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Abstract

Sensorimotor learning of continuum or soft robots has been a challenging problem due to the highly redundant, non-
linear system with hysteresis. Recent works in goal babbling have demonstrated successful learning of inverse kinematics
(IK) on such systems and suggest that babbling in the goal space better resolves motor redundancy by learning as
few sensorimotor mapping as possible. However, for the musculoskeletal robot, which is a hard-bodied system with
soft actuation, motor redundancy can be of useful information to explain muscle activation patterns, thus the term
motor abundance. This thesis aims to learn the IK and motor abundance of a 10 degree-of-freedom (DoF) bio-inspired
upper limb robot actuated by 24 pneumatic artificial muscles (PAMs), which is a highly redundant and over-actuated
musculoskeletal system with an unknown task space. Firstly some simple heuristics are introduced to empirically estimate
the unknown task space, so as to facilitate IK learning using directed online goal babbling. The results show that the
learned IK is able to achieve 1.8 cm average accuracy given the best possible average is 1.2 cm. We then further propose
local online motor babbling using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which bootstraps
on the collected samples in goal babbling for initialization, such that motor abundance can be queried for any static
goal within the defined task space. The result shows that our motor babbling approach can efficiently explore motor
abundance, and gives useful insights in terms of muscle stiffness and synergy.

Zusammenfassung

Motor Babbling und Goal Babbling sind bereits fiir sensorimotorisches Lernen auf hochgradig redundanten Systemen
weicher Roboter benutzt worden. Neue Arbeiten auf dem Gebiet des Goal Babblings haben das erfolgreiche Lernen
der inversen Kinematic solcher Systeme demonstriert und deuten darauf hin, dass Exploration im Zielraum Motorred-
undanzen durch das Lernen von so wenig wie moglich notigen Sensorimotorzuordnungen besser auflésen kann. Fiir
muskuskeletale Robotersysteme konnen die Motorredundanzen niitzliche Informationen zur Erkldrung von Muskelak-
tivierungsmustern liefern. In der vorliegenden Thesis werden die inverse Kinematik und die Motorredundanzen eines
hochgradig redundanten und tbersteuerten Muskuskeletalsystems mit unbekanntem Zielraum gelernt. Zunéchst wird
eine Heuristik vorgestellt mithilfe derer der unbekannte Zielraum geschitzt werden kann um das Lernen der inversen Ki-
nematik unter Benutzung von gerichtetem Online-Goal Babbling zu ermdéglichen. Die Ergebnisse zeigen, dass die gelernte
inverse Kinematik in der Lage ist, durchschnittlich 1,8cm Genauigkeit zu erzielen. Weiterhin stellen wir lokales Online-
Motor Babbling unter der Benutzung der Covariance Matrix Adaptation Evolution Strategy (CMA-ES) vor, welches sich
mittels Bootstrapping von den beim Goal Babbling gelernten Beispielen initialisiert, sodass die Motorredundanz fiir jedes
statische Ziel im definierten Zielraum abgefragt werden kann. Die Ergebnisse zeigen dass unser Motor Babbling Ansatz
effectiv die Motorredundanz explorieren kann und niitzliche Einsichten in Hinblick auf Muskelsteifheit und Synergien
liefert.
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1 Introduction

1.1 Motivation

Soft robotics has attracted great attention in the past decade, due to the enhanced flexibility and adaptability compared
to hard-bodied robots with rigid body links. Soft robots made with highly compliant materials allow the possibility of
working in unstructured and congested environments, as well as improved safety when working around humans [1, 2].
On the other hand, the most commonly used industrial robots are hard-bodied robots, which are usually fixed in well-
defined environments such that they can perform a prescribed motion repeatedly with great precision. These hard-bodied
robots are designed to be stiff to counter the vibration and deformation of the structure and to maintain the accuracy
of the movement. The joints are usually flexible only in one rotary or translational direction to provide one degree of
freedom (DoF), and all the possible motion combinations of all DoFs and their attached rigid links define the complete
task space [2].

From another perspective, soft robots use distributed deformation with theoretically an infinite number of DoFs, leading
to a hyper-redundant configuration of the motor space, but also enabling great dexterity and adaptability, where they
have little resistance to compressive forces and therefore can conform to objects and obstacles, making it possible to to
carry soft and fragile payloads without causing damage, such as the soft gripper in Figure 1.1c [3]. The large strain
deformation of the compliant materials also enables squeezing through openings smaller than the nominal dimensions of
the robot, such as the vine-like growing robot in 1.1d, which is able to squeeze through and navigate in an unstructured
environment and perform weight lifting thousand times of its own weight [4]. Recent advances in soft robotics have led
to many bio-inspired designs that display the aforementioned characteristics, as illustrated in Figure 1.1.

Although Young’s modulus model only defines the level of "softness" as homogeneous prismatic bars that are subject to
axial loading and small deformations [5], it nevertheless offers a useful measure of the material rigidity used in soft
robots. Materials typically used for hard-bodied robots have moduli in the order of 10° — 10*2 pascals, whereas natural
skin and muscle tissue usually have moduli in the order of 10* — 10° Pa. Thus soft robots are usually defined as systems
capable of autonomous behavior, and primarily composed of materials with moduli in the range of that of soft biological
materials [1]. However, in this thesis work, we address soft robots either as a major soft body with compliant materials,
or a hard robot body equipped with soft and compliant actuation. Soft robots are usually actuated in one of the two
ways: variable length tendons or pneumatic actuators [1]. Variable length tendons are usually in the form of tension
cables [6] or shape-memory alloy actuators [7] embedded in soft segments, such as the octopus arm in Figure 1.1b.
Pneumatic actuation can be used to inflate channels in a soft material and lead to the desired deformation. Pneumatic
artificial muscles (PAMs), or McKibben actuators are one way of pneumatic actuation where rubber tube is inflated inside
a braided sleeve that guides the inflation [8]. Another way of pneumatic actuation is to use fluidic elastomer actuators
(FEAs), a highly extensible, adaptable, and low-power soft actuator, which comprises synthetic elastomer films operated
by the expansion of embedded channels under pressure [9-11]. The actuation of soft robots usually align the actuators in
a muscle-like, biologically inspired agonist-antagonist arrangement that allows bidirectional actuation and co-contraction
of muscle pairs for adaptable compliance [1]. Note that hard-bodied robots with hyper-redundant continuum structures
or soft compliant actuation also has the potential to work in unstructured environments and provide high dexterity,
much as the soft robots do. The bionic handling assistant inspired by the elephant trunk actually uses hard exterior
material built with Additive Manufacturing (AM) technology and actuated with pneumatics to achieve the continuum
deformation [12].

Aside from the compliant materials and actuation, compliant robots are also facilitated for sensing, actuation, compu-
tation, power storage, and communication, embedded in the compliant material. Algorithms that match the impedance
of the soft body structure are also crucial to delivering the desired motion. This tight coupling blurs the line between
the body and the brain, i.e., the body of the robot and the control unit since the control algorithms can be simplified by
outsourcing to the morphology of the body. The mechanical adaptability and dexterity of the compliant materials and
actuation can be viewed as embodied intelligence that augments the brain with morphological computation [1, 13, 14].
The behavior of the system does not solely come from the internal control structure but are also shaped by the interaction
with the environment, and its own morphology, i.e., body shape, as well as the placing of sensors and effectors. These
physical constraints shape the dynamics of interaction, which the body morphology, as well as the coupled sensory-motor
activity, induce statistical regularities and therefore enhance the internal information processing [15].
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(b) Octopus arm robot? (c) Soft gripper®

(e) Earthworm robot® (f) Bionic trunk robot®

Figure 1.1.: Various bio-inspired soft robots: (a) Soft-bodied fish robot self-contained with an array of fluidic elastomer
actuators, capable of rapid, continuum body motion that emulates escape responses in addition to forward
swimming [16]. (b) An octopus arm robot mimicking the muscular hydrostat structure by using Electro-Active
Polymer (EAP) technology and emulating the antagonistic muscle contractions to provide varied stiffness and
elongation other than bending in all directions [17]. (c) A light-weight soft gripper robot made of an origami
"magic-ball" and a flexible membrane, driven by vacuum, is capable of lifting a large variety of objects from
delicate foods to heavy bottles [3]. (d) A vine-line soft pneumatic robot that navigates through growth,
where the pressurization of the inverted thin-walled vessel allows rapid asymmetric lengthening of the robot
tip for locomotion and direction control [4]. (e) An earthworm robot equipped with nickel titanium coil
actuators in a flexible braided mesh-tube, capable of generating sequential antagonistic motion that leads
to peristaltic locomotion [18]. (f) The bionic handling assistant inspired by the elephant trunk, driven by
pneumatic actuators in the continuum chambers made with Additive Manufacturing (AM) technology [12].
This is, however, a hard-bodied continuum robot yet with soft actuation, i.e., pneumatic actuators.

Recent researches in compliant robots has made evident of the embodied intelligence: [19] demonstrates multiple
quadruped gaits by using linear readout weights to combine the sensor values from an actuated multi-joint spine embed-
ded with force sensors, [20] exploits the dynamics of the soft octopus arm robot to approximate non-linear dynamical
systems and embedded non-linear limit cycles, and [21] deploys the spring-loaded inverted pendulum model on a com-
pliantly actuated that achieves various quadruped locomotion. However, these approaches rely heavily on the design
and manufacturing of the robot, and the interplay with the environment. [22] has proposed a theoretical framework for
morphological computation on compliantly embodied robots, which models the physical bodies as mass-spring systems
implemented with complex nonlinear operators. By adding a simple static readout to the morphology, complex mappings

Taken from: http://news.mit.edu/2018/soft-robotic-fish-swims-alongside-real-ones-coral-reefs-0321

Taken from: http://www.octopus-project.eu/gallery.html

Taken from: https://techxplore.com/news/2019-03-robot-soft-strong.html

Taken from: https://news.stanford.edu/2017/07/19/stanford-researchers-develop-new-type-soft-growing-robot/
Taken from: https://newatlas.com/meshworm-robotic-earthworm/23674/

Taken from: https://www.festo.com/group/de/cms/10241.htm
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of input to output streams can be emulated in continuous time. Nevertheless bridging the gap between artificial and
natural systems still poses great theoretical and technological challenges.

A reliable long-term application of such continuum/soft robots is strongly dependent on the real-time kinematic and/or
dynamic controllers for fast, accurate, and energy-efficient control, not only because of the uneasy manipulation com-
pared to simple translation and rotations of hard-bodied robots, but also due to the highly redundant and nonlinear
characteristics, e.g., compliance and hysteresis, that restrict high-frequency accurate control [23]. Even the research is
still in its infancy, the survey [23] summarized the state-of-art control strategies for continuum/soft robotic manipulators,
which are categorized as follows:

* Model-based static controllers: assuming steady-state under force equilibrium, the full configuration of the soft
manipulator can be defined by a low-dimensional state space representation. The simplest and most common
kinematics model assumes a 3D configuration space, and that the continuum/soft module can be parametrized by
three variables, known as the constant curvature (CC) approximation [24]. However the CC method reduces an
infinite dimensional structure to 3D, ignoring a large portion of the manipulator dynamics, and only suitable if
the manipulator is uniform in shape and symmetric in actuation design, in addition to negligible external loading
effect and minimal torsional effects [23].

* Model-free static controllers: machine learning and data-driven approaches for model-free control of continu-
um/soft manipulators is relatively new yet a field with great potential: [25] was the first to propose a feedforward
neural network to learn the inverse kinematics (IK), which proves to be significantly better than the analytical
method [26,27]. Online goal babbling scales better to hyper-redundant systems and bootstraps fast on efficiently
generate samples in the task space for IK mapping using self-organizing maps [22,28]. A "model-less" technique
is later developed to empirically estimate the kinematic Jacobian matrix online by incrementally moving each ac-
tuator, leading to a highly robust, accurate, and generic approach for closed-loop task space control of continuum
robots [29]. Recent advances in reinforcement learning have been approaching the problem by learning determin-
istic stationary policies [30] and fuzzy logic-based controllers [31]. Other attempts in transfer learning [32] and
differential IK [33,34] has also been carried out, yet only in simulations so far. Model-free approaches circumvent
the need for parameter definition of the configuration space, and treat the joint space and the manipulator space
independently, making it a better choice for systems that are highly nonlinear and nonuniform [23, 26].

* Model-based dynamic controllers: model-based approaches in developing dynamic controllers would require
the formulation of the kinematic model with an associated dynamic formulation, which is extremely challenging
given that the kinematics are difficult to model for continuum/soft robots, to begin with, a dynamic formulation is
subjected to the aggravation of model uncertainties [23]. This field is still in the nascent stage where most works
are only in simulations. Based on the formulated kinematics using the CC model for a simulated 2D multisection
robot, the dynamic model is represented in the Euler-Lagrangian form using lumped dynamic parameters, mak-
ing [35] the first to demonstrate a closed-loop task space dynamic controller for continuum robots. A different
approach then proposed the same kinematic and dynamic model, but with sliding mode controller [36], along
with other variant attempts of [35,36] in [23,37-41].

* Model-free dynamic controllers: this field is relatively unexplored for continuum/soft robots. Early attempts
first use machine learning techniques to compensate for dynamic uncertainties [42], however only for closed-
loop dynamic control of the joint variables. In the field of reinforcement learning, reaching dynamics of a
simulated multisegmented dynamical planar model of the octopus arm was demonstrated, and solved the hid-
den Markov model by using a nonparametric Gaussian temporal difference learning algorithm [43]. Recently, a
forward dynamic model using a class of recurrent neural network and trajectory optimization first experimen-
tally demonstrated direct actuator space to task space dynamic control on a 3D soft pneumatic manipulator [44].
Model-free approaches offer a simpler way to develop dynamic controllers, however, challenges still remain in
bringing reinforcement learning onto real robots in practice, or in closing the open loop of high computational
complexity [23].

Aside from hard-bodied continuum robots and soft robots, musculoskeletal robot systems also exhibit similar compliant
and deformable characteristics. The movement coordination of these robots is achieved primarily through peripheral me-
chanical feedback loops and the biomechanical constraints provided by the musculoskeletal system. Effective exploration
strategies can be exploited by the emerging behavior from the synergistic coupling of the system’s morphology [22]. As
suggested by the name, the musculoskeletal structure consists of hard-bodied skeleton actuated with soft or compliant
muscles or/and tendons. Many types of musculoskeletal robots have been developed in recent years, to name a few a
humanoid with flexible spined torso and whole-body muscle-tendon driven systems [45], a human-like robot arm with
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Festo’s fluidic muscle actuator 7 [46], the 114 DoF tendon-driven humanoid Kengoro actuated by the sensor-driver inte-
grated muscle module [47]. Different from PAMs, these muscle modules consist of motors, motor drivers, tension sensors
and thermal sensors, covered by sheet metals, enabling flexible tension control [48].

The human-inspired musculoskeletal system mimics the skeleton and muscle structures of a human. However, the human
body is an over-actuated system, not only does it have a higher dimension in motor space than the degree of freedoms in
the action space, i.e., more number of muscles than joints, it also has more degree of freedoms (DoFs) than necessary to
achieve a certain motor task. How the effector redundant system of the human body adaptively coordinates movements
remains a challenging problem. The most common approaches deal with compound action such as walking using a
simple rule-based control system and outsource the complex dynamics to the morphology of the robot while interacting
with the environment [24, 49, 50], such as achieving door opening task and human-like throwing motion generated by
a musculoskeletal upper limb robot [51,52]. However, the simple rule scheme is not enough for accurate control of
general reaching tasks, nor for complex dynamic motions with torque control. And given that the musculoskeletal design
is inherently non-uniform and asymmetric, typical model-based controllers do not apply, thus we investigate in applying
model-free approaches on musculoskeletal systems, in particular on learning the inverse kinematics, and interpreting
motor redundancy as variability and abundance.

1.2 Related Work

Various model-free approaches have been tried on the control and sensorimotor learning of musculoskeletal systems. [53]
has demonstrated direct teaching on a musculoskeletal robot arm by controlling the internal pressures or the axial ten-
sions of the PAMs under specific constraints, which forces the PAMs’ lengths in the reproducing phase similar to that of the
teaching demonstration. [54] extracted analytical linear models from neural networks and applied feedback control on
a two-link musculoskeletal manipulator. [55] developed real-time inverse dynamics learning for musculoskeletal robots
using goal babbling to effectively reduce the search space, a recurrent neural network, specifically the echo state network,
to represent the state of the robot arm, and novel online Gaussian processes for regression. However these methods in
direct teaching [53] and various learning schemes with artificial neuro networks [54,55] are highly training dependent,
which can be expensive to conduct experiments and inefficient to collect sample data, and do not generalize well to the
complete task space for accurate control.

By extending to other domains such as sensorimotor learning in hard-bodied robots, or continuum robots, this problem is
typically addressed by learning the forward kinematics via motor babbling, and explore the motor-sensory mapping from
scratch [56-58] until eventually the robot can predict the effects of its own actions. However autonomous exploration
without prior knowledge in motor babbling doesn’t scale well to high dimensional sensorimotor space, due to the rather
inefficient sampling of random motor commands in over-actuated systems. Inspired by infant development, i.e., reaching
a goal by trying to reach. [59] and [60] introduced online goal babbling. This alternative suggests that learning inverse
kinematics by goal babbling avoids the curse of dimensionality simply because the goal space is of much smaller dimen-
sion than the redundant motor space [59,60]. [60] aims to solve the inverse kinematics by actively and autonomously
generating goals, based on the progress measure in the region of interest. The progress measure is computed as the
derivative of the summed reaching error in a certain time window of the region, which in turn also serves the criteria
to recursively split the goal space using the k-d tree into further interest regions. In this way, unreachable regions or
explored regions with high reaching accuracy will have low progress, such that goal generation can emphasize on the
relatively unexplored yet reachable regions. Nonetheless, [60] assumes that the sensorimotor space can be entirely ex-
plored, which is not feasible in practice for high dimensional motor systems [28]. [59] then proposed to specify the goal
space a priori as a grid, and sampling the goal grid points to guide exploration [61], such that sensorimotor mapping
can be sufficiently generalized and bootstrapped for efficient online learning. It has also been quantitatively evaluated
for an average of sub-centimeter reaching accuracy on an elephant trunk robot [28] with reasonable experiment time.
We therefore pursuit in this direction of research by bringing goal babbling of hard-bodied continuum robot [28] to
musculoskeletal robots [62].

Given the above works aiming to reduce motor redundancy for learning [28, 56-58, 60, 61], it can be argued that mo-
tor redundancy in human musculoskeletal systems is actually the keystone to natural movements with flexibility and
adaptability, hence should be termed motor abundance rather than redundancy [63] [64]. It is also suggested that joint
redundancy facilitates motor learning, whereas task space variability does not [65]. Thus based on the studies and
implementation of goal babbling and IK learning on the 10 DoFs musculoskeletal robot arm, we further extend on inter-
preting motor redundancy as motor abundance, share insights on muscle stiffness and muscle synergies, which enables
the generalized yet accurate IK control with variable muscle strengths and configurations, and lays the foundation for
future research on model-free dynamic learning approaches on musculoskeletal robot systems.

7 https://www.festo.com/cat/en_gb/data/doc_engb/PDF/EN/DMSP_EN.PDF




1.3 Overview

In this thesis, we work with a 10 DoF musculoskeletal upper limb robot actuated by 24 PAMs. We investigate on sensori-
motor learning of this system using model-free approaches with machine learning algorithms, starting with learning the
inverse kinematics using directed goal babbling [59], which reduces the motor redundancy and bootstraps online to effi-
ciently explore and generate IK mapping samples [28,61]. However since the goal space of the robot arm is unknown and
nonconvex [62], we empirically estimate the goal space with randomly generated postures, forcing the convex hull such
that directed goal babbling can be applied, and subsequently remove the outlier goals in the goal space after IK learning
for further online motor babbling to learn the queried motor abundance. On the other hand, the inherent redundancy of
the musculoskeletal system gives rise to embodied intelligence [22] and natural movements with great adaptability and
flexibility, it is suggested as motor abundance rather than motor redundancy [63, 64]. Particularly for musculoskeletal
systems, motor abundance can be of useful information to explain muscle stiffness and muscle synergy. Therefore this
thesis also further explores the motor abundance by local motor babbling, where online learning takes place with the
initialization of the local sampled data from the learned IK, and use Covariance Matrix Adaptation-Evolution Strategies
(CMAES) [66] to explore motor variability by fixing the end effector and the queried goal point. The intuition of using
CMA-ES, is to intentionally set the starting point of the optimization away from the optimum, i.e., the motor commands
that lead to the desired queried goal, which is the neighbouring goal from the learned IK, and conducts the CMA-ES trials
multiple times to collect varied data series of different initialization and evolution paths, such that muscle stiffness and
synergies can be reproduced for the queried goal.

This thesis is organized as follows: in Chapter 2 the musculoskeletal robot upper limb is introduced as the search platform.
Chapter 3 reviews directed online goal babbling [28,59,61], the black box optimization method CMA-ES [66], and how
to bootstrap the initialization on the local goal babbling data, and learn motor abundance via goal babbling using CMA-
ES. Chapter 4 shows the experiments and evaluations of the learned IK and motor abundance. Chapter 5 then concludes
the thesis with an outlook on future research potential with the musculoskeletal robot platform.




2 The Upper Limb Robot

2.1 Musculoskeletal Structure

The upper limb robot that we use for experiments in this thesis is of musculoskeletal systems design that aims to mimic the
biological structure and motoric characteristics of a human. The upper limb consists of a shoulder linkage mechanism and
an arm, similar to the human upper limb skeleton structure and muscle arrangement. The skeleton provides attachment
points for the tendons and muscles, while the linkage structure imposes mechanical constraints onto the body’s range
of motion and defines the task space [62]. As illustrated in Figure. 2.1, the structural proportions and the composition
of the robot demonstrate great resemblance to that of a human. Bones as the humerus, ulna carpals, metacarpals, and
phalanges are adopted directly as well as their spatial relation, proportions, and mechanical properties. An earlier design
of the robot shoulder mechanism imitates the human scapula and clavicle, which however tend to separate unless held
in place by a coupling muscle. In order to ease the design and enhance mechanical durability, a series of sliding joints in
combination with four ball joints are applied in the robot shoulder complex, while also allowing to replicate the range of
motion of the human shoulder [67].

Scapula & Clavicle / Shoulder

Linkage

Humerus

Radius
Ulna

Figure 2.1.: Taken from [62], this figure shows the comparison of a human upper limb skeleton and the CAD rendering
of the robot, where the structural resemblance between the robot skeleton design and the skeleton can
be observed. The shoulder joint that consists of clavicle and scapula is replaced with a shoulder linkage
mechanism [67] for mechanical integrity and durability. Movements generated in the imposed task space are
also human-like as they adhere to the same underlying physical limitations.

To mimic the motoric characteristics and anthropomorphism of a human, the robot needs to be actuated with comparable
flexibility and compliance. Pneumatic Artificial Muscles (PAMs) make a viable choice due to the lightweight yet strong,
and inherently compliant characteristics. The most common PAMs are the McKibben muscles, or McKibben actuators,
which are compliant linear soft actuators composed of elastomer tubes in braided fiber sleeves [8]. The actuation is
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realized by controlling compressed air with proportional valves, allowing continuous contraction at varying speeds. As
shown in Figure 2.2, the muscle consists of a rubber tube plugged at one end and connected to the air supply line on the
other, covered by a braided sleeve to limit and guide the inflation of the rubber tube. The braided sleeve expands as the
rubber tube expands, while the muscle bulges and the length decreases, where the sleeve’s diameter is approximately
inversely proportional to its length. The airline is monitored by a pressure sensor such that the muscle pressure can be
controlled with a simple PID controller [62].

o Braided Rubber
Air Line Sleeve Hose Filler Plug

320 mm

[y |
I

Figure 2.2.: Taken from [62], this figure illustrates the cutaway model of a pneumatic aritificial muscle (PAM) used in the
presented upper limb robot

Assuming no external forces, the volume and tension of a single muscle can be analytically modeled as in [68]. However,
the abrasion and friction between the rubber tubes and the braided sleeves, the bent routing of the muscles, and the
antagonistic yet synergetic nature of muscle groups not only let the real values deviate away from the modeled predic-
tions, but also wear and tear the muscles and reduce the life span of a PAM around 10,000 cycles [68]. The rubber tube
ruptures when pressurized up to 0.87MPa, and due to the routing of the muscles and strappings with the skeleton, it is
advised to keep the actuation range below 0.4MPa for a relatively smooth forward kinematics, which also prolongs the
life cycles of the PAMs. Thanks to the simple McKibben design, the muscles can be easily produced and replaced when
they’re worn out [62].

In order to attach PAMs onto the skeleton, the correspondence between the muscles of the human upper limb and the
robot’s muscles is taken into consideration, as shown in Figure 2.3. When selecting which muscles to adopt on the robot,
often times the sets of adjacent muscles are combined and approximated into a single muscle, whereas small single
muscles are omitted. Thus a bundle of PAMs does not quite resemble a bundle of real muscles, lacking the fine yet
intricate fibers, and small single muscles cannot be accurately emulated by the PAMs [62].

2.2 Firmware, Control, and Software

The robot operates on a custom made printed circuit board (PCB) as a single control system providing low-level control
of the air valves and reading the pressure sensors, where digital-analog (DAC) and analog-digital (ADC) converters
are implemented correspondingly for the air valve and pressure sensor control for each muscle. A custom driver is
implemented to read the pressure sensor values and write the actuator commands of the valve at the rate of 500Hz in
a realtime-enabled context. Therefore, the individual muscles are updated at the same rate. Non-realtime contexted
communication is initiated by the driver, such that an interruption-free main control loop is guaranteed by orchestrating
the two differently prioritized contexts when exchanging and accessing data. The PCB communicates to a single-board-
computer (SBC), i.e., Raspberry Pi 3(B), where the Robot Operating System (ROS) is used to provide a well-documented
communication framework for high-level control [62].

ROS compatibility is also integrated within the main driver for topic advertisement and subscription. The custom con-
troller for each muscle is spawned and the configurations from the ROS parameter server are loaded, so as to update the
muscle’s PID controllers. This design pattern is based on the ros_control interface [69], which provides multi-threading
capabilities in real-time along with the real-time context of the main driver. Instead of torque, velocity, and position
control for typical rigid link robots offered by ros_control, a new controller class resembling the muscle actuator is
implemented, which provides the control of the internal pressure of the individual muscles [62]. Note that the tendon
organ inspired tension sensors in [62] are not used for experiments in this thesis, as the measurements are noisy due to
the strapped muscles and mechanical constraints of the skeleton, such that goal babbling exploration in the task space
would introduce even more inconsistencies and redundancies to learn the inverse kinematics.
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Trapezoid

< 46cm >

Deltoid

Pectoralis Major

Pectoralis Minor

Triceps Brachii

Biceps Brachii

Extensor Carpi Radialis Longus

Brachioradialis

Flexor Carpi Radialis

Flexor Digitorum Profundus

Pronator Quadratus

Supraspinatus

Teres Minor

Serratus Anterior

Brachialis

Latissimus Dorsi

Anconeus

Extensor Carpi Radialis Brevis

Supinator

Extensor Carpi Ulnaris

w9

Extensor Digitorum

Weigh whole system:  150kg
Weight arm assembly: 4.4kg

Approx. task space of the end effector: ----

Figure 2.3.: Taken from [62], the above comparisons of human upper limb anatomy and the robot illustrates the muscu-
loskeletal system design with identical dimensional relations to the human body parts, i.e., shoulder, chest,
upper arm, fore arm, and the hand. The system displays similar morphology characteristics and sufficiently
large task space compared to the human upper limb, where the major artificial muscles are adopted corre-
spondingly from the human anatomy. This musculoskeletal robot arm is a highly redundant system consisting

of 10 DoFs and 32 PAMs [62].
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Figure 2.4.: Taken from [62], the figure illustrates the software stack of the robot, which consists of the main drive, which
updates the data of the hardware controllers via SPI and stores them inside of the RobotHW interface, and the
muscle controller threads spawned by the controller manager to calculate the individual control parameters
for each muscle [62].

2.3 Detecting the End of A Movement

In online goal babbling and online motor babblng, tens of thousands movements are carried out to generate samples for
sensorimotor learning. Therefore the dectection of the end of a movement is needed to efficiently generate movements
and to speedup the experiments. Given the controller for each muscle and the published muscle state ROS topic that
monitors the current pressure of the muscle, the end of an execution can be detected as all muscle pressures have
reached the desired pressures within a small threshold € governed by the PID controller. However, since the muscles
have different sizes, different routings, and different mechanical constraints while interacting in the environment, the €
would be different for each muscle and is non-stationary over time. Therefore as long as the average muscle pressure
changes within a windowed time is below €, we conclude the execution. Given the internal pressures of all muscles q in
a first-in last-out (FILO) buffer stack of size p, i.e., ¢}, ,qP, if

p—1 i
i lla? —q'l
—_— <
p
where || - || is the Euclidean norm, the execution could be considered finished. Nevertheless, there are cases where
a sudden change in pressure actuation could lead to an oscillating or jittering end effector due to the elasticity and

compliance of the PAMs. In order to address this issue, we also consider the stability of the end effector as the other
indicator for the end of an execution. Similar to (2.1), given the tracking of the end effector position x,

s x —x7||
1_1— < g,
l
where the FILO buffer stack is of length [ and & is the threshold. If both conditions (2.1) and (2.2) are met, the execution
then has ended and a new execution command can be sent. In the experiments both p and [ is set to 100, € = 4.5 x 1073,

and £ = 2 x 1073, The rate of updating q' and x’ is set to 100Hz, thus the detection is initialized 1 second before any
motor command is sent out.

€, 2.1

(2.2)
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2.4 Re-arranging the Muscles

(a) Front shoulder complex (b) Back shoulder complex

(c) Front arm linkage (d) Back arm linkage

Figure 2.5.: The current muscle arrangements of the 24 muscles with extended task space [70], reduced from the 32 PAMs
as in [62]. The muscles are labelled and displayed in either shoulder or arm groups from the front or back
view. The names and functionalities of the muscles can be looked up in Table 2.1. The major muscles groups of
the upper limb, such as the trapezius, deltoid, triceps, and biceps etc., are all preserved to replicate human-like
upper limb movements.

In order to extend the task space, and arrange the muscles in an easily maintainable and replaceable fashion, we reduced
the number of PAMs from 32 in [62] to 24 in [70] and adjusted the muscle arrangements. The new arrangement
is shown in Figure 2.5, where the major muscle groups of a human are preserved in the upper limb robot, and the
corresponding muscle names and functions can be looked up in Table 2.1. It can be observed that the major muscle groups
of the shoulder complex, namely the trapezius and deltoid, are preserved to reproduce the abduction/adduction and
flexion/extension movements of the shoulder. The major muscles of the upper arm, the triceps, and biceps are responsible
for the flexion/extension and the supination of the arm. Antagonistic pairs of muscles are also implemented, such as
muscle 21 and 24, i.e., the extensor carpi ulnaris extends and the flexor carpi ulnaris flexes the wrist antagonistically.
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# Muscle Name Function

1 Pectoralis major flexes, abducts, and rotates the humerus
2 Pectoralis minor depresses the points of the shoulder and drawing the scapula superior
3 Serratus anterior pulls scapula forward

4 Trapezius (superior) rotates the scapula

5 Trapezius (middle) retracts the scapula

6 Trapezius (inferior) rotates the scapula

7 Latissimus dorsi rotates scapula downward

8 Deltoid (rear) abducts, flexes,

10 Deltoid (front) and extends

9 Infraspinatus externally rotates the humerus and stabilize the shoulder joints
11 Deltoid (medial) the shoulder

12 Supraspinatus abducts the arm

13 Biceps (short head) supinate the forearm and flex the elbow
14 Triceps (long head) extend the shoulder and elbow

15 Biceps (long head) flex and supinate the forearm

16 Subscapularis rotates and adducts the humerus

17 Triceps (lateral head) extend the elbow

18 Brachialis flexes the elbow

19 Pronator pronates the hand

20 Supinator supinates the hand

21 Extensor carpi ulnaris extends and adducts the wrist

22 | Extensor carpi radialis brevis extends and abducts the wrist

23 | Extensor carpi radialis longus extends and radially abducts the wrist
24 Flexor carpi ulnaris flexes the wrist

Table 2.1.: Muscle numbers with the corresponding names and functions of the 24 PAMs used for experiments. The
major muscle groups of a human upper limb are preserved in the robot to mimic the motions of human arm
and shoulder.
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3 Theoretical Foundations

For learning the inverse kinematics, we use directed online goal babbling, and bootstrap on the generated samples to
initialize for further motor babbling using CMA-ES. We will first review directed online goal babbling and CMA-ES, then
introduce the local online motor babbling algorithm, which queries any static point within the space of learned IK for
motor abundance.

3.1 Directed Online Goal Babbling

Given the specified convex goal space X* € R" encapsulating K goal points, and denoting all the reachable set of com-
mands in the motor space as Q € R™, the aim is to learn the inverse kinematics model X* — Q, that generalizes all points
in the goal space to a subset of solutions in the motor space. Starting from the known home position xg"me, and home

posture g°™, i.e., the inverse mapping g(x"™*) = q"°™, the goal-directed exploration is generated by

qf =g(Xf,9t)+Et(X’;), (31)

where g(x7},6,) is the inverse mapping given learning parameter 6,, and E,(x}) adds perturbation noise to discover
new positions or more efficient motor commands in reaching goals. At every time step, the motor system forwards the
perturbed inverse estimate, x,,q, = fwd(q;), and the actual (x,,q,) samples are used for regression, where prototype
vectors and local linear mapping [72] is used as the regression model, and to monitor the progress of exploration in the
defined goal space.

The major part of directed goal babbling is to direct the babbling of the end effector at specified goals and target positions.
Each trial of goal babbling is directed towards one goal randomly chosen from X*, and continuous piecewise linear targets
are interpolated along the path

Ox

X o
IIX5 —x¢ll
4

X; (X —x}), (3.2)

* —
t+1
t

where xf,XZ are the target position and final goal of the trial, and 6, being the step size. Target positions are generated
until x7 is closer than 6, to X}, then a new goal X©_, is chosen. The purpose of directed goal babbling is to generate
smooth movement around the end effector position, such that the locally learned prototype vectors can bootstrap and
extend the exploration of the goal space, and allow the integration of the following weighting scheme

: 1
Wflr = 5(1 + arccos(X; —X;_;,X, —X,_1)
ff -
wS = Ix, — x|l - llg, —q, 411
w, = wdir . well) (3.3)

wctlir and wfff measure direction and kinematic efficiency of the movement, such that inconsistency of a folded manifold,
and redundant joint positions can be optimized [61]. The multiplicative weighting factor w, is then integrated to the
gradient descent that fits the currently generated samples by reducing the weighted square error.

To prevent drifting to irrelevant regions and facilitate bootstrapping on the local prototype centers, the system returns to
(xhome qhome) with probability p'®™® instead of following another goal directed movement. Returning to home posture
stablizes the exploration in the known area of the sensorimotor space [28, 59], similar to infants returning their arms to
a comfortable resting posture between practices:

i (3.4)
||qhome_qt|| ,(qhome_q;k)’ '

9 =9+

* home
the system moves from the last posture q; to the home posture q

interpolating the via-points along the path, until ||qyome — q; || < 84-

in the same way as in equation (3.2) by linearly
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3.1.1 Local Linear Mapping Regression

The inverse mapping uses the Local Linear Model (LLM) for regression [72]. Let’s define x to be the input, which in the
goal babbling inverse mapping problem corresponds to the end effector position in 3D space, and q is the inferred motor
command in the joint space. The LLM then comprises of [ =1,---, L linear models

g(x)=W;x +b,

which are combined as

q(x)=$2b(x;pl)gz(x;pl)

L
=1

with Gaussian responsibilities
b(x) = exp(—|x|[*)

and the normalization

n(lx)zzb(x_dpl)'

=1

The linear functions g;, weighted by the Gaussian responsibilities, are activated in the vicinity of the prototype vectors,
i.e., the local centers, p;. New local functions g; and prototype centers p; are added dynamically during online training.
Starting with the first training sample (x,¥;), the first linear model with center p; = x, linear weight W, = 0, and
bias b; =y, is initialized. When new input x is received, that has a distance of at least d, i.e., the radius of the prototype
centers, to all existing prototypes, a new prototype is then created.

In order to avoid abrupt changes in the inverse estimate, the new weight matrix to the newly added local model is
initialized to be the Jacobian of the inverse estimate, i.e., W‘ZK+1 =J(x) = dg;(x)/dx, and the offset is set to be the last
inverse estimate before inserting the new local function, i.e., bf“ =gi(x)

In each time step, the inverse estimate is then fitted to the current sample (x,,q,) by reducing the weight square error

E) =w,llg,— gl

using online gradient descent on Ef; with a learning rate n

JEX OEX
(k) _ oK) _ w (k) _ 1,0 _ w
Wi =W, n W’ by = bt n PIOK

where w, is the weighting scheme in equation (3.3).

3.1.2 Exploratory Noise

The exploratory noise, or motor perturbation in 3.1, is crucial for discovering new postures that would otherwise not
be found by the inverse estimate [28,59]. By exploring the local surrounding of the inverse estimate with i.i.d normal
distribution in each motor dimension, and varying these distribution parameters with a normalized Gaussian random
walk, the noise is modeled as:

E(x})=A,-x;+b,, A €R™", b, eR", (3.5)
where all entries ei in the matrix A, is initialized and varied as follows:

ef ~ N(0,0%), &, ~AH(0,0%)

. o2 . . 5
elt+1: m‘(el{+5i+l)~ﬂ(0,0 ).
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3.1.3 Feedback Controller

After learning, the average reaching accuracy is evaluated by querying the inverse model for every goal within the defined
goal space X*, and a simple feedback controller to adapt execution failures. Execution failure occurs when the inverse
estimate is not possible to execute, i.e., q* ¢ Q, due to interference, non-stationary bionic robot design and Q constantly
changing overtime. Given the queried goal x* and the predicted posture q* = g(x*), where q* ¢ Q, the feedback controller
would slightly shift the queried goal from x* to %}, then forwarding the inverse estimate x, = fwd(g(%})). Target shifting
follows the current observed error err, = X* —x,, and integrated over time:

— Ak o ax
=x, X, =X ta-ermr,. (3.6)

3.2 Covariance Matrix Adaptation - Evolution Strategies (CMA-ES)

CMA-ES is a method of black box optimization that minimizes the objective function f : Q € R™ — R, g — f(q), where f
is assumed to be a high dimensional, non-convex, non-separable, and ill-conditioned mapping of the state space modelled
by a multi-variate normal distribution.

The idea of CMA-ES is introducing a multi-variate normal distribution to sample a population, evaluating the population
f(q) to select the good candidates, and updating the search distribution parameters by adapting the covariance and
shifting the mean of the distribution according to the candidates.

Given a start point q° and initializing the covariance to identity matrix C° = I, the search points in one population
iteration is sampled as follows:

qigﬂ) ~m® + O'y;(g) k=1,--,A q,meR",0c€R,,CeR" (3.7)

where y(kg) = A(0,C®), m being the mean vector, o being the step-size, and A is the population size [66]. For notation

simplicity, the generation index (g) is henceforth omitted.

3.2.1 Updating the Mean

The mean vector m is updated by using the non-elitistic selection [66], where a weighted intermediate recombination
of the best u solutions is applied, rather than choosing the only best as in the elitistic selection. Let g;., denote the
ith best solution in the population of A, the best u points from the sampled population are then selected, such that
f(@1.2) < -+ < f(q,.,), and weighted intermediate recombination is applied:

m
m<—m+Zwin =:m+y,, (3.8)
i=1
u
wherew; > 2w, >0, > w, =1, (3.9)
i=1
lwll \* Iwll 2, wil®) 1 2
and U = ( = = - == = U, ~ —. (3.10)
¢ ||W| |2 ”WI |% Zi=1 le Zi=1 W% 4

Uegr is refered as the variance effective selection mass. From the definition of w; in (3.9) we can derive that 1 < ¢ < U,
and g = u for equal recombination weights. Usually u.g &~ A/4 indicates a reasonable setting of w;. A a simple and
feasible setting could be w; oc u—i+1, and u ~ A/2 [66].

3.2.2 Adapting the Covariance Matrix

The covariance matrix evolves the scale of distribution, shaping the population solutions in the favored direction ac-
cording to the evaluated object function values. Starting from the empirical estimation of the covariance matrix, both
rank-u-update and rank-one-update are derived and used to adapt the covariance matrix.
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Estimating the Covariance Matrix

Assume that the popuplation ccontains enough information to estimate a covariance metrix reliably, we can empirically
estimate the covariance matrix from scratch using the sampled population from (3.7), qq,---,q,, via the empirical
covariance matrix

T
A A A
1 1 1
Cemp:mz qi_zij Qi—XZQj ;
i=1 j=1 j=1

where C,,,,, uses the actually realized sample as the reference mean value, and the covariance estimator can be interpreted

as the estimated distribution variance within the sampled points. However in order to estimate the variances of sampled
steps and the evolution between generations, the reference mean value m can be used for the covariance estimation,

A
1 T
G = 7 2= m)a—m)
1 A
2 T
=0 iVi -
2 ; yiy
For a more robust estimation, the same weighted selection as in (3.8) can be applied
u
C,=0> wyyi", (3.11)
i=1

the matrix C, is an estimator for the distribution of the selected steps, whereas C; estimates the original distribution
of steps before selection. Choosing the best u samples from the population tend to reproduce successful steps when
sampling from the adapted new covariance C, [66].

Rank-u-Update

In order to get a reliable estimation, the variance effective selection mass g must be larget enough, however evaluation
of the objective function f(q) can be expensive as each trial would require the upper limb robot to execute the movement
q. Thus to achieve a fast search, both the population size A and ¢ must be small, e.g., we may assume g < 1+ Inm,
where m is the dimension of the motor space, i.e., m = 24 PAMs. In addition, we use information from previous
generations, i.e., using the mean of all the estimated covariance matrices after a sufficient number of generations,

&g
1 L (i+1)

clet) — _—
§+14 oW ¥

then becomes a more reliable estimator for the selected steps. However all generation steps have the same weight.
Exponential smoothing is then introduced to assign recent generations a higher weight. Choosing C(®) =1 to be the unity
matrix and a learning rate 0 <c, <1, then C¢* is updated as

1
(g+1) — (1 — (g) (g+1)
C =(1—¢,)C¥ +¢, e C,

n
_ (g) (g+1) (g+1)T
=(1—¢,)C¥ + CHZwin Yix
i=1

u
omiting (g), i.e, Ce (1—c,)C+c, > WY,y (3.12)
i=1

This update is then called the rank-u-update [74], since the sum of the outer products in (3.12) is of rank min(u, m) with
probability one (given u non-zero weights) [66].
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Rank-One-Update Utilizing the Evolution Path

When estimating the covariance matrix from scratch, all selected steps are used from a single generation, an opposite
viewpoint would suggest to repeatedly update the covariance matrix in the generation sequence using a single selected
step only, where u =1 and y;., = (x;., —m)/0o, then the rank-one update of the covariance matrix reads

C—(1—c)C+er¥1aY1 00 (3.13)

where c, is the learning rate and O < ¢; < 1. Rank-one update has been independently found in several domains [75-78],
in light of CMA-ES and adapting parameters, specifically the covariance, the evolution strategies mainly rely on the
covariance adaptation of arbitrary normal mutation distributions [76]. Consider the vectors y;,---,y, € R™, gy = m,
which span R™, and let A4(0,1) denote independent (0, 1)-normally distributed random numbers, an n-dimensional
normal distributions with zero mean can then be produced as

80
A0, D)y, +---+ (0, 1)y, ~ JV(O:ZYiYiT); (3.14)

which can be interpreted as a normally distributed random vector with zero mean covariance matrix Z;"’il yiyi| generated
by adding "line distributions" A4(0, 1)y;. Considerring all normal distributions with zero mean, the singular distribution
A(0,1)y; ~ A(0, yl-yl.T) generates the vector y; with maximum likelihood, which must live on a line that includes y;, and
thus the distribution must obey A4(0, 1)oy; ~ A(0, O'ZyiyiT ), otherwise any other line distribution with zero mean cannot
generate y at all. Choosing a proper ¢ then reduces to choosing the maximum likelihood of ||y|| for the one-dimensional
gaussian 4 (0, o|[y?||), which is o = 1. Having the rank of one, the only eigenvectors of the covariance matrix y;y; are
{ay;la € R\y} with the eigenvalue ||y;||*. Thus any normal distributions can be realized using (3.14) when y; are chosen
appropriately, as long as the vectors y; are not the eigenvectors of the covariance matrix, which they usually are not.
Considering (3.14) and a slight simplification of (3.12), the sum in (3.12) can be consist of a single summand only, thus
leading to the rank-one update of the covariance matrix in (3.13).

In (3.12) and (3.13), the covariance matrix is updated using the matrix multiplication of the selected steps, i.e., y;y;,
however since yiyiT = —y.(—y;)", the sign information is lost when updating the covariance. Thus a so-called evolution
path is introduced to restore the sign information. Evolution path refers to the sum of a sequence of successive steps over
a number of generations, weighted by exponential smoothing. Starting with pgo) =0, and p. € R", the evolution path is
updated as

m+t) _m@

P£g+1) =(1 _Cc)pﬁg) +v Cc(z_cc).u'efff’ (3.15)
o)

where ¢, < 1 being the learning rate, and 1/c, can be considered as the backward time horizon of the evolution path p,
that contains roughly 63% of the overall weight [66]. The factor 4/c.(2 —c.)u.s is then a normalization constant for p,.

When ¢, =1 and u. = 1, the factor reduces to one, and p(g“) (q(gﬂ) m®))/o@),
By integrating rank-one-update in (3.13) with the evolution path (3.15), the update of covariance matrix then reads [88]

C—(1—c))C+cpep; . (3.16)

The rank-one-update with revolution path (3.16) significantly improves the the covariance update compared to (3.13)
for small u.g, due to the heavily explored correlations between consecutive steps and the restored sign information [66].

Update the Covariance Using Both Rank-One-Update and Rank-u-Update

Combining rank-u-update in (3.12) and rank-one-update in (3.16), the final CMA update of the covariance matrix reads

A
Ce(1—c;—,)C+eP ! +6u Y Wi¥iaYia |, (3.17)
i=1
where
ar =, G wmin(ueff 1—c),
m m?2

(x (g+1) _m(g))

R D YT W

The combined update (3.17) combines both the advantages of rank-u-update and the rank-one update. Rank-u-update
efficiently uses information from the entire population, suitable for large populations, while rank-one-update exploits the
correlations between generations using the evolution path, which is crucial in small populations [66].
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3.2.3 Step-Size Control

The covariance matrix adaptation in (3.17), increases or decreses the scale of the distribution only in a single direction
for each selected step, or decreases the scale by fading out old information by a given, non-adaptive factor. However
CMA does not explicity control the "overall scale" of the distribution, i.e., step length o, mainly due to the fact that the
largest reliable learning for the CMA in (3.17) is too slow to achieve competitive change rates for the overall step length.
Thus a step-size control is needed in addition to the adaptation rule (3.17) [66].

The step size o is updated using cumulative step-size adaptation (CSA). The intuition is when the evolution path, i.e.,
the sum of successive steps, is short, single steps tend to be uncorrelated and cancel each other out, thus the step-size
should be decreased. On the contrary, when evolution path is long, single steps points to similar directions and tend to be
correlated, therefore increasing the step size. When in desired situations, the steps are then approximately perpendicular
in expectation and therefore uncorrelated. The same idea of evolution path as in (3.15) is constructed, however the
difference here is that a conjugate evolution path is considered since p, from (3.15) depends on its direction. Initializing
the evolution path vector p, = 0, the conjugate evolution path reads:

1 m&t) —m(®)

Po — (1—¢5)Ps + /€ (2 = CoylheffC 2 T (3.18)

where ¢, < 1 being the learning rate, similar to ¢; and ¢, in (3.17), and 1/c¢,, is the backward time horizon of the evolution
path. 1/c,(2— c,)Uef is the normalization constant. And C™%> = BD™'B”, where C = BD*B” is an eigendecomposition of
C. B is the transform of the orthonormal basis of eigenvectors, which rotates the space such that the principal axes of the
distribution 0, C is aligned in the coordinate axes. The diagonal elements of D are the square roots of the corresponding
positive eigenvalues, where D! applies a (re)-scaling so that all axes are equally sized. B then rotates the result back
into the original coordinate system, ensuring that the principal axes of the distributions are not rotated by the overall
transformation and directions of the consecutive steps are comparable. Therefore the transformation C™*°> makes the
expected length of p, independent of its direction, and for any sequence of realized covariance matrices Cirg=)o,1,2,
pg)) ~ A(0,1), the evolution path is under random selection p(agﬂ) ~ #(0,1) [78].

In order to update the step length o, the ||p,|| is "compared" with its expected length E||.#(0,I)||, and updated in log
scale which is unbiased. With some manipulations, the final update of o reads [66]

G lpll
"“”e"p(a(mw(o,n)u 1)) (3.19)

., given

where d,; ~ 1 being the damping factor In o [78], and E||.4((0,1))|| is the expectation of the Euclidean norm of a random
vector that’s normally distributed with zero mean [66].

3.3 Local Online Motor Babbling

When learning inverse kinematics using online goal babbling, since there are multiple postures q reaching x*, it is
assumed that we don’t need to know all redundancy, and only learn the ones with most direction and kinematic efficiency
by integrating the weighting scheme (3.3) in the optimization. In fact, Q is not only unknown, and may never be
exhaustively explored on a physical system, but also non-stationary due to the nature of musculoskeletal robot design
with PAMs. This can be addressed by using the simple feedback controller in (3.6), where execution failures due to the
changing of Q are adapted when the queried goal x* is slightly shifted based on the proportion of the euclidean error
x*—x,.

As illustrated in Algorithm 1, the queried goal x*, the learned inverse model g(x), and the neighboring postures Q, :
q;Vx, < ||x,—x*|| < r, which is collected from the goal babbling process, are the input to online motor babbling.
The aim of the algorithm is to output a new posture configuration set Q.n,, from which different muscle stiffness can
be generated while keeping the end effector position fixed. The initialization sets the gain and number of iteration of
the feedback controller to @ = 0.05, T = 30, t number of trials for CMA-ES N = 5, and the prototype sphere radius
is r = 0.02. We use pycma library [79] to implement CMA-ES, where we encode variables g in the objective function
implicitly f (fwd(q)) [66]. The objective function is simply set as the euclidean norm to the goal scaled with a constant,
i.e., ¢-||x*—x,||, where ¢ = 10, and the optimum objective function value is set to f* = 0.03, meaning that an empirical
optimum of f*/c = 3mm to the goal, which is also the stopping criteria for each CMA-ES trial.

Each trial of CMA-ES starts by iterating the feedback controller and finding the posture g, that leads closest to the
neighboring goal, and g, is subsequently used to initialize the mean vector m. The covariance is initialized to be an
identity matrix, which allows isotropic search and avoids bias. In order to initialize the step-size, an empirical variance
is estimated from Qy U Qg,, and the mean of the variance is taken as initialization. The union of the two sets is to ensure
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Algorithm 1: Motor Babbling Using CMA-ES

input : x*, g(x), Qy
output : Q.p,
initialize: & = 0.05, T =30, N =5, A =13, r =0.02, ¢ = 10, f* = 0.03, Qupma = {}

select N closest goals x7,- -+, xy, to x™;
forn<—0to N do
X5 =x;
w = {};
fort —O0to T do
X, q, = forward(g(%}));
Xf=x]_ +a-(x*—x.);
if [|x* —x,|| < r then
| collect (x,, q,) In Qg,;

select q, for the minimum ||x, — x*|| in Qg;
initialize m = q,, 0 = mean(var(Q, U Qg,)), C=1;
while f < f* do
sample posture population qg : q; ---q, as in (3.7);
for k < 1to A do

X¢,q, = forward(qy);

f=fl)=c-llx* —x,li;

if ||x* — x.|| < r then

| collect gy in Qema;

update m as in (3.8);

update p, and o as in (3.18), (3.19);
B update p. and C as in (3.15), (3.17);

sufficient data for a feasible estimation. Near the home position, which is the centroid of the goal space, many data
samples are available as online goal babbling often comes back to (X4ome> Grome)- However around the edges of the goal
space, there are often very few local samples, sometimes less than the action space dimension, i.e., the 24 muscles. By
taking in the samples generated by feedback controller, a better initialization of o can be robustly estimated.

3.4 Reproducing Muscle Abundance

In order to visualize muscle abundance, namely in terms of reproducing muscle stiffness and muscle synergy encoded in
the evolved covariance matrix, we assume the distribution of parameters to be multi-variate Gaussian and multi-modal,
as the motor space is of high dimension, and there can be different muscle group posture configurations while keeping
the end effector fixed. Therefore a multi-variate Gaussian Mixture Model [80] is fit to the collected data in Q. By
assuming a distribution of Gaussian parameters over the data samples p(Q|6), a prior multi-variate Gaussian distribution
is introduced

K
p(O) =D wik (1, 5,
i=1
w; are the weights for each Gaussian mixture component, and the posterior distribution is estimated by using Bayes
rule [80], such that the posterior distribution would preserve the form Gaussian mixture model, i.e.,

K
p(01Q) = > Wi N (g, ),

i=1

where the parameters (1, %;) and weights 1; are updated using Expectation Maximization (EM) to maximize the likeli-
hood [80]. The number of mixture models P is estimated using Bayesian Information Criterion (BIC) [80] for P € [1,10],
where the lowest BIC of P is taken. Finally, we sample from the mixture model with updated parameters and weights
q* ~ 3 Wi (y, %) and forward ¢* on the robot.
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4 Experiments and Evaluations

We implement directed online goal babbling to learn the IK, and local online motor babbling to explore for motor
abundance for the queried goal point, respectively. Since the task space is unknown, we first empirically estimate the
goal space using some simple heuristics. Here the term task space and goal space are slightly abused. The original
literature refers to the defined space for goal babbling as the goal space, which is technically a subset of the task space
that encapsulates all the reachable positions by the end effector. In our experiment setup, we try to maximize the defined
goal space to equate to the size of the unknown task space, thus the term goal space and task space is henceforth
interchangeably used.

4.1 Experiment Setup

The general setup for goal babbling and motor babbling experiments consists of the mentioned robot hardware above,
firmware and software. The sensory space so far only consists of the pressure sensor in each muscle for PID control, thus
in order to learn the IK with sensorimotor mapping, tracking is needed to obtain the end effector position in 3D. In the
experiments, the tracking is performed using Intel RealSense ZR300 and its open source API [71]. As shown in Figure
4.1, the hand of the robot is replaced with a tennis ball as the color marker, and tracking of the end effector is performed
in reference to the center of the red marker as the origin. However, the tracking introduces an error up to 1 cm in depth,
i.e., x-axis, and sub-millimeter error in y and z-axis. The colored point cloud overlayed in ROS rviz is the specified convex
goal space, which will be introduced in Section 4.2.1.

Figure 4.1.: The final experiment setup of the robot, ready to conduct goal babbling. The 10 DoF musculoskeletal robot
arm is actuated by the 24 PAMs shown in Figure 2.5, with an empirically defined goal space in reference to
the red marker on the chest, visualized in rviz.

The ROS architecture of the setup is shown as a node graph in Figure 4.2. The /muscle_controller_spawner spawns the
PID parameters to the ROS server, as shown in Figure 2.4. /arl_driver_node provides information for /diagnostics,
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and current muscle pressure to /musculature/state, which further publishes the internal pressures for exec_dection
as in equation (2.1). The defined goal space that is reachable by the end effector of the robot is published by
/pointcloud_pub, displayed as the colorful point cloud in Figure 4.1. The red marker on the chest of the robot is
used as a static /tf frame for the reference as the origin, the tracked end effector position is then transformed with
respect to the origin in /tf and publish to /hand_pose for /eff_detection as in equation (2.2).

/diagnostic_aggregator
- /exec_detection
Ipointcioud_pub # /reachability
N static »(_ /publish_tracking " ns

o

arl_marker tracker
—

farl_marker_tracker/debug/red_marker_cloud

Figure 4.2.: Node graph of the ROS architecture for the experiment setup: The driver communicates the muscle state
pressure for diagnostics, and publishes for execution detection as in equation (2.1). The defined goal space
is published for visualization. The tracking uses the red frame on the chest of the robot as a static tf frame
for origin, transforms the current end effector position in /t£f and publishes to /hand_pose, which is used to
detect the end of a movement shown in equation (2.2) as the end effector stabilizes.

Before learning the IK, the best achievable accuracy in reaching tasks is estimated as in [28]
- 1 p
=R Z Xp>
r
1«1 L
D=3 2z 2l =%l
P r

By repeating P = 20 random postures for R = 20 times each, the average Euclidean norm error is computed to be
D = 1.2 cm, meaning that the musculoskeletal upper limb robot can reach with the best average error of 1.2 cm. In
comparison to accurate and agile control in typical robots with rigid links, this is of quite low accuracy. For soft robots
with a musculoskeletal structure, reaching accuracy is traded for better flexibility and compliance. Nevertheless, this
highly non-linear non-stationary redundant system still poses great challenges to learn an accurate IK, due to friction,
hysterisis, and the strong mechanical interplay between the bended muscles and the skeleton. The nonstationarity and
the quick wear-and-tear of the PAMs can lead to deviations in end effector positions even when supplying the same air
pressures, and thus changing the reachable goal space, which is not even analytically known in the first place. These
challenges will be addressed later by using directed online goal babbling that bootstraps on the inverse mapping, and
a simple feedback controller to adapt to the nonstationary changes during the learning process [28,61]. The unknown
goal space will be empirically estimated and approximated using simple heuristics, which are introduced in Section 4.2.

4.2 Learning Inverse Kinematics

4.2.1 Defining the Goal Space

The complete task space of the upper limb robot is unknown and non-convex, however directed goal babbling would
require the specified goal space to be convex to efficiently bootstrap and allow the integration of the weighting scheme
in equation (3.3). Thus we first empirically estimate the goal space by randomly generating 2000 random postures for
each muscle within [0,0.4] MPa, and denote as the empirical goal space Xj.
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Figure 4.3.: Empirical goal space X (in blue) is obtained by sampling from 2000 random postures. A uniformly sampled
convex goal space X (in red) is first defined by a cube grid C with 3 cm spacing encapsulating X, and
intersected with the forced convex hull of X using the quickhull algorithm [73], i.e., X, = Conv(X;) N C. X
is then used for learning IK, as shown in Figure 4.1

In order to approximate the uniform samples in X for efficient online learning and evaluations, a cube grid C with 3cm
spacing encapsulating X is defined, where X; C C. The sampled convex hull goal grid X in Figure 4.1 is then made
from the intersection of all points in the empirical goal space and the cube grid, i.e., X, = Conv(Xy) N C, where Conv
forces the convex hull using the quickhull algorithm [73]. However, as shown in Figure 4.3, X; is a slanted non-convex
irregular ellipsoid, forcing a convex hull in the 2000 random posture samples would introduce non-reachable regions
in the goal space. This is addressed later with the similar set operation to remove the outlier goals using the learned
prototype vector space.

4.2.2 Evaluations and Results

The experiment is conducted with T = 20000 samples, with target step length 6, = 0.02, which corresponds to the
target velocity of 2 cm/s, allowing the robot to generate smooth local movements. The sampling rate is set to 5Hz,
generating 5 targets and directed micro movements for learning. After every 4000 samples, performance evaluation is
carried out online. The learning experiment including online evaluations amount to less than 2 hours real time. As
illustrated in Figure 4.4, the learning bootstraps quite fast in the first 4000 samples, followed by a slow convergence until
16000 samples. At T = 20000, the feedback controller is applied, the performance error drops to 3.4cm. However in X
there are still many outlier goals, which are the non-reachable regions introduced by forcing the convex hull. A similar
set intersection operation is applied with the learned prototype spheres S and the goal space X, where S is taken as the
encapsulated space of the prototype spheres, and the final goal space is X = SN X, as shown in Figure 4.6, where the
number of goals has been reduced from 179 in X to 94 in Xg. We then evaluate again these 94 goals with the feedback
controller, the performance error reduces further to an average of 1.8 cm in 4.4. However due to the forced convex hull
X, local inverse models cannot efficiently regress at the edge of the task space, the error distribution still shows a few
errors larger than 3 cm, which can be further reduced later by motor babbling using CMA-ES.
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Figure 4.4.: Decreasing performance error up to 20000 samples, i.e., the average Euclidean norm to the goals evaluated
throughout the convex goal space X, the feedback controller is applied at 20000 samples, resulting an av-
erage error of 3.5 cm. However there are still outlier goals remaining from forcing the convex hull, thus we
take the explored prototype sphere space S and intersect with X, i.e., Xg = S N X to remove the outliers.
Evaluating on the cut goal space X reduces the error to 1.8 cm.
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Figure 4.5.: Performance error distribution evaluated on the 179 goals of the convex goal space X used for IK learning
in Figure 4.3, compared with the error distribution evaluated on the 79 goals of X, as in Figure 4.6, where
the cut goal space with outlier goals removed. The comparison shows that performance error has been
significantly reduced after removing outlier goals, reaching an average error of 1.8 cm as shown in Figure 4.4,
where most errors are distributed below 2 cm, and the worst error not more than 5 cm.
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Figure 4.6.: Prototype spheres S (green) encapsulating the final goal space X; (red) with outlier goals removed, which is
later used for motor babbling. X is made with a similar set intersection operation, where the encapsulated
space populated with learned prototype spheres S and the goal space X, are intersected, i.e., Xg = SNX.. As
shown in the figure, the number of goals has been reduced from 179 in X to 94 in X

4.3 Quering Goal Space for Motor Babbling

o goal space Xs
@ selected goals

[w]lZ

Figure 4.7.: 10 goal points for motor babbling in the final goal space X are evenly selected to show case the generality
of local online motor babbling using CMA-ES. The color point clouds are the local samples within 2cm radius
of the queried goals, generated during the goal babbling online IK learning process. These local data around
the queried goal is then used to initialize the step-size o for the CMA-ES trials.

We evenly selected 10 goals in the final goal space Xg to perform online motor babbling. The selected goals and their
local samples within 2cm radius are shown in Figure 4.7. The goals are selected to show case the generality of querying
any goal within the goal space for motor babbling. Around the edges, goal 26, 5, 89, 52 are chosen, and near the centroid
home position, goal 44 and 39 are selected. The rest goals 17, 43, 55, and 60 are to populate the rest of the goal space.
It can be expected and observed that more samples were generated near the home posture, since in online goal babbling
the arm returns to (Xpome»> Ghome) With probability py.m., Whereas goals around the edges have only a few samples, such
as goal 26 and 89.
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Figure 4.8.: Comparing the reaching error and muscle variability of directed goal babbling and local motor babbling using
CMA-ES. The data is obtained by sampling 200 motor commands from the fitted GMM, which reproduces the
learned local motor abundance for each queried goal as mentioned in Section 3.4. The motor commands are
then fed to the robot for execution, and the end effector positions are recorded. The upper bar plot shows
the average distance and standard deviation of the 200 trials to the queried goal, and the lower one shows
the mean and standard deviation of pressure variances for all the PAMs. It can be observed that CMA-ES not
only increased the means and standard deviations of all 24 muscle variances for the 10 queried goals, but
the reaching error has also been reduced, meaning that motor abundance has been efficiently explored with
varied muscle stiffness and synerigies, while keeping the end effector position fixed for the queried goal.

For each selected goal, N = 5 trials of CMA-ES is performed as in Algorithm 1, where each trial takes on average 5
minutes experiment time on the robot. Muscle stiffness is then reproduced by first fitting the collected neighboring
samples Q, to the Gaussian mixture model, which serves as a baseline learned during goal babbling, followed by another
experiment fitting Q.m, to the mixture model and the subsequent sampling. 200 samples from the mixture model is
evaluated on the robot, the mean and standard deviation of the reaching error, and of pressure variance are plotted. As
illustrated in Figure 4.8, CMA-ES outperforms the baseline in terms of both larger muscle pressure variance and smaller
goal reaching error, where the average lies close to the 2cm prototype sphere radius. Since online goal babbling favors
kinematic and direction efficiency by reducing motor redundancy, the sampled muscle pressure generally varies trivially
compared to the ones generated from the CMA-ES GMM model, which expands the variance in search of global optimum
while keeping the goal reaching accuracy. Due to non-stationary changes of the possible posture configurations Q, the
local neighboring samples Q, no longer lead to a close position to the goal, however Q, of the neighboring goals can be
used for initializing the step-size o, and initializing the mean vector m from Qg,, to adapt to non-stationary changes and
maintain the goal reaching accuracy while performing motor babbling.

It can be observed that for goal 44, which is closest to the home position, the motor variance doesn’t increase much
as other queried goals. This is because every time the interpolated directed goal path comes across the centroid home
region, goal 44 has a higher chance of collecting more samples g, of varied motor configurations within the neighborhood.
Nevertheless, CMA-ES still explores motor redundancy rather efficiently. As shown in Figure 4.9, the evolution trial
expands the maximum and minimum standard deviation of the search, i.e., such that the optimum f* is reached. After 5
such evolution trials, the sampled GMM data is used to estimate the covariance, compared with the covariance estimate
from the baseline GMM data. As shown in 4.10, CMA-ES preserves the structure while enhancing the variance on the
diagonal, while also discovers more correlation within different groups of muscles, which can be prominently observed
on the robot in Figure 4.11.

4.4 Interpreting Muscle Abundance

The muscle pressure variability in the covariance encodes muscle abundance, which can be interpreted as muscle stiffness
and static muscle synergies. Loosely speaking, muscle synergy is defined as a co-activation pattern of muscles in a certain

25



0.254 — best f value in each iteration
® optimum f*
= max and min std

0.20{ = step-size o
£0.151
S
» e
0.10 1
| mm——
0.05 - L.
0 5 10 15 20 25 30

Number of Iterations

Figure 4.9.: One evolution trial for goal 44 is selected to demonstrate the evolution of the optimization, or in the case
of motor babbling, to illustrate the effective way of exploring motor variability. It can be observed that the
value of the objective function fluctuates while the maximum and minimum standard deviations of the step
size keep on expanding, indicating the growing search distribution of the covariance matrix, until the defined
optimum objective function value is found.

# Muscle Name Function

3 | serratus anterior pulls scapula forward

7 | latissimus dorsi rotates scapula downward
] rear deltoid abducts, flexes,

10 front deltoid and extends

11 | medial deltoid the shoulder

15 biceps brachii flexes and supinates the forearm

18 brachialis flexes the elbow
19 pronator pronates the hand
20 supinator supinates the hand

Table 4.1.: Names and functions for the muscles of interest

movement from a single neural command signal [81]. It can be argued that muscle synergy is a way of kinetically
constraining the redundant motor control of limited DoFs, or as neural strategies to handle the sensorimotor systems [82].
We claim no sides in the sensorimotor learning of humans, however, by constraining the end effector position of the
musculoskeletal robot arm, the static muscle synergies and stiffness can be encoded in the covariance matrix and provide
some useful insights. In Figure 4.10, muscles of high variances, namely muscle 3, 7, 8, 10, 11, 15, 18, 19, 20 are of
particular interest, where muscle 7 and 8, 20 and 8 are highly negatively correlated. Inspired by the human’s upper
limb, the PAMs of the robot arm mimics the function of human arm muscles, as illustrated in Table 4.1. By fitting the
data Q.. in the mixture models and subsequently applying sampling, we can observe the co-activation patterns of the
muscles. As shown in Figure 4.11a and 4.11c, the upper limb first reaches goal 44 with a relaxed arm posture and a
lowered adducted shoulder, whereas in Figure 4.11b and 4.11d the end effector position is maintained by stiffening the
arm, lifting the extended shoulder, and pronating the hand. The negative correlation of muscle 7 and 8 can be interpreted
as the coordination of extension and abduction, as well as the flexion and adduction of the shoulder. Muscle 8 and 20
coordinate shoulder abduction with a supinating hand, and by adducting shoulder while pronating the hand.
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Figure 4.10.: Comparing baseline and CMA-ES covariances of goal 44 to illustrate the effective exploration for motor
abundance. The reason of choosing goal 44 is that the baseline motor variability, which is encoded in the
local samples generated throughout the whole goal babbling process, is already quite abundant, and that
further exploration for more motor abundance would be much more difficult than the other queried goals.
Since goal 44 is near the home position X;,me, Various motor configurations has been collected when being
swept across in the directed goal babbling process. Desipte the difficulty, we can still observe the enhance-
ment of motor abundance encoded in the covariance matrix after motor babbling. As shown in the figure,
the largest change of variance occurs at muscle pair (8,20), changing from 0.003 to -0.01, where the -0.01
covariance corresponds to the standard deviation of 0.1 MPa pressure change, consituting 25% of the PAM
actuation range.
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(<) Pose 1 back shoulder (d) Pose 2 back shoulder

Figure 4.11.: Static muscle synergies reproduced from the learned motor abundance of goal 44, the labelled muscles are

color coded in green (low), orange (medium), and red (high) to indicate the state of pressure actuation.
A relaxed arm posture with a lowered shoulder can be observed in (a) and (c), whereas a stiffened arm
with pronating hand and a lifted shoulder and can be observed in (b) and (d), while keep the end effector
position fixed.
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5 Conclusion

We have implemented directed goal babbling [61] to learn the inverse kinematics of a 10 DoF musculoskeletal robot arm
actuated by 24 PAMs. We defined the unknown goal space by empirically sampling 2000 random postures and forcing a
convex hull ready for learning, and post-processed the goal space to remove outlier goals. The result shows an average
reaching error of 1.8 cm, where the reaching accuracy achievable by the robot is 1.2 cm. The simple heuristics and
approximation of the goal space allows us to use directed goal babbling to learn a larger sensory space compared to a
well-defined yet small partial task space, and promote more efficient mapping to the motor space compared to active
exploration [60]. Nevertheless, learning with a forced convex goal space where the intrinsic task space is non-convex
introduces outlier goals, which the corresponding directed babbling can be misleading. A future research direction of
integrating directed goal babbling with active exploration could be of interest, where the goal space grid can be defined
large enough to encapsulate the whole task space, and active exploration guided by the k-d tree splitting and progress
logging can indicate the learned task space while still keeping the bootstrapping flavor of the inverse model.

We further extended the directed goal babbling method to local online motor babbling using CMA-ES to effectively search
for more motor abundance. By initializing the evolution strategy with local samples generated from goal babbling, any
point within the goal space can be queried for motor abundance. The idea is to intentionally initialize the mean vector of
CMA-ES slightly away from the queried goal. By expanding covariance and setting the stop condition to meeting the set
optimum of the objective function value, efficient motor babbling data can be generated locally around the queried goal
with a few CMA-ES trials of different initializations from the neighboring goals. We evenly selected 10 goals within the
goal space to showcase the generality of local online motor babbling. The results show that our proposed method has
significantly increased the average muscle pressure variances, while keeping the end effector more stable and closer to the
queried goals, compared with the goal babbling baseline. Even in the home position where motor abundance has already
been well-explored, local motor babbling shows a maximum increased standard deviation of 0.1 MPa, constituting 25%
of the muscle pressure actuation range. Our method also adapts to queried goals near the edges of the goal space where
samples for initialization are sparse due to the uneasy posture of the robot arm around such goals.

By fitting Gaussian mixture models to the data collected using local motor babbling, the sampling of the GMMs can
reproduce motor abundance in terms of muscle stiffness and muscle synergies encoded in the evolved single-mode
covariance matrix. Muscle stiffness can be seen on the inflating and deflating muscles, and muscle synergies can be
clearly observed in the covariance where variances and correlations are strong, as well as when GMM sampled postures
are applied on the robot correspondingly. The bonus that comes with the encoded covariance and mixture models is
that the queried motor abundance can be captured and reproduced by distributions, which enables the formulation of
trials for reinforcement learning in future research, such as learning weight lifting with varied muscle stiffness, planning
trajectories and learning dynamics using via-points and the locally queried motor abundance library.
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A Appendix

A.1 Evaluation of the ten queried goals for motor abundance

In Figure 4.7, 10 goals are selected to show case the generality of local online motor babbling using CMA-ES. The learned
motor babbling results for all of the 10 goals are illustrated below, where the comparisons of the final adapted covariance
matrix in CMA-ES and the one estimated from the local neighbouring samples generated throughout the goal babbling
process. We can see that for all goals the covariance matrix learned from motor babbling has been enhanced, namely
increased variances and increased correlations, including negative ones.
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Figure A.1.: Evaluations of goal 5 and 17: Covariance comparison of local online motor babbling using CMA-ES with the
baseline using directed online goal babbling
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Figure A.2.: Evaluations of goal 26, 39, 43, and 44: Covariance comparison of local online motor babbling using CMA-ES

with the baseline using directed online goal babbling
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Figure A.3.: Evaluations of goal 52, 55, 60, and 89: Covariance comparison of local online motor babbling using CMA-ES
with the baseline using directed online goal babbling
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