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Abstract— Movement primitives are an important policy class
for real-world robotics. However, the high dimensionality of
their parametrization makes the policy optimization expensive
both in terms of samples and computation. Enabling an efficient
representation of movement primitives facilitates the appli-
cation of machine learning techniques such as reinforcement
on robotics. Motions, especially in highly redundant kinematic
structures, exhibit high correlation in the configuration space.
For these reasons, prior work has mainly focused on the
application of dimensionality reduction techniques in the con-
figuration space. In this paper, we investigate the application
of dimensionality reduction in the parameter space, identifying
principal movements. The resulting approach is enriched with
a probabilistic treatment of the parameters, inheriting all the
properties of the Probabilistic Movement Primitives. We test
the proposed technique both on a real robotic task and on a
database of complex human movements. The empirical analysis
shows that the dimensionality reduction in parameter space is
more effective than in configuration space, as it enables the
representation of the movements with a significant reduction of
parameters.

I. INTRODUCTION

Robot learning is a promising approach to enable more
intelligent robotics, which can easily adapt to the user’s de-
sires. In recent years, the field of reinforcement learning (RL)
has experienced an enormous advance in solving simulated
tasks such as board- or video-games [1], [2], [3], in contrast
to little improvements in robotics. The major challenges in
the direct application of RL to real robotics, are mainly the
limited availability of samples and the fragility of the system,
which disallow the application of unsafe policies. These two
disadvantages become even more evident when we consider
that usual robotic tasks such as industrial manipulation,
are defined in a high dimensional state and action space.
A usual approach in the application of RL to robotics, is
to initialize the policy via imitation learning [4], [5], [6],
[7]. In the past, there has been some effort in providing
a safe representation of the policy for robotics, mainly by
the means of Movement Primitives (MPs) [8], [9], [10],
[11]. The general framework of MPs has been extensvely
studied and employed in a large variety of settings [12],
[13], [14], [15], [16]. MPs have been shown to be effective
when used for the direct application of RL to robotics [17],
[18], [19]. The drawback of the general framework of MPs,
is the usual high number of parameters. In fact, in the
configuration-space, the number of parameters is equal to
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Fig. 1: Our binamual platform performing a pouring task
using Pro-Primos (left). The generation of trajectories via
PriMos (right): the blue line corresponds to the mean move-
ment, while the dashed lines to the principal movements.
By only linearly combining two principal movements, it
is possible to generate a wide variety of movements (gray
lines).

the number of basis functions (typically greater than 10),
times the number of degree-of-freedom (DoF). The number
of parameters grows even quadratically w.r.t. the number
of basis function and DoF when we want to represent the
full covariance matrix in the case of Probabilistic Movement
Primitives (ProMPs) [11], [20]. In recent years, many authors
have proposed techniques to solve the problem by using a
latent representation of the robot’s kinematic structure [21],
[22], [23], [24]. Especially for complex systems, such as
humanoids, many DoF are redundant, and a compressed
representation of the configuration-space results in a lighter
parametrization of the MP. However, this approach is less
effective in the case of a robotic arm with fewer DoF
Moreover, the parametrization of the MPs would be still
linear w.r.t. the number of basis functions.

In this article, we build on the general framework of
ProMPs and we propose to apply the dimensionality re-
duction in parameter space. In tasks where there is a high
correlation between the movements, it makes more sense to
seek a compressed representation of the movement instead of
the configuration-space. To this end, we propose an approach
where the movements can be seen as a linear combination
of principal movements (Fig.1). We enrich our framework
with a probabilistic treatment of the parameters, so that our
approach inherits all the properties of ProMPs. We analyze
the benefit of dimensionality reduction in the parameter
space w.r.t. in configuration space, both on a challenging
human motion reconstruction and in a robotic pouring task
(Fig. 1). Our findings show that our proposed approach
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(a) ProMPs

θ p(ω | θ) p(τt | ω)

t ∈ {1 . . . T}

(b) Pro-PriMos

θ p(α | θ) ω = ω +Ωα p(τt | ω)

t ∈ {1 . . . T}

Fig. 2: Graphical model of the ProMPs framework (a) compared to Pro-PriMos (b). The main idea of Pro-PriMos is to
generate a distribution of linear combinations of the principal-movements Ω.

achieve satisfying accuracy even with a significant reduction
of parameters.

II. RELATED WORK

The issue of dimensionality reduction in the context of
motor primitives has been extensively studied. To achieve
dimensionality reduction for Dynamic Movement Primitives
(DMPs) [9], the autoencoded dynamic movement primitives
model proposed in [23], uses to find a representation of the
movements in a latent feature space, while in [24] the DMPs
are embedded into the latent space of a time-dependent
variational autoencoder. In [22] a linear projection in the
latent space of the configuration space is considered, as well
as the adaption of the projection matrix in the RL context.
Interestingly, they consider the possibility to address the
dimensionality reduction in the parameter space, but they
discard this option as the projection matrix is more difficult
to adapt since it is of higher dimensions. We agree with
this argument, however, when we assume that the projection
matrix can be considered fixed this argument is not valid
anymore. The dimensionality reduction of ProMPs has been
addressed in [25], where the authors compare PCA versus an
expectation-maximization approach in configuration space.
Until this point, all the literature is focused in finding a
mapping between configuration space and a latent space, and
proposing the learning of the MPs in this lower represen-
tation. However, this approach results to be more efficient
in complex kinematic structures, such as the human body,
where the high number of joints facilitate the possibility
of redundancies in the configuration space. Moreover, this
reduction, does not affect the intrinsic high-dimensional
nature of the MPs, which requires usually a high number
of basis functions.

A way to overcome this problem is to focus in the param-
eter space of the movement primitives. The dimensionality
reduction in this case exploits similarities between move-
ments, and high correlations between parameters. To the best
of our knowledge, the only work performing a reduction in
parameter is [26]. The proposed setup is however complex as
it considers a fully hierarchical Bayesian setting, where the
movements are encoded by a mixture of Gaussian models.
They learn those parameters using variational inference.
Furthermore, their approach does not address the question of
whether the parameter space reduction is more convenient or
not.

In our paper, we want to focus on the comparison between
the dimensionality reduction in configuration and parameter
space, arguing that the latter is more convenient. To this
end, we propose the Principal Movements (PriMos) frame-
work, which enables the selection of principal movements
and the subsequent representation of the movements in
this convenient space. We extend PriMos to incorporate a
probabilistic treatment of the parameters (Pro-PriMos), in
a similar way to the ProMPs framework. Our approach
only adds a linear transformation to the framework already
developed by Parachos et al., as depicted in Fig. 2, therefore
it maintains all the properties exposed by the ProMPs, such
as time modulation, movements co-activation or movement
conditioning. To maintain the method simple, we select PCA
for the dimensionality reduction, even if more sophisticated
techniques can be used.

III. THE PRINCIPAL MOVEMENT FRAMEWORK

Machine learning, should allow the robotic agent to inter-
act with the real world in a non-predetermined way. However,
the possible generated movement should be smooth, and
possibly constrained to be safe (not colliding with other
objects, without excessive speed or accelerations, etc). These
issues require a whole field of research to be solved. MPs
are useful in this context. The idea behind MPs, is to restrict
the class of all possible robotic movements to a specific
parameterized class usually by linearly combining a set of
parameters with a set of features. For a particular class
of features (e.g., radial basis function), the movements are
guaranteed to be smooth. However, sometimes restricting
the space of robotic movement to be smooth is not enough,
and we want also the movements to be distributed similarly
to some demonstration provided by a human expert. The
ProMPs provides a probabilistic treatment of the movement’s
parameters [11], [20]. Both frameworks are useful and can be
coupled with RL. In the following, we introduce the Principal
Movements (PriMos) framework, as well as its probabilistic
extension (Pro-PriMos). In Section III-A, we introduce the
formal notation of the MPs framework. In Sections III-B
and III-C, we introduce PriMos and Pro-PriMos relying on
the assumption that a set of principal movement is given. In
Section III-D we propose a technique to find the principal
movements, offering a complete algorithm for dimensionality
reduction for MPs.



A. Preliminaries

Let us concisely introduce the notation and formalize the
classic MPs framework. For simplicity, we will first consider
only a one-dimensional trajectory τᵀ = [τ1, . . . , τT ]1, where
τi represent the joint’s position at time ti. In order to
introduce the time modulation, we use a phase-vector z
where zi = (ti − t1)/(tT − t1). Moreover, we consider
n normalized radial-basis functions Φi : R → R, usually,
ordered to evenly cover the phase-space, they are centered
between [−2h, 1 + 2h] where h is the bandwidth. At time t
the features are described by a n-dimensional column vector
Φt where Φt,i = Φi(zt). Assuming that the observations are
perturbed by a zero-mean Gaussian noise εt with variance
στ , we want to represent the movement τt = Φᵀ

tω + εt as
a linear combination of parameters ω ∈ Rn. , we obtain the
following maximum-likelihood estimation (MLE) problem

max
ω
L(ω) = max

ω

∏
t

N (τt | Φᵀ
t ω, σt). (1)

Equation (1) can be solved with usual linear regression, or
more commonly with Ridge-regression (which corresponds
to have a prior Gaussian distribution on ω, N (ωi|0;σω)) that
leads to better generalization and is more numerically stable,

ω = (ΦᵀΦ + λI)−1
Φᵀτ (2)

where λ is the ridge penalization term and Φᵀ =
[Φ1,Φ2 . . . ,ΦT ]. However, there is the possibility to extend
this setting with a probabilistic treatment of the movement
parameters. In this case, we want to find the best distribution
over parameters which encode a distribution of trajectories,
i.e.,

p(τ | µω,Σω) =

∫
p(τ | ω)N (ω | µω; Σω)dω. (3)

This is the setting described with ProMPs in [11]. For a
finite set of stroke-movements {τi}mi=1, it is possible to use
the parameters ωi estimated for each trajectory τi in order
to estimate µω and Σω , i.e.,

µω =
1

m

m∑
i=1

ωi, Σω =
1

m

m∑
i=1

(ωi−µω)(ωi−µω)ᵀ. (4)

In a more realistic scenario, we need to represent multiple
joints. Assuming a system with d joints, we can encode
τᵀ = [τ1,1, . . . , τ1,T , . . . , τd,T ] where τi,j is the position of
the ith joint at time tj , Ψ = I ⊗ Φ (where I is the d × d
identity matrix) and ω column-vector of length nd encoding
the movement’s parameters. Similarly to the notation already
used, we denote with Ψt the feature matrix corresponding
to the time step t.

B. Principal Movements

The MPs and ProMPs frameworks, usually require a
large number of parameters for encoding the movements.
In MPs, we need in fact d × n parameters (where d is

1Contrarily to [20], we do not consider the velocities, however they can
be incorporated, without any loss of generality.

the dimension of the considered movement and n is the
number of radial basis functions). rThe choice of the number
of radial-basis functions usually depends by both the speed
and the complexity of the movements, but most of the time
it is greater than ten. For a 7 d.o.f. we, therefore, need
at least 70 parameters to encode the MPs. This makes the
application of RL challenging for a 7 d.o.f. robot arm. We
will assume, from now on, that an oracle (i.e., a human
expert or a dimensionality reduction method) will give us
the parameters of a mean-movement ω, and a matrix of
principal-movements Ωᵀ = [ωp1 , . . . ,ω

p
nc ]. We therefore

want to encode a given trajectory τ as a linear combination
of the principal movements, i.e.,

τt = Ψtω + ΨtΩα+ εt. (5)

We consider α ∈ Rnc the new parameter vector. Note that
nc is generally independent of the number of joints d and of
the number of radial basis function n, but instead the choice
of nc is connected to the complexity of the movement-space
that we aim to represent. The MLE problem

max
α

∏
t

N (τt | Ψtω + ΨtΩα, σt), (6)

induced by (5) has a Ridge regression solution

α = (ΩᵀΨᵀΨΩ + λI)−1
ΩᵀΨᵀ (τ −Ψω) . (7)

C. Probabilistic Principal Movements

A probabilistic treatments of the MPs, is often convenient,
as it enables the application of statistical tools [11], [20].
To enrich our approach with a probabilistic treatment, we
assume our parameter vector α to be multivariate-Gaussian
distributed, i.e., α ∼ N (· | µα; Σα). Very similarly to the
classic ProMPs approach, we have that

p(τt | µα,Σα)

=

∫
N (τt | Ψt(Ωα+ ω),Στ )N (α | µα,Σα)dα

=N (τt | Ψt(Ωµα + ω),ΨtΩΣαΩᵀΨᵀ
t + Στ ). (8)

The mean µα and the covariance Σα can be estimated as
similarly done for ProMPs, (Eq. 4)

µα =
1

m

m∑
i=1

αi, Σα =
1

m

m∑
i=1

(αi−µα)(αi−µα)ᵀ, (9)

where the parameters αi correspond to the trajectories τi.
We assume an affine transformation between the full

parameters ω and the reduced α, as shown in Fig. 2, and α is
assumed to be Gaussian distributed. Under these assuptions,
ω is also Gaussian distributed, allowing for a mapping from
Pro-PriMos to ProMPs,

µ̂ω = Ωµα + ω, Σ̂ω = ΩΣαΩᵀ.

Hence, the proposed framework enjoys all the properties of
the ProMPs, such as movements co-activation or movement
conditioning.



Fig. 3: Top: From left to right, the demonstration in kinestatic teaching mode of the pouring task, and the subsequent
reconstruction of the movement with PriMos. Bottom: Markers placements on the human body, and illustrative example of
the skeleton reconstruction for a “walk and pick-up” task of subject #143 of the MoCap database http://mocap.cs.
cmu.edu.

D. Inference of the Principal Components

Until this point, we considered the parameters ω and
Ω given by an oracle. We mentioned that the underlying
assumption of our work is that each movement can be seen
as a linear combination of some movements which we call
principal movements. To be precise, we assume that every
trajectory τ can be seen as τ = τ +

∑
i τ

p
i αi. Since there

exists a linear combination between the trajectory τ and its
parameter ω, we can argue, that the same relation exists
in the parameter space. Reasoning in the parameter space
is more convenient since the trajectories can have different
lengths, depending on the sampling frequency and duration.
The parameter space is instead fixed. We can say that the
parameter space is frequency and duration agnostic. There
are many techniques that can be used to estimate ω and Ω
when they are unknown, but among these, given the Gaussian
assumption very made and also thanks to its simplicity, the
Principal Component Analysis (PCA) [27] seems to be the
most suited. We can think of the movement being Gaussian
distributed with a certain mean trajectory τ (with parameters
ω) and with some orientation. In its geometric interpretation,
the PCA extracts the main axis of the covariance matrix
(i.e. the Eigenvectors of the covariance), and we can express
each point in the new space as a linear combination of the
Eigenvectors. Even though the Singular Value Decomposi-
tion is a more efficient technique to perform the PCA [28],
we continue with the Eigenvector decomposition to maintain
this parallelism. Let {vi}ndi=1 be the Eigenvectors of Σω and
λi the corresponding Eigenvalues (with |α1| ≥ |α2| ≥ . . . ).
To compute the projection matrix Ω we select the first most
informative nc Eigenvectors and we multiply them by the
square roots of their corresponding Eigenvalues

Ω =
[
v1

√
|λ1|,v2

√
|λ2|, . . . ,vnc

√
|λnc |

]
. (10)

Algorithm 1 Pro-PriMos

Require: A dataset of trajectories {zi, τi}mi=1

for each zi, τi do
Compute ωi with (2)

end for
Estimate µω and Σω with (4)
Compute Ω with (10)
Set ω := µω
for each zi, τi do

Compute αi with (7)
end for
return µα=

∑
i αi
nc

; Σα=
∑
i(αi−µα)(αi−µα)

ᵀ

nc

This re-scaling gives us the possibility to have the principal
movements scaled according to the variance of the data, and
results in standardized values of α (i.e. α ∼ N (· ∼ 0, I)).
Pro-PriMos is concisely summarized in Algorithm 1.

IV. EMPIRICAL ANALYSIS

We want to compare the dimensionality reduction in
parameter space w.r.t. in configuration space. Therefore,
we test the two approaches on two different scenario: the
reconstruction of highly uncorrelated movements of a human
subject, and on a dataset of pouring movements shown
with a 7 DoF robotic arm. We also perform a qualitative
analysis showing how our proposed method can achieve
similar results to standard techniques, dramatically reducing
the number of parameters.

a) The Human Motion Dataset: We want to apply
PriMos to reconstruct some human motions contained in the
MoCap dataset. The MoCap database contains a wide range
of human motions (such as running, walking, picking up
boxes, and even dancing) using different subjects (Fig. 3).

http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu
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Fig. 4: The number of parameters (y-axis) needed to achieve a certain accuracy (x-axis) (a), (b). As can be seen PriMos
achieve better results with less samples. The error has been normalized in order to highlight the difference in complexity
between the two datasets. In plot (b), both PriMo and CPCA fail in reaching a NRMSE lower than 0.08. This is due to
the complexity of the movement in the dataset, and by the maximum number of radial basis functions (20). In plots (c) we
observe the comparison between train (blue) and validation error (green) achieved by PriMos in the pouring datasets.

Human motion is tracked using 41 markers with a Vicon
optical tracking system. The data is preprocessed using Vicon
Bodybuilder in order to reconstruct a schematic represen-
tation of the human body and the relative joint’s angles
including the system 3D system reference, for a total of 62
values. The human motion is known to be highly redundant
(i.e. many configurations are highly correlated), and therefore
this is in principle the best case for the dimensionality-
reduction in the configuration-space. The presence of many
different typologies of movements, makes the application
of PriMos challenging since our algorithm relies on the
correlation between movements. In our experiments, we use
the 42 movements recorded for the subject #143.

b) The Pouring Task: In the pouring task, we use a
KUKA light-weight robotic arm with 7 DoF accompanied
with a DLR-hand as an end-effector to pour some “liquid”
(which, for safety reasons, is replaced by granular sugar). We
record some motions from a human demonstrator, pouring
some sugar in a bowl. The motion is recorded setting the
robotic arm in kinestatic teaching. The quantity of sugar
contained in the bowl is recorded by a DYMO digital scale
with a sensitivity of 2g. We aim to reconstruct the movements
and understand whether our method is able to pour a similar
amount of sugar: this experiment gives us a qualitative
understanding, beyond the numerical accuracy analysis, to
investigate the effectiveness of our algorithm in a real robot-
learning task.

A. Accuracy of Movement Reconstruction

We want to compare the quality of the reconstruction using
PriMos, and the dimensionality reduction in the configuration
space. In order to be fair, we use PCA as reduction technique
for both methods. In the remainder of the paper, we refer to
the dimensionality reduction in the configuration space with
the acronym “CPCA”.

a) Parameters vs Error Analysis: In this experiment,
we want to assess the number of parameters needed to obtain
a certain accuracy in the reconstruction. We, therefore, apply
PriMos and CPCA to both the MoCap dataset and a dataset
containing 15 different pouring movements. The CPCA ad-
mits several configurations for a fixed number of parameters
(e.g., 100 parameters can be obtained using 2 components of
the PCA and 50 features or 4 components and 25 features,
and so on). Therefore we created a grid of configuration
in order to obtain the minimal amount of parameters to
assess a certain accuracy. In order to make the results
comparable between the MoCap and the pouring datasets, we
use the normalized root mean square error (NRMSE) where
the normalization is achieved dividing the RMSE by the
standard deviation of the dataset. Fig. 4 depicts the NRMSE
of PriMos and CPCA for the MoCap and pouring datasets.
In both cases, the reduction in parameter space performed by
PriMos requires significantly fewer parameter than the one
performed in joint space by CPCA. Notably, for the MoCap
database, the maximum number of basis functions chosen
is not sufficient to achieve less than the 0.08 reconstruction
error.

b) Leave-One-Out Analysis: One might argue that
our method “memorizes” the movements contained in the
datasets. We want therefore to inspect the ability of PriMos to
reconstruct movements not contained in the dataset (in other
words, we want to understand if our method generalizes).
We achieve this analysis using an increasing number of
parameters and plotting the NRMSE using a leave-one-out
strategy in the pouring dataset (we train on all the possible n
subsets of n−1 movements, and we test on the movement left
out). More precisely, we fit ω and Ω using the training set
and then we test the error in the validation set. Fig. 4 shows
that the error in the validation sets is not significantly higher
than the training-error. Interestingly, while the training error
becomes almost constant after 20 components, the validation
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error keeps getting lower. This behavior suggests that our
approach is robust against overfitting.

B. A Qualitative Evaluation

We want to understand the applicability of PriMos to real
robotics. The study of the accuracy conducted is important,
but on its own, it does not give us a feeling about how
the method works in practice. For this reason, we use the
15 trajectories contained in the pouring dataset, and we
measured the quantity of sugar poured in the bowl.

a) Single Movement Reconstruction: We run all the
15 trajectories reconstructed with the classic MPs and with
PriMos for three times in order to average the stochasticity
inherent to the experiment (a slight perturbation of the glass
position or of the sugar contained in the glass might perturb
the resulting quantity of sugar poured). A video of the
demonstration as well of the reconstruction is available as
supplementary material. Fig. 6 represents a confusion scatter
plot: on the x-axis we have the weight of the sugar observed
during the demonstration, while on the y-axis we observe
the reconstructed movement both with MPs (112 parameters)
and with PriMos (5 parameters). The ideal situation is when
the points lye down on the identity line shown in green
(perfect reconstruction). We observe that PriMos, except few
outliers, reaches a similar accuracy to the MPs, but with 4.5%
of the parameters.

b) Probabilistic Representation: An important aspect
of our framework is the possibility to represent the distribu-
tion of movements. For this reason, we show novel move-
ments generated both with ProMPs and Pro-PriMos given 25
demonstrations. The approximation of the full covariance-
matrix is usually demanding, as it scales quadratically w.r.t.
the number of parameters encoding the mean movement.
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Fig. 6: Precision of the reconstructed weight. The diagonal
line represents the best possible reconstruction. For each
demonstration, we repeated three times the reconstructed
movement in order.

Fig. 5 depicts the standard deviation of the shoulder of the
robotic arm, within the demonstrated movement; Pro-PriMos
seems to represent the stochasticity very similarly to the
ProMPs, although the covariance matrix in the first case
requires 5×5 values, in contrast to 112×112 required by the
ProMPs. We also note that the variability of the Pro-PriMos
seems to be lower than the ProMPs’ one: this behavior
is explained by the fact that for a fixed set of features,
PriMos represents a subset of movements of ProMPs. We
furthermore sample 40 movements both from ProMPs and
Pro-PriMos with nc = 5, and we measure the quantity of
sugar poured. Table I shows that both the methods are able
to pour all ranges of sugar (even if with different proportion
from the demonstrated data). However, ProMPs occasionally



Method 0-40g 40-80g 80-120g 120-150g Failure
Demonstrations 20% 33% 27% 20% 0%
ProMPs 43% 7% 20% 17% 13%
Pro-PriMos 53% 20% 3% 24% 0

TABLE I: Measurement of sugar poured from 40 movements
sampled both from ProMPs and Pro-PriMos. The methods
manage to roughly resemble the original distribution, how-
ever ProMPs exhibit unwanted behaviors, like pouring most
of the sugar outside the bowl (classified as “failures”).

fails to generate a good movement, and it pours the sugar
outside the bowl. The video in the Supplementary Materials
shows this situation.

V. CONCLUSION

The main contribution of this paper is the analysis of the
dimensionality reduction in parameter space in the context
of MPs. Our findings suggest that this reduction is more
efficient than the one in the configuration space. The novel
approach (PriMos), which operates dimensionality reduc-
tion in the parameter space using the principal component
analysis, is enriched with a probabilistic treatment of the
parameters in order to inherit all the convenient properties
of the ProMPs. We tested our approach both on a robotic task
as well as in a challenging dataset of human movements. Our
method compares well against the dimensionality reduction
in configuration space, and exhibits a significant reduction
of parameters with a modest loss of accuracy, even in the
probabilistic setting. We argue that these insights are helpful
to develop more efficient robot learning techniques.

As future work, we will investigate the application of
different dimensionality reduction techniques in parameter
space, with a special focus in the RL context.
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