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Abstract

As the field of reinforcement learning still suffers from a lack of sufficient exploration in
sparse rewards environments and missing control over the trade-off between exploration
and exploitation, we propose a new method based on intrinsic motivation and the Proximal
Policy Optimization algorithm. With the intrinsic motivation serving as an exploration
method, we train an agent to optimize its exploratory behavior as well as the behavior
solving the predefined task of the environment. Instead of optimizing a single policy
following a combination of the intrinsic motivation and the goal of the environment, we
simultaneously train two separate policies, one for each of the mentioned tasks. For the
interaction with the environment during the training, we use an entropy-based approach
to determine the policy that chooses the next action for each step. Besides the possibility
of controlling the level of exploration, the proposed method entails a low-noise policy and
an extensive exploration of the state space.




Zusammenfassung

Mit der Absicht, das noch immer préasente Problem einer umfangreichen Erkundung der
Umgebung im Bereich des bestarkenden Lernens und die oftmals fehlende Moglichkeit, das
Ausmal} der Erkundung festzulegen, zu relativieren, wird eine neue Lernmethode vorge-
stellt, die auf intrinsischer Motivation und dem Proximal Policy Optimization Algorithmus
basiert. Mit Hilfe besagter intrinsischer Motivation, die als Grundlage fiir die Erkundung
dient, wird ein Agent trainiert, indem sowohl sein Erkundungsverhalten als auch sein
Verhalten zum Losen des von der Umgebung festgelegten Ziels optimiert wird. Anstatt
eine einzelne Strategie zu lernen, die eine Kombination aus intrinsischer Motivation und
Aufgabe der Umgebung optimiert, werden gleichzeitig zwei unabhingige Strategien ge-
lernt, um jeweils eines der beiden Ziele zu verfolgen. Bei der Interaktion zwischen Agent
und Umgebung wird hierbei ein auf Entropie basierender Ansatz verwendet, um fiir jeden
Schritt die Strategie zu wéhlen, die die ndchste Aktion bestimmt. Neben der Moglichkeit,
den Grad der Erkundung zu bestimmen, bringt die vorgestellte Methode eine Strategie
mit wenig Rauschen und eine umfangreiche Erkundung des Zustandsraumes mit sich.
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1. Introduction

In recent years, the entire field of Machine Learning (ML) became more and more popular,
conversations about and interest in the topic of Artificial Intelligence (AI) not staying
exclusively in the area of research anymore. The idea of "intelligent" systems has reached
publicity and is applied by many companies in some way. One big factor that helped ML to
popularity is the revival of Neural Networks (NNs), especially in the form of Deep Neural
Networks, and accompanying successes in a variety of different complex tasks, including
the field of computer vision [1] and machine translation [2].

Another big field of ML that has been taken to a new level of success is the field of
Reinforcement Learning (RL). RL fulfills multiple criteria intuitively connected to the
idea of AI, such as learning by experience and the ability to make decisions. For this
purpose, the algorithm (or agent) learns a function called policy, which determines an
action the agent takes in a specific situation. By learning with the principle of trial and
error, RL algorithms are able to solve a variety of different complex problems, internally
evolving (near-)optimal sequences of decisions that require a high level of planning. The
introduction of NNs into this area enabled the development of algorithms that are able
to reach human-level performance in video and board games [3, 4, 5] and outreaching
performance on robotic tasks [6, 7, 8, 9].

However, by no means all problems of RL have been solved yet. A successful application of
an RL algorithm often highly depends on the design of the environment it interacts with,
to some extent requiring prior engineering of the reward used by the agent to learn what
to do. The performance of standard RL algorithms in environments with reward functions
that are kept very simple, e.g., only providing a single reward when the task is fulfilled, is
disillusioning.

There is, however, research dealing with this issue, part of it tackling the problem with the
application of Intrinsic Motivation (IM). Using different methods of IM, the agent learns
to explore the environment by learning about it, reflecting behavior observed in animals
such as curiosity. This approach, for example, results in an exploratory behavior leading




the agent to areas of the environment it has rarely or never seen before by rewarding
the agent for reaching respective states. These rewards are called intrinsic rewards, as
opposed to the extrinsic rewards that are provided by the environment for solving the
predefined task or a subtask. In order to explore the environment and simultaneously
learn how to solve the true goal, the agent optimizes the extrinsic reward together with
the intrinsic reward, whereby the intrinsic rewards should be small enough to ensure
convergence to the task of the environment.

While making an important step in the direction of solving exploration issues, IM methods
again come with new questions and problems that are to be solved. The main issues we
want to address comprise

1. the inability of controlling the level of exploration throughout the learning process,

2. the possibility of premature convergence due to a low intrinsic-extrinsic rewards
ratio, and

3. the possibility of a noisy final policy due to a high intrinsic-extrinsic rewards ratio
and the possible non-convergence of the IM method.

The circumstance these problems could result from is the fact that, in most cases, the
intrinsic reward is simply added to the extrinsic reward, only multiplied by a scaling factor.
By jointly optimizing both goals, the one to explore and the one to fulfill the predefined
task of the environment, the agent cannot distinguish them. In the case of being in need
of the greedy behavior, i.e., only seeking the true goal of the environment, the agent has
no option to immediately adjust its behavior, leading to the above-mentioned shortcoming
of a noisy policy. Similarly, the exploratory behavior cannot be increased manually during
the training, which could cause premature convergence.

Therefore, we aim to address this very cause by making the learning based on the intrinsic
rewards explicit, that is, training a separate policy that only considers intrinsic rewards
simultaneously to the training of the actual greedy policy, which only takes the extrinsic
rewards into account. The agent makes decisions based on a probability distribution that is
a combination of both policies, whereby the impact of each policy can be adjusted through
a parameter. With this approach, we have better, state-dependent control of the level of
exploration, which makes it possible to avoid a premature end of exploration. Moreover,
we can turn the exploration off if a greedy behavior is desired and, in theory, the resulting
greedy policy should not suffer from IM-induced noise as the intrinsic rewards should
have no direct effect on it.




In this thesis, after presenting related work in Chapter 2 and providing the required
basic knowledge in Chapter 3, the proposed approach is explained in more detail in
Chapter 4. The mentioned issues of conventional intrinsically motivated RL approaches
are examined in experiments that are explained in Chapter 5. In Chapter 6, we investigate
the experimental results, especially with regard to the ability of the proposed approach to
solve the said issues. These results are summarized and brought into a broader context
in Chapter 7, in addition to a brief suggestion on when the use of the proposed method
could be appropriate and when it might be disadvantageous.




2. Related Work

As the method we propose combines several aspects of RL, namely IM, off-policy policy
gradients, and the distinct consideration of intrinsic and extrinsic rewards, we consider
these aspects individually.

2.1. Intrinsic Motivation

The research on IM is wide-spread, including the development of a variety of different
prediction error methods [10, 11, 12] as well as approaches using the idea of state
novelty [13, 14, 15, 16]. While we tackle several issues of prediction error based IM,
Savinov et al. [17] already showed that this type of IM can come with problems. More
specifically, the problem of an intrinsically motivated agent tending to get stuck in situations
from which it can induce stochasticity in the successor state has been addressed. This
behavior has been observed on the example of the noisy-TV problem [12] describing the
situation of giving an agent the opportunity to switch the program of an artificial television
to a randomly chosen different program. The problem has been tackled by giving the
agent a memory in order to make states it already knows and those that are close to such
it has already experienced less attractive.

2.2. Off-Policy Policy Gradient

A commonly used method of training policy gradient methods in an off-policy manner is
the off-policy policy gradient theorem [18]. It makes use of importance sampling in order
to correct the gradient error that is caused by the sampling from a different policy than the
one being optimized. Instead of using the product of importance weights of a trajectory,
only a single importance weight is taken into account, which yields a lower variance but




introduces bias. This theorem has been well investigated by integrating it into several
algorithms. Besides the initial Off-Policy Actor-Critic (Off-PAC) algorithm [18], other
algorithms have been developed based on the theorem, such as Deep Deterministic Policy
Gradient (DDPG) [19] and Actor-Critic with Experience Replay (ACER) [20]. However,
both algorithms use the off-policy approach to reuse previously sampled transitions for
updates in later iterations and, therefore, improve sample efficiency. In contrast, we use
the approach to learn from transitions collected by a distinct policy. The problem of the
off-policy policy gradient theorem of coming with bias due to sampling from the state
visitation distribution induced by the behavior policy instead of the target policy has
been addressed by adding a state distribution correction factor that is learned with an
additional NN [21]. Instead of correcting the state distribution, we experiment with an
on-policy approach that, similarly to the off-policy approach, makes use of a behavior
policy in order to explore states according to the same.

2.3. Explicit Intrinsic Motivation

While the rewards produced by IMs usually only serve as a bonus reward in addition to the
extrinsic rewards provided by the environment, Burda et al. [12] examined the behavior
in the case of not having access to any extrinsic reward, learning a policy based on intrinsic
rewards only. Successes could be achieved on a variety of different computer games, in
which the exploration of new areas is advantageous. However, this approach disregards the
potential of combining the information provided by intrinsic and extrinsic rewards. The
combination of the ideas of intrinsically motivated and off-policy exploration was suggested
by Szita et al. [22] and realized by Morere et al. [23] and Parisi et al. [24]. Hereby, the
separation of intrinsic and extrinsic motivation was made on the value level, training two
different value functions based on the respective type of rewards and combining them to
build the behavior policy. Since their approach is value-based, i.e., the policy is made up
of the learned value functions, the distinction between intrinsic and extrinsic motivation
is implicitly made on the policy level, which we make explicit by learning approximators
for the policies using policy gradients. Burda et al. [25] and Kim et al. [26] applied the
approach of separate value functions to the field of policy gradients. However, there was
still a single policy being learned to optimize a combination of intrinsic and extrinsic
rewards.




3. Foundations

In this chapter, the basic knowledge necessary for the understanding of this thesis is
provided. As it deals with IM in RL, we start with the most general super-category ML,
followed by the ML fields of unsupervised and supervised learning. After an explanation
of the functionality of NNs, RL and, in this context, IM is described in detail.

3.1. Machine Learning

In contrast to classical software engineering, in which domain-specific knowledge is
required or has to be acquired at first to build an algorithm that meets the desired
requirements, in the field of ML, we aim to eliminate this kind of dependency to a
large extent. ML methods are instead designed to solve across-the-board problems, the
algorithms themselves taking over the developer’s task of acquiring problem-specific
knowledge [27]. However, to train a model (the function approximating the true function,
see Section 3.3) showing the desired behavior, the algorithm needs a set of training data
(called the training set), which has to be provided (see Section 3.3) or gathered through
experience (see Section 3.5) [28]. The algorithm is then being trained by optimizing a
given performance measure representing the quality of the current performance of the
algorithm with respect to the given data [27].

ML algorithms not only aim to learn the correct handling of data they have already seen
in the training set but also to generalize in a way that they know how to treat similar
data in the future. Considering the ability to learn only by example and to adapt to the
circumstances, ML is especially beneficial assuming problems for which human expertise
is missing or difficult to explain and ones that may change over time [28].

While there is a variety of subareas in the field of ML, this thesis focuses on the area of RL
(see Section 3.5). In order to fully understand RL, a basic understanding of unsupervised
learning and supervised learning is provided in Sections 3.2 and 3.3.




Before looking at the sub-categories of ML, general challenges that can occur when
applying ML methods are discussed next.

3.1.1. Challenges in Machine Learning

While opening up new opportunities like the detection of patterns a human could not grasp
in the amount of today’s available data, it is not always easy to apply ML to any problem.
There are some difficulties and requirements most ML approaches have in common, of
which the most common ones are explained in this section.

Data Availability: The availability of sufficient data is one of the big issues when training
an ML model is desired. In the case of supervised learning (see Section 3.3), this can
refer to the amount of training data that is available to optimize the model. The absence
of sufficient training data can lead to a bad generalization due to the lack of provided
information. Regarding RL (see Section 3.5), where the data is not provided but collected
by the algorithm itself, data availability can refer to the ease of collecting the data or
the expensiveness of the same. For example, when training an algorithm to control a
real robot, the communication between the device the algorithm runs on and the robotic
components can be expensive in terms of communication time. Additionally, the use of
the robot can be financially expensive, which can also restrict the availability of data.

Expressive Power: The expressive power of an ML model describes its function approx-
imation ability [29]. An underlying principle of a problem can be too complex to be
learned by a model. A linear function approximator, for example, will not be able to learn
an accurate approximation of a function of higher complexity than linear, e.g., a quadratic
one. Similarly, a linear classifier is not able to make non-linear classifications, i.e., separate
data points that are not separable by a straight line.

Overfitting: An issue that might especially occur in the context of NNs is overfitting on
the training data [30]. This expression refers to a poor generalization of the model on
other input data than the training data that are of the same domain. In other words, the
model learns the desired outcome of the inputs contained in the test set by heart instead
of understanding the underlying problem. This problem can occur, for example, if there
is not enough data available to provide sufficient knowledge of the connection between
input features and output.

Computational Resources: Modern NNs can consist of a huge amount of parameters [31,
32]. Performing predictions and, more importantly, optimizing these parameters requires




tremendous computational resources. Depending on the complexity of the model, it might
not be possible to train it on a conventional computer.

Hyperparameter Tuning: A hyperparameter is a parameter that is set before the training
begins and kept constant instead of being adjusted throughout the training process.
Hyperparameters can have a significant impact on the success and duration of the training.
Finding appropriate hyperparameter settings gets a difficult challenge when increasing
the amount of hyperparameters used (known as the curse of dimensionality [33]).

3.2. Unsupervised Learning

Unsupervised learning is a type of ML that, as the name indicates, does not need a
supervisor providing the correct output to a given input. Instead of learning about the
mapping of inputs to the output space by examples, unsupervised learning aims to find
regularities in a dataset [28]. Thus, the algorithm can provide information about new
data by comparing its attributes to the ones of the already available data.

A popular example of this kind of ML algorithms is clustering. In this case, the algorithm
aims to group data by means of their attributes, i.e., data with similar attribute values
are grouped. This method enables, for example, a company to group its customers by
their attributes (e.g., age) to provide fitted offers to specific types of customers [28].
Unsupervised learning is being applied to a wide range of areas, including astronomy;
social sciences, and medical sciences [34].

3.3. Supervised Learning

The problems tackled by supervised learning are characterized by the presence of a labeled
training set. That is, in addition to samples of input features x € X with X" being the set
of all possible input feature vectors, the set also contains the associated desired outputs
(or targets) y € Y with ) denoting the set of all possible outputs [35, 27]. The goal of
supervised learning is to learn an approximation of the true function f: X — ) mapping
each input x to the correct output y. The function f representing the approximating
function learned by the ML approach is called model, and the output f(x) produced by a
model for a given x is referred to as the prediction.




When using supervised learning, there are two kinds of problems that are mainly tried to
be solved: classification and regression. The former represents the problem of ordering
samples into a class based on their features, similarly classifying samples with similar
features [36]. In contrast to mapping the input to a discrete space of output classes, the
field of regression deals with the prediction of continuous values given input features.

3.4. Deep Learning

A popular tool that allows for addressing both classification and regression problems is
the Neural Network (NN), which is also known as Connectionist Network. While NNs can
also be used to address unsupervised learning tasks [37], for our purpose of eventually
using them in the context of RL, it is useful to regard their use as a supervised learning
tool since the underlying methods can then be transferred to the use case of RL relatively
easily (see Section 3.5.4). NNs consist of a variable amount of hidden layers, each of which
made up of an arbitrary amount of neurons. The hidden layers are arranged hierarchically
between two additional layers: the input layer and the output layer [38]. As the names
suppose, the input layer is represented by the input z, and the output layer either directly
contains the prediction f (z) or a representation that is being converted to the final output
using a fixed function, i.e., one that is not modified throughout the learning process. In
the case of a classification problem, for example, the output of an NN does usually not
consist of a single value representing the predicted class, but of a value for each class of
the classification problem. The prediction is then determined using the argmax operator,
choosing the class holding the highest value. For a better understanding, the general
architecture and the functionality of the individual components of an NN are explained in
this section.

3.4.1. Neuron

Neurons (also referred to as units) are the key component of NNs and, therefore, build
the foundation for understanding the networks’ functionality. Every neuron has N inputs
x; with ¢ € {1,2,..., N} and an output y. A neuron holds a weight w; for each input. The
weights, together with the input signals, are united as a linear combination, which might
be optionally added with a bias b [38].
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X3 b

Figure 3.1.: The architecture of a neuron with three input signals z; and corre-
sponding weights w;, activation function ¢, and output y. Here, the
bias bis represented as an additional input, which is added to the other
weighted input signals.

The result is mapped to the output space by applying a usually nonlinear activation
function ¢, leading to the equation

N
y=p(b+ szxz) .
i=1

The output signal is either one of the final outputs of the network if the neuron is part of
the output layer, or is used as the input signal of one or more neurons of the successor
layer. A visual depiction of an artificial neuron can be seen in Figure 3.1.

Although the choice of the activation function is arbitrary to some extent, yet it can have a
big impact on the result of the NN and its ability to learn a certain task. E.g., the activation
function has to be nonlinear to allow the network for learning nonlinear functions [39].
However, there is no consent on which activation function should be used by neurons
inside the hidden layers. A selection of commonly used activation functions can be seen
in Fig. 3.2, namely

1

° SingId: f(fl?) = TFe—=>

* Tangens hyperbolicus (Tanh): f(x) = tanh z,
* Rectified Linear Unit (ReLU): f(x) = max(0, z), and

1
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Figure 3.2.: The graphs of commonly used activation functions, where the black
dotted line marks the constant y = 0 for a clearer presentation.

x if x >0,

¢ Leaky ReLU: =
Y /(@) {O.OLU otherwise.

In the output layer, on the other hand, it is important to consider the task that is to be
solved. As an example, assume a classification task with n € NT possible classes. The
output is usually represented by n neurons, each outputting a value for the associated
class. In order to obtain a probability-like distribution of the classes, the softmax function
can be used [38]. Said function assigns each output a value between 0 and 1 and is
denoted as

evi

n €T,
j=1¢"

for each output y; with i = {1,2,..,n}. In contrast, networks designed for regression tasks
might not make use of an activation function in the output layer at all.
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3.4.2. Layer

The architecture of NNs is structured by the use of layers, each consisting of M € NT
neurons. The layers are hierarchically ordered, whereby the outputs produced by neurons
of one layer are fed as inputs to the neurons of the next layer. In the case of a fully
connected layer, the input of each neuron consists of the outputs of all neurons of the
previous layer [38]. Since neurons of the same layer do not depend on the outputs of
each other, the computation inside one layer can be expressed by a matrix multiplication
and can be performed in parallel. With W being a matrix built up by the weight vectors
w’ of each neuron of the layer as its rows, b denoting the vectors of the biases of the
neurons, and x being the vector of all input signals, the computation of the output vector
y of a layer can be denoted as

wil wiz - WIN
. w21 W22
y = Wx + b with W =
le DY “ e wMN

For the first layer (input layer), there is no computation taking place since it is not an
actual layer of neurons. In fact, the input layer is represented only by the features being
fed into the NN. The last layer (output layer) provides the final results of the network as its
output. All layers between the input and output layers are called hidden layers. Networks
with one or more hidden layers are also called Multilayer Perceptrons with perceptron
referring to a special type of neuron, which is activated according to a threshold, only
being able to output 0 or 1 [40]. When viewing the number of hidden layers as the depth
of the network, NNs with multiple hidden layers are often referred to as deep neural
networks, which explains why the use of NNs as an ML method is called deep learning.
Figure 3.3 depicts a feedforward NN with fully connected layers.

It was shown that every continuous function can be approximated by an NN with only
one hidden layer and a sigmoidal activation function [41]. Later, NNs were proven to be
universal function approximators using other activation functions as well [42]. The few
restrictions that were pointed out are the need for a sufficient amount of neurons inside
the hidden layer and the activation function to be continuous, bounded, and nonconstant.
Nonetheless, deep neural networks with more than only one hidden layer became famous
as they were shown to be advantageous [43] and thanks to empirical results suggesting
that deep architectures might be beneficial learning complex tasks [1, 3].
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Figure 3.3.: A feedforward NN with an input layer of three neurons (left), an output
layer of size two (right), and three hidden layers of size four.

N7

3.4.3. Types of NNs

NNs with the so far explained architecture are called feedforward neural networks, refer-
ring to the direction the input data passes through the network. In a feedforward network,
the input signal passes all layers in a straight row, whereas each layer is usually fully
connected to its successor layer, i.e., each neuron of a layer is connected to each neuron
of the next layer. However, there are two more commonly used architectures that are
appropriate under certain circumstances, briefly explained next.

Recurrent Neural Networks are NNs that have at least one recurrent layer, which does
not only feed its output to the next layer, but also to itself, combined with the next input
that comes from the previous layer. In this way, the network possesses a kind of memory,
incorporating previous samples into the prediction [38]. This approach is especially
appropriate in the case of the data being of a sequential nature. For example, assuming a
handwriting recognition task, uncertainty in the classification of a single character might
be waived by incorporating information of previous characters since certain characters
are more likely to follow certain sequences of other characters. Since the use of recurrent
networks, the idea developed and entailed architectures that are more efficient at storing
long-term information, such as the Long Short-Term Memory [44].

Convolutional Neural Networks consist of one or more convolutional layers. Instead of
being fully connected to the previous layer and learning a weight for each connection,

14



a kernel is learned. The kernel consists of a fixed set of n parameters connecting each
combination of n adjacent predecessor outputs to a single input [45, 46]. Hence, the
same parameters are applied to all neighboring outputs of the previous layer, enabling
the extraction of a specific feature characterizing the relationship between the respective
values. Analogously, the same method can be applied to two-dimensional data like images.
In this context, a convolutional layer can be regarded as a filter, for example, recognizing
edges. Therefore, especially in computer vision tasks, convolutional neural networks
helped to achieve great successes [1].

3.4.4. Training

While the previous paragraphs dealt with the architecture of a neural network, the most
important part, which makes the approach belong to the area of ML, is its ability to change
some of its components, the weights and biases, over time in order to learn problem
solutions. To optimize an NN, we need a performance measure or loss Iy indicating how
good a prediction ¢ by a network holding the parameters W was, with respect to the true
target y. For example, we can use the squared error loss

to determine the error of a single prediction [47].

In order to measure the performance of the model regarding the entire dataset D, we
take the sum of the losses of all data points in D with respect to the model f and the true
function f

deD

with z being the input of data point d, Y denoting the predictions, and Y the targets of
all data points in D [38]. The loss can optionally be divided by the number of data points
in order to build the mean loss. Our optimization aim is to minimize L in order to train a
model that produces predictions with a small error on the training data.

The method used to do so is called gradient descent. To apply this method, the first
derivative Vw Lw (the gradient) of the loss L is formed with respect to the weights of the
network. Since the gradient points into the direction that maximizes the loss, we want to
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follow the opposite direction, which is why the method is called gradient descent. Hence,
a gradient descent step can be denoted as

Wi =W, — aVw,Lw,(Y,Y),

where « € (0, 1] denotes the learning rate, and ¢ is the number of update steps performed,
i.e., W, is the old set of weights and W, ; the new one after the update step [38]. The
learning rate is an important parameter, which can have a great impact on the learning
process. While « prevents the update step from becoming too big, which could cause an
optimum being missed by skipping over it, a very small learning rate can lead to slow
learning. However, the learning rate does not have to be constant. In fact, in practical
application, it is common to use an optimizer (such as Adam [48]) that automatically
adapts the learning rate over time by taking the gradients of previous steps into account.

In practice, instead of calculating the gradient based on the predictions of the whole
dataset, the training data is usually separated into subsets of equal size, called mini-
batches, whereas the whole dataset is referred to as the batch. Hereby, an estimation of
the true loss Lw(Y,Y) is being made. Batch optimization enables the parameters to
be updated more frequently since fewer data has to be processed for each update step.
Despite increasing the variance in the loss, this method can lead to faster convergence.
The network is often trained using each data point of the dataset multiple times. One
training iteration over the entire dataset is called an epoch.

When trying to optimize NNs with multiple hidden layers, a method called backpropagation
is usually being used, which makes use of the chain rule of differentiation [38, 37, 47].
After a forward pass, which produces the predictions, with the help of which the loss is
calculated, a backward pass or backward propagation is performed, updating the weights
of each layer one after the other, starting by the last one, which gives the algorithm its
name.

3.4.5. Hyperparameters

Using NNs, we have to deal with the tuning of several hyperparameters. Besides the
(initial) learning rate, we have to decide on a fixed number of layers and the number of
neurons that should be placed in each layer. While it seems that deeper networks, i.e.,
networks with multiple hidden layers, perform better regarding complex tasks, there is
no consensus on a certain number that should be used. Another hyperparameter that has
to be decided upon before beginning the training is the mini-batch size, i.e., the number
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of data points processed before each update, reaching from a size of 1 (called stochastic
learning or stochastic gradient descent) to |D| (called batch learning) [49].

3.5. Reinforcement Learning

Reinforcement Learning (RL) is a separate field of ML and lies somewhere between
unsupervised and supervised learning. Instead of relying on a given labeled training set,
RL algorithms collect data on their own.

In order to do so, one or more so-called agents interact with an environment. The environ-
ment can be regarded as the world an agent is located in. It follows predefined rules and
reacts to the behavior of the agent. An RL agent performs actions within the environment
and is being rewarded for choosing actions leading to a learning goal and, thus, is rein-
forced to choose these actions again. A new agent usually starts by trying random actions
until the collected rewards indicate other actions to be beneficial. Hence, the agent learns
a desired behavior by trial and error, without any prior knowledge of the environment.
The RL approach is especially appropriate for solving robotic and gaming tasks as can be
seen by means of the numerous successes in these areas in the last years [3, 4, 6, 7].

3.5.1. Markov Decision Process

Many applications of RL regard the case of Markov Decision Processes (MDPs). Here, the
agent can interact with a given environment £ by performing actions a. The environment
provides a finite or infinite amount of states s in which the agent can be located. A state
space that can be represented by a finite amount of numbers is called discrete. Otherwise,
the state space is continuous. The time in which the agent interacts with the environment
is divided into timesteps ¢. Each timestep, the agent chooses an action a; to perform and
passes its decision to the environment. This decision of which action to take is made
by an ML model held by the agent, which is called the policy and is denoted = (s) in
the case of a deterministic policy always choosing a specific action given a state s or
m(a | s) = Pr(a; = a | sy = s) for a stochastic policy. The environment responds with the
new state sy, the agent has moved to, resulting from action a; performed at state s, and
depending on a transition probability distribution in the case of a stochastic environment
or a transition function in the deterministic case. In point of fact, the agent often does not
see the "true" state but receives an observation representing the features of the respective
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state. As opposed to fully observable MDPs, partially observable MDPs (POMDPs) do not
encode all features necessary to understand the entire state in an observation [50, 51].
Since we only consider fully observable MDPs, we use the term state as a synonym for
observation.

In addition to the new state, a reward r; is returned by the environment, indicating the
short-term quality of choosing a; at s;. The compound sample of state, action, and new
state (s, at, S¢+1) is also referred to as a transition and can additionally contain the reward
r¢. Sometimes, the notation (s, a, s’) is used instead. The agent may interact with the
environment as long as the episode does not end. Hence, episode describes the time
period the agent can sample transitions before the environment is reset. There are various
reasons why an episode ends, e.g., the exceeding of a timestep limit or the agent entering
a terminal state such as the goal field in a game. A sequence of transitions is also referred
to as a trajectory; the process of sampling the trajectory is called rollout. However, the
overall goal of RL is not to maximize the short-term reward for each timestep, but to
maximize the long-term reward. Therefore, the discounted future return is usually being
optimized, with return referring to the cumulative rewards of an entire episode or of
a subset of transitions of an episode, starting from a specific timestep. The discounted
future return is defined by

T
Gr= "y,
t'=t
with episode length 7" and a discount factor v € [0, 1] starting from timestep ¢. In some
cases, T' can also be the horizon, which describes the number of future steps that are
considered in the calculation.

The discount factor determines how much of an impact the rewards that are collected in
successor timesteps of ¢ should have on the decision making of the agent. That is, with the
discount factor we decide whether to maximize the short-term (low ) or the long-term
(high ~) quality of the agent’s decision. Usually, this parameter is set to a value near to
1[19, 52].

In general, an MDP can be described by a tuple (S, A, P, R, dy,~y). Hereby, S is the set
of all possible states and A the set of all possible actions. Moreover, P(s’ | s,a) denotes
the transition probability distribution or transition function, and R(s,a) is the reward
function. The start state of an episode is sampled from the initial state distribution dy and
~v is the discount factor mentioned before [53].

The general process of RL considering an MDP is visualized in Figure 3.4.
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Figure 3.4.: General flow of RL considering an MDP. The agent performs actions
inside an environment. The decision on which action to perform is
made based on the observation or state, which is provided by the envi-
ronment together with a reward, based on which the decision making
is updated.

3.5.2. Value Function, Policy Gradient, and Actor-Critic

There are many ways to approach RL problems, which becomes apparent when considering
the various algorithms that are successfully used inside the RL domain, despite many of
them following different underlying techniques. The RL algorithm classes commonly used
are value-based algorithms such as Deep Q-Network (DQN) [3], policy gradient methods
like REINFORCE [54], and actor-critic algorithms like Proximal Policy Optimization
(PPO) [52]. The latter is a combination of both, value-based and policy gradient methods,
referring to the policy part as actor and to the value part as critic. The functionality and
properties of these three methods are clarified in the following.

Value-based

In RL, we can express the value of the agent, which uses a policy 7, for being in state s
with the help of the (state) value function V™ (s). It is defined by the expected discounted
future return from state s when following 7. Additionally, there is another value function:
the state-action value or Q-function Q" (s, a), which is the expected discounted future
return when performing action a from state s and following 7 afterward.

The objective function we want to maximize in the domain of RL is the expected discounted
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future return when following a policy 7, which can be expressed by

J(m) =Y _d"(s)V7(s)

seS
= Egugr () [V (8)]

S nla s)@”(sm]

acA
= Eswd"(~),a~7r(-\s) [QW(Sa a)] : (3.1

= Baar(y

Hereby,
d™(s) = Z Z'ytPr(st = 5| sg,m)dp(s0)

sp€S t=0

is the state visitation distribution under 7, where Pr(s; = s | so, m) denotes the probability
that the agent is in state s at timestep ¢ when starting from the initial state sy and executing
7 [55].

Value-based RL methods usually try to learn an approximation of the state-action value
function in order to choose the action that maximizes the discounted future return.
The policy resulting from such a method is deterministic, built up, for instance, by
always choosing the action with the highest approximated state-action value for each
state [53, 56]. For a better understanding of how to learn the state-action value function,
we will have a look at the Q-Learning algorithm [56].

Q-Learning is a Temporal Difference (TD) method. In contrast to Monte Carlo (MC)
methods, which use the actual return of entire rollouts of episodes to update their estimates,
TD methods only need the immediate reward r; for an action a; performed in a state s;
to update the approximate value V”(st) for this state. Hence, TD methods can perform
updates every timestep and do not have to wait for the episode to end. They do so by
learning from the approximate values they have learned so far instead of relying on the
actual returns, which gets clearer when looking at the update step

V(1) < V™ (se) + alre + AV (s141) — V7 (s1))

of a basic TD approach, with a positive learning rate « [53, 57]. The learning rate
determines the extent of the update step, causing a small update in case of a small «
and the full adoption of the approximation based on the value of the next state if « is
1. As we can see, TD methods use their own predictions as a part of their update target

20



(r¢ + V" (S¢+1)). Similarly, Q-Learning updates a Q-value using the highest approximated
Q-value of the next state of the sampled transition (s, as, s¢11), resulting in the update

Q”(st,at) < Qﬂ(st, Gt) +a(r + ’YmL?XQW(StH,@) - Qﬂ(st, at>)7

with which an approximation Q of the true Q-function is learned. While the fact that the
estimates of the value function are based on other estimates (bootstrapping) can lead to a
relatively fast convergence, it also comes with bias [53]. It has been shown that some value-
based methods are guaranteed to converge under certain circumstances, which include
the requirements of the function approximator being linear and discrete spaces [56, 54].
However, there is no general guarantee of value-based methods converging to an optimum.
Under certain circumstances, some algorithms were even shown to diverge [58]. Moreover,
while it is possible to handle continuous state spaces using value approximations only [3],
the action space has to be discrete. This shortcoming comes with the methodology of
using the max operator over all state-action values in order to build the policy, which is
computationally expensive for very large action spaces and not possible without further
effort for continuous ones. In the case of a continuous action space, a prior discretization is
necessary, i.e., the continuous actions have to be represented in a discrete way. Finding an
appropriate discretization approach can take a long time and might lead to an insufficient
representation of the action space. Furthermore, value-based methods usually require an
additional exploration strategy, leading to the issue of finding an appropriate trade-off
between exploration and exploitation (when to explore new states and when to follow the
currently learned greedy policy), which is known as the exploration-exploitation dilemma.
Nonetheless, value-based RL algorithms achieved big successes in recent years, especially
with the introduction of NNs. An example of successful value approximation algorithms is
the DQN, which managed to play 49 different Atari 2600 games on a level comparable to
the level of a professional game tester [3]. This algorithm works very similarly to classical
Q-Learning, with the difference of using an NN as its Q-value function approximator and
learning from transition samples that were gathered in the past in order to reuse them
multiple times.

Policy Gradient

A different but also very popular method of approaching the domain of RL is the use
of policy gradients. In contrast to value-based methods, this approach aims to directly
approximate the policy itself instead of deriving it from a value function. To do so, a
parameterized policy my(a | s) is used with 6 being the set of parameters. The parameters
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are adjusted throughout the learning process to maximize a performance measure or
objective function J(#). This performance measure often is the expected discounted return,
as described by Equation (3.1), now with the parameterized policy 7y. The policy gradient
theorem, which was introduced in its early form as the algorithm REINFORCE [54],
provides an approximation of the gradient of the objective function with respect to 6 [59],
which is

VGJ(H) = Es~d7‘9(-),a~ﬂ'9(-\s) [VG log 779(0’ | 8)(Qﬂ9 (87 a) - b(S))] )

with b(s) being an arbitrary function called reinforcement baseline [54] with the only
restriction of being unbiased, i.e., not to use bootstrapping [53]. The policy is updated by
performing gradient ascend steps with respect to the objective function. Hence, an update
step has the shape

Oi11 = 0: +aVeJ(0)]o=,,

with a learning rate o [59]. In contrast to value-based methods, policy gradient algorithms
are unbiased by nature because they fully rely on MC rollouts for their performance
measure. However, while this kind of algorithms does not have the problem of bias, they
suffer from high variance, which is also a consequence of the MC rollouts. Because of the
policy being of stochastic nature, it is unlikely that the exact same trajectory is produced
in each episode; on the contrary, the trajectories often look very different, which makes it
difficult to estimate the true performance of the current policy. The effect of high variance
compared to high bias in estimations is depicted in Figure 3.5. The baseline b(s) addresses
this issue of high variance and, in fact, can reduce it effectively [53]. Besides using a
baseline, it is also possible to reduce the variance by sampling more than one episode
before performing a policy update. However, policy gradient methods already are prone
to a high level of sample inefficiency (i.e., a high number of transitions have to be sampled
before achieving successes) because of the reliance on entire rollouts before being able to
perform an update step, which might get worse when sampling multiple episodes before
updating the policy. Especially under circumstances where collecting samples is expensive,
such as the work with real robots with a long communication time between the robot and
the computer, sample inefficiency might be very undesirable.

Although the mentioned shortcomings of policy gradient methods could be enough reasons
to not use them in some cases, there are various advantages over value-based methods that
make the use of this kind of algorithm desirable under a large variety of circumstances.

While value-based methods usually require an additional method to provide an exploratory
behavior (e.g., e-greedy [3]), policy gradient methods come with a natural exploration
because of the usually stochastic policy. Furthermore, policy gradient methods open the
opportunity to not only work with continuous state spaces but also to handle continuous
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Figure 3.5.: Example estimates using a highly biased estimator with low variance
and one with high variance and low bias, where the red circle is the
true value that is to be estimated, the blue circles mark the estimates
of the biased estimator, and the green circles mark the estimates of the
high-variance estimator. The biased estimator makes predictions con-
centrated on a small area due to the low variance, but the predictions
might be far from the true value, whereas estimates with high variance
can be close to the true value in mean but are widely distributed.

action spaces. While the policy predicts the probability of choosing each possible action
in the case of a discrete action space, a different approach is needed to predict the
probabilities for a continuous action space. A way of doing so is to define the policy as the
density function of a normal distribution [53, 54]. The density function is defined by

pz) = —_exp <—<x_ﬂ)2> :

o21 202

with mean p and standard deviation o. Note that in this specific equation, 7 is the number
and not the policy. For the policy 7y, this results in

m(a|s) =

_ 2
1 exp <_ (a — (s, 0)) ) '

o(s,0)V2m 20(s,0)?

Hence, what is now learned is not a model predicting the individual probabilities for the

actions, but one that predicts the mean and standard deviation of a normal distribution
from which a real valued action can be sampled.
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Figure 3.6.: General flow of RL when using actor-critic algorithms. The actor inter-
acts with the environment by performing an action. The critic learns
a value function in order to provide information for the actor about the
quality of the chosen action.

Actor-Critic

The third widespread class of RL methods is the class of actor-critic algorithms. It combines
the approaches of directly learning a policy approximation using policy gradients and
learning a value function approximation that is allowed to use bootstrapping. Hereby,
actor refers to the part of the algorithm that decides what to do, i.e., the policy, whereas
critic describes a component providing information about the quality of the chosen action,
which is the task of the value function approximator. The general flow of actor-critic
algorithms is shown in Figure 3.6.

In this context, unbiased policy gradient methods are often referred to as actor-only, value-
based methods as critic-only algorithms. In many actor-critic algorithms, the critic replaces
the unbiased reinforcement baseline [60, 52, 61]. Therefore, it usually approximates the
state value function V™ (s) by estimating the value of the agent for being at a specific
state. The resulting difference of state-action value and state value forms the advantage
A" (s,a) = Q™ (s,a) — V™ (s) of performing action « in state s over the estimated value
in state s, which leads to the policy gradient

VoJ(0) = Egvaro()a~mo(ls) [Vologmo(a | $)A™ (s, a)],

whereby we refer to A™(s;,a;) as A;°. The goal of using actor-critic approaches is to
furtherly reduce the variance, which can lead to a faster convergence than it is the case
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for unbiased policy gradient algorithms [62]. At the same time, the abilities to handle
continuous action spaces and naturally exploring the environment are adopted from
actor-only methods. The downside, however, is the introduction of bias in exchange for
the lower variance, entailing a trade-off between bias and variance. The newly introduced
bias comes with the additional issue of the convergence guarantees of actor-only methods
no longer being existent. Also, regarding non-stationary environments, i.e., the model of
the environment changes (the feedback for identical given state-action pairs) over time,
actor-critic approaches might not be appropriate due to the critic might not be able to adapt
to the changes fast enough and, thus, might not provide meaningful information [63].
However, actor-critic methods have shown to be superior in many cases, which is, together
with the many advantageous characteristics, why their use became widespread.

3.5.3. Off-/On-Policy Learning

The exploration an agent provides can be handled in two different ways: on-policy or
off-policy. More precisely, the type of algorithm determines which policy the agent uses for
sampling trajectories that are used to compute the policy update. An on-policy algorithm
uses the same policy for exploration as the one that is learned, i.e., the one it assumes
to be the best policy to maximize the objective at this time. Off-policy methods, on the
contrary, collect samples using a different policy and, thus, make their policy updates
based on a different state visitation distribution than the one induced by the policy that
is updated. The behavior policy, which is used to sample trajectories in such a case, can
be an entirely separate policy from the one that is being learned or involve the same.
We call the policy we learn about the target policy [53]. A value-based example for an
off-policy approach using a behavior policy that makes use of the target policy is DQN,
which chooses a random action with a specified probability and draws an action from the
target policy otherwise. This method is called e-greedy, referring to the said probability as
¢. The introduced Q-Learning algorithm can also be considered as an off-policy approach
since it performs updates based on the Q-values of the actions the target policy would
have chosen, even if the behavior policy chose different actions. The on-policy equivalent
of Q-Learning is SARSA [64], which uses the update

Qﬂ(st, @t) <~ Qﬂ(St, at) + Oé(Tt + VQﬁ(SHh at+1) - Qﬂ(St, Clt))7

where the Q-value of the next chosen action is taken into account instead of using the
action with the highest value.
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Regarding the use of a behavior policy that is different from the target policy in the context
of policy gradients, it should be considered to rather use an off-policy correction method
instead of naively applying off-policy learning [65] (see Section 4.2). However, many
policy gradient methods use on-policy exploration by default because of their stochastic
nature.

3.5.4. Deep Reinforcement Learning

With the success of deep learning, it was a natural consequence to apply NNs in the context
of RL. The introduction of convolutional neural networks opened up the possibility of
dealing with high dimensional state spaces, e.g., images of a computer game in pixels. In
the case of DQN, which reached human performance in several games [66, 3], the NN is
used as a function approximator representing the state-action value function. However,
as DQN is a value-based algorithm, it is still only able to handle discrete action spaces.
This issue does not occur when using the policy gradient or actor-critic approach, which
have also been adapted to work with NNs approximating the policy, of which DDPG is an
example [19].

NNs come with the advantage of being universal function approximators. That is, in theory,
they can learn functions of arbitrary complexity. While we could use an approximator of a
fixed degree, e.g., quadratic, to approximate a function, the approximator could never
learn a function of a higher degree. Therefore, we would restrict the potential of the
approximator to learn arbitrary functions. While this restriction can be advantageous if
we know the complexity of the function that is to be approximated, it causes problems if
the function in question is unknown. As we usually do not know a lot about the function
we want to approximate in RL (value function or policy), the use of NNs can facilitate the
search for an appropriate model.

3.5.5. Exploration and Exploitation

We already got a minor impression of what exploration and exploitation mean in the
previous sections. However, there is a variety of issues that come along with these two
expressions. The most important ones are explained next.
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Reward Function

To fully understand the problem, it is useful to take a closer look at the reward function
and the accompanying issues. The reward function is responsible for providing a reward in
exchange for a state-action pair. However, this function can differ significantly throughout
different environments in terms of its complexity and the amount of information it provides.
A poorly defined reward function can cause the agent to take a long time to learn the
desired task or hardly learn it at all. These issues that make the learning process hard
could, for example, be sparse rewards or the presence of local optima [67, 68], to name
two common ones. The former denotes environments that provide rewards very rarely,
e.g., when solving a sub-task such as finding a door leading in the goal direction in a maze,
or even only when reaching the ultimate goal. The latter describes a reward function
that does not make it clear if a specific state is the best one the agent can reach by only
exploring in the direct surrounding. An example is an agent in the real world being
stranded on an island. Without any knowledge of the world, staying on the island seems
to be the best option when only exploring the sea around the island with a boat. The
agent has to move further away from the island that is assumed to be the optimal location
so far to find even better conditions than the ones on the island.

Lack of Exploration

A very common problem of standard RL algorithms is the lack of sufficient exploration [15].
While value-based algorithm often rely on methods like e-greedy, policy gradient methods
mainly follow a probability distribution that often leads to states they already assume to
be advantageous. Both are suboptimal for acquiring knowledge and understanding of the
entire environment if it is not trivial. Especially regarding the case of a sparse rewards
environment, it is hard to find a reward that is far away from the initial state when never
finding a reward telling the agent what to do.

In the presence of local optima, the problem of premature convergence might occur. This
example fits the island example above. The agent finds a reward that is better than others
it has collected up to this time, causing the policy to converge to this point, assuming
it to be the best option. However, there might still be an even better reward that is just
harder to find, which will possibly never be found because of the convergence to the local
optimum that already took place.
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Exploration-Exploitation Trade-off

It is a big and, to a large extent, unsolved issue to determine under which circumstances
it is appropriate to keep exploring the environment and when to exploit the policy learned
so far. Since an agent usually has no prior knowledge of the environment, it can never
know if it has already seen every possible observation, let alone if the behavior learned so
far is optimal. Common approaches are to decrease the level of exploration over time [3]
or let the agent decide how much exploration is advantageous, as it is done using the
stochasticity of policy gradient methods [54].

3.6. Proximal Policy Optimization

One of the most popular actor-critic algorithms in recent times is the PPO [52] algorithm.
Besides its relative ease of implementation, which comes with the fact of it being a
first-order algorithm (no second-order differentiation needed, in contrast to Natural
Policy Gradient [69], for example), it convinces with an outstanding performance on
complex tasks and high sample efficiency. As this algorithm uses NNs for the function
approximations, it falls into the Deep RL category.

In order to understand PPO, it is useful to have a look at Trust Region Policy Optimization
(TRPO) [61] first, which the idea of PPO is built upon.

3.6.1. Insight into TRPO

TRPO uses the idea of importance sampling to build its objective function. Importance
sampling enables an estimation of the expected outcome of a function f(X) given a random
variable X with probability distribution p by sampling from a different distribution ¢. This
estimation is possible by using the importance sampling ratio p(X)/q(X) as a factor and,
thus, forming the expectation

Bxopy F(X)] = Exet) B’Egﬂﬁo} |

The intuition of importance sampling is to weight the outcome of f(X) with a low factor if
the probability that a sample would have been drawn by the "true" distribution p is much
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lower than the probability according to ¢ and, thus, lower the impact of this sample [53].
The same principle applies to the other way around. Transferred to the field of RL, this
technique can be used to apply off-policy learning, building the policy update by sampling
from a different state visitation distribution than the one induced by the target policy.
That is, we can modify the policy gradient so that we can update the target policy based
on transitions collected by the behavior policy (see Section 4.2). TRPO makes use of this
idea in a slightly different way by using the target policy to sample trajectories but using
samples collected by an old policy version for updating the policy. For the sake of a clearer
notation, we assume 7 to be parameterized with 6 but do not write it out. The resulting
objective function is

m(a | s)

J(0) = Eggron () ammya(ls) [P0(8; @)A1 (s, a)] , with pg(s,a) = (@] s)’
0.

However, the importance sampling ratio can have a high variance if the two distributions
are very different, possibly leading to very big or very small update steps. TRPO aims to
solve the optimization problem as a constrained one, bounding the Kullback-Leibler (KL)
Divergence (a measure for the inequality of two probability distributions) of the target
policy and old policy to a maximal value. This constraint creates a trust region, ensuring
not to perform update steps that are too big. However, using the KL Divergence makes the
algorithm computationally expensive.

3.6.2. PPO

PPO follows an idea very similar to the one of TRPO. While the algorithm also comes with
the option of using the KL Divergence, we use the option that does not rely on such a
measure since it appears to be the better performing approach [52]. The main difference
between TRPO and PPO is how they ensure the trust region. Instead of involving the
KL Divergence, PPO clips the importance sampling ratio between the updated policy
and the old one. More precisely, it creates a lower bound (or pessimistic bound) on the
objective [52], resulting in

JMP(0) = Egmoia () ammyy (-[s) Min(po (5, a) A™4 (s, ),
clip (po(s, a),1 — €, 1+ €) A™4(s,a))],
with clipping parameter ¢ (which is not relate