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Abstract

As the field of reinforcement learning still suffers from a lack of sufficient exploration in
sparse rewards environments and missing control over the trade-off between exploration
and exploitation, we propose a newmethod based on intrinsic motivation and the Proximal
Policy Optimization algorithm. With the intrinsic motivation serving as an exploration
method, we train an agent to optimize its exploratory behavior as well as the behavior
solving the predefined task of the environment. Instead of optimizing a single policy
following a combination of the intrinsic motivation and the goal of the environment, we
simultaneously train two separate policies, one for each of the mentioned tasks. For the
interaction with the environment during the training, we use an entropy-based approach
to determine the policy that chooses the next action for each step. Besides the possibility
of controlling the level of exploration, the proposed method entails a low-noise policy and
an extensive exploration of the state space.



Zusammenfassung

Mit der Absicht, das noch immer präsente Problem einer umfangreichen Erkundung der
Umgebung im Bereich des bestärkenden Lernens und die oftmals fehlende Möglichkeit, das
Ausmaß der Erkundung festzulegen, zu relativieren, wird eine neue Lernmethode vorge-
stellt, die auf intrinsischer Motivation und dem Proximal Policy Optimization Algorithmus
basiert. Mit Hilfe besagter intrinsischer Motivation, die als Grundlage für die Erkundung
dient, wird ein Agent trainiert, indem sowohl sein Erkundungsverhalten als auch sein
Verhalten zum Lösen des von der Umgebung festgelegten Ziels optimiert wird. Anstatt
eine einzelne Strategie zu lernen, die eine Kombination aus intrinsischer Motivation und
Aufgabe der Umgebung optimiert, werden gleichzeitig zwei unabhängige Strategien ge-
lernt, um jeweils eines der beiden Ziele zu verfolgen. Bei der Interaktion zwischen Agent
und Umgebung wird hierbei ein auf Entropie basierender Ansatz verwendet, um für jeden
Schritt die Strategie zu wählen, die die nächste Aktion bestimmt. Neben der Möglichkeit,
den Grad der Erkundung zu bestimmen, bringt die vorgestellte Methode eine Strategie
mit wenig Rauschen und eine umfangreiche Erkundung des Zustandsraumes mit sich.
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1. Introduction

In recent years, the entire field of Machine Learning (ML) became more and more popular,
conversations about and interest in the topic of Artificial Intelligence (AI) not staying
exclusively in the area of research anymore. The idea of "intelligent" systems has reached
publicity and is applied by many companies in some way. One big factor that helped ML to
popularity is the revival of Neural Networks (NNs), especially in the form of Deep Neural
Networks, and accompanying successes in a variety of different complex tasks, including
the field of computer vision [1] and machine translation [2].

Another big field of ML that has been taken to a new level of success is the field of
Reinforcement Learning (RL). RL fulfills multiple criteria intuitively connected to the
idea of AI, such as learning by experience and the ability to make decisions. For this
purpose, the algorithm (or agent) learns a function called policy, which determines an
action the agent takes in a specific situation. By learning with the principle of trial and
error, RL algorithms are able to solve a variety of different complex problems, internally
evolving (near-)optimal sequences of decisions that require a high level of planning. The
introduction of NNs into this area enabled the development of algorithms that are able
to reach human-level performance in video and board games [3, 4, 5] and outreaching
performance on robotic tasks [6, 7, 8, 9].

However, by no means all problems of RL have been solved yet. A successful application of
an RL algorithm often highly depends on the design of the environment it interacts with,
to some extent requiring prior engineering of the reward used by the agent to learn what
to do. The performance of standard RL algorithms in environments with reward functions
that are kept very simple, e.g., only providing a single reward when the task is fulfilled, is
disillusioning.

There is, however, research dealing with this issue, part of it tackling the problem with the
application of Intrinsic Motivation (IM). Using different methods of IM, the agent learns
to explore the environment by learning about it, reflecting behavior observed in animals
such as curiosity. This approach, for example, results in an exploratory behavior leading
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the agent to areas of the environment it has rarely or never seen before by rewarding
the agent for reaching respective states. These rewards are called intrinsic rewards, as
opposed to the extrinsic rewards that are provided by the environment for solving the
predefined task or a subtask. In order to explore the environment and simultaneously
learn how to solve the true goal, the agent optimizes the extrinsic reward together with
the intrinsic reward, whereby the intrinsic rewards should be small enough to ensure
convergence to the task of the environment.

While making an important step in the direction of solving exploration issues, IM methods
again come with new questions and problems that are to be solved. The main issues we
want to address comprise

1. the inability of controlling the level of exploration throughout the learning process,

2. the possibility of premature convergence due to a low intrinsic-extrinsic rewards
ratio, and

3. the possibility of a noisy final policy due to a high intrinsic-extrinsic rewards ratio
and the possible non-convergence of the IM method.

The circumstance these problems could result from is the fact that, in most cases, the
intrinsic reward is simply added to the extrinsic reward, only multiplied by a scaling factor.
By jointly optimizing both goals, the one to explore and the one to fulfill the predefined
task of the environment, the agent cannot distinguish them. In the case of being in need
of the greedy behavior, i.e., only seeking the true goal of the environment, the agent has
no option to immediately adjust its behavior, leading to the above-mentioned shortcoming
of a noisy policy. Similarly, the exploratory behavior cannot be increased manually during
the training, which could cause premature convergence.

Therefore, we aim to address this very cause by making the learning based on the intrinsic
rewards explicit, that is, training a separate policy that only considers intrinsic rewards
simultaneously to the training of the actual greedy policy, which only takes the extrinsic
rewards into account. The agent makes decisions based on a probability distribution that is
a combination of both policies, whereby the impact of each policy can be adjusted through
a parameter. With this approach, we have better, state-dependent control of the level of
exploration, which makes it possible to avoid a premature end of exploration. Moreover,
we can turn the exploration off if a greedy behavior is desired and, in theory, the resulting
greedy policy should not suffer from IM-induced noise as the intrinsic rewards should
have no direct effect on it.
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In this thesis, after presenting related work in Chapter 2 and providing the required
basic knowledge in Chapter 3, the proposed approach is explained in more detail in
Chapter 4. The mentioned issues of conventional intrinsically motivated RL approaches
are examined in experiments that are explained in Chapter 5. In Chapter 6, we investigate
the experimental results, especially with regard to the ability of the proposed approach to
solve the said issues. These results are summarized and brought into a broader context
in Chapter 7, in addition to a brief suggestion on when the use of the proposed method
could be appropriate and when it might be disadvantageous.
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2. Related Work

As the method we propose combines several aspects of RL, namely IM, off-policy policy
gradients, and the distinct consideration of intrinsic and extrinsic rewards, we consider
these aspects individually.

2.1. Intrinsic Motivation

The research on IM is wide-spread, including the development of a variety of different
prediction error methods [10, 11, 12] as well as approaches using the idea of state
novelty [13, 14, 15, 16]. While we tackle several issues of prediction error based IM,
Savinov et al. [17] already showed that this type of IM can come with problems. More
specifically, the problem of an intrinsically motivated agent tending to get stuck in situations
from which it can induce stochasticity in the successor state has been addressed. This
behavior has been observed on the example of the noisy-TV problem [12] describing the
situation of giving an agent the opportunity to switch the program of an artificial television
to a randomly chosen different program. The problem has been tackled by giving the
agent a memory in order to make states it already knows and those that are close to such
it has already experienced less attractive.

2.2. Off-Policy Policy Gradient

A commonly used method of training policy gradient methods in an off-policy manner is
the off-policy policy gradient theorem [18]. It makes use of importance sampling in order
to correct the gradient error that is caused by the sampling from a different policy than the
one being optimized. Instead of using the product of importance weights of a trajectory,
only a single importance weight is taken into account, which yields a lower variance but
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introduces bias. This theorem has been well investigated by integrating it into several
algorithms. Besides the initial Off-Policy Actor-Critic (Off-PAC) algorithm [18], other
algorithms have been developed based on the theorem, such as Deep Deterministic Policy
Gradient (DDPG) [19] and Actor-Critic with Experience Replay (ACER) [20]. However,
both algorithms use the off-policy approach to reuse previously sampled transitions for
updates in later iterations and, therefore, improve sample efficiency. In contrast, we use
the approach to learn from transitions collected by a distinct policy. The problem of the
off-policy policy gradient theorem of coming with bias due to sampling from the state
visitation distribution induced by the behavior policy instead of the target policy has
been addressed by adding a state distribution correction factor that is learned with an
additional NN [21]. Instead of correcting the state distribution, we experiment with an
on-policy approach that, similarly to the off-policy approach, makes use of a behavior
policy in order to explore states according to the same.

2.3. Explicit Intrinsic Motivation

While the rewards produced by IMs usually only serve as a bonus reward in addition to the
extrinsic rewards provided by the environment, Burda et al. [12] examined the behavior
in the case of not having access to any extrinsic reward, learning a policy based on intrinsic
rewards only. Successes could be achieved on a variety of different computer games, in
which the exploration of new areas is advantageous. However, this approach disregards the
potential of combining the information provided by intrinsic and extrinsic rewards. The
combination of the ideas of intrinsically motivated and off-policy exploration was suggested
by Szita et al. [22] and realized by Morere et al. [23] and Parisi et al. [24]. Hereby, the
separation of intrinsic and extrinsic motivation was made on the value level, training two
different value functions based on the respective type of rewards and combining them to
build the behavior policy. Since their approach is value-based, i.e., the policy is made up
of the learned value functions, the distinction between intrinsic and extrinsic motivation
is implicitly made on the policy level, which we make explicit by learning approximators
for the policies using policy gradients. Burda et al. [25] and Kim et al. [26] applied the
approach of separate value functions to the field of policy gradients. However, there was
still a single policy being learned to optimize a combination of intrinsic and extrinsic
rewards.
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3. Foundations

In this chapter, the basic knowledge necessary for the understanding of this thesis is
provided. As it deals with IM in RL, we start with the most general super-category ML,
followed by the ML fields of unsupervised and supervised learning. After an explanation
of the functionality of NNs, RL and, in this context, IM is described in detail.

3.1. Machine Learning

In contrast to classical software engineering, in which domain-specific knowledge is
required or has to be acquired at first to build an algorithm that meets the desired
requirements, in the field of ML, we aim to eliminate this kind of dependency to a
large extent. ML methods are instead designed to solve across-the-board problems, the
algorithms themselves taking over the developer’s task of acquiring problem-specific
knowledge [27]. However, to train a model (the function approximating the true function,
see Section 3.3) showing the desired behavior, the algorithm needs a set of training data
(called the training set), which has to be provided (see Section 3.3) or gathered through
experience (see Section 3.5) [28]. The algorithm is then being trained by optimizing a
given performance measure representing the quality of the current performance of the
algorithm with respect to the given data [27].

ML algorithms not only aim to learn the correct handling of data they have already seen
in the training set but also to generalize in a way that they know how to treat similar
data in the future. Considering the ability to learn only by example and to adapt to the
circumstances, ML is especially beneficial assuming problems for which human expertise
is missing or difficult to explain and ones that may change over time [28].

While there is a variety of subareas in the field of ML, this thesis focuses on the area of RL
(see Section 3.5). In order to fully understand RL, a basic understanding of unsupervised
learning and supervised learning is provided in Sections 3.2 and 3.3.
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Before looking at the sub-categories of ML, general challenges that can occur when
applying ML methods are discussed next.

3.1.1. Challenges in Machine Learning

While opening up new opportunities like the detection of patterns a human could not grasp
in the amount of today’s available data, it is not always easy to apply ML to any problem.
There are some difficulties and requirements most ML approaches have in common, of
which the most common ones are explained in this section.

Data Availability: The availability of sufficient data is one of the big issues when training
an ML model is desired. In the case of supervised learning (see Section 3.3), this can
refer to the amount of training data that is available to optimize the model. The absence
of sufficient training data can lead to a bad generalization due to the lack of provided
information. Regarding RL (see Section 3.5), where the data is not provided but collected
by the algorithm itself, data availability can refer to the ease of collecting the data or
the expensiveness of the same. For example, when training an algorithm to control a
real robot, the communication between the device the algorithm runs on and the robotic
components can be expensive in terms of communication time. Additionally, the use of
the robot can be financially expensive, which can also restrict the availability of data.

Expressive Power: The expressive power of an ML model describes its function approx-
imation ability [29]. An underlying principle of a problem can be too complex to be
learned by a model. A linear function approximator, for example, will not be able to learn
an accurate approximation of a function of higher complexity than linear, e.g., a quadratic
one. Similarly, a linear classifier is not able to make non-linear classifications, i.e., separate
data points that are not separable by a straight line.

Overfitting: An issue that might especially occur in the context of NNs is overfitting on
the training data [30]. This expression refers to a poor generalization of the model on
other input data than the training data that are of the same domain. In other words, the
model learns the desired outcome of the inputs contained in the test set by heart instead
of understanding the underlying problem. This problem can occur, for example, if there
is not enough data available to provide sufficient knowledge of the connection between
input features and output.

Computational Resources: Modern NNs can consist of a huge amount of parameters [31,
32]. Performing predictions and, more importantly, optimizing these parameters requires
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tremendous computational resources. Depending on the complexity of the model, it might
not be possible to train it on a conventional computer.

Hyperparameter Tuning: A hyperparameter is a parameter that is set before the training
begins and kept constant instead of being adjusted throughout the training process.
Hyperparameters can have a significant impact on the success and duration of the training.
Finding appropriate hyperparameter settings gets a difficult challenge when increasing
the amount of hyperparameters used (known as the curse of dimensionality [33]).

3.2. Unsupervised Learning

Unsupervised learning is a type of ML that, as the name indicates, does not need a
supervisor providing the correct output to a given input. Instead of learning about the
mapping of inputs to the output space by examples, unsupervised learning aims to find
regularities in a dataset [28]. Thus, the algorithm can provide information about new
data by comparing its attributes to the ones of the already available data.

A popular example of this kind of ML algorithms is clustering. In this case, the algorithm
aims to group data by means of their attributes, i.e., data with similar attribute values
are grouped. This method enables, for example, a company to group its customers by
their attributes (e.g., age) to provide fitted offers to specific types of customers [28].
Unsupervised learning is being applied to a wide range of areas, including astronomy,
social sciences, and medical sciences [34].

3.3. Supervised Learning

The problems tackled by supervised learning are characterized by the presence of a labeled
training set. That is, in addition to samples of input features x ∈ X with X being the set
of all possible input feature vectors, the set also contains the associated desired outputs
(or targets) y ∈ Y with Y denoting the set of all possible outputs [35, 27]. The goal of
supervised learning is to learn an approximation of the true function f : X → Y mapping
each input x to the correct output y. The function f̂ representing the approximating
function learned by the ML approach is called model, and the output f̂(x) produced by a
model for a given x is referred to as the prediction.
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When using supervised learning, there are two kinds of problems that are mainly tried to
be solved: classification and regression. The former represents the problem of ordering
samples into a class based on their features, similarly classifying samples with similar
features [36]. In contrast to mapping the input to a discrete space of output classes, the
field of regression deals with the prediction of continuous values given input features.

3.4. Deep Learning

A popular tool that allows for addressing both classification and regression problems is
the Neural Network (NN), which is also known as Connectionist Network. While NNs can
also be used to address unsupervised learning tasks [37], for our purpose of eventually
using them in the context of RL, it is useful to regard their use as a supervised learning
tool since the underlying methods can then be transferred to the use case of RL relatively
easily (see Section 3.5.4). NNs consist of a variable amount of hidden layers, each of which
made up of an arbitrary amount of neurons. The hidden layers are arranged hierarchically
between two additional layers: the input layer and the output layer [38]. As the names
suppose, the input layer is represented by the input x, and the output layer either directly
contains the prediction f̂(x) or a representation that is being converted to the final output
using a fixed function, i.e., one that is not modified throughout the learning process. In
the case of a classification problem, for example, the output of an NN does usually not
consist of a single value representing the predicted class, but of a value for each class of
the classification problem. The prediction is then determined using the argmax operator,
choosing the class holding the highest value. For a better understanding, the general
architecture and the functionality of the individual components of an NN are explained in
this section.

3.4.1. Neuron

Neurons (also referred to as units) are the key component of NNs and, therefore, build
the foundation for understanding the networks’ functionality. Every neuron has N inputs
xi with i ∈ {1, 2, ..., N} and an output y. A neuron holds a weight wi for each input. The
weights, together with the input signals, are united as a linear combination, which might
be optionally added with a bias b [38].
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Figure 3.1.: The architecture of a neuron with three input signals xi and corre-
sponding weights wi, activation function φ, and output y. Here, the
bias b is represented as an additional input, which is added to the other
weighted input signals.

The result is mapped to the output space by applying a usually nonlinear activation
function φ, leading to the equation

y = φ(b+
N∑︂
i=1

wixi) .

The output signal is either one of the final outputs of the network if the neuron is part of
the output layer, or is used as the input signal of one or more neurons of the successor
layer. A visual depiction of an artificial neuron can be seen in Figure 3.1.

Although the choice of the activation function is arbitrary to some extent, yet it can have a
big impact on the result of the NN and its ability to learn a certain task. E.g., the activation
function has to be nonlinear to allow the network for learning nonlinear functions [39].
However, there is no consent on which activation function should be used by neurons
inside the hidden layers. A selection of commonly used activation functions can be seen
in Fig. 3.2, namely

• Sigmoid: f(x) = 1
1+e−x ,

• Tangens hyperbolicus (Tanh): f(x) = tanhx,

• Rectified Linear Unit (ReLU): f(x) = max(0, x), and
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Figure 3.2.: The graphs of commonly used activation functions, where the black
dotted line marks the constant y = 0 for a clearer presentation.

• Leaky ReLU: f(x) =

{︄
x if x > 0,
0.01x otherwise.

In the output layer, on the other hand, it is important to consider the task that is to be
solved. As an example, assume a classification task with n ∈ N+ possible classes. The
output is usually represented by n neurons, each outputting a value for the associated
class. In order to obtain a probability-like distribution of the classes, the softmax function
can be used [38]. Said function assigns each output a value between 0 and 1 and is
denoted as

σ(yi) =
exi∑︁n
j=1 e

xj

for each output yi with i = {1, 2, .., n}. In contrast, networks designed for regression tasks
might not make use of an activation function in the output layer at all.
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3.4.2. Layer

The architecture of NNs is structured by the use of layers, each consisting of M ∈ N+

neurons. The layers are hierarchically ordered, whereby the outputs produced by neurons
of one layer are fed as inputs to the neurons of the next layer. In the case of a fully
connected layer, the input of each neuron consists of the outputs of all neurons of the
previous layer [38]. Since neurons of the same layer do not depend on the outputs of
each other, the computation inside one layer can be expressed by a matrix multiplication
and can be performed in parallel. With W being a matrix built up by the weight vectors
wT of each neuron of the layer as its rows, b denoting the vectors of the biases of the
neurons, and x being the vector of all input signals, the computation of the output vector
y of a layer can be denoted as

y = Wx+ b with W =

⎛⎜⎜⎜⎜⎜⎜⎝
w11 w12 · · · w1N

w21 w22 · · ·
...

...
... . . . ...

wM1 · · · · · · wMN

⎞⎟⎟⎟⎟⎟⎟⎠ .

For the first layer (input layer), there is no computation taking place since it is not an
actual layer of neurons. In fact, the input layer is represented only by the features being
fed into the NN. The last layer (output layer) provides the final results of the network as its
output. All layers between the input and output layers are called hidden layers. Networks
with one or more hidden layers are also called Multilayer Perceptrons with perceptron
referring to a special type of neuron, which is activated according to a threshold, only
being able to output 0 or 1 [40]. When viewing the number of hidden layers as the depth
of the network, NNs with multiple hidden layers are often referred to as deep neural
networks, which explains why the use of NNs as an ML method is called deep learning.
Figure 3.3 depicts a feedforward NN with fully connected layers.

It was shown that every continuous function can be approximated by an NN with only
one hidden layer and a sigmoidal activation function [41]. Later, NNs were proven to be
universal function approximators using other activation functions as well [42]. The few
restrictions that were pointed out are the need for a sufficient amount of neurons inside
the hidden layer and the activation function to be continuous, bounded, and nonconstant.
Nonetheless, deep neural networks with more than only one hidden layer became famous
as they were shown to be advantageous [43] and thanks to empirical results suggesting
that deep architectures might be beneficial learning complex tasks [1, 3].
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Figure 3.3.: A feedforward NN with an input layer of three neurons (left), an output
layer of size two (right), and three hidden layers of size four.

3.4.3. Types of NNs

NNs with the so far explained architecture are called feedforward neural networks, refer-
ring to the direction the input data passes through the network. In a feedforward network,
the input signal passes all layers in a straight row, whereas each layer is usually fully
connected to its successor layer, i.e., each neuron of a layer is connected to each neuron
of the next layer. However, there are two more commonly used architectures that are
appropriate under certain circumstances, briefly explained next.

Recurrent Neural Networks are NNs that have at least one recurrent layer, which does
not only feed its output to the next layer, but also to itself, combined with the next input
that comes from the previous layer. In this way, the network possesses a kind of memory,
incorporating previous samples into the prediction [38]. This approach is especially
appropriate in the case of the data being of a sequential nature. For example, assuming a
handwriting recognition task, uncertainty in the classification of a single character might
be waived by incorporating information of previous characters since certain characters
are more likely to follow certain sequences of other characters. Since the use of recurrent
networks, the idea developed and entailed architectures that are more efficient at storing
long-term information, such as the Long Short-Term Memory [44].

Convolutional Neural Networks consist of one or more convolutional layers. Instead of
being fully connected to the previous layer and learning a weight for each connection,
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a kernel is learned. The kernel consists of a fixed set of n parameters connecting each
combination of n adjacent predecessor outputs to a single input [45, 46]. Hence, the
same parameters are applied to all neighboring outputs of the previous layer, enabling
the extraction of a specific feature characterizing the relationship between the respective
values. Analogously, the same method can be applied to two-dimensional data like images.
In this context, a convolutional layer can be regarded as a filter, for example, recognizing
edges. Therefore, especially in computer vision tasks, convolutional neural networks
helped to achieve great successes [1].

3.4.4. Training

While the previous paragraphs dealt with the architecture of a neural network, the most
important part, which makes the approach belong to the area of ML, is its ability to change
some of its components, the weights and biases, over time in order to learn problem
solutions. To optimize an NN, we need a performance measure or loss lW indicating how
good a prediction ŷ by a network holding the parameters W was, with respect to the true
target y. For example, we can use the squared error loss

lW(ŷ, y) =
1

2
(ŷ − y)2

to determine the error of a single prediction [47].

In order to measure the performance of the model regarding the entire dataset D, we
take the sum of the losses of all data points in D with respect to the model f̂ and the true
function f

LW(Ŷ , Y ) =
∑︂
d∈D

lW(f̂(x), f(x)),

with x being the input of data point d, Ŷ denoting the predictions, and Y the targets of
all data points in D [38]. The loss can optionally be divided by the number of data points
in order to build the mean loss. Our optimization aim is to minimize L in order to train a
model that produces predictions with a small error on the training data.

The method used to do so is called gradient descent. To apply this method, the first
derivative ∇WLW (the gradient) of the loss L is formed with respect to the weights of the
network. Since the gradient points into the direction that maximizes the loss, we want to
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follow the opposite direction, which is why the method is called gradient descent. Hence,
a gradient descent step can be denoted as

Wt+1 = Wt − α∇WtLWt(Ŷ , Y ),

where α ∈ (0, 1] denotes the learning rate, and t is the number of update steps performed,
i.e., Wt is the old set of weights and Wt+1 the new one after the update step [38]. The
learning rate is an important parameter, which can have a great impact on the learning
process. While α prevents the update step from becoming too big, which could cause an
optimum being missed by skipping over it, a very small learning rate can lead to slow
learning. However, the learning rate does not have to be constant. In fact, in practical
application, it is common to use an optimizer (such as Adam [48]) that automatically
adapts the learning rate over time by taking the gradients of previous steps into account.

In practice, instead of calculating the gradient based on the predictions of the whole
dataset, the training data is usually separated into subsets of equal size, called mini-
batches, whereas the whole dataset is referred to as the batch. Hereby, an estimation of
the true loss LW(Ŷ , Y ) is being made. Batch optimization enables the parameters to
be updated more frequently since fewer data has to be processed for each update step.
Despite increasing the variance in the loss, this method can lead to faster convergence.
The network is often trained using each data point of the dataset multiple times. One
training iteration over the entire dataset is called an epoch.

When trying to optimize NNs with multiple hidden layers, a method called backpropagation
is usually being used, which makes use of the chain rule of differentiation [38, 37, 47].
After a forward pass, which produces the predictions, with the help of which the loss is
calculated, a backward pass or backward propagation is performed, updating the weights
of each layer one after the other, starting by the last one, which gives the algorithm its
name.

3.4.5. Hyperparameters

Using NNs, we have to deal with the tuning of several hyperparameters. Besides the
(initial) learning rate, we have to decide on a fixed number of layers and the number of
neurons that should be placed in each layer. While it seems that deeper networks, i.e.,
networks with multiple hidden layers, perform better regarding complex tasks, there is
no consensus on a certain number that should be used. Another hyperparameter that has
to be decided upon before beginning the training is the mini-batch size, i.e., the number
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of data points processed before each update, reaching from a size of 1 (called stochastic
learning or stochastic gradient descent) to |D| (called batch learning) [49].

3.5. Reinforcement Learning

Reinforcement Learning (RL) is a separate field of ML and lies somewhere between
unsupervised and supervised learning. Instead of relying on a given labeled training set,
RL algorithms collect data on their own.

In order to do so, one or more so-called agents interact with an environment. The environ-
ment can be regarded as the world an agent is located in. It follows predefined rules and
reacts to the behavior of the agent. An RL agent performs actions within the environment
and is being rewarded for choosing actions leading to a learning goal and, thus, is rein-
forced to choose these actions again. A new agent usually starts by trying random actions
until the collected rewards indicate other actions to be beneficial. Hence, the agent learns
a desired behavior by trial and error, without any prior knowledge of the environment.
The RL approach is especially appropriate for solving robotic and gaming tasks as can be
seen by means of the numerous successes in these areas in the last years [3, 4, 6, 7].

3.5.1. Markov Decision Process

Many applications of RL regard the case of Markov Decision Processes (MDPs). Here, the
agent can interact with a given environment E by performing actions a. The environment
provides a finite or infinite amount of states s in which the agent can be located. A state
space that can be represented by a finite amount of numbers is called discrete. Otherwise,
the state space is continuous. The time in which the agent interacts with the environment
is divided into timesteps t. Each timestep, the agent chooses an action at to perform and
passes its decision to the environment. This decision of which action to take is made
by an ML model held by the agent, which is called the policy and is denoted π(s) in
the case of a deterministic policy always choosing a specific action given a state s or
π(a | s) = Pr(at = a | st = s) for a stochastic policy. The environment responds with the
new state st+1 the agent has moved to, resulting from action at performed at state st and
depending on a transition probability distribution in the case of a stochastic environment
or a transition function in the deterministic case. In point of fact, the agent often does not
see the "true" state but receives an observation representing the features of the respective
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state. As opposed to fully observable MDPs, partially observable MDPs (POMDPs) do not
encode all features necessary to understand the entire state in an observation [50, 51].
Since we only consider fully observable MDPs, we use the term state as a synonym for
observation.

In addition to the new state, a reward rt is returned by the environment, indicating the
short-term quality of choosing at at st. The compound sample of state, action, and new
state (st, at, st+1) is also referred to as a transition and can additionally contain the reward
rt. Sometimes, the notation (s, a, s′) is used instead. The agent may interact with the
environment as long as the episode does not end. Hence, episode describes the time
period the agent can sample transitions before the environment is reset. There are various
reasons why an episode ends, e.g., the exceeding of a timestep limit or the agent entering
a terminal state such as the goal field in a game. A sequence of transitions is also referred
to as a trajectory; the process of sampling the trajectory is called rollout. However, the
overall goal of RL is not to maximize the short-term reward for each timestep, but to
maximize the long-term reward. Therefore, the discounted future return is usually being
optimized, with return referring to the cumulative rewards of an entire episode or of
a subset of transitions of an episode, starting from a specific timestep. The discounted
future return is defined by

Gt =

T∑︂
t′=t

γt
′−trt′ ,

with episode length T and a discount factor γ ∈ [0, 1] starting from timestep t. In some
cases, T can also be the horizon, which describes the number of future steps that are
considered in the calculation.

The discount factor determines how much of an impact the rewards that are collected in
successor timesteps of t should have on the decision making of the agent. That is, with the
discount factor we decide whether to maximize the short-term (low γ) or the long-term
(high γ) quality of the agent’s decision. Usually, this parameter is set to a value near to
1 [19, 52].

In general, an MDP can be described by a tuple (S,A, P,R, d0, γ). Hereby, S is the set
of all possible states and A the set of all possible actions. Moreover, P (s′ | s, a) denotes
the transition probability distribution or transition function, and R(s, a) is the reward
function. The start state of an episode is sampled from the initial state distribution d0 and
γ is the discount factor mentioned before [53].

The general process of RL considering an MDP is visualized in Figure 3.4.
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Agent

Environment

st, rt at

Figure 3.4.: General flow of RL considering an MDP. The agent performs actions
inside an environment. The decision on which action to perform is
made based on the observation or state, which is provided by the envi-
ronment together with a reward, based on which the decision making
is updated.

3.5.2. Value Function, Policy Gradient, and Actor-Critic

There are many ways to approach RL problems, which becomes apparent when considering
the various algorithms that are successfully used inside the RL domain, despite many of
them following different underlying techniques. The RL algorithm classes commonly used
are value-based algorithms such as Deep Q-Network (DQN) [3], policy gradient methods
like REINFORCE [54], and actor-critic algorithms like Proximal Policy Optimization
(PPO) [52]. The latter is a combination of both, value-based and policy gradient methods,
referring to the policy part as actor and to the value part as critic. The functionality and
properties of these three methods are clarified in the following.

Value-based

In RL, we can express the value of the agent, which uses a policy π, for being in state s
with the help of the (state) value function V π(s). It is defined by the expected discounted
future return from state s when following π. Additionally, there is another value function:
the state-action value or Q-function Qπ(s, a), which is the expected discounted future
return when performing action a from state s and following π afterward.

The objective function we want to maximize in the domain of RL is the expected discounted
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future return when following a policy π, which can be expressed by

J(π) =
∑︂
s∈S

dπ(s)V π(s)

= Es∼dπ(·) [V
π(s)]

= Es∼dπ(·)

[︄∑︂
a∈A

π(a | s)Qπ(s, a)

]︄
= Es∼dπ(·),a∼π(·|s) [Q

π(s, a)] . (3.1)

Hereby,

dπ(s) =
∑︂
s0∈S

∞∑︂
t=0

γtPr(st = s | s0, π)d0(s0)

is the state visitation distribution under π, where Pr(st = s | s0, π) denotes the probability
that the agent is in state s at timestep twhen starting from the initial state s0 and executing
π [55].

Value-based RL methods usually try to learn an approximation of the state-action value
function in order to choose the action that maximizes the discounted future return.
The policy resulting from such a method is deterministic, built up, for instance, by
always choosing the action with the highest approximated state-action value for each
state [53, 56]. For a better understanding of how to learn the state-action value function,
we will have a look at the Q-Learning algorithm [56].

Q-Learning is a Temporal Difference (TD) method. In contrast to Monte Carlo (MC)
methods, which use the actual return of entire rollouts of episodes to update their estimates,
TD methods only need the immediate reward rt for an action at performed in a state st
to update the approximate value V̂ π(st) for this state. Hence, TD methods can perform
updates every timestep and do not have to wait for the episode to end. They do so by
learning from the approximate values they have learned so far instead of relying on the
actual returns, which gets clearer when looking at the update step

V̂ π(st)← V̂ π(st) + α(rt + γV̂ π(st+1)− V̂ π(st))

of a basic TD approach, with a positive learning rate α [53, 57]. The learning rate
determines the extent of the update step, causing a small update in case of a small α
and the full adoption of the approximation based on the value of the next state if α is
1. As we can see, TD methods use their own predictions as a part of their update target
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(rt+ γV̂π(st+1)). Similarly, Q-Learning updates a Q-value using the highest approximated
Q-value of the next state of the sampled transition (st, at, st+1), resulting in the update

Q̂π(st, at)← Q̂π(st, at) + α(rt + γmax
a

Q̂π(st+1, a)− Q̂π(st, at)),

with which an approximation Q̂ of the true Q-function is learned. While the fact that the
estimates of the value function are based on other estimates (bootstrapping) can lead to a
relatively fast convergence, it also comes with bias [53]. It has been shown that some value-
based methods are guaranteed to converge under certain circumstances, which include
the requirements of the function approximator being linear and discrete spaces [56, 54].
However, there is no general guarantee of value-based methods converging to an optimum.
Under certain circumstances, some algorithms were even shown to diverge [58]. Moreover,
while it is possible to handle continuous state spaces using value approximations only [3],
the action space has to be discrete. This shortcoming comes with the methodology of
using the max operator over all state-action values in order to build the policy, which is
computationally expensive for very large action spaces and not possible without further
effort for continuous ones. In the case of a continuous action space, a prior discretization is
necessary, i.e., the continuous actions have to be represented in a discrete way. Finding an
appropriate discretization approach can take a long time and might lead to an insufficient
representation of the action space. Furthermore, value-based methods usually require an
additional exploration strategy, leading to the issue of finding an appropriate trade-off
between exploration and exploitation (when to explore new states and when to follow the
currently learned greedy policy), which is known as the exploration-exploitation dilemma.
Nonetheless, value-based RL algorithms achieved big successes in recent years, especially
with the introduction of NNs. An example of successful value approximation algorithms is
the DQN, which managed to play 49 different Atari 2600 games on a level comparable to
the level of a professional game tester [3]. This algorithm works very similarly to classical
Q-Learning, with the difference of using an NN as its Q-value function approximator and
learning from transition samples that were gathered in the past in order to reuse them
multiple times.

Policy Gradient

A different but also very popular method of approaching the domain of RL is the use
of policy gradients. In contrast to value-based methods, this approach aims to directly
approximate the policy itself instead of deriving it from a value function. To do so, a
parameterized policy πθ(a | s) is used with θ being the set of parameters. The parameters
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are adjusted throughout the learning process to maximize a performance measure or
objective function J(θ). This performance measure often is the expected discounted return,
as described by Equation (3.1), now with the parameterized policy πθ. The policy gradient
theorem, which was introduced in its early form as the algorithm REINFORCE [54],
provides an approximation of the gradient of the objective function with respect to θ [59],
which is

∇θJ(θ) = Es∼dπθ (·),a∼πθ(·|s) [∇θ log πθ(a | s)(Qπθ(s, a)− b(s))] ,

with b(s) being an arbitrary function called reinforcement baseline [54] with the only
restriction of being unbiased, i.e., not to use bootstrapping [53]. The policy is updated by
performing gradient ascend steps with respect to the objective function. Hence, an update
step has the shape

θt+1 = θt + α∇θJ(θ)|θ=θt ,

with a learning rate α [59]. In contrast to value-based methods, policy gradient algorithms
are unbiased by nature because they fully rely on MC rollouts for their performance
measure. However, while this kind of algorithms does not have the problem of bias, they
suffer from high variance, which is also a consequence of the MC rollouts. Because of the
policy being of stochastic nature, it is unlikely that the exact same trajectory is produced
in each episode; on the contrary, the trajectories often look very different, which makes it
difficult to estimate the true performance of the current policy. The effect of high variance
compared to high bias in estimations is depicted in Figure 3.5. The baseline b(s) addresses
this issue of high variance and, in fact, can reduce it effectively [53]. Besides using a
baseline, it is also possible to reduce the variance by sampling more than one episode
before performing a policy update. However, policy gradient methods already are prone
to a high level of sample inefficiency (i.e., a high number of transitions have to be sampled
before achieving successes) because of the reliance on entire rollouts before being able to
perform an update step, which might get worse when sampling multiple episodes before
updating the policy. Especially under circumstances where collecting samples is expensive,
such as the work with real robots with a long communication time between the robot and
the computer, sample inefficiency might be very undesirable.

Although the mentioned shortcomings of policy gradient methods could be enough reasons
to not use them in some cases, there are various advantages over value-based methods that
make the use of this kind of algorithm desirable under a large variety of circumstances.

While value-based methods usually require an additional method to provide an exploratory
behavior (e.g., ϵ-greedy [3]), policy gradient methods come with a natural exploration
because of the usually stochastic policy. Furthermore, policy gradient methods open the
opportunity to not only work with continuous state spaces but also to handle continuous
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Figure 3.5.: Example estimates using a highly biased estimator with low variance
and one with high variance and low bias, where the red circle is the
true value that is to be estimated, the blue circles mark the estimates
of the biased estimator, and the green circles mark the estimates of the
high-variance estimator. The biased estimator makes predictions con-
centrated on a small area due to the low variance, but the predictions
might be far from the true value, whereas estimates with high variance
can be close to the true value in mean but are widely distributed.

action spaces. While the policy predicts the probability of choosing each possible action
in the case of a discrete action space, a different approach is needed to predict the
probabilities for a continuous action space. A way of doing so is to define the policy as the
density function of a normal distribution [53, 54]. The density function is defined by

p(x)
.
=

1

σ
√
2π

exp

(︃
−(x− µ)2

2σ2

)︃
,

with mean µ and standard deviation σ. Note that in this specific equation, π is the number
and not the policy. For the policy πθ, this results in

πθ(a | s)
.
=

1

σ(s, θ)
√
2π

exp

(︃
−(a− µ(s, θ))2

2σ(s, θ)2

)︃
.

Hence, what is now learned is not a model predicting the individual probabilities for the
actions, but one that predicts the mean and standard deviation of a normal distribution
from which a real valued action can be sampled.
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Figure 3.6.: General flow of RL when using actor-critic algorithms. The actor inter-
acts with the environment by performing an action. The critic learns
a value function in order to provide information for the actor about the
quality of the chosen action.

Actor-Critic

The third widespread class of RL methods is the class of actor-critic algorithms. It combines
the approaches of directly learning a policy approximation using policy gradients and
learning a value function approximation that is allowed to use bootstrapping. Hereby,
actor refers to the part of the algorithm that decides what to do, i.e., the policy, whereas
critic describes a component providing information about the quality of the chosen action,
which is the task of the value function approximator. The general flow of actor-critic
algorithms is shown in Figure 3.6.

In this context, unbiased policy gradient methods are often referred to as actor-only, value-
based methods as critic-only algorithms. In many actor-critic algorithms, the critic replaces
the unbiased reinforcement baseline [60, 52, 61]. Therefore, it usually approximates the
state value function V πθ(s) by estimating the value of the agent for being at a specific
state. The resulting difference of state-action value and state value forms the advantage
Aπθ(s, a) = Qπθ(s, a)− V πθ(s) of performing action a in state s over the estimated value
in state s, which leads to the policy gradient

∇θJ(θ) = Es∼dπθ (·),a∼πθ(·|s) [∇θ log πθ(a | s)Aπθ(s, a)] ,

whereby we refer to Aπθ(st, at) as Aπθ
t . The goal of using actor-critic approaches is to

furtherly reduce the variance, which can lead to a faster convergence than it is the case
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for unbiased policy gradient algorithms [62]. At the same time, the abilities to handle
continuous action spaces and naturally exploring the environment are adopted from
actor-only methods. The downside, however, is the introduction of bias in exchange for
the lower variance, entailing a trade-off between bias and variance. The newly introduced
bias comes with the additional issue of the convergence guarantees of actor-only methods
no longer being existent. Also, regarding non-stationary environments, i.e., the model of
the environment changes (the feedback for identical given state-action pairs) over time,
actor-critic approaches might not be appropriate due to the critic might not be able to adapt
to the changes fast enough and, thus, might not provide meaningful information [63].
However, actor-critic methods have shown to be superior in many cases, which is, together
with the many advantageous characteristics, why their use became widespread.

3.5.3. Off-/On-Policy Learning

The exploration an agent provides can be handled in two different ways: on-policy or
off-policy. More precisely, the type of algorithm determines which policy the agent uses for
sampling trajectories that are used to compute the policy update. An on-policy algorithm
uses the same policy for exploration as the one that is learned, i.e., the one it assumes
to be the best policy to maximize the objective at this time. Off-policy methods, on the
contrary, collect samples using a different policy and, thus, make their policy updates
based on a different state visitation distribution than the one induced by the policy that
is updated. The behavior policy, which is used to sample trajectories in such a case, can
be an entirely separate policy from the one that is being learned or involve the same.
We call the policy we learn about the target policy [53]. A value-based example for an
off-policy approach using a behavior policy that makes use of the target policy is DQN,
which chooses a random action with a specified probability and draws an action from the
target policy otherwise. This method is called ϵ-greedy, referring to the said probability as
ϵ. The introduced Q-Learning algorithm can also be considered as an off-policy approach
since it performs updates based on the Q-values of the actions the target policy would
have chosen, even if the behavior policy chose different actions. The on-policy equivalent
of Q-Learning is SARSA [64], which uses the update

Q̂π(st, at)← Q̂π(st, at) + α(rt + γQ̂π(st+1, at+1)− Q̂π(st, at)),

where the Q-value of the next chosen action is taken into account instead of using the
action with the highest value.
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Regarding the use of a behavior policy that is different from the target policy in the context
of policy gradients, it should be considered to rather use an off-policy correction method
instead of naively applying off-policy learning [65] (see Section 4.2). However, many
policy gradient methods use on-policy exploration by default because of their stochastic
nature.

3.5.4. Deep Reinforcement Learning

With the success of deep learning, it was a natural consequence to apply NNs in the context
of RL. The introduction of convolutional neural networks opened up the possibility of
dealing with high dimensional state spaces, e.g., images of a computer game in pixels. In
the case of DQN, which reached human performance in several games [66, 3], the NN is
used as a function approximator representing the state-action value function. However,
as DQN is a value-based algorithm, it is still only able to handle discrete action spaces.
This issue does not occur when using the policy gradient or actor-critic approach, which
have also been adapted to work with NNs approximating the policy, of which DDPG is an
example [19].

NNs come with the advantage of being universal function approximators. That is, in theory,
they can learn functions of arbitrary complexity. While we could use an approximator of a
fixed degree, e.g., quadratic, to approximate a function, the approximator could never
learn a function of a higher degree. Therefore, we would restrict the potential of the
approximator to learn arbitrary functions. While this restriction can be advantageous if
we know the complexity of the function that is to be approximated, it causes problems if
the function in question is unknown. As we usually do not know a lot about the function
we want to approximate in RL (value function or policy), the use of NNs can facilitate the
search for an appropriate model.

3.5.5. Exploration and Exploitation

We already got a minor impression of what exploration and exploitation mean in the
previous sections. However, there is a variety of issues that come along with these two
expressions. The most important ones are explained next.
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Reward Function

To fully understand the problem, it is useful to take a closer look at the reward function
and the accompanying issues. The reward function is responsible for providing a reward in
exchange for a state-action pair. However, this function can differ significantly throughout
different environments in terms of its complexity and the amount of information it provides.
A poorly defined reward function can cause the agent to take a long time to learn the
desired task or hardly learn it at all. These issues that make the learning process hard
could, for example, be sparse rewards or the presence of local optima [67, 68], to name
two common ones. The former denotes environments that provide rewards very rarely,
e.g., when solving a sub-task such as finding a door leading in the goal direction in a maze,
or even only when reaching the ultimate goal. The latter describes a reward function
that does not make it clear if a specific state is the best one the agent can reach by only
exploring in the direct surrounding. An example is an agent in the real world being
stranded on an island. Without any knowledge of the world, staying on the island seems
to be the best option when only exploring the sea around the island with a boat. The
agent has to move further away from the island that is assumed to be the optimal location
so far to find even better conditions than the ones on the island.

Lack of Exploration

A very common problem of standard RL algorithms is the lack of sufficient exploration [15].
While value-based algorithm often rely on methods like ϵ-greedy, policy gradient methods
mainly follow a probability distribution that often leads to states they already assume to
be advantageous. Both are suboptimal for acquiring knowledge and understanding of the
entire environment if it is not trivial. Especially regarding the case of a sparse rewards
environment, it is hard to find a reward that is far away from the initial state when never
finding a reward telling the agent what to do.

In the presence of local optima, the problem of premature convergence might occur. This
example fits the island example above. The agent finds a reward that is better than others
it has collected up to this time, causing the policy to converge to this point, assuming
it to be the best option. However, there might still be an even better reward that is just
harder to find, which will possibly never be found because of the convergence to the local
optimum that already took place.
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Exploration-Exploitation Trade-off

It is a big and, to a large extent, unsolved issue to determine under which circumstances
it is appropriate to keep exploring the environment and when to exploit the policy learned
so far. Since an agent usually has no prior knowledge of the environment, it can never
know if it has already seen every possible observation, let alone if the behavior learned so
far is optimal. Common approaches are to decrease the level of exploration over time [3]
or let the agent decide how much exploration is advantageous, as it is done using the
stochasticity of policy gradient methods [54].

3.6. Proximal Policy Optimization

One of the most popular actor-critic algorithms in recent times is the PPO [52] algorithm.
Besides its relative ease of implementation, which comes with the fact of it being a
first-order algorithm (no second-order differentiation needed, in contrast to Natural
Policy Gradient [69], for example), it convinces with an outstanding performance on
complex tasks and high sample efficiency. As this algorithm uses NNs for the function
approximations, it falls into the Deep RL category.

In order to understand PPO, it is useful to have a look at Trust Region Policy Optimization
(TRPO) [61] first, which the idea of PPO is built upon.

3.6.1. Insight into TRPO

TRPO uses the idea of importance sampling to build its objective function. Importance
sampling enables an estimation of the expected outcome of a function f(X) given a random
variable X with probability distribution p by sampling from a different distribution q. This
estimation is possible by using the importance sampling ratio p(X)/q(X) as a factor and,
thus, forming the expectation

EX∼p(·) [f(X)] = EX∼q(·)

[︃
p(X)

q(X)
f(X)

]︃
.

The intuition of importance sampling is to weight the outcome of f(X) with a low factor if
the probability that a sample would have been drawn by the "true" distribution p is much
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lower than the probability according to q and, thus, lower the impact of this sample [53].
The same principle applies to the other way around. Transferred to the field of RL, this
technique can be used to apply off-policy learning, building the policy update by sampling
from a different state visitation distribution than the one induced by the target policy.
That is, we can modify the policy gradient so that we can update the target policy based
on transitions collected by the behavior policy (see Section 4.2). TRPO makes use of this
idea in a slightly different way by using the target policy to sample trajectories but using
samples collected by an old policy version for updating the policy. For the sake of a clearer
notation, we assume π to be parameterized with θ but do not write it out. The resulting
objective function is

J(θ) = Es∼dπold (·),a∼πold(·|s) [ρθ(s, a)A
πθold (s, a)] , with ρθ(s, a) =

π(a | s)
πold(a | s)

.

However, the importance sampling ratio can have a high variance if the two distributions
are very different, possibly leading to very big or very small update steps. TRPO aims to
solve the optimization problem as a constrained one, bounding the Kullback-Leibler (KL)
Divergence (a measure for the inequality of two probability distributions) of the target
policy and old policy to a maximal value. This constraint creates a trust region, ensuring
not to perform update steps that are too big. However, using the KL Divergence makes the
algorithm computationally expensive.

3.6.2. PPO

PPO follows an idea very similar to the one of TRPO. While the algorithm also comes with
the option of using the KL Divergence, we use the option that does not rely on such a
measure since it appears to be the better performing approach [52]. The main difference
between TRPO and PPO is how they ensure the trust region. Instead of involving the
KL Divergence, PPO clips the importance sampling ratio between the updated policy
and the old one. More precisely, it creates a lower bound (or pessimistic bound) on the
objective [52], resulting in

JCLIP(θ) = Es∼dπold (·),a∼πold(·|s)[min(ρθ(s, a)A
πold(s, a),

clip (ρθ(s, a), 1− ϵ, 1 + ϵ)Aπold(s, a))],

with clipping parameter ϵ (which is not related to the ϵ of the mentioned ϵ-greedy method).

The policy function approximator, as well as the value function approximator we learn, are
represented by NNs. It is possible to share a subset of the parameters of these networks
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so that they collectively learn features for the observations. We can use a single optimizer
to update the networks with respect to a collective objective

J(θ) = Es∼dπold (·),a∼πold

[︁
JCLIP(θ)− cJVF(θ)

]︁
,

where JVF is the squared error loss of the value function, and c denotes a constant factor,
e.g., 0.5 [52]. Additionally, an optional bonus for the entropy in the policy (see Section
5.4 for more information on entropy) can be included to avoid premature convergence,
which we do not make use of since we want the exploration to be assured by using IM.
To update the models of PPO, we use epochs and batches as it is often done using Deep
Learning. An iteration of PPO can be regarded as three parts. The first one is to sample
transitions for T steps according to πold. The second part is to compute the advantage
estimates Âπold

t for each timestep t. After this, the policy and value function are optimized
for K epochs with T/B mini-batches each, where B is the batch size. During the iteration,
the old policy πold is held fixed and adopts the parameters of the new policy afterward.

3.7. Intrinsic Motivation

Starting from the sparse exploration methods we learned of so far (see Section 3.5.5), the
potential for a more efficient exploration is high, especially in sparse rewards environments.
Since RL is similar to the way animals learn, it could make sense to have a look at how
animals decide when and what to explore. It is to be assumed that, besides following the
behavior they know to be good, animals like humans have a type of motivation leading
to new places and trying new things. These motivations can be diverse, e.g., curiosity
or the will to see something new in order to learn if it is good or bad. Such a kind of
motivation is called Intrinsic Motivation (IM) and is to be regarded in contrast to Extrinsic
Motivation [70, 71]. IM can be described as a motivation encouraging an organism to
perform actions for its own satisfaction, e.g., out of curiosity or to have fun [70]. This kind
of behavior is independent of external reinforcement like punishments or rewards [70].
Instead of regarding the process of learning only as the result of direct feedback the
agent receives from the environment, we can view the internal state of the agent as an
independent internal environment, reflecting the motivation of the agent [72].

In recent years, such a behavior has been tried to be adopted in the area of RL. Since then,
a variety of IM methods with the goal of bringing a better, more efficient way of learning
an advantageous behavior has been developed. There are two [73] or three [71] classes
of IM, depending on which definition considered.
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Figure 3.7.: General flow of intrinsically motivated RL using an actor-critic
method. The environment provides the current state and extrinsic
reward. The IM method produces an intrinsic reward based on the
state and potentially on the chosen action, depending on the used IM
method. Thereupon, the agent chooses an action. The action proba-
bilities are updated based on a combination of intrinsic and extrinsic
rewards.

However, we concentrate on a single one, namely knowledge acquisition [73] or knowledge
based models [71] respectively. Methods of the remaining class(es) consist of, e.g., algo-
rithms that aim to autonomously acquire task-independent skills that can be adopted to
help to reach specific goals later [73]. The class of knowledge acquisition methods, on the
other hand, often deals with the exact issue mentioned before: the efficient exploration of
the environment. In general, this class aims to acquire knowledge about the environment,
including its functionality and connections between states [73].

Therefore, the IM method produces an additional reward for each step, called the intrinsic
reward ri. In this context, we call the "normal" reward, which is provided by the environ-
ment for taking an action at a specific state, the extrinsic reward re. Usually, the intrinsic
reward is just added to the extrinsic reward by which the objective can be optimized with
respect to the weighted compound reward rt = c1r

e
t + c2r

i
t, with constant factors c1 and

c2 at timestep t [10, 74, 25, 73]. One example of how such an intrinsically motivated RL
process can be viewed is depicted in Figure 3.7.

For our experiments, we use two very different IM methods in terms of their complexity
and overall underlying methodology. The first one is a simple form of state novelty, and
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the second one is the Intrinsic Curiosity Module (ICM) [10]. Said methods are explained
next.

3.7.1. State Novelty

The basic principle of state novelty, as the name indicates, is to observe new states, i.e.,
encourage the agent to visit states it has never seen before or has visited very rarely [75, 76].
State novelty, hence, can be considered as a count-based method, counting the visitations
of each state or observation. To achieve the goal of encouraging the visitation of states
that have not been visited often yet, the reciprocal of the counted state visitation can be
used as an intrinsic reward signal

rit =
1

N(st)
,

with N(s) denoting the visitation count of state s [73]. For the reason of the agent having
to store a number for every individual state, this method is only feasible in case of a discrete
and not too large state space. There has already been proposed a variety of novelty-based
IM methods, including multiple approaches being able to handle continuous state spaces,
e.g., by using density models to approximate the visitation count [13]. However, since we
only consider environments with a small, discrete state space (see Section 5.2), and the
above-proposed method is efficient for this kind of environment [73], there is no need
for a more complex implementation for our purpose. Further mention of "novelty" in this
thesis refers to the introduced basic state novelty method.

3.7.2. Prediction Error

The second type of IM we consider is based on learning the transitions of states of the
environment, that is, a model f̂(s, a) is learned approximating the true transition function
by predicting the next state given a state-action tuple [73]. This prediction can be described
by

ϕ̂(st+1) = f̂(ϕ(st), at),

where ϕ is an optional function that maps the state to a feature space, and ϕ̂(st+1) is the
predicted next state (or predicted feature encoding of the same) [73]. Using this method,
it is desired to lead the agent to perform actions of which it cannot accurately predict
the outcome (the next state). The intention of this approach is that actions entailing an
uncertain behavior have probably not been sufficiently explored yet, i.e., there have not
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been enough according transitions collected to train the model the respective behavior.
This insufficient training of a specific transition can be measured by calculating how wrong
the prediction of the model is with respect to the true transition. This measure can be
used as an intrinsic reward and gives the IM type its name. It can be formalized by

rit =
⃦⃦⃦
ϕ(st+1)− f̂(ϕ(st), at)

⃦⃦⃦
.

This model predicting the next state is also called forward model [73] and can be repre-
sented, for example, by an NN.

Intrinsic Curiosity Module

Using the prediction error as an exploration bonus comes along with a problem that
especially takes place in environments with a high level of stochasticity. Stochastic noise
in observations does not provide additional useful information and could increase the
prediction error. An example of such noise is the movement of tree leaves [10]. The ICM
is a specific algorithm that makes use of the prediction error. However, it improves the
standard approach by a method that aims to reduce the impact of the aforementioned
noise. Therefore, it uses an inverse model in addition to the forward model, whereby both,
the forward and inverse model, are represented by NNs. The inverse model intents to
learn to predict the action at the agent has chosen given the state st at which it performed
the action and the successor state st+1. As a by-product, it learns the function ϕ(s), which
generates an encoding of a specific state s. A neuron layer of the inverse model, which
the original state representation passes through for the action prediction, is trained to
encode the input (i.e., the state) so that the action can be predicted as well as possible.
Since noise does not contribute to a better prediction, it does not get encoded. The output
of this particular layer is used as the feature representation ϕ(s). The predicted action
between two states st and st+1 can be described by

ât = gθI (st, st+1),

where gθI is the NN predicting the action with parameters θI . The network is trained by
minimizing the loss LI arising from the discrepancy between the actually chosen action
at and the prediction ât [10].

As the prediction of the chosen action between two states is a classification task in the
case of a discrete action space, we use the mean Cross-Entropy loss

LI(a, â) = −
1

N

|a|∑︂
i=1

ai log(âi)
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that is commonly used for the optimization of classifications. Hereby, â consists of the prob-
abilities for each possible action predicted by the model and a contains the corresponding
true probabilities, i.e., 1 for the actually chosen action and 0 for all others.

The forward model is optimized using the squared error loss

LF (ϕ(st), ϕ̂(st+1)) =
1

2

⃦⃦⃦
ϕ̂(st+1)− ϕ(st+1)

⃦⃦⃦2
2
.

The loss of the forward model is then used as the intrinsic reward with the customization
of multiplying it with a scaling factor η beforehand. This factor scales the intrinsic reward
in order to keep it small enough to avoid nullifying the extrinsic reward while, at the
same time, keep it high enough to ensure a sufficient exploration. The composed reward
is then a simple addition of the intrinsic and extrinsic reward [10].

The forward and inverse model are optimized collectively using a compound loss

LF+I = (1− β)LI + βLF ,

with a scalar 0 ≤ β ≤ 1 [10]. A visualization of the architecture of the entire ICM can be
seen in Figure 3.8.
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Figure 3.8.: The general structure of the ICM [10]. The observation of the states st
and st+1 are encoded, resulting in the state encodings ϕ(st) and ϕ(st+1),
which are used to predict the action performed in between by the in-
verse model and, thus, are trained by optimizing the according loss.
The action, together with the encoding ϕ(st), is fed into the forward
model to predict the next state encoding. The error of this prediction
with respect to the true next state encoding induces the intrinsic re-
ward rit.
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4. Explicit Intrinsic Motivation

We want to experiment with different ways of incorporating IM in RL, including on-policy
as well as off-policy approaches, which is why we do not use an algorithm as our baseline
that is off-policy by design such as ACER or DDPG. Thus, we use PPO due to its empirically
shown performance, its ability to adapt to continuous state and action spaces for potential
further experiments, and its ease of implementation and, thus, modification. To use PPO
for the different approaches, we apply specific modifications that are explained in this
chapter.

We distinguish between two classes of algorithms that make use of some kind of IM, namely
Implicit Intrinsic Motivation (IIM) and Explicit Intrinsic Motivation (EIM) algorithms. The
former describes the use of IM as stated in Section 3.7, comprising an intrinsic reward
ri that is added to the extrinsic reward re. The latter approaches the integration of the
IM by learning separate function approximators for the intrinsic and extrinsic rewards
as Szita et al. [22] suggested and realized by Morere et al. [23] and Parisi et al. [24]
on a value-based level. Besides learning two separate value functions, we also train two
individual policies for this purpose. The resulting greedy policy πθg(a | s) is trained only
considering the extrinsic rewards while the exploration policy πθe(a | s) only makes use of
the intrinsic rewards. To sample trajectories during training, we make use of a behavior
policy πθb(a | s) that is a combination of both policies. Figure 4.1 shows the idea of the
EIM approach, as opposed to the IIM approach depicted in Figure 3.7. When using the
IIM approach, we also refer to the policy we learn as the greedy policy.

For more clarity, we again get rid of the θ in the notation of the policies. That is, we
write π instead of πθ. In the case of an indexed θ, we replace the whole expression of the
parameter with the index. For example, πθb becomes πb and πθb,old becomes πb,old.

As we use the same methods for updating both individual policies, we use the notation πi
when deriving the methods and implicitly mean πg or πe, depending on which one the
method is applied to. Analogously, we use θi instead of θg or θe.
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Figure 4.1.: General process flow when using the EIM approach, where "Explo-
ration" represents the exploration part of the agent, i.e., the policy and
value function considering the intrinsic rewards, and "Greedy" denotes
the part only considering the extrinsic rewards.

By making the intrinsic motivation explicit, we aim to tackle multiple issues of intrinsically
motivated algorithms of which, most notably, are the possibility of a noisy greedy policy
in the case of a non-converging intrinsic motivation and the tendency of premature
convergence due to low intrinsic rewards with respect to the extrinsic rewards.

Moreover, with the possibility of manually regulating the impact of the exploration policy
throughout the learning process, we can make use of the greedy policy without direct
noise induced by intrinsic rewards at any time. Moreover, we can keep the exploration
high, even if the greedy policy already converged to a local optimum. Also, high intrinsic
rewards no longer prevent the greedy policy from converging since they have no direct
impact on its learning.

Besides the potential positive aspects, the explicit way of using intrinsic motivations also
comes with some new questions that have to be addressed, such as the way of sampling
the trajectories and the shape of the policy gradient. After a detailed explanation of
the off-policy approach we use, the application of an alternative on-policy approach is
discussed in this chapter. At last, the method of determining which policy to use for
decision making is presented.
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4.1. When to explore

The desirable property of policy gradient methods of naturally exploring the environment
and, thus, not relying on a manual trade-off between exploration and exploitation is being
waived by using an EIM approach. Following the idea of ϵ-greedy [3], we use a parameter
h ∈ [0, 1] for determining the impact of the exploration policy on the decision process
while sampling a trajectory. The parameter represents the probability of drawing the
action at from πe. We can describe the behavior policy that is used to sample trajectories
with

πb(a | s) = hπe(a | s) + (1− h)πg(a | s),
where πb implicitly has the parameter set θb = θg ∪ θe. As opposed to IIM, using EIM, we
have the option to adjust the impact of the IM method during the learning process and
even during a single episode. This possibility of control enables to not only choose h based
on the training time but also based on timestep-specific information such as the state or
action probabilities (see Section 5.4). Therefore and in order to generalize the derivations
of the gradient in Section 4.3 for both policies, we also define α(i | s) as the probability of
choosing policy πi in state s. Hence, another way of describing the behavior policy is

πb(a | s) =
∑︂

i∈{e,g}

α(i | s)πi(a | s) = α(e | s)πe(a | s) + α(g | s)πg(a | s).

When using IIM methods, the only direct impact we have on the level of exploration is to
scale the intrinsic rewards by a constant factor η for both IM methods.

4.2. Off-Policy Approach

Since PPO is not naturally designed to be used as an off-policy method with a behavior
policy that can be very different from the target policy, we need an approach to correct
the update steps when sampling from such a different policy. We, therefore, make use of
the off-policy policy gradient theorem [18].

When using this theorem, we maximize the values of every state according to the policy
πi that is to be optimized, weighted by the state visitation distribution of the behavior
policy dπb instead of dπi as usual, which leads to the objective function

J(θi) =
∑︂
s∈S

dπb(s)V πi(s).
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Despite this objective bringing a bias [77, 78], which comes with the sampling from
the state visitation distribution under the behavior policy, empirical results showed its
potential and successes [79, 19, 20]. An approximation of the gradient of the objective is
given by

∇θiJ(θi) ≈
∑︂
s∈S

dπb(s)
∑︂
a∈A
∇θiπi(a | s)Q

πi(s, a)

= Es∼dπb (·)

[︄∑︂
a∈A
∇θiπi(a | s)Q

πi(s, a)

]︄
.

= Es∼dπb (·)

[︄∑︂
a∈A

πb(a | s)
πi(a | s)
πb(a | s)

∇θiπi(a | s)
πi(a | s)

Qπi(s, a)

]︄

= Es∼dπb (·),a∼πb(·|s)

[︃
πi(a | s)
πb(a | s)

∇θiπi(a | s)
πi(a | s)

Qπi(s, a)

]︃
= Es∼dπb (·),a∼πb(·|s)

[︃
πi(a | s)
πb(a | s)

∇θi log πi(a | s)Q
πi(s, a)

]︃
(4.1)

for the target policy πi [18]. Equation (4.1) looks similar to the policy gradient theorem
with the differences of sampling from the behavior policy and weighting the gradient with
an importance sampling ratio between the target policy and the behavior policy. As we use
PPO, the actual policies present during the process of trajectory sampling are πi,old(a | s)
and πb,old(a | s). Hence, we replace the ratio accordingly. Additionally replacing the
logarithm of the target policy with the ratio between the new and the old policy, as we do
when using PPO, yields the objective

J(θi) = Es∼d
πb,old (·),a∼πb,old(·|s)

[︃
πi,old(a | s)
πb,old(a | s)

πi(a | s)
πi,old(a | s)

Qπi(s, a)

]︃
(4.2)

= Es∼d
πb,old (·),a∼πb,old(·|s)

[︃
πi(a | s)

πb,old(a | s)
Qπi(s, a)

]︃
. (4.3)

Equation (4.3) includes importance sampling similar to the normal use of TRPO and
PPO, with the difference of using the old behavior policy instead of the old greedy policy.
However, as PPO aims to limit the ratio of the new and old target policy [52], we use
Equation (4.2) and apply clipping to the according ratio. To approximate the advantage
Aπ,λ

t = Gλ
t − V πi(st), we use the off-policy λ return [18] described by

Gλ
t = rt+1 + (1− λ)γV̂ πi (st+1) + λγ

πi(a | s)
πb(a | s)

Gλ
t+1,
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for iteration=1, 2, ... do
Collect transitions (st, at, st+1, ret ) using πb,old for T timesteps
Compute intrinsic rewards ri1...T based on the IM
Compute greedy advantage estimates Âπg,old

1...T based on the extrinsic rewards
Compute exploration advantage estimates Âπe,old

1...T based on the intrinsic rewards
for epoch=1, 2, ..., K do

for minibatch=1, 2, ..., T/B do
Optimize objective Joff(θg) w.r.t. θg using Âπg,old with minibatch size B ≤ T
Optimize objective Joff(θe) w.r.t. θe using Âπe,old with minibatch size B ≤ T

end
end

end
Algorithm 1: Off-Policy EIM PPO

with a parameter λ ∈ [0, 1] for a bias-variance trade-off. Consequently, the off-policy
objective we aim to optimize is

Joff(θi) = Es∼d
πb,old (·),a∼πb,old(·|s)

[︃
πi,old(a | s)
πb,old(a | s)

JCLIP(θi)

]︃
,

with JCLIP(θi) = min
(︂
ρθi(s, a)A

πi,old,λ(s, a), clip (ρθi(s, a), 1− ϵ, 1 + ϵ)Aπi,old,λ(s, a)
)︂
.

Since, in our case, the greedy policy and the exploration policy are trained separately, πi
is to be substituted with πg or πe and θi with θg or θe respectively, depending on which
one should be updated. Algorithm 1 shows the pseudo-code of PPO as an off-policy EIM
approach.
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4.3. On-Policy Approach

Using off-policy approaches as described in Section 4.2 is controversial due to the use
of importance sampling and the accompanying possibility of very high policy gradients
in case of a performed action being chosen much more likely by the target policy than
by the behavior policy. Moreover, it was shown that off-policy algorithms could provide
poor learning behavior if the greedy policy and the behavior policy are too different [80].
Therefore, we also consider an on-policy approach that still handles the exploration policy
separately. We still sample trajectories according to the behavior policy in the same way
as we do when using the off-policy approach. However, the policy gradient for each policy
is not based on all collected transitions but only on the ones of which the corresponding
action was chosen by the respective policy. For example, a transition that was collected
by following policy πg is not considered when forming the gradient for πe. Hence, the
policies do not explicitly learn from the experience of a different policy. Nonetheless, they
can still benefit from each other as the chance exists to visit states that would have never
or very rarely been visited by using only one of them. Performing this method, we use a
modification of the rewards, which is defined by

R̂i(st, at) =

{︄
Ri(st, at) if kt = i,
0 otherwise,

whereby kt ∼ α(· | st) represents the specific index sampled at timestep t. In other words,
kt = i means that policy πi was chosen to decide the according action at. The reward
function Ri(s, a) is the one provided for the respective policy πi that is to be updated, i.e.,
the extrinsic reward function if it is the greedy policy πg or the intrinsic reward function
in the case of the exploration policy πe. In this way, a policy can only be rewarded for a
decision it made itself and not for one made by the other policy. The accompanying value
function, hence, is defined by

V πi(s) =
∑︂
a∈A

πb(a | s)Ek∼α(·|s)

[︄
R̂i(s, a) + γ

∑︂
s′∈S

V πi(s′)P (s′ | s, a)

]︄
.

Analogously, the state-action value function is described by

Qπi(s, a) = Ek∼α(·|s)

[︄
R̂i(s, a) + γ

∑︂
s′∈S

V πi(s′)P (s′ | s, a)

]︄
.
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Moreover, we can denote the state visitation distribution of both individual target policies
as

dπi(s) =
∑︂
s0∈S

∞∑︂
t=0

γtα(i | s)Pr(st = s | s0, πb)d0(s0),

which is similar to the state visitation distribution of the behavior policy but takes the
probability of πi being chosen to decide the last action of a trajectory into account.

When we observe the gradient of the value function, we get

∇θiV
πi(s) = ∇θi

∑︂
a∈A

πb(a | s)Ek∼α(·|s)

[︄
R̂i(s, a) + γ

∑︂
s′∈S

V πi(s′)P (s′ | s, a)

]︄

=
∑︂
a∈A

α(i | s)∇θiπi(a | s)Ek∼α(·|s)

[︄
R̂i(s, a) + γ

∑︂
s′∈S

V πi(s′)P (s′ | s, a)

]︄
+ γπb(a | s)

∑︂
s′∈S
∇θiV

πi(s′)P (s′ | s, a)

=
∑︂
a∈A

α(i | s)∇θiπi(a | s)Q
πi(s, a) + γπb(a | s)

∑︂
s′∈S
∇θiV

πi(s′)P (s′ | s, a)

=
∑︂
a∈A

α(i | s)∇θiπi(a | s)Q
πi(s, a)

+γπb(a | s)
∑︂
s′∈S

(︄∑︂
a′

α(i | s′)∇θiπi(a
′ | s′)Qπi(s′, a′)

+ γπb(a
′ | s′)

∑︂
s′′∈S

∇θiV
πi(s′′)P (s′′ | s′, a′)

)︄
P (s′ | s, a)

=
∑︂
x∈S

∞∑︂
t=0

γtα(i | x)Pr(st = x | s, πb)
∑︂
a∈A

Qπi(x, a)∇θiπi(a | x).

Now we define the objective each policy aims to optimize as

J(θi) =
∑︂
s∈S

d0(s)V
πi(s),

again with θi being θg or θe depending on the current target policy. When forming the
gradient of the objective function by substituting V πi(s) with ∇θiV

πi(s), we receive the

42



on-policy policy gradient

∇θiJ(θi) =
∑︂
s∈S

d0(s)
∑︂
x∈S

∞∑︂
t=0

γtα(i | x)Pr(st = x | s, πb)
∑︂
a∈A

Qπi(x, a)∇θiπi(a | x)

=
∑︂
x∈S

d0(x)
∑︂
s∈S

∞∑︂
t=0

γtα(i | s)Pr(st = s | x, πb)
∑︂
a∈A

Qπi(s, a)∇θiπi(a | s)

=
∑︂
s∈S

dπi(s)
∑︂
a∈A

Qπi(s, a)∇θiπi(a | s)

=
∑︂
s∈S

dπi(s)
∑︂
a∈A

Qπi(s, a)πi(a | s)∇θi log πi(a | s)

= Es∼dπi (·),a∼πi(·|s) [∇θi log πi(a | s)Q
πi(s, a)]

of the policy πi that we want to update, under consideration of the above-defined state
visitation distribution.

The objective Jon(θi) adapted to PPO that we aim to optimize is similar to Joff(θi) with
the only difference of not using the off-policy importance weight πi,old(a | s)/πb,old(a | s),
neither inside the off-policy λ return nor to weight the policy gradient. However, take
notice of the fact that only the data collected using the respective policy that is to be
updated is taken into account when forming the gradient.

Since each policy has fewer samples per iteration to estimate the gradient, the policies
are less often updated as we still want to keep the batch size the same as for the other
methods. A pseudo-code of PPO as an on-policy EIM approach can be seen in Algorithm 2.
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for iteration=1, 2, ... do
Collect transitions (st, at, st+1, ret ) using πb,old for T timesteps
Compute intrinsic rewards ri1...T based on the IM
Replace all ret with 0 if the exploration policy chose action at
Replace all rit with 0 if the greedy policy chose action at
Compute greedy advantage estimates Âπg,old

1...T based on the extrinsic rewards
Compute exploration advantage estimates Âπe,old

1...T based on the intrinsic rewards
for epoch=1, 2, ..., K do

for minibatch=1, 2, ..., T/B do
Optimize objective Jon(θg) w.r.t. θg using Âπg,old with minibatch size B ≤ T
Optimize objective Jon(θe) w.r.t. θe using Âπe,old with minibatch size B ≤ T

end
end

end
Algorithm 2: On-Policy EIM PPO
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5. Experiments

With the intention of practically showing the accompanying advantages and disadvantages
of making IM-based exploration explicit, in this chapter, the setup of several experiments
is described after a brief introduction of the environment they are applied to. Primarily,
the experiments aim to show the desired properties of the EIM approach mentioned in
Chapter 4. In addition, we observe the behavior of agents learning only based on the
intrinsic rewards. We do so to estimate the impact of the respective IMs on the behavior
of an agent that is trained by a combination of both the intrinsic and extrinsic rewards.

5.1. General Settings

Besides the parameters determined experimentally, there are several hyperparameters set
beforehand and kept constant for all experiments for the sake of computation time that
would be required for the experimental determination of all possible parameters.

Timesteps per Iteration: To optimize the models, we sample an amount of 1024 transi-
tions before performing the updates of an iteration. This number is a reasonable choice
regarding computational resources and time needed for each iteration, and in most cases,
it is enough to represent the current behavior of the agent.

Training: The training itself takes place in 1000 iterations. With 1024 steps per iteration,
this equals an amount of 1,024,000 sampled transitions throughout the training, on which
the updates are based.

Evaluation: After every fifth iteration, an evaluation over 10 episodes is performed. For
the evaluation, only the greedy policy is used when using EIM, which allows us to see the
actual performance the agent considers best regarding the extrinsic task.

Learning Rate: The learning rate of both, the exploration policy and the greedy policy, are
set to 5× 10−4 since learning rates between 1× 10−4 and 1× 10−3 have been empirically
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shown to be advantageous. We jointly optimize the policy and value function by adding
the loss of the value function, multiplied with a factor of 0.5, to the policy loss. The
learning rate of the forward and inverse model of the ICM is set to 5× 10−3. These models
are also optimized jointly, equally contributing to the loss.

PPO Clipping Parameter ϵ: The parameter ϵ used to determine the clipping range of PPO
has a value of 0.2, as this is a value that showed to perform well [52] and is commonly
used for many tasks.

Epochs: Each iteration, all involved models are optimized in five epochs. These models
comprise the policies and value functions and, in the case of using the ICM, the forward
and inverse model.

Batch Size: The batch size we use is 256 for the policies, value functions, and ICM models.
Each epoch, the samples are shuffled, which leads to different losses per batch every
epoch.

Advantage λ: We keep the parameter λ, which is responsible for the trade-off between
the MC-caused variance and the bias introduced by the reliance on the learned value
function when estimating the advantage, constant with a value of 1. Therefore, the policy
updates fully rely on the MC rollout for the estimation of their current state-action values.
The critic is updated using the advantage estimate as its target, which leads to an unbiased
value function in terms of not using bootstrapping. Foregoing bootstrapping is desirable for
our experiments concerning the use of IM and the accompanying non-stationary rewards.
While we could make use of bootstrapping for the greedy policy in the case of using EIM
methods, we want to keep the circumstances as similar as possible for all experiments to
enable a fair comparison.

Activation Function: We use the Leaky ReLU activation function in all NNs. Thus, it is
used for the hidden layers of the policies and value functions as well as for the ones of
the ICM except for the encoding layer. The output of the policies is activated using the
softmax function in order to receive probability-like values needed to form a stochastic
policy.

Discount Factor: In order to optimize the long time quality of the policies, we use the
commonly used discount factor 0.99.

Gradient Clipping: Wemake use of gradient clipping [30] for batch gradients with a norm
of 0.5 or higher. This clipping is intended to avoid the problem of exploding gradients,
i.e., very large update steps.
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5.2. Grid World Environment

To keep the insights provided by the experiments as unaffected as possible by circum-
stances that were not taken into account inadvertently, as well as by unpredictable behavior
produced by a stochastic environment, we use a simple deterministic environment. Addi-
tionally, the possibility of visualizing the experiments in an intuitive way is advantageous.
Therefore, the environment we use is a small grid world with a discrete state and action
representation. That is, the environment has a tabular shape, consisting of ten rows and
ten columns per row. As each table cell acts as a field thinking of the environment like a
game, we refer to them as just this: fields. Each field is represented by a number sorted
ascending by row and column, whereby the top left table element has the representation
0 and the bottom right one is represented by 99. Furthermore, each table element can be
of one of the following classes describing its functionality:

1. a normal field where the agent can be located without any reward being provided,

2. a terminal goal field ending the episode and returning a reward when entered, or

3. a wall field that is not accessible, causing the agent to stay at its previous position.

The observation an agent in this environment receives consists of the number representa-
tion of the field in which it is currently located in the form of a one-hot encoding. That is,
the state representation is a 100-dimensional vector containing 99 zeros and a single 1 at
the index of the number of the field it represents. This shape of observation ensures that
the agent cannot guess the outcome of an action in a state it has not seen before since
the elements of the input array are all fed into the policy NN as separate features without
giving hints about positional relations.

The action space consists of the four actions up, down, left, and right, moving the agent in
the respective direction except for the case of the agent trying to move on a wall field or
out of the state space, i.e., the row or column of the new state would be smaller than 1 or
higher than 10. In such a case, the agent stays in the same state, but it costs a timestep
nonetheless.

In addition to the arrival at the goal field, exceeding a specific number of timesteps also
ends an episode. This number is set to 50 for all our experiments.

The environment is set up in the form of a maze with several paths leading to dead ends
and only a single way to most fields. Depending on the aim of the individual experiment, a
goal field can be placed on an arbitrary field. The agent always starts on the field in the top
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1

(a) Goal-only Reward

1

2

(b) Local Optimum

Figure 5.1.: Visualization of the environmental setups used for the experiments.
The agent starts on the field in the upper left corner and can move one
field per timestep. The goal fields are marked with a green border and
they provide the reward denoted inside. Wall fields are represented
by blue squares. Exemplary optimal paths from the start field to the
optimal goal are denoted by a green line, whereas the optimal path to
the suboptimal goal is represented by a red line in (b).

left corner. The field that is furthest away from the start field can be reached in 21 steps,
and at least 97 steps are required to reach every field in a single episode. Overall, the
agent can be located at 61 different fields, whereby the remaining 39 fields are occupied
by walls. The main experiments are performed on the following environmental setups
that are visualized in Figure 5.1.

Goal-only Reward: There is only a single reward that can be achieved by finding the way
through the maze and reaching the goal field. The environmental setup is designed in
a way that cannot be reliably solved by the plain PPO algorithm without any additional
exploration strategy. A minimum of 21 steps is required to reach the goal.

Local Optimum: In this setup, two goal fields are positioned in the maze, one of which
provides a reward of 1 and the other one a reward of 2, which is, at the same time, the
optimal return achievable. As the suboptimal goal field is reachable from the start field
in much fewer steps than the optimal goal (5 steps and 20 steps respectively), the goal
providing the reward of 1 builds a local optimum.
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5.3. Intrinsic Rewards only

With the observation of the training and especially the convergence behavior of the IM
methods, we intend to get an impression of how the learning of the actual task of optimizing
the policy according to the extrinsic rewards is influenced when combining intrinsic and
extrinsic rewards. Most importantly, we want to observe whether the intrinsic rewards
converge to 0 after sufficient exploration or continue to have high values, which might lead
to a noisy greedy policy or even to non-convergence of the same. We, therefore, train a
policy for each IM method with the IIM approach without providing any extrinsic reward,
which causes the agent to learn its behavior only based on the intrinsic rewards produced
by the respective IM. Additionally, with this experiment, we have the opportunity to see
the ability of the individual IMs to explore the entire state space. As a comparison, we also
observe the exploration behavior of a PPO agent that does not use any kind of additional
exploration method.

These experiments are performed on the plain maze environment without a goal field in
order to show the exploratory behavior of the different IM methods in an environment
that is hard to explore.

5.4. Parameter Tuning

We run the experiments mentioned in Section 5.3 multiple times with different values
for η to observe the impact of the parameter and explore its importance or unimportance
for extensive exploration. Then, we use the insights to determine an appropriate η to use
for the exploration policy in the case of EIM methods. The values we consider are 1, 0.1,
and 0.01. Additionally, we try different sizes for the state representation learned by the
inverse model of the ICM with the values of 2n with n ∈ {2, 3, 4, 5, 6}. Furthermore, we
also run PPO without any IM on a simple form of the maze environment with a goal that
is easy to reach in order to determine an appropriate amount of neurons we use for all
hidden layers except for the encoding layer of the ICM. Hereby, we try layer sizes of 2n
with n ∈ {5, 6, 7, 8}.

We have two parameters to tune that directly impact the exploration by scaling the
impact of the IM on the overall behavior. The parameter η scales the intrinsic rewards
produced by the ICM in order to keep them in a reasonable range relative to the extrinsic
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rewards, whereas the parameter h determines the impact of the exploration policy πe on
the behavior when using EIM.

Regarding η when using IIM, we again try three different parameter values in both
proposed environmental setups ("Goal-only Reward" and "Local Optimum"), namely 1,
0.1, and 0.01.

While η is a constant hyperparameter, h does not have the restriction of being fixed.
However, even if we have the possibility to adjust its value, the first and most obvious
approach is keeping the parameter constant during the entire process. Therefore, we
execute the EIM approaches with an h of 0.25, 0.5, and 0.75.

Eventually, we want to use the full potential of the EIM approach by determining h
dynamically. What we want is to keep exploring the environment, even if we suppose
that the optimal solution has been found, which we can do because the greedy policy
should not be directly affected by doing so and keep its greedy behavior. To exploit this
advantage, we make h dependent on the entropy of πg as well as on the entropy of πe.
The entropy of a policy given a state provides information about the uncertainty of its
action choice. For a policy π, the entropy is defined as

Hπ(s) = −
∑︂
a∈A

π(a | s) log π(a | s)

for a given state s [81]. With this definition, we can look up the certainty of πg and πe
at each timestep. A high entropy of πg in s indicates high uncertainty of which action to
choose, that is, the probability of drawing each action is near 1/|A|. Vice versa, a very low
entropy means that the policy is very certain about its choice of the action. Interpreting
such a low entropy as an indication that the policy has found a strategy for reaching a
local optimum, we could use this value as our h and, therefore, reduce exploration at this
point. In that case, the agent would, in theory, behave similarly to an IIM agent in terms
of its tendency to converge to a local optimum. To avoid such a behavior, the entropy of
πe could be taken into account. With the entropy of the exploration policy indicating how
certain the policy is about an action leading to a state worth exploring according to the
IM method, we could create a trade-off between uncertainties. What we want is to follow
the greedy policy in states, in which we are certain to know a good action choice, but
explore if we know that there is something to explore starting from the particular state.
We can do this by averaging the two entropies, resulting in the computation

h =
1

2
(1−H

′
πe
(st) +H

′
πg
(st))
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that is made for each timestep. In order to use h as a probability, the entropies have to
lie between 0 and 1. Since the entropy does not fulfill this requirement, we normalize it
through division by the maximal entropy value, which is described by

H
′
π(s) =

Hπ(s)

− log 1
|A|

,

where − log(1/|A|) is the maximal entropy for a discrete action space with |A| actions.

We compare the mentioned approaches of determining h in the "Local Optimum" environ-
ment.

5.5. Implicit vs Explicit Intrinsic Motivation

We want to see the impact of the IM methods performing in environments with extrinsic
rewards, and, most of all, we aim to compare the performance and applicability of IIM and
EIM methods. Therefore, we apply both approaches to the above-mentioned environments
and make the comparison based on several properties. The experiments are designed to
specifically show certain assumed advantages and shortcomings of both methods if these
prove to be correct, or show their similarity otherwise.

The "Goal-only Reward" environmental setup should show the general ability of both ap-
proaches to solve classical sparse rewards environments and entail a comparison between
their performances under these conditions. An extensive exploration of the environment is
required to find the goal, which is why this experiment is intended to show the approaches’
ability to make use of their IM in general. Moreover, we want to observe the noise in the
greedy policy when the extrinsic reward was found, which is desired to be minimal but
expected to be high when using the IIM approach with a high η.

Executing the IIM approach in the "Local Optimum" environment is expected to cause
premature convergence in the case of a too-small chosen η. In general, the local optimum
makes an extensive exploration and, therefore, the discovery of the optimal goal difficult.
What we want to observe is the ability of both approaches, IIM and EIM, to keep exploring
the environment after converging to an optimum. In order to do so, we look at the ability
of the methods to find the optimal goal and adapt the policy for all states, especially
those not lying on the optimal way. Additionally, we again have a look at the noise in the
resulting greedy policies by observing the timesteps the agents need to reach the goal,
which should be as constant as possible to indicate a low noise policy.
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6. Results

This chapter provides the results of the experiments discussed in Chapter 5. After observing
the findings regarding (hyper)parameters and the plain environment without extrinsic
rewards, we take a detailed look at the performance of EIM methods in comparison to
IIM methods in the "Goal-only Reward" and "Local Optimum" setting.

6.1. Parameter Tuning

In this section, we present our choice of parameters based on the results of the respective
experiments. Hereby, the first part addresses the appropriate choice of the network sizes,
in particular, the dimension of the state representation layer learned by the ICM and the
general size of the fully connected layers that will be used for all other hidden layers. The
second part provides insights into the effect of using different values for the parameter η.
The different methods of determining h are evaluated in the last part of this section.

6.1.1. Network Architectures

We experimentally determined appropriate network architectures by testing different
numbers of neurons for the hidden layers. A visualization of the resulting architectures
can be seen in Figure 6.1.

By observing the total state visitations after the learning process in the plain maze
environment (without extrinsic rewards), we can find out to what extent the different
sizes of the state encoding learned by the ICM lead to an area-covering exploration. In
average, the 64-dimensional encoding resulted in the lowest standard deviation regarding
the number of visitations of all normal fields, which tells us that the state space had been
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Input Layer (100)

Hidden Layer (128)
Leaky ReLU

Output Layer (4)
Softmax

(a) Policy

Input Layer (100)

Hidden Layer (128)
Leaky ReLU

Output Layer (1)

(b) Value Function

Encoding Layer (64)

Hidden Layer (128)
Leaky ReLU

Output Layer (64)

From Observation (100)

Hidden Layer (128)
Leaky ReLU

Output Layer (4)

To Observation (100)Action (4)

(c) ICM

Figure 6.1.: Network architectures of the policies (a), the value functions (b), and
the ICM (c). The numbers in parentheses represent the respective layer
size, i.e., the number of neurons inside the layer.

explored most evenly in this case. Therefore, all further experiments are applied with an
ICM state encoding size of 64.

The experiments on how many neurons to use for the other hidden layers showed a size
of 256 to be superior to the others in terms of an earlier convergence to the optimal
value. However, all tested settings achieved very similar results and the experiment was a
very simple one. Nonetheless, each of them should serve the purpose of performing in a
minimalistic grid environment such as the one we use, which is why we renounce further
experiments on the layer sizes and instead work with the value of 128, which performed
nearly as good as a size of 256, in order to keep the computational resources as low as
possible.

53



η = 1.0 η = 0.1 η = 0.01

ICM 4362.2220 4379.5591 4481.9204

Novelty 3144.7337 5468.5325 12634.0472

Table 6.1.: Standard deviation of the number of times all states were visited after
1000 iteration, averaged over five runs.

6.1.2. Parameters η and h

When training an agent by optimizing the intrinsic returns only, the parameter η had
seemingly no significant impact on the exploration behavior when using the ICM but made
a big difference regarding the use of novelty. The total state visitations of each tested
parameter value (1, 0.1, and 0.01) after 1000 iterations are depicted in Figure 6.2 in the
form of a heat map. The observation of the standard deviation of the number of times
each field was visited, which can be seen in Table 6.1, suggests an advantage of using
an η of 1 for both types of IM, which is why we use it for the exploration policy πe in
all experiments. In general, the results suggest that η should not be chosen too small.
However, the advantage of EIM is that we can hardly choose this parameter too high as
this does not affect the agent in terms of not taking note of extrinsic rewards.

Regarding the parameter h, the approach of using a constant value showed to be worse than
the use of an entropy-based h in most experiments and in terms of a (fast) convergence
to the optimal goal in the "Local Optimum" environment (see Appendix A for more
information). In order to keep the number of experiments in a reasonable range, all results
described in Section 6.3 are based on the entropy-based setting. This approach performed
well in most regards compared to the others and, additionally, is the most general approach
in terms of an easy adoption to other experiments, free of hyperparameter tuning.

6.2. Exploration Behavior and Convergence of the IM Methods

By only reinforcing the behavior of the agent with the help of the IM, that is, with no
extrinsic rewards provided, we are able to see how well the respective methods can help
to discover all states of the environment.
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(a) Without IM (b) ICM (η = 1.0) (c) ICM (η = 0.1) (d) ICM (η = 0.01)

(e) Novelty (η = 1.0) (f) Novelty (η = 0.1) (g) Novelty (η = 0.01)

Figure 6.2.: Heat maps depicting the total state visitations of agents learned based
on intrinsic rewards only (b - g) and without any rewards (a) after 1000
iterations. Hereby, (b)-(d) show the results when using the ICM with
different values for η and (e)-(g) when using novelty. A brighter color
indicates a higher number of visitations on the respective field. White
squares represent wall fields.

In addition to showing the methods’ ability to improve the exploration, we can also see
the convergence behavior of the IMs. Additionally, the results of applying PPO without
any exploration method is presented. It should be noted, however, that PPO in practice
often gets a bonus reward based on the entropy, which is not done in our case.

6.2.1. Without Exploration Method

As expected, without using any kind of additional exploration method, the environment
has been explored poorly, which gets visible when observing Figure 6.2a. The fields have
been visited unevenly, and unexpectedly the visitations are not characterized by a gaussian
distribution, which is to be expected when the actions are chosen completely randomly.
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(a) Without IM (b) ICM (η = 1.0) (c) Novelty (η = 1.0)

Figure 6.3.: Visualization of the action probabilities for every state after 1000 iter-
ations using intrinsic rewards only (b and c) and no rewards (a). The
big blue squares are wall fields, whereas the small blue squares are the
center of each normal field. In each direction the agent can move (up,
down, left, right), the center has an additional square attached, which
indicates the probability of choosing the according action, whereby a
more intense red implies a higher probability.

Figure 6.3a shows the action probabilities of the policy for each field. The bias in the
action probabilities could be explained by the randomly initialized value function falsely
indicating a better outcome for some actions.

6.2.2. Novelty Behavior

The convergence to 0 of the intrinsic rewards produced by the state novelty approach gets
rather obvious when regarding its calculation. Because of the denominator N(st), which
represents the number of times the agent visited state st and is monotonously increasing
for every state, the fracture 1/N(s), which is the harmonic sequence for each state, goes
towards 0 during the extensive exploration of the entire state space. The convergence of
the reward is illustrated in Figure 6.4. However, considering an optimum that does not
require the entire state space to be explored, the convergence might not be quick enough
to ensure fast adaptation of the policy to the optimal behavior regarding the extrinsic task.
In this case, a smaller η might be appropriate, which, however, presupposes knowledge of
the extrinsic reward function. The method of count-based state novelty enables a largely
evenly distributed exploration of all fields when choosing an η that is not too small, which
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(b) Goal-only Reward
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(c) Local Optimum

Figure 6.4.: Mean intrinsic training returns per iteration using the ICM (green line)
and novelty (blue line) as IIM approaches with an η of 1, averaged over
five runs.

can be seen in Figures 6.2e - 6.2g.

6.2.3. ICM Behavior

In contrast to the convergence behavior of state novelty, the one of the ICM is not as clear
because of the produced rewards depending on the precision of predictions made by the
forward model and implicitly the inverse model. Our experiments showed that the rewards
did not converge at all within 1000 iterations (see Figure 6.4). This non-convergence
might be explainable with overfitting on states recently visited, which could make the
prediction in the remaining states worse again. Another explanation could be that the
inverse model was not able to converge until the end of the experiment, causing the state
representation to change during the entire process and, thus, entailing the necessity of
adjusting the prediction of the state representation of the next state. The last possible
cause of the non-convergence is a possibly too small NN architecture, resulting in the
inability of the model to learn the optimal results.

However, it is interesting to see the policy still providing a reasonable exploration strategy
after 1000 iterations (see Figure 6.3b). While the policy trained with novelty leads to
areas that are hard to reach in some states, the action probabilities seem rather arbitrary
in others (see Figure 6.3c). This outcome might be caused by the small intrinsic rewards
provided by this method after some time of exploration, not providing useful information
anymore. In contrast, the policy learned using the ICM confidently leads through the
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maze with high probabilities to choose actions leading to the deepest areas that are the
hardest to reach.

6.3. Implicit vs Explicit Intrinsic Motivation

In order to evaluate the experimental results and make statements on the advantages and
disadvantages of using EIM methods, we observe four properties, which are

1. sample and time efficiency,

2. premature convergence to a local optimum,

3. noise and stability of the greedy policy, and

4. ongoing exploration after convergence of the greedy policy.

Each of the said aspects is regarded separately from the others in order to make suggestions
about appropriate fields of applications based on particular properties possible.

6.3.1. Sample and Time Efficiency

In this section, we have a look at the time and sample efficiency of the individual ap-
proaches, that is, how long the trajectory sampling and the training takes and how many
samples are needed to find a near-optimal solution.

Time Efficiency

In general, the IIM approach took less time per iteration compared to the EIM approach,
which is due to its less complex architecture. The use of an additional exploration policy
and, in the case of the ICM, the forward and inverse model entail computationally more
expensive and, therefore, more time-consuming update steps. When using the entropy
of the greedy and the exploration policy during the trajectory sampling, both policies
have to make a prediction in order to compute the respective entropy every step, which
additionally slows down the overall learning.
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Sample Efficiency

The sample efficiency, on the other hand, depends on the problem that is to be solved. The
"Goal-only Reward" experiment showed the IIM methods to be more sample efficient (see
Figures 6.5c and 6.5d), which we explain considering two circumstances. The first one
is related to the importance weight of the off-policy approach, which makes the update
steps of the greedy policy smaller if it would have been less likely that the same would
have stepped into the rewarding field than it was following the behavior policy. A similar
problem occurs when using the on-policy approach, namely the possibility of very rarely
moving into the optimal goal when following the greedy policy and, therefore, rarely
receiving the accompanying reward. The second circumstance results from the possibility
of the agent performing actions according to the greedy policy instead of the exploration
policy, which diminishes the effect of the IM and, thus, leads to a worse exploration and a
later discovering of the reward.

When observing the results regarding the "Local Optimum" environmental setup using
IIM methods, we see that the use of different settings of η influences the number of
samples needed to find the optimal goal. This result was to be expected since the two
types of rewards, intrinsic and extrinsic, influence each other, which leads to the need
for a trade-off. As can be seen in Figures 6.6a and 6.6b, the number of samples needed
to find the optimal goal and adjust the policy accordingly highly depends on the used
η. The higher the chosen η, the quicker the agent finds the optimal goal, which can be
explained by the fact that the distraction from the exploration, caused by the extrinsic
reward leading to the suboptimal goal, gets smaller. On the other hand, however, a higher
η vice versa comes with a higher distraction from the extrinsic task (see Section 6.3.2). In
the case of the "Goal-only Reward" environment, on the other hand, the choice of η makes
nearly no difference regarding the number of samples needed to find the optimal goal,
which can be seen in Figures 6.5a and 6.5b, and which is caused by the fact that there is
only one extrinsic reward. Therefore, no further exploration is needed after convergence
to the corresponding goal field; i.e., it does not matter that the intrinsic reward is much
smaller than the extrinsic one.

Regarding the use of EIM methods, it becomes obvious that local optima pose a problem
when looking at the results. The development of the returns achieved during the periodic
evaluations throughout the learning process, which is depicted in Figures 6.6c and 6.6d,
shows that both the on-policy and off-policy EIM approach sometimes manage to learn a
near-optimal solution and sometimes they only converge to the suboptimal solution (see
Section 6.3.3 for more information on premature convergence).
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(a) ICM with different values for η
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(b) Novelty with different values for η
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(c) Approaches using ICM
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(d) Approaches using Novelty

Figure 6.5.: Mean extrinsic evaluation returns per iteration in the "Goal Only Re-
ward" setup averaged over ten runs. A comparison between the use
of different values for η in the case of IIM can be seen in (a) and (b).
The results of the different approaches using the ICM and novelty are
depicted in (c) and (d) respectively.
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(a) ICM with different values for η
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(b) Novelty with different values for η
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(c) Approaches using ICM
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(d) Approaches using Novelty

Figure 6.6.: Mean extrinsic evaluation returns per iteration in the "Local Opti-
mum" setup averaged over ten runs. A comparison between the use
of different values for η in the case of IIM can be seen in (a) and (b).
The results of the different approaches using the ICM and novelty are
depicted in (c) and (d) respectively.
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In the cases in which the agent managed to solve the task near-optimally, the EIM approach
needed a similar number of samples as the IIM approach when using the ICM. When using
novelty, the IIM approach was visibly more sample efficient than the EIM approach.

Overall, the IIM approaches appear to be superior in terms of a quick and sample efficient
convergence, assuming an appropriate choice of η.

6.3.2. Noise and Stability of the Greedy Policy

Now we have a look at the results of single representative executions of experiments, in
which both approaches, IIM and EIM, managed to solve the task, i.e., found a near-optimal
policy, and compare the stability and noise in the resulting greedy policy of the respective
methods. Hereby, stability refers to the ability to keep the policy to be optimal throughout
the ongoing learning process after it has already converged. The noise of a policy describes
how reliably it chooses the optimal actions. Hence, more noise can lead to a worse average
performance of the greedy policy since it performs some suboptimal actions from time
to time. We can measure the noise by observing the number of timesteps needed until
termination per episode during the evaluation. Hereby, a constant number of 21 timesteps
in the "Goal-only Reward" setup and 20 in the "Local Optimum" environment is desired. A
less constant number of timesteps implies a noisier policy.

Before directly comparing the IIM and EIM approaches, we look at the impact of η in
this regard when using IIM. While Figures 6.5a and 6.6a show the high impact of the
parameter on the stability of the policy when using the ICM, Figure 6.7a suggests the
same in terms of noise. Regarding the impact of η when using novelty, the stability is only
minimally affected (see Figures 6.5b and 6.6b), whereas the noise differs visibly when
using different values for η (see Figure 6.7b). Generally said, a higher η provides a better
exploration while, simultaneously, leads to higher noise and instability. Since an η of 0.1
when using the ICM and 1 using novelty provided a good trade-off between noise and
performance, we compare these settings to the EIM approaches.

The results make clear that it is necessary to distinguish between intrinsic rewards that
converge to 0 within a reasonable time (novelty) and those not converging (ICM).
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(b) Novelty

Figure 6.7.: Mean timesteps until termination during evaluation in the "Local Op-
timum" setup using different values for η in the case of IIM, averaged
over ten runs.

Noise and Stability - Novelty

When observing Figures 6.8b and 6.9b, we discover that all used methods resulted in
similarly noisy greedy policies. The only conspicuous thing to mention is that the off-policy
approach took longer to provide a policy with relatively low noise. A similar conclusion
can be made regarding the stability in the "Local Optimum" environment, which is nearly
perfectly provided by the IIM and on-policy EIM approach. However, both EIM methods
showed instabilities at the end of the training in the "Goal-only Reward" environment,
whereas the policy was kept very stable a long time before this stability collapse. As
the intrinsic rewards converge to 0, the IIM approach does not suffer overly from the
distraction of these reward signals.

Noise and Stability - ICM

In contrast to the use of novelty, Figures 6.8a and 6.9a show that using the ICM causes a
steadily continuing distraction from the main task, which is reflected by a greedy policy
that is more noisy using IIM than EIM in many iterations.
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(a) Approaches using ICM
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Figure 6.8.: Mean timesteps until termination during evaluation in the "Goal-only
Reward" setup.
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Figure 6.9.: Mean timesteps until termination during evaluation in the "Local Op-
timum" setup.
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Especially regarding the "Goal Only Reward" setup, a high level of noise can be observed,
which might be due to the fact that the agent has a lot more timesteps available than it
needs to reach the goal, which it possibly uses to explore the environment, resulting in
sometimes more steps being taken. The resulting policies show similar stability to the ones
using novelty but, contrarily, with continuously stable policies in the "Goal-only Reward"
setup and collapsing stability in the "Local Optimum" setup when using EIM (see Figures
6.5c and 6.6c).

Noise and Stability - Conclusion

Considering noise, the results of the experiments reveal what we expected and what we
wanted to show. When using IIM, non-converging intrinsic rewards keep disturbing the
policy when the goal reward has already been found. This impact of the intrinsic rewards,
however, is necessary to ensure further exploration after extrinsic rewards have been
found, since the reward function is not known and, therefore, there might be more rewards
to be found. In order to minimize noise, it is possible to lower the factor η in order to get
smaller intrinsic rewards that have less impact on the update steps relative to the extrinsic
rewards. However, using EIM methods, this is not necessary as the intrinsic rewards do not
directly influence the greedy policy while simultaneously providing extensive exploration
throughout all iterations (see Section 6.3.4).

Stability, on the other hand, can not necessarily be assured throughout the entire learning
process when using EIM but was shown to be present most of the time. The instability,
however, could be caused by the particular methods we used for the EIM approach and,
hence, could possibly be waived when using different methods, e.g., an unbiased off-policy
algorithm.

6.3.3. Premature Convergence

Our experiments in the "Local Optimum" environment were designed to make an observa-
tion of the property of premature convergence to this same local optimum possible. Again,
we regard the IM methods individually.
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Premature Convergence - Novelty

Regarding the use as an IIM approach, converging intrinsic rewards, such as those gen-
erated by the state novelty approach, regulate their impact on the overall reward by
themselves by diminishing over time. Even when the initial intrinsic rewards are very
high, the eventual diminishing of the same ensures convergence to an optimum according
to the extrinsic rewards with minimal noise. By providing high rewards in the beginning,
a well covering of the observation space can take place. In our example, the state novelty
IM produces a reward of 1 for each state the agent has never visited before, which is
the same value as the extrinsic reward the agent receives for entering the local optimum.
However, since the agent does not optimize the immediate reward but the discounted
return, visiting new states is much more attractive in the early states of the learning
process. Nonetheless, without having knowledge about the reward function, it could be
difficult to scale the intrinsic rewards appropriately. Intrinsic rewards that are too low
compared to the extrinsic rewards can lead to premature convergence to a local optimum,
as can be seen in Figure 6.6b.

Applying novelty in an EIM manner did not lead to an improvement in terms of a faster
convergence; on the contrary, in all cases, it took longer to learn an optimal policy or
the optimal solution could not be learned at all (see Figure 6.6d). That shows that the
EIM method is more prone to premature convergence than the IIM approach with novelty
when using an appropriate η.

Premature Convergence - ICM

In contrast to the state novelty approach, the ICM quickly learned to approximately predict
the next state, leading to low intrinsic rewards, which, on the one hand, evolve over time
and, thus, lead to a well-exploring behavior before discovering any extrinsic reward but,
on the other hand, come with a more difficult and influencing choice of the reward scaling,
i.e., the parameter η when using IIM. As the intrinsic returns remain very similar over time,
we have to choose η so that the extrinsic rewards are always much higher than the intrinsic
rewards. Doing so, however, leads to a poor exploration due to premature convergence
once an extrinsic reward has been found since the intrinsic reward has no big impact from
this point on. Choosing a higher value for η prevented premature convergence but led
to a noisy and unstable greedy policy due to the consistent high impact of the intrinsic
rewards (see Figures 6.6a and 6.7a).
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In the case of using the ICM, the advantage of the EIM over the IIM approach depends
on the choice of η of the IIM. Setting the parameter to a value of 0.01 did not allow the
algorithm to find the optimal solution of the "Local Optimum" environment within 1000
iterations, which is shown in Figure 6.6a. With an η of 0.1, the agent was able to find
the optimal goal in some cases. However, a higher η affected the noisiness and stability
of the resulting policy, which is discussed in Section 6.3.2. Using the EIM instead, this
parameter is less significant, as the impact of the exploration policy is largely independent
of the scaling of the reward.

A comparison between the learning process of the IIM approach and the EIM approach
is depicted in Figure 6.6c. Here we can see that the EIM approaches, as well as the IIM
approach, do not guarantee convergence to the optimal solution and that they performed
very similarly in this regard. However, this is only a comparison using the IIM methods
with an η of 0.1, which seemed to be the most reasonable value to use among the ones
tested. As mentioned before, a higher η causes oscillation around the optimum but might
lead to a more reliable discovering of the global optimum, whereas a lower η might not
find it at all.

Premature Convergence - Conclusion

The results suggest that IIM and EIM both suffer from premature convergence, assuming
an η that is low enough in the case of IIM, but the reasons are different in both cases.

While the IIM approach suffers from a too low impact of the intrinsic reward relative to
the extrinsic one, the EIM approach keeps exploring but is not able to adjust the already
converged action probabilities, which gets clear when observing the action probabilities
depicted in Figures 6.10b, 6.10c, and 6.10f. While the policy reliably directs to the global
optimum if the agent manages to get a few steps beyond the suboptimal goal, the high
probabilities provided for the states around the local optimum leading to the same make it
very unlikely to step past said states using the greedy policy only. By additionally using the
exploration policy during the training, the agent often manages to get through the fields
in which the greedy policy points to the local optimum and, thus, reaches the optimal
goal. The chance that the action choice of the greedy policy in the relevant states gets
adjusted to lead to the global optimum is very unlikely in both cases, the on-policy and
off-policy approach. The importance weight makes the update diminishing small in the
off-policy case, and the correct action is unlikely to be chosen by the greedy policy and,
therefore, rarely updated in the on-policy case.
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(a) IIM ICM (η = 0.1) (b) Off-Policy EIM ICM (c) On-Policy EIM ICM

(d) IIM Novelty (η = 1.0) (e) Off-Policy EIM Novelty (f) On-Policy EIM Novelty

Figure 6.10.: Visualization of the action probabilities of the greedy policy for ev-
ery state after 1000 iterations in the "Local Optimum" setting. The
big blue squares are wall fields, whereas the small blue squares are
the center of each normal field. In each direction the agent can move
(up, down, left, right), the center square has an additional square at-
tached, which indicates the probability of choosing the according ac-
tion, whereby a more intense red implies a higher probability. The
green bordered fields mark the goal fields with the one in the bottom
right corner being the optimal goal providing a reward of 2, and the
other one providing a reward of 1.
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Figure 6.11.: Overall count of collected optimal returns (2.0) up to the respective
iteration during training using the ICM averaged over 10 runs.

The overall problem of EIM methods of adjusting an already converged behavior is also
reflected by the fact that, compared to IIM approaches, they were often able to find the
global optimum with fewer samples but, nonetheless, did not perform better in terms of
an earlier convergence to this optimum. The number of optimal returns (2.0) collected
over time can be seen in Figure 6.11 using the example of the ICM.

6.3.4. Ongoing Exploration

An ongoing exploration after an extrinsic reward has been discovered could serve two
goals: the discovering of more extrinsic rewards and the adjustment of the policy for all
states in terms of a target-oriented behavior. Figure 6.10 depicts the action probabilities
of the different approaches after 1000 iterations for all fields of the "Local Optimum"
environmental setup. We can see that the EIM approaches provided wide coverage of
converged action probabilities leading the agent to at least a local optimum for most of the
fields. Especially the EIM approaches using the ICM provided an extensive exploration of
most parts of the state space, which might be due to their non-converging and, therefore,
ongoing availability of meaningful intrinsic rewards.

Regarding the IIM methods, on the other hand, we find that the policy did not converge
in states that are not on the way to the goals or even confidently points in the wrong
direction on many fields. These unadjusted action probabilities indicate poor exploratory

69



behavior after the discovering of the goals, leading to not visiting the according states
anymore and, thus, not updating the policy with respect to them. Further indications for
the more extensive exploration of EIM methods can be seen in Appendix B.
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7. Conclusion and Future Work

We introduced two algorithms, one of them being an off-policy approach and the other one
learning on-policy, which learn two separate policies that are optimized independently
following different tasks, the one induced by the reward function of the environment
and the one of exploring the environment. Therefore, we equipped a PPO agent with an
exploration policy that was learned using intrinsic rewards produced by IMs in addition to
the greedy policy following the extrinsic rewards. While our experiments on a simple maze
grid world showed the conventional IIM approach using a single policy that optimizes the
combined intrinsic and extrinsic return to be more sample and time efficient under most
of the tested conditions, the newly introduced EIM approach turned out to be competitive
or even superior under certain circumstances and regarding particular properties. Con-
sidering the requirement of tuning the hyperparameter η, which determines the impact
of the intrinsic rewards, the approach of EIM has been shown to find solutions to the
extrinsic task more efficiently if η is not well chosen for the IIM. It became clear that the
EIM approach does not rely on an extensive search for an optimal η.

The results regarding the three main issues that we aimed to address are the following:

1. Control over the level of exploration: By treating the greedy policy individually
from the exploration policy, we were allowed to control the level of IM-based ex-
ploration throughout the training. We, therefore, dynamically set the parameter
h, which represents the probability of choosing an action according to the explo-
ration policy, by means of the entropy of both policies. This method appeared to be
superior to using a fixed value for h, and it enabled the possibility of keeping the
exploration high even when the extrinsic task already seemed to be solved. When
the evaluation took place, the parameter could be set to 0 manually in order to
evaluate the performance of the greedy policy on its own.

2. Premature convergence: We showed that in the case of IIM methods, intrinsic
rewards that are very small relative to the extrinsic rewards can lead to prema-
ture convergence to a suboptimal solution. Compared to such a setting, the EIM
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approaches were more likely to find a near-optimal solution. Nonetheless, they
appeared to be prone to premature convergence as well, performing worse than
the IIM approach when the intrinsic rewards were scaled reasonably. This problem,
however, was restricted to states that were near to the path leading to the suboptimal
goal, which got apparent when regarding the behavior of the policy in other states.
A wide covering of near-optimally converged action probabilities had been obtained
for most of the states. The IIM methods, on the other hand, showed a poor behavior
for many states that were not the ones leading from the initial state to the goal.

3. Noisy policy: Very high intrinsic rewards were shown to lead to a noisy and unstable
policy when using them in an IIM approach. When using an appropriate η for the
IIM methods, both EIM approaches, off-policy and on-policy, still resulted in a policy
with a similar or lower level of noise in most of the experiments. Regarding the
stability, the EIM methods suffered few collapses but were similarly or more stable
than the IIM approach most of the time.

There are several scenarios in which we suggest considering the use of the EIM approach.
These scenarios include one or more of the following assumptions:

• the absence of knowledge about the reward function since the intrinsic reward does
not have to be scaled considering the extrinsic rewards,

• an extensive exploration of the state space entailing a policy that leads to a (local)
optimum for most of the states, e.g., a robot that has to be trained always starting
from a certain state, which might change in the practical application later on, or

• the need for a greedy policy with low noise and high stability without a time-
consuming hyperparameter search.

If the effort of the search for an appropriate η can be applied, the use of the IIM approach
might be especially beneficial when fast convergence is desired.

It is important to mention that the use of a converging IM method minimizes some of the
problems of IIM methods. The noise in the policy gets very low with the intrinsic rewards
converging to 0. Moreover, a higher η for scaling the intrinsic rewards produced by the
novelty approach might still lead to a relatively low-noise policy while providing extensive
exploration, which would make the hyperparameter search similarly easy as it is the case
when using EIM. However, we applied the experiments on a small discrete environment,
which is why we could easily use this type of count-based state novelty. This condition
is not always given in practical applications and the results might look different under
different circumstances.
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7.1. Future Work

There is a lot of imaginable future work to be done. In addition to more extensive
experimentation under similar conditions as the ones given in this thesis that were sparse
in terms of a low execution number of the individual experiments and the extent of the
hyperparameter tuning due to restrictions of computational resources, comprehensive
research in the following areas might be of interest.

Complex Environment As we used a relatively simple environment for our experiments,
the performance of EIM methods in more complex environments could be of interest.
A higher complexity could refer to high-dimensional observations such as the pixels of
the images of a game [67, 82] as well as more complex tasks requiring a higher level of
planning [68, 67].

EIM Algorithms Algorithms other than PPO could be adopted to serve as EIM algorithms.
More developed off-policy approaches could be investigated in this context, such as the
state distribution correction used by the OPPOSD algorithm [21].

Pre-train Exploration Policy Another investigation of interest would be to pre-train
the exploration policy, beginning to train the greedy policy when the exploration pol-
icy has developed a well-exploring behavior, similar to the experiments conducted by
Pathak et al. [10]. This approach could help to solve the problem of EIM methods pre-
maturely converging to a local optimum. A higher reward that is further away might be
found more quickly due to the already exploratory behavior of the agent. Thus, the agent
might not converge to the local optimum as easily as it recognizes the global optimum
earlier.

Parameter h Regarding the determination of the parameter h, the effect of different
methods could be explored. For example, starting with a value of 1 and decreasing it over
time could improve the results in very sparse rewards environments as the greedy policy,
which is rather meaningless at the beginning of the training, would have no impact at
first, leaving the initial exploration exclusively to the exploration policy. Another approach
tackling the same situation would be to keep h constantly at 1 until an extrinsic reward
has been found.
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Different parameters for different policies An advantage of EIM methods we did not
exploit is the possibility of choosing different hyperparameters regarding the two policies.
For example, the parameter λ used to calculate the advantage of a state-action tuple could
be varied for the greedy policy, introducing bias but making use of actor-critic benefits
such as a possibly faster convergence. Furthermore, different learning rates for the policies
could be tested, e.g., equipping the exploration policy with a higher learning rate in order
to speed up the exploration without making the training of the greedy policy unstable.
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A. Parameter h

This chapter consists of the results of the comparison between different approaches to
determine the parameter h in EIM methods. Figure A.1 shows the average returns when
using the entropy-based method of determining h in contrast to the use of constant values.
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Figure A.1.: Mean extrinsic evaluation returns per iteration in the "Local Opti-
mum" setup using different constant values for h compared to the
entropy-based method averaged over five runs.
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B. Extensive Exploration

In this chapter, further experimental results highlighting the extensive exploration of
EIM methods compared to IIM methods are provided. Figure B.1 depicts the total state
visitations of 1000 iterations in the "Local Optimum" environment reflecting the tendency
of IIM methods to follow only the optimal path to solve the extrinsic task, whereas EIM
methods maintain a higher level of exploration. The environment is more evenly explored
using the ICM approach regarding the EIM methods, which might be caused by the lower
entropy of the exploration policy in many states (see Figure B.2) leading to a higher h.
Figure B.2 shows that the exploration policy still provides an exploratory behavior after
1000 iterations.
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(a) IIM ICM (η = 0.1) (b) Off-Policy EIM ICM (c) On-Policy EIM ICM

(d) IIM Novelty (η = 1.0) (e) Off-Policy EIM Novelty (f) On-Policy EIM Novelty

Figure B.1.: Heat maps depicting the total state visitations for every state after
1000 iterations in the "Local Optimum" setting. A brighter color in-
dicates a higher number of visitations on the respective field. White
squares represent wall fields. The green bordered fields mark the goal
fields with the one in the bottom right corner being the optimal goal
providing a reward of 2, and the other one providing a reward of 1.

85



(a) Off-Policy EIM ICM (b) On-Policy EIM ICM

(c) Off-Policy EIM Novelty (d) On-Policy EIM Novelty

Figure B.2.: Visualization of the action probabilities of the exploration policy for
every state after 1000 iterations in the "Local Optimum" setting. The
big blue squares are wall fields, whereas the small blue squares are
the center of each normal field. In each direction the agent can move
(up, down, left, right), the center square has an additional square at-
tached, which indicates the probability of choosing the according ac-
tion, whereby a more intense red implies a higher probability. The
green bordered fields mark the goal fields with the one in the bottom
right corner being the optimal goal providing a reward of 2, and the
other one providing a reward of 1.
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