,k −Q2,k‖∞ ≤ δ ∀k ∈ {1, . . . ,M}

implies that:
‖(T̊ηQ1)k − (T̊ηQ2)k‖∞ ≤ γδ ∀k ∈ {1, . . . ,M}.

Proof.

(T̊ηQ1)k(s, a)− (T̊ηQ2)k(s, a) = R(s, a) +
1

η
log

1

M

M∑
i=1

eηγ
∫
P (s′|s,a)maxa′ Q1,i(s

′,a′) d s′

−R(s, a)− 1

η
log

1

M

M∑
i=1

eηγ
∫
P (s′|s,a)maxa′ Q2,i(s

′,a′) d s′

=
1

η
log

1

M

M∑
i=1

eηγ
∫
P (s′|s,a)(maxa′ Q1,i(s

′,a′)−maxa′ Q2,i(s
′,a′)) d s′

≤ 1

η
log

1

M

M∑
i=1

eηγ
∫
P (s′|s,a)δ d s′

= γδ

Theorem 2 (Convergence of OBE). If

|Qi(s, a)−Q∗(s, a)| ≤ ε s, a, i ∈ S ×A× {1, . . . ,M} (10)

then
|(T̊ηQ)i(s, a)−Q∗(s, a)| ≤ γε s, a, i ∈ S ×A× {1, . . . ,M}. (11)
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Note that this implies that given an initial set of Q = {Qi}Mi=1, limN→∞ T̊ Nη Q = Q∗, therefore implies the
convergence of OV I.

Proof. ∣∣(T̊ηQ)i(s, a)−Q∗(s, a)
∣∣ =

∣∣(T̊η ∗Q)i(s, a)− T̊ηQ∗(s, a)
∣∣

≤ γε

We note that OVI converges with the same rate as VI.

1.5 Optimistic Q-Learning

This section provides a more detailed proof of optimistic Q-learning (OQL) converging to Q(s, a)∗. We first
show that the exploration bonus vanishes in OQL and then give the main proof of convergence.

Definition 5 (Optimistic Q-learning - theoretical version). 1
Qj,t+1(s, a) = (1− αt)Qi,t(s, a)

+αt

(
rt + γ 1

M

∑M
j=1 maxa′ Qj,t(st+1, a

′)
)

ifs = st ∧ a = at

Qi,t+1(s, a) = Qi,t(s, a) otherwise

Theorem 3 (Vanishing bonus for optimistic Q-learning). Let’s consider optimistic Q-Learning (OQL) described
in Definition 5. Let’s suppose to have a set of Qi. Each entry in the table at time t = 0 has central moment
M0,n ∈ R. If we consider a specific entry (s, a), and a sequence of learning rate {αt}Tt=0 where αt ∈ [0, 1], then

MT+1,n(s, a) =

T∏
t=0

(1− αt)nM0,n(s, a) (12)

where MT+1,n(s, a) is the nth central moment of the entry (s, a) at time T + 1.

Proof. Please, note that we always update an entry (s, a) with the same value for all the M tables. We can
refer to the sequence of updates to a single state-action pair (s, a) as {yt}Tt=0, where each value belongs to R.
Now, let’s consider the process of updating of the entry s, a

Qt+1,i(s, a) = (1− αt)Qt,i(s, a) + αtyt ∀i ∈ {1, . . .M}. (13)

We can write the central moments at time t+ 1 as

Mt+1,n(s, a) = M−1
∑
m

(
Qt+1,m(s, a)−M−1

∑
i

Qt+1,i(s, a)
)n

= M−1
∑
m

(
(1− αt)Qt,m(s, a) + αt −M−1

∑
i

(
(1− αtyt)Qt,i(s, a) + αt

))n
= M−1

∑
m

(
(1− αt)Qt,m(s, a)−M−1

∑
i

(1− αtyt)Qt,i(s, a)
)n

= (1− αt)nM−1
∑
m

(
Qt,m(s, a)−M−1

∑
i

Qt,i(s, a)
)n

= (1− αt)nMt,n(s, a)

and therefore, unfolding the recursion,

MT+1,n(s, a) =

T∏
t=0

(1− αt)nM0,n(s, a)

Next, we prove the convergence of OQL. Our proof is based on the work of [2], which relies on the following
theorem [1]:

1We use αt as a shortcut for αt(s, a).
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Theorem 4. The random process {∆t} taking values in R and defined as:

∆t+1(x) = (1− αt(x))∆t(x) + αtFt(x) (14)

converges to zero w.p. 1 under the following assumptions:

• 0 ≤ αt ≤ 1,
∑
t αt(x) =∞ and

∑
t α

2
t (x) <∞

• ‖E[Ft(x)|Ft]‖W ≤ γ‖∆t‖W with 0 ≤ γ < 1

• Var[Ft(x)|Ft] ≤ C(1 + ‖∆t‖2W ) for C > 0.

We are now ready to prove the convergence of optimistic Q-learning.

Theorem 5 (Convergence of Optimistic Q-learning). Let us consider the algorithm provided in Definition 5.
Suppose that the rewards are bounded, and consider a learning rate αt(s, a) which satisfies 0 ≤ αt ≤ 1,∑
t αt(x) = ∞ and

∑
t α

2
t (x) < ∞. Suppose that each state action pair is visited infinitely many times, then,

limt→∞Qi,t(s, a)→ Q∗(s, a)∀i ∈ {1, . . . ,M} with probability 1. Then the algorithm converges.

Proof. Let’s consider the following stochastic process:

Qi,t+1(s, a) = (1− αt)Qi,t(s, a) + αt

(
rt +

1

η
logM−1

M∑
j=1

eγmaxa′ Qj,t(st+1,a
′)
)

with αt = αt(s, a) (for brevity), and coherent with the assumpions. Let’s rename ∆i,t(s, a) = Qi,t(s, a)−Q∗(s, a)

where Q∗(s, a) is the fixed point of T̊η. We can now write:

∆i,t+1(s, a) = (1− αt)∆i,t(s, a) + αt

(
rt +

1

η
logM−1

M∑
j=1

eγmaxa′ Qj,t(st+1,a
′) −Q∗(s, a)

)
.

We can rename Ft(s, a) = rt + 1
η logM−1

∑M
j=1 e

γmaxa′ Qj,t(st+1,a
′) − Q∗(s, a) and observe that E[Ft(s, a)] =

T̊ηQt(s, a)−Q∗(s, a), and subsequently, thanks to the max-norm contraction of the optimistic Bellman operator,

‖E[Ft(s, a)]‖∞ ≤ γ‖Qi,t −Q∗‖∞
= γ‖∆i,t+1(s, a)‖∞ ∀i ∈ {1, . . . ,M}.

Then, noticing Var[Ft(s, a)] = Var[Ft(s, a)−Q∗] = Var[rt + 1
η logM−1

∑M
j=1 e

γmaxa′ Qj,t(st+1,a
′)] which, consid-

ering that the rewards are assumed to be bounded, leads to:

∃C : Var[Ft(s, a)] ≤ C(1 + ‖∆i,t‖) ∀i ∈ {1, . . . ,M}. (15)

Using Theorem 4 we can therefore say that Qt(s, a) converges to Q∗(s, a) w.p. 1.

1.6 Details on the Experiments

In this section, we provide details on the exact form of bootstrapped Q-Learning and optimistic Q-learning
update rules. Furthermore, we describe how hyper-parameters were chosen in the experiments and what kind
of neural network structure was used in the experiments with neural network based function approximation.

We define Bootstrapped Q-Learning (BQL) with the following update rule

Definition 6 (Bootstrapped Q-learning). 2
Qi,t+1(s, a) = (1− αt)Qi,t(s, a)

+αt

(
rt + 1

η logM−1
∑M
j=1 e

γmaxa′ Qj,t(st+1,a
′)
)

ifs = st ∧ a = at

Qi,t+1(s, a) = Qi,t(s, a) otherwise

and OQL with

2We use αt as a shortcut for αt(s, a).
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Definition 7 (Optimistic Q-learning - empirical analysis version).

Qj,t+1(s, a) = (1− αt)Qi,t(s, a)

+αt

(
rt + 1

η log 1
M−1

∑M
j=2 e

γmaxa′ Qj,t(st+1,a
′)+Q1(st+1,a

′)

−γ 1
M−1

∑M
j=2 maxa′ Qj, t(st+1, a

′)
)

ifs = st ∧ a = at ∧ j = 1

Qj,t+1(s, a) = (1− αt)Qi,t(s, a)

+αt

(
rt + γ 1

M−1
∑M
j=2 maxa′ Qj,t(st+1, a

′)
)

ifs = st ∧ a = at ∧ j ≥ 2

Qi,t+1(s, a) = Qi,t(s, a) otherwise

using the “explicit exploration” formulation, in order to enable the evaluation with unbiased Q values. The
settings provided by Table 1 are fixed for all the different environments.

Parameter QL OIQL BQL OQL
Number of approximators 1 1 10 10
Initialization N (0, 2) Rmax N (0, 2) N (0, 2)
Learning rate 0.15 0.15 0.15 0.15
ε-greedy 0.01 0.01 0.01 0.01

Table 1: Setting used for tabular algorithms.

1.6.1 DQN and ODQN

Acrobot configuration. For Acrobot, we used a single-layer neural network as base component of the
ensemble. The input of the neural newtork is 4-dimensional (and corresponds to the dimension of the state
space), and the output has 2 dimensions, corresponding to the two possible actions. Table 4 shows the fixed
hyper-parameters for Acrobot. Additionally, we performed a grid search over the number of neurons in the
hidden layer, and for the “bootstrapped mask” (see Table 2). We measured both the mean return averaged over
all episodes denoted by “avg” (which should give an idea about how fast an algorithm can improve performance
w.r.t. the number of samples), and also the mean of the final performance. For both ODQN and BDQN we
selected the hyper-parameters corresponding to the best average performance of BDQN yielding yielding 100
neurons and a bootstrap mask of 0.5 for the final performance evaluation shown in the main paper. For ODQN
we use χ = 0.25 and ιmax = 1.

Neurons Bootstrapped Mask BDQN avg BDQN final ODQN avg ODQN final
100 0.5 −116.96∗ −84.63 −115.25 −86.04
100 1.0 −129.62 −86.91 −129.06 −95.60
150 0.5 −123.21 −85.04 −122.10 −80.38
150 1.0 −136.25 −89.50 −138.38 −83.62
200 0.5 −123.47 −87.89 −125.72 −84.41
200 1.0 −143.05 −87.70 −148.64 −81.91
300 0.5 −129.26 −82.60 −131.24 −81.12
300 1.0 −150.10 −83.98 −151.14 −86.30
400 0.5 −133.01 −81.43 −135.30 −83.82
400 1.0 −154.70 −87.58 −158.38 −86.55

Table 2: Tested hyper-parameters “Neurons” and “Bootstrapped Mask” for Acrobot with corresponding eval-
uations.

Taxi configuration. For Taxi, we decided to encode the state as a 2-dimensional grid, selecting only the
position of the agent to 1 and the rest to zero, and additionally we provide a one-dimensional vector of length
3 providing the information about which flags where collected. We decided to use a shared convolutional layer
with kernel of 2 and stride 1, in order to process the vector and reduce the dimension. Above the convolutional
layer, we apply a different hidden layer for each component of the ensemble. The output of each component
is 4-dimensional, corresponding to the four possible actions. Most of the parameters are chosen without any
optimization (see Table 4), except for the number of neurons in the hidden layer, and for the “bootstrapped
mask”. We performed a grid search over these two parameters, measuring both the mean return averaged over
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all episodes and also the mean of the final performance, similarly to the Acrobot evaluation (please, see Table 3).
For both ODQN and BDQN, we selected the hyper-parameters corresponding to the best average performance
of BDQN yielding 200 neurons and a bootstrap mask of 0.5 for the final performance evaluation shown in the
main paper.

Neurons Bootstrapped Mask BDQN avg BDQN final ODQN avg ODQN final
200 0.5 9.51∗ 12.05 10.05 14.25
200 1.0 6.16 7.80 8.63 12.00
300 0.5 9.14 10.95 9.63 9.65
300 1.0 9.36 9.65 9.27 10.55
400 0.5 7.21 8.4 10.30 13.50
400 1.0 6.87 9.2 9.42 11.25

Table 3: Tested hyper-parameters “Neurons” and “Bootstrapped Mask” for Taxi with corresponding evaluations.

Parameter Acrobot Taxi
Number of approximators 10 10
Shared conv. layer no yes
Number of layers 1 1
Number of neurons 100 200
Activation function relu relu
Initialization Glorot Uniform Glorot Uniform
Loss MSE Huber Loss
Optimization Adam RMSProp
Learning rate 0.001 0.00075
Decay (only RMSProp) none 0.95
Batch size 32 100
Max replay-memory size 5000 100000
Target update frequency 600 100
p-mask 0.5 0.5
ε-greedy (training) 0.0 0.05
ε-greedy (evaluation) 0.0 0.0
Evaluation frequency 3000 5000
Total training steps 250000 400000

Table 4: Common hyper-parameters for BDQN and ODQN.

9



References

[1] T. Jaakkola, M. I. Jordan, and S. P. Singh. Convergence of stochastic iterative dynamic programming
algorithms. In Advances in neural information processing systems, pages 703–710, 1994.

[2] F. S. Melo. Convergence of q-learning: A simple proof. Institute Of Systems and Robotics, Tech. Rep, pages
1–4, 2001.

10


