
Exploring Intrinsic Motivation for
Quanser Reinforcement Learning
Benchmark Systems
Erforschen von Intrinsischer Motivation für die Quanser Reinforcement Learning Benchmark
Systems
Master-Thesis von Jakob Weimar aus Bad Soden
Februar 2020



Exploring Intrinsic Motivation for Quanser Reinforcement Learning Benchmark Systems
Erforschen von Intrinsischer Motivation für die Quanser Reinforcement Learning Benchmark Systems

Vorgelegte Master-Thesis von Jakob Weimar aus Bad Soden

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: M.Sc. Svenja Stark

Tag der Einreichung:



Erklärung zur Master-Thesis

Erklärung zur Abschlussarbeit gemäß § 23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Jakob Weimar, die vorliegende Master-Thesis ohne Hilfe Dritter und nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die Quellen entnommen
wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form
noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch vorliegt,
der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird.
Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung überein.

I herewith formally declare that I have written the submitted thesis independently. I did not use any
outside support except for the quoted literature and other sources mentioned in the paper. I clearly
marked and separately listed all of the literature and all of the other sources which I employed when
producing this academic work, either literally or in content. This thesis has not been handed in or
published before in the same or similar form.

In the submitted thesis the written copies and the electronic version are identical in content.

Datum / Date: Unterschrift / Signature:



Abstract
Deep Reinforcement Learning is a primary research topic for achieving superhuman level of control in robotics. However,
efficient state space exploration still remains a difficult research topic. In this thesis we focus on improving the efficiency
of state-of-the-art reinforcement learning algorithms such as DQN, DDPG, TRPO, and PPO by formalizing intrinsic mo-
tivation factors in order to mimic human learning behaviour. We evaluate our approach by training control policies for
classical control tasks on the CartPole environment such as balancing, swinging up and swinging up in a sparse setting
in simulations. We implement a novel way of parallel sampling for OpenAI Gym environments in order to improve the
amount of samples our algorithms can use. At first, we tune the algorithms on the mentioned tasks without intrinsic
motivation. After that, we introduce novel variations of Surprisal and Prediction Error intrinsic motivation for reward
enhancement. The results prove that intrinsic motivation can help reduce the amount of samples needed for convergence
when properly applied, at a cost of computational complexity.

Zusammenfassung
Deep Reinforcement Learning ist ein führendes Forschungsthema wenn es um das Erreichen von übermenschlichen Leis-
tungen im Bereich der Robotik geht. Trotzdem bleibt eine effiziente Erforschung des Zustandsraums weiterhin ein
schwieriges Forschungsthema. In dieser Arbeit konzentrieren wir uns auf die Verbesserung der Effizienz von state-of-
the-art Reinforcement Learning Algorithmen wie DQN, DDPG, TRPO und PPO durch die Integration von intrinsischer
Motivation, um menschliches Lernverhalten nachzuahmen. Wir bewerten unseren Ansatz anhand von Benchmarks für
klassische Steuerungsaufgaben in der CartPole-Umgebung wie Balancieren, Aufschwingen und Aufschwingen in einer
Umgebung mit kargen Belohnungsfaktoren in Simulationsumgebungen. Wir implementieren eine neuartige Methode zur
parallelen Probenahme für OpenAI Gym Umgebungen um die Anzahl an Samples für unsere Algorithmen zu erhöhen.
Zunächst stimmen wir die Algorithmen auf die genannten Aufgaben ohne intrinsische Motivation ab. Danach führen wir
neuartige Varianten von intrinsische Motivation, namentlich Surprisal und Prediction Error, ein. Unsere Ergebnisse zei-
gen, dass intrinsische Motivation dazu beitragen kann, die Menge an Samples, die für die Konvergenz der Algorithmen
benötigt werden, auf Kosten der Rechenkomplexität reduzieren kann.

i



Acknowledgments
Extensive calculations on the Lichtenberg high-performance computer of the Technische Universität Darmstadt were
conducted for this research. The authors would like to thank the Hessian Competence Center for High Performance
Computing – funded by the Hessen State Ministry of Higher Education, Research and the Arts – for helpful advice.
Also special thanks to Jonas Eschmann, Robin Menzenbach, and Christian Eilers giving helpful advice on the general
hyperparameter tuning of DQN.

ii



Contents

1. Motivation 2
1.1. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Related Work 4
2.1. Bootstrapping Intrinsically Motivated Learning with Human Demonstrations . . . . . . . . . . . . . . . . . . . 4
2.2. Accuracy-based Curriculum Learning in Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Unifying Count-Based Exploration and Intrinsic Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4. Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Methods 6
3.1. Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3. Exploration-Exploitation Trade-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4. Approach 15
4.1. Applying Intrinsic Motivation Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2. Predictive Novelty Motivation using Prediction Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3. Learning Progress Motivation using Surprisal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. Experiments 17
5.1. OpenAI Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2. CartPole Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6. Implementation 20
6.1. Performance Considerations of CartPole Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2. DQN-Specific Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3. DDPG-Specific Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.4. TRPO-Specific Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5. PPO-Specific Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7. Results 28
7.1. NoInfo Stabilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.2. Stabilization with Intrinsic Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3. Manually Shaped Reward Swing-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4. Swing-Up Non-Sparse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.5. Swing-Up Sparse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.6. Swing-Up Sparse Marathon DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.7. Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.8. Amount of Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8. Discussion 44
8.1. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 46

A. Hyperparameters and Algorithm Tweaks 48

B. Conda Environment 50

C. Median Plots 51

iii



Figures

List of Figures

1.1. Quanser CartPole Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1. Classic RL Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. ε-greedy Exploration Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3. Ornstein-Uhlenbeck Processes Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4. Gaussian Policy Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1. RL Loop with Intrinsic Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1. OpenAI Pendulum Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2. Quanser CartPole Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.1. Parallelization of Sampling, CartPole Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2. DQN on CartpoleSwingShort-v0, Clamped and Regular MSE Comparison . . . . . . . . . . . . . . . . . . . . . . 21
6.3. DDPG on CartpoleSwingShort-v0, Different Activation Functions Comparison . . . . . . . . . . . . . . . . . . . 22
6.4. TRPO on CartpoleSwingShort-v0, Clipped and Unclipped Actions Comparison . . . . . . . . . . . . . . . . . . . 23
6.5. TRPO on CartpoleSwingShort-v0, Different γ and Action Repeat Values Comparison . . . . . . . . . . . . . . . 24
6.6. A Detailed Look at the Learned TRPO Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.7. PPO on CartpoleSwingShort-v0, Different ε Values Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.1. Different Algorithms on the CartpoleStabShortNoInfo-v0 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2. Different Algorithms on the CartpoleStabShort-v0 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3. Different Algorithms on the CartpoleSwingShortNiceReward-v0 Task . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.4. Different Algorithms on the CartpoleSwingShort-v0 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.5. Different Algorithms on the CartpoleSwingShortSparse-v0 Task, Actual Rewards . . . . . . . . . . . . . . . . . . 38
7.6. Different Algorithms on the CartpoleSwingShortSparse-v0 Task, Theoretical Rewards . . . . . . . . . . . . . . . 39
7.7. DQN on the CartpoleSwingShortSparse-v0-marathon Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.8. Different Algorithms on the CartpoleSwingShortSparse-v0 Task, Samples Collected Comparison . . . . . . . . 42
7.9. Different Algorithms on the CartpoleSwingShortSparse-v0 Task, Wall-Time Comparison . . . . . . . . . . . . . 43

C.1. Different Algorithms on the CartpoleSwingShortSparse-v0 Task, Median Comparison . . . . . . . . . . . . . . . 51
C.2. Different Algorithms on the CartpoleSwingShortSparse-v0 Task, Median Comparison . . . . . . . . . . . . . . . 51

1



1 Motivation

Figure 1.1.: A visual representation of the Quanser Cart-
Pole simulation.

As Reinforcement Learning (RL) agents become more
adept at solving tasks with well-defined progression
markers, also called rewards, research shifts towards ex-
ploring approaches that promise better performance in
more difficult optimization landscapes such as ones fea-
turing deceptive local optima or sparse rewards. These
environments more closely resemble problems that, gen-
erally speaking, RL agents need to overcome in order to
successfully solve real-world tasks where reward func-
tions often do not exist or are expensive to produce. The
most promising approaches to solve this class of problem
include so-called hierarchical algorithms. Sometimes they
are using manually designed proxy-rewards. Another op-
tion is intrinsic motivation, which is divided into sub-
categories such as curiosity, novelty, surprisal and learn-
ing progress motivation [Oudeyer and Kaplan, 2007]. We
further introduce intrinsic motivation in Section 3.3.3.
Even environments such as the CartPole environment
shown in Figure 1.1 can be difficult to effectively navi-
gate for machine learning algorithms when trying to solve tasks where rewards are sparse. The reason for this problem
is the fact that a sequence of correct inputs needs to be made in order to receive any non-zero reward signal. As the odds
of this case to occur when only random actions are applied are very low, many RL algorithms never find any meaningful
reward signals at all.
Another difficulty is the so-called “credit-assignment problem” [McDuff and Kapoor, 2018]: classical RL algorithms follow
promising increases of the reward in order to maximise the expected reward over time. However, if rewards are sparse,
it is not always possible to discern which action ultimately lead to the earned reward, if any reward-increasing state is
found at all. One possible solution is classical supervised learning, where an algorithm is presented with labelled data
that it simply regresses on. This approach generally works well when such labelled data is available, but it also implies
that the algorithm is severely limited by the quantity and quality of available data. A good example is learning a pong
algorithm from human demonstrations. If the human is a skilled player, the algorithm will usually also perform well. In
this way, the algorithm does not learn any notion of good or bad moves, instead, it just blindly copies what the provided
samples show. Furthermore, it will not generate any emerging strategies on its own.
When looking back at how humans learn, imitation of a teacher (supervised learning) is a central aspect but by far not
the only process at work. When humans encounter new objects, they try a range of actions available to them and gather
sensory feedback. Reinforcement learning tries to imitate this human behaviour and transfer it to machine learning
agents. In this thesis, we focus on improving the way Reinforcement Learning agents explore their surroundings by
taking inspiration from our understanding of learning in humans.
Classical approaches to solve this exploration problem for agents often feature difficult human design processes or rely
on random chance for exploration. Intensive human intervention is exactly what we want to steer away from when using
Reinforcement Learning since its goal is to have an agent learning the task for us, so humans do not need to provide a
manually designed curriculum or produce lots of well-labelled samples.
At the same time, approaches that explore using random chance quickly break down when applied to tasks which require
multiple steps or have deceptive local optima. As such, it would be much more natural to teach algorithms to explore
the environment autonomously, taking previously gathered knowledge into account. One way to implement this idea is
by using a heuristic to compute how information can be gained by acting off-policy at each point in time. This approach
would make exploration much less random and much more focused on states which are unexplored and by the algorithms
standards less predictable.
This approach not only serves an exploration purpose, it also encourages the algorithm to seek out states that are not
yet fully understood, while still not being too advanced to make any learning progress in. Achieving such a behaviour
would put the algorithm into a continuous, “flow”-like state. This idea can also be used to learn basic surrogate skills
which are then used for more complicated tasks, effectively building a bridge towards hierarchical approaches. In human

2



psychology, such a behaviour is called intrinsically motivated. This term is often used as an umbrella term for machine
learning approaches that try to imitate human learning behaviour.
Even though intrinsic motivation has garnered interested in the field of RL over the past years, there is still a distinct lack
in comparison between different RL algorithms enhanced by intrinsic motivation. In this thesis, we provide an overview
of the performance of different RL algorithms on the Quanser Reinforcement Learning Benchmark Systems using intrinsic
motivation. We begin by introducing our research questions.
The first question we want to answer is how well the different algorithms perform on the Quanser Reinforcement Learning
Benchmark Systems. In order to do this, we introduce baseline performances of the different algorithms and the different
variants of intrinsic motivation are then compared against these baselines. These baselines also allow us to determine
which tasks are sufficiently covered by classic exploration methods and which tasks might benefit from intrinsic mo-
tivation. We can also compare whether intrinsic motivation improves or worsens results of tasks that can already be
solved.
The second question we want to answer is whether intrinsic motivation can help guide agents out of local optima. Wherever
classic exploration methods cannot fully solve an environment, we investigate if intrinsic motivation can help the algo-
rithm converge to the global optimum by effectively guiding it out of a local optimum. The answer to this question might
include looking at tasks where the agent is not able to produce any results, but also ones where the agents get stuck in
local optima.
The third question we want to answer is if intrinsic motivation can effectively guide an agent to explore systems where rewards
are sparse. We also investigate tasks where finding any rewards is difficult for the existing algorithms, which helps us
determine how effective intrinsic motivation is for exploration problems. Further, we explore methods by which we can
determine whether the agents produce any useful behaviour at all, even if no reward signal was received.
The fourth question we want to answer is if intrinsic motivation affects the convergence properties of the agents. One major
concern for using intrinsic motivation is whether an agent will be slowed down significantly during its optimization
process if we introduce intrinsic motivation. We also investigate methods in order to reduce the impact of these problems.
The fifth question we want to answer is if intrinsic motivation affects the computational complexity of the algorithms. Another
major concern when using intrinsic motivation is whether the used methods cause significant impacts on computational
complexity and as such on the cost of learning. We aim to introduce as little computational overhead as possible.
The final question we want to answer is how the different RL algorithms compare to each other in general. We conclude
with general assessments of the different RL algorithms. We focus on the characteristics of the different algorithms,
their general exploration properties, their hyperparameter sensitivity and how the impact of our intrinsic motivation
algorithms differs between RL algorithms.

1.1 Structure

Now that we have introduced our research questions, we present the structure we follow when answering them. In the
next chapter, we discuss related work. Afterwards, we present the methods which we base our research on, beginning
with RL, continuing with Deep RL and finishing with exploration for Deep RL. In Chapter 4, we introduce the intrinsic
motivation variants we introduce. In Chapter 5, we present the tasks and environments we use, followed by the imple-
mentation chapter, in which we discuss implementation details and hyperparameter tuning. Following this, we present
the results of our experiments and discuss them in detail. Based on this, we then answer our research questions in
Chapter 8, which we finish with a general conclusion and an outlook on future research.

3



2 Related Work
In this chapter, related research is presented in order to inform about the general landscape of current research as well
as for later reference. We begin by introducing some differing approaches to using intrinsic motivations before moving
to approaches more similar to our own research.

2.1 Bootstrapping Intrinsically Motivated Learning with Human Demonstrations

[Nguyen et al., 2011] combine social learning and intrinsic motivation in an approach called “Socially Guided Intrinsic
Motivationary Demonstration”, or SGIMD. SGIMD is a two-level approach: The high-level algorithm sets goals, while
the low-level algorithm tries to reach these goals. The intrinsic motivation is part of this algorithm in an approach
called “Self-Adaptive Goal Generation-Robust Intelligent Adaptive Curiosity”, also called SAGG-RIAC. This is a concrete
application of the competence-based intrinsic motivation. The competence is defined as

γyg
=

¨

Sim(yg , y f ,ρ), if Sim(yg , y f ,ρ)≤ εsim < 0

0, otherwise,

where yg is a set goal state, y f is the goal the algorithm actually reached and ρ are other constraints. Then, Sim(yg , y f ,ρ)
is a rating of how close yg and y f are, which directly relates to how close the algorithm is to actually reach the set goal.
The high-level algorithm uses this to compute a measure of interest for each goal and chooses the next task for the
low-level algorithm accordingly.
This paper does not address the difficulties that come with real world situations including correspondence and a biased
teacher. Instead, it is evaluated on continuous, unbounded and non-preset environments, such as a “continuous 24-
dimension action space” in simulations, e.g. throwing a fishing rod.

2.2 Accuracy-based Curriculum Learning in Deep Reinforcement Learning

[Fournier et al., 2018] use the DDPG-algorithm to perform automated curriculum learning. The algorithm is evaluated
on the Reacher Environment. The way the learning progress is measured is taken directly from the SAGG-RIAC algorithm
[Baranes and Oudeyer, 2013] (also explained in 2.1). The reward is defined as follows:

r =

¨

0, if
�

�pfinger − ptarget

�

�≤ ε
-1, otherwise

,

where ε is defining how close the agent needs to get the finger (end effector) to the target before it receives a reward.
There are two modes discussed for choosing ε: RANDOM-ε, where ε is sampled uniform from E = {0.02,0.03, 0.04,0.05}
for each episode, and ACTIVE-ε, where ε is P(εi) = cpβi /

∑

k cpβk , where cpi is the competence progress for εi .

2.3 Unifying Count-Based Exploration and Intrinsic Motivation

[Bellemare et al., 2016] use information gain, which is commonly used to quantify novelty or curiosity to enhance ex-
ploration in non-tabular RL in order to perform well on Atari games such as Montezuma’s Revenge. The information
gain is used to improve the performance of Double DQN (DDQN). Density models are used to measure uncertainty. The
information gain is defined as

IGn(x) := IGx;x1:n
:= K L(wn(·, x)||wn) (2.1)

where x ∈ X is a state and wn(x) is the posterior weight. This can be be approximated using PG:

PGn(x) := logρ′n(x)− logρn(x) (2.2)

4



2.4 Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning

[Achiam and Sastry, 2017] learn a model of the MDP transition probabilities concurrently with the policy for continuous
environments such as Atari games. “Surprisal” is used as intrinsic motivation flavour. The transformed reward used in
Trust Region Policy Optimization (TRPO) is defined as

r ′(s, a, s′) = r(s, a, s′) +η(log P(s′|s, a)− log Pφ(s
′|s, a)), (2.3)

where r(s, a, s′) is the original reward, Pφ is the learned model, P is the transition probability function and η > 0 is an
exploitation-exploration trade-off factor. Alternatively, the reward can be defined as

r ′(s, a, s′) = r(s, a, s′) +η(log Pφt
(s′|s, a)− log Pφt−k

(s′|s, a)), (2.4)

where the true transition probability function is not required for learning. Evaluation happens on OpenAI Gym environ-
ments that are modified to feature sparse rewards, such as sparse MountainCar, sparse CartPole Swing-Up and sparse
HalfCheetah, as well as the Atari games such as Pong, BankHeist, Freeway and Venture.

5



3 Methods
In this chapter, we introduce all the general methodology about Reinforcement Learning (RL) and intrinsic motivation
that is needed in order to guide our own approach in Chapter 4. We start by explaining RL in general. Afterwards, we
explain Deep RL and the algorithms we use for our research, namely DQN, DDPG, TRPO, and PPO. Finally, we introduce
the concept of the exploration-exploitation trade-off for RL and different classical exploration methods as well as intrinsic
motivation.

3.1 Reinforcement Learning

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1.: A visual representation of the RL Loop. The
agent receives state St and reward Rt and
outputs an action At based on the observa-
tions. The environment then produces new
St and Rt signals.
Source: [Sutton and Barto, 1998]

In RL, an agent is tasked with acting in an environment
in such a way that it maximises some form of reward
[Sutton and Barto, 1998]. Usually, these environments
are interpreted as some form of Markov decision process
(MDP) defined as a tuple (S, A, Ra, Pa), where S is a set
of states, A is the set of actions available to the agent,
Ra(s, s′) is the reward the agent receives when taking ac-
tion a in state s and ending up in state s′. Pa(s) describes
the state transition probabilities for all combinations of
state and action. A visual representation of the RL loop
can be found in Figure 3.1.
With this definition, we can compute Gt , the discounted
return of an episode starting from time t up to the final
step T as

Gt =
T
∑

k=t+1

γk−t−1Rk, (3.1)

where Rk is the reward experienced by the agent at time k, plus all future rewards, exponentially decaying by some factor
0 < γ < 1. γ = 0 means no future rewards are taken into account while γ = 1 implies that the total future reward is
taken into account.
In order to formally define how agents take actions, we use a policy π(s, a) such that At = a given St = s, or in other
words, how likely it is that we choose action a from all possible actions at time t given that we are in state s out of
all possible states St at that point in time. The policy is sometimes simply noted as π(s), in which case it returns some
probability distribution that describes the likelihood of all actions.
With this definition, we can define functions that help us evaluate possible states and future actions. The first metric we
introduce is the notion of “value”, usually defined as Vπ(s). It indicates how valuable - or in other words desirable - it is
to be in a certain state. The computation of this value function depends on the specific algorithm, the current policy and
their parameters. The general definition according to [Sutton and Barto, 1998] is

Vπ(s) = E
π

�

Gt |St=s

�

= E
π

�∞
∑

k=0

γkRt+k+1|St=s

�

, for all s ∈ S, (3.2)

all variable definitions being equal to their introduction at the beginning of this section. The value function corresponding
to following an optimal policy is usually defined as V ∗(s).
In some scenarios it is helpful to differentiate between the different actions we can take and what their expected value
is. In theory, having a way to compute the expected returns of each possible action would allow the agent to compare
different actions in the current state under the assumption that we act according to some policy π in all future states. We
call this function the q-function, and it is defined as

Qπ(s, a) = E
π

�

Gt |St=s,At=a

�

= E
π

�∞
∑

k=0

γkRt+k+1|St=s,At=a

�

, for all s ∈ S, (3.3)

6



where again, the discount γ, the reward R and the states S are defined analogous to the value function. In theory, being
able to compute the optimal q-function Q∗(s, a) would allow for optimal decision making. Both states and actions can be
either continuous or discrete, depending on the algorithm and environment.
Additionally, in RL we are often faced with a difficult question: Is the expected return of a certain action a better than
acting according to our policy or not? Which leads to the question whether we should change our policy to make that
action more likely if the answer is yes or less likely if the answer is no. Simply looking at Qπ(s, a) does not suffice
to determine whether this is the case. For different states and different policies, vastly different ranges for Q can be
considered high or low. Instead, we need to use a measurement that instead of encoding “good” or “bad” in terms that
are not straightforward to interpret, tells us if a certain action is “better” or “worse”.
Mathematically speaking, we now have the necessary groundwork to put this notion in a single value, which is generally
called advantage. The advantage is defined as

Aπ(s, a) =Qπ(s, a)− Vπ(s). (3.4)

As a quick reminder, Vπ(s) encodes the value of starting in state s and acting according to the policy π. Qπ(s, a) encodes
the value of starting in state s, taking action a and from then on acting according to policy π. For example, if we choose
a = π(s), this means that Qπ(s, a) = Vπ(s) and thus our advantage is 0. A positive advantage when choosing an action
a differing from the policy would mean that Qπ(s, a) > Vπ(s) and thus we can improve our expected return by updating
our policy to make that action more likely. Similarly, a negative advantage suggests that action a is worse in state s and
the agent should adapt accordingly. Now that we have introduced different measures for deciding in which direction we
want to update our agents, we need a way to actually apply updates to our agents.

Gradients

The gradient of a function f is the vector field containing its partial derivatives [Ruder, 2016]. If we now see our agent
as a function fθ (s) that takes in a state and outputs an action and depends on the parameters θ , we can use the gradient
in order to update our agent. Since our agent is defined by some parameters θ , we want to know how we need to shift
these individual parameters in order to change the outputs our agent produces. The basic approach is that we define a
loss function, such as the Mean Squared Error (MSE), which is defined as

MSEθ = Vdesired(s)− Vθ (s). (3.5)

We want this error term to converge to 0, which means that our agent produces the desired outputs. The error can never
get below zero since we square the difference. As a result, attempting to reduce the error to zero is equivalent to finding
a global minimum. The gradient already tells us the direction of steepest ascent, so at each step we can go into the
opposite direction in order to minimise this error.
Since the optimization landscape might not be smooth, hitting local minima instead of a desired, global minimum is
highly likely. Being stuck in such a minimum is one of the key problems we attempt to solve in this thesis.

3.2 Deep Reinforcement Learning

In recent years, Deep RL has rapidly grown in popularity due to advances in computing resources. With Deep RL, neural
networks of varying sizes are used as function approximators in varying forms, for example in order to estimate the Q- or
Value-functions. We present four well known Deep RL algorithms: DQN, DDPG, TRPO and PPO. Afterwards, we present
how classic exploration works for these algorithms before introducing intrinsic motivation.

3.2.1 Deep Q-networks (DQN)

Deep Q-networks (DQN) is a RL algorithm that optimizes in parameter space [Mnih et al., 2015]. It is a variant of
Q-learning that approximates the q-function using deep neural networks. This approach offers the advantages of a non-
linear function approximation, but also destabilizes the algorithm since small changes in parameter values can have big
impacts on the resulting policy. A couple of measures to improve the stability are discussed after the general algorithm
introduction. DQN learns the q-function and operates on a set of discrete, predefined actions. States can be either
continuous or discrete. The agent keeps a replay buffer of the last N encountered state transitions and at each update
step, a mini batch of transitions is sampled that will then be used to update the q-function approximator. The algorithm

7



uses a copy of this approximator that is only updated rarely in order to approximate the future rewards. The general
update equation is

y j =

¨

R j , if episode terminates at step j+1

R j + γmaxa′ Q̂(s j+1, a′;θ−), otherwise.
(3.6)

In this case, R j is the reward experienced by the agent during state transition j, plus all future rewards, exponentially
decaying by some factor 0 < γ < 1. The delayed copy of the function approximator, Q̂(s j+1, a′;θ−), is used to estimate
the future rewards, based on the assumption that at each point in time the agent acts optimally according to the delayed
q-function approximation.
A couple of tricks can be used to increase the stability of the algorithm. Experience Replay reduces the correlation
between learning data and current policy. With this technique, the learning data is randomly sampled from an experience
buffer that always stores a set number of experiences tuples. Clamping error values reduces the impact of outliers. The
difference between y j and the current network output is clamped between -1 and 1 before squaring. This clamping can
also be detrimental to algorithm performance when outliers provide important learning examples. Delayed Q-network
updates only update the network used for future predictions every C steps. This freezing of the function delays the
impact that updates have on the current policy network. In other terms, it decouples the predicted values of states that
are close to each other, preventing a catastrophic inflation in value function values. Additionally, we only update the
policy network every ten steps during our research, which reduces computation time. This compromise is especially
relevant when using intrinsic motivation variants that are computationally expensive.

3.2.2 Deep Deterministic Policy Gradients (DDPG)

While the ramifications of Deep Deterministic Policy Gradients (DDPG) [Lillicrap et al., 2015] are similar to DQN, there
are two major differences that distinguish the algorithms. Firstly, DDPG is based on continuous action spaces, opposed
to DQN’s discrete actions. Secondly, DDPG uses two neural networks instead of one, namely an actor and a critic. The
critic, in similar style to the DQN network, approximates the q-function Q(s, a|θQ), and is thus often referred to as Q.
This q-function approximator however is not used to directly form the policy. That is the task of the actor network, which
is the reason that it is often denoted as µ(s|θµ). Q is only used to build the gradient that updates µ. Again, the algorithm
keeps a replay buffer and randomly samples from it in order to update the networks and delayed copies of the networks
for approximating future rewards denoted as Q(s, a|θQ′) and µ(s, a|θµ

′
), though the update steps of these networks differ

from DQN. The loss function and update rule for the critic network is

L =
1
N

∑

j

(y j −Q(s j , a j |θQ))2, (3.7)

which is the mean squared error of the current q-function approximator compared to its supposed value y j . This value
y j is calculated as

y j =

¨

R j , if episode terminates at step j+1

R j + γQ′(si+1,µ′(si+1|θµ
′
)|θQ′), otherwise,

(3.8)

where again, R j is the reward experienced by the agent during state transition j, plus all expected future rewards when
acting according to the delayed policy µ′(s), exponentially decaying by some factor 0< γ < 1.
The case for absorbing states is not denoted in the original DDPG paper, however it is integral for any experiments that
are not infinite horizon by default and likely just an accidental omission of the original authors.
The gradient that is used to update the actor is defined as

∇θµ ≈
1
N

∑

j

∇aQ(s, a|θQ)|s=s j ,a=µ(s j )∇θµµ(s|θ
µ)|s j

, (3.9)

where N is the number of samples used for the update step, and ∇aQ(s, a|θQ)|s=s j ,a=µ(s j ) is the gradient of the current
q-function based on the current state transition samples. The policy gradient ∇θµµ(s|θµ)|s j

is computed in an analogous
manner.
Additionally, the update steps for the target networks is designed to be smoother than DQN updates, i.e. they are defined
as

θQ′ ← τθQ + (1−τ)θQ′ (3.10)

8



and

θµ
′
← τθµ + (1−τ)θµ

′
, (3.11)

where 0 < τ < 1 is an update factor, usually close to 0 that slowly “drags” the delayed copies of the networks behind
the current ones in a smoother manner than DQN which does full updates every n steps. The major disadvantages of
DDPG are the increased computational complexity and the introduction of additional hyperparameters since there are
two networks that need to be defined and updated. In our experience, using DDPG is still worthwhile since it is more
stable in terms of learning progress and less sensitive to parameter misconfiguration. One major consideration when
using DDPG is that it is very sensitive towards the output values of the actor network - thus any scalar outputs should be
normalized to be between zero and one.

3.2.3 Trust Region Policy Optimization (TRPO)

Trust Region Policy Optimization (TRPO) [Schulman et al., 2015a] is a Monte Carlo method and limits updates of a
policy to a so-called “Trust Region”. This trust region is defined as the KL-Divergence between the old and the new policy.
Update steps are also computed in such a way that each parameter is shifted proportionally to how much impact it has
on the resulting policy, i.e. by taking its second derivative into account. The general expectation TRPO maximises is

max
θ
Êt

�

πθ (at |st)
πθold

(at |st)
Ât

�

− βK L[πθold
(·|st),πθ (·|st)]. (3.12)

In each training iteration, the parameters are updated such that

θk+1 = θk +α
j

√

√

√

2δ

x̂ T
k Ĥk x̂k

x̂k (3.13)

s.t. D̄K L(θold ||θnew)≤ δ, (3.14)

where θk are the policy parameters at time-step k, x̂k are the rates of changes of each parameter, Ĥk is the Hessian
and δ is a hyperparameter limiting the difference between old and new policy. In order to improve efficiency, several
approximations need to be made, such as the backtracking line search using the factor α j where 0 < α < 1 is predefined
and j is the smallest positive integer so that the constraint is not violated. Also, since computing the Hessian and its
inverse for each iteration is very expensive, especially if the policy features a lot of parameters, the conjugate gradient
algorithm is used together with the fact that we can compute H x using

H x =∇θ ((∇θ D̄K L(θ ||θk))
T x), (3.15)

where ∇θ D̄K L(θ ||θk) is the gradient of the policy describing the velocity with which each parameter changes the KL-
divergence when updated [spi, 2019].
In general, TRPO is a very stable and well-performing algorithm due to the cautious update policy. Its downsides lie in
the fact that policy samples cannot be reused often (if at all), resulting in a low sample efficiency. The algorithm can also
get stuck in local optima due to its limited ability to perform large jumps in the policy landscape in order to escape out
of said bad optima.

Generalized Advantage Estimation

In order to guide TRPO towards increasing rewards, we need some way to weigh our policy gradient. Actions that
are considered positive for the task should increase in likelihood (positive weight) and actions that lead to negative
consequences decrease in likelihood (negative weight). One possible option when using a roll-out based method is
the total future reward. For this implementation, we choose the so-called Generalized Advantage Estimation (GAE).
First introduced in [Schulman et al., 2015b], GAE not only discounts future rewards but also evaluates the actions and
rewards compared to the currently expected rewards, forming a notion of “better or worse compared to what we know”
rather than “good or bad”. In order to do this, first we compute the residuals δ as

δV
t = Rt + γV (st+1)− V (st), (3.16)

9



with Rt being the reward at time t and V (s) being the estimated value of state s. Intuitively, these residuals quantify the
difference between estimated value of state st compared to the actually received reward plus the estimated, discounted
future rewards.
This estimation is then used in a similar fashion to how one would compute regular, discounted future rewards to form
the Generalized Advantage Estimation ÂGAE(γ,λ)

t as

ÂGAE(γ,λ)
t =

l
∑

l=0

(γλ)δV
t+l . (3.17)

Note that the factor 0 < γ ≤ 1 is usually the discount factor and 0 < λ ≤ 1 controls the bias-variance trade-off, with
high values denoting a low bias and high variance and low values denoting the opposite. In this case however, the math
works out so that γ and λ form a single factor, which effectively means that for GAE looking further into the future means
higher variance. We primarily use GAE for our experiments when using TRPO or PPO.

3.2.4 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [Schulman et al., 2017] tries to solve the same general problem as TRPO: How
can we ensure that an update step actually improves the overall policy? In a similar vein to TRPO, PPO achieves this
guarantee by limiting the size of the possible update step, albeit in a different manner. For the purposes of this research,
we use the clipped variant of the PPO loss, defined as

LC LI P(θ ) = Et

�

min(Rt(θ )Ât , clip(Rt(θ ), 1− ε, 1+ ε)Ât)
�

, (3.18)

where Ât is the advantage and 0 < ε < 1 is some clipping value. A larger clipping value allows for larger policy steps,
thus speeding up policy evolution, at the cost of less policy stability. The choice of ε is an important trade-off for PPO.
On the one hand, lower ε values make the algorithm more stable, however it also follows that the algorithm is more
likely to get stuck in local optima and takes longer to converge. On the other hand, larger ε values may lead to quicker
convergence but also increase the likelihood of fatal changes in the policy.
The advantage is again computed using Generalized Advantage Estimation as described above. The upside of PPO when
compared to TRPO is that the loss can be easily optimized using standard Gradient Descent algorithms such as ADAM or
RMSprop, however one loses TRPO’s parameter sensitivity.

3.3 Exploration-Exploitation Trade-Off

Since the agent does not know anything about how the environment works and thus how e.g. the value function might
be computed. Therefore it needs to start by blindly exploring according to some initial policy π(s) - this initial exploration
is always necessary before the agent can make any informed decisions about which action to take. As time goes on and
the agent learns about the environment, it is then able to take more informed actions in order to achieve its goal, which
usually correlates to maximizing some reward function defined in the environment black box. So at each point in time,
the agent has to choose between either maximizing the reward by exploiting its current knowledge or further exploring
the environment. This trade-off has no immediately visible solution: If the agent is in a local optimum, it does not know
whether it is also in a global optimum. Multiple steps might need to be completed before a better optimum can be
found. We call this concept exploration-exploitation dilemma, and finding a good balance is essential for achieving good
efficiency in any non-trivial RL problem. This problem is even further exacerbated in environments that only feature
sparse rewards. In these cases, finding an action sequence that leads to any rewards at all can be very difficult, and
even when such a sequence is found, it is not always clear which specific actions lead to the gain in reward. Overall, we
want to maximise the amount of useful behaviour an agent exhibits. Usually, the only measure available to distinguish
useful from non-useful behaviour is thus the reward function specific to the task and environment. We will now discuss
different ways to solve the exploration-exploitation dilemma.

3.3.1 Classical Exploration Methods

Heuristics that aim to solve the exploration-exploitation dilemma exist in various forms. First, we want to introduce
the well-known, classical examples of ε-greedy exploration, Ornstein-Uhlenbeck process, gaussian policies and reward
shaping. Afterwards, we discuss intrinsic motivation variants.

10



Figure 3.2.: ε-greedy exploration visualized for the discrete actions [-5.0, -1.0, 0.0, 1.0, 5.0]. In this case ε= 0.2. The
agent chose action “-5”, which means that there is a 80% of taking that action and all other actions
have a probability of being taken of 5%.

ε-greedy exploration

With the ε-greedy exploration approach, an agent has a chance of ε during each time-step to take a random action, i.e.

πε(s) =

¨

random a ∈ At , x rnd < ε (exploration)

π(s), otherwise (exploitation),
(3.19)

where 0 < x rnd < 1 is a random number chosen each time the πε(s) is evaluated. A visualization of the ε-greedy
exploration can be found in Figure 3.2.
The probability ε may decay as training epochs go on, slowly making the agent more deterministic as exploitation is
favoured over exploration. This approach functions without any definition of what useful behaviour is, it is thus com-
pletely unbiased. Nevertheless, this approach has proven effective, especially if the reward function of the environment
is shaped well. However, it is suboptimal in different ways. Since it explores in an unbiased way, it might repeatedly
explore parts of the state space that are already sufficiently explored, wasting computational time. At the same time,
exploration mostly takes place close to the current policy, larger deviations exponentially decrease in likelihood with the
amount of off-policy steps that have to be taken. As a result, ε-greedy exploration is not well-suited for sparse reward
settings, where exactly such exploration is necessary.

Ornstein–Uhlenbeck Process

Typically, Ornstein-Uhlenbeck (OU) processes [Uhlenbeck and Ornstein, 1930] are used for exploration with DDPG
[Lillicrap et al., 2015]. A short explanation of the OU process is that it is a random walk with a bias of moving back
towards the mean of the process. A visualization can be found in Figure 3.3. The process is controlled by the four
parameters a, µ, σ and θ . It is defined by the equations

dX (t) = σ · (µ− X (t))d t +σdB(t), with X (0) = a. (3.20)

µ ∈ R is the mean where the process usually starts and to which it moves back over time. σ > 0 is the standard deviation
which controls the normal distribution from which the next state is sampled. θ > 0 controls the bias of how strong the
bias towards the mean is. a ∈ R is the beginning state of the process and B(t) is a Brownian motion. Correct choice of

11



Figure 3.3.: Ornstein–Uhlenbeck Processes with θ = 0.4, σ = 0.1, µ = 0 and different starting positions a. One
can observe the processes tendency to return to the mean over time, even when starting from positions
further away.

these parameters is paramount for a successful run of DDPG. Even slightly wrong values or a bias in the random number
generator of a computer can completely decide whether a run is successful or not.

Non-Deterministic Policies

Many algorithms that can work with continuous action spaces have non-deterministic policies as exploration method
built-in. Algorithms such as TRPO and PPO usually output normal distributions, from which actions are then sampled.
This exploration approach is similar to ε-greedy exploration, however it features some key differences. One is that
the standard deviation of the distribution impacts the algorithm’s consistency - higher standard deviation means more
exploration, but a less stable policy. Thus, tuning of the standard deviation is important. One can configure the deviation
to be an output of the neural network, a hyperparameter or a training variable. Another important difference is that the
algorithm is highly unlikely to explore far away from the distribution mean, also visualized in Figure 3.4. This can lead
to problems when using trust region algorithms such as TRPO or PPO. Since the distribution is not allowed to change too
much for each iteration, and actions far away from the current action mean are unlikely to be sampled, it is possible for
such an algorithm to never explore certain parts of the action space that are separated from the agents starting position
by an optimization valley.

3.3.2 Reward Shaping

Another common approach is reward shaping. With reward shaping, the reward function is enhanced such that the agent
is guided towards a good policy, e.g. by adding action penalties, or metrics that improve in a steady manner as the agent
approaches an optimal solution. In theory, such a well-shaped reward function together with an exploration method such
as ε-greedy should allow an agent to efficiently reach a goal.
In practice, however, several problems arise. The first being that by providing such an explicit guideline, the probability
of an agent developing a creative solution is severely diminished. Much like in supervised learning, where an algorithm
is limited by the samples it is given, an algorithm that solely relies on a “friendly” reward function will always be limited
to following a curriculum developed by humans. This problem directly ties into the next point: For each new task
and/or environment, a new reward function needs to be developed, greatly reducing the general applicability of this
approach. At the same time, generating such a reward function is not straightforward. Frequently, agents find unusual
and unintended exploits in the optimization landscapes of such reward functions.

12



Figure 3.4.: Example of a non-deterministic policy. In this case a gaussian distribution that is the output of a TRPO
network.

As a result, finding an exploration strategy that allows an agent to explore its environments independently would be far
more applicable to real-world problems.

3.3.3 Intrinsic Motivation

According to [Ryan and Deci, 2000], “Intrinsic motivation [in humans] is defined as the doing of an activity for its
inherent satisfaction rather than for some separable consequence. When intrinsically motivated, a person is moved to act
for the fun or challenge entailed rather than because of external products, pressures, or rewards”. One real-life example
for this phenomenon can be seen in the way babies explore their environments, e.g. by putting new toys in their mouths.
Another example would be adults learning new skills like juggling because it is fun, in contrast to learning a skill in order
to impress other people or generate income. So in short, the distinction between intrinsic and extrinsic motivation is
the reason a person (or in our case, an algorithm) does something [Legault, 2016]. The difference between internal and
external rewards is similar. They are used to describe where the task reward stems from. As is not unusual in the field of
psychology, these different rewards and motivations do not necessarily need to be exclusive to each other and drawing
clear lines is not always possible, which is also reflected in their algorithmic counterparts, which we discuss in later parts
of this work.

General Notations

The most general element of intrinsic motivation is usually some event k, also noted as

ek ∈ E. (3.21)

The specific set of defined events E depends on both the RL problem and the form of intrinsic motivation used. This set
of all events is not to be confused with E, the notation we use for prediction errors of all kind. Possible event definitions
can be specific states, state-action pairs or being in a range of states.

Applying Intrinsic Motivation Rewards

One way of applying intrinsic motivation with any RL algorithm is to combine the intrinsic and extrinsic reward signals,
possibly scaled by some factor. This approach features maximum compatibility and ease of application. However, it

13



puts a larger burden on the RL algorithm, which now has a noisy reward signal featuring two different sources of
information. On top of that, the intrinsic reward signal is a constantly shifting goalpost, further increasing the difficulty
of convergence. When using this approach, we evaluate closely whether the algorithms are conversely effected in their
convergence property.
As combining both extrinsic and intrinsic rewards into a single denominator is straightforward but not necessarily ideal
when it comes to the optimization landscape, we propose a second solution: Instead of combining the two rewards, we
leave them separate until the last part of the optimization step. In a concrete example like TRPO, choosing this approach
would mean computing two value functions that could then be used to compute two sets of advantage estimates. Opti-
mization could then be done using either one of the two, corresponding to exploration or exploitation respectively. The
decision when to use which of the two value functions would be of major importance for the general performance of this
approach. Since this trade-off is difficult to fine tune and needs to be explicitly repeated for each algorithm, we do not
use this approach during our research. Nevertheless, it is important to mention that intrinsic motivation can also be used
to enhance algorithms in a more specific, targeted manner.
With these equations in place, we can define the following types of intrinsic motivation.

Mathematical Interpretations of Intrinsic Motivation

In this section, we give a general overview of how RL and intrinsic motivation can be modelled mathematically. Discussion
and in-depth explanation is done in the corresponding sections in Chapter 4. [Oudeyer and Kaplan, 2007] is used to
provide the general categorization as well as mathematical definitions. The introduced terms are used as a baseline to
compare against for the different implementations in other papers.

Predictive Novelty Motivation

Predictive Novelty Motivation (NM) is a straightforward way to use the prediction error for rating samples as interesting,
simply scaling the error by some constant. The formulation is

r(SM(→ t)) = C · Er(t), (3.22)

where C is a scaling factor and Er(t) is some error that the agent can compute. In theory, this reward makes states where
the error is large more interesting, resulting in them being sought out more often, which should provide relevant samples
to reduce the error. If the policy is able to learn a correct model, this intrinsic motivation term should naturally taper out
over time as the model gets perfected.

Learning Progress Motivation

Learning Progress Motivation (LPM) tries to maximise the prediction/learning progress. It compares the learning progress
for regions that are already similar (denoted by R). Finding these regions can be difficult, one general approach is
clustering. More information can be found in [Oudeyer et al., 2007]. The general notation is defined as

r(SM(→ t)) =



ERn
r (t −Σ)

�

−



ERn
r (t)

�

, (3.23)

where r(SM(→ t)) is a predictor for the reward based on the current state and action. ERn
r (t) is the prediction error at

time t and Σ is a predefined amount of time-steps.

14



4 Approach
In this chapter, we discuss ways in which intrinsic motivation rewards can be applied to algorithms. Traditionally, RL
algorithms try to measure some aspects of the environment, such as an extrinsic reward that encodes good and bad states.
We call this extrinsic reward Rex(ek), where ek is some event on the basis of which this reward is computed. This event
can for example encode states and actions. The algorithm then tries to relate actions it has taken with this measure in
order to update itself. If we have just one measure, this behaviour can be computed in a straightforward manner. Good
rewards increase the likelihood of taking an action, bad rewards reduce it and we add some noise, e.g. for exploration.
However, this approach is not always sufficient to allow RL agents to solve tasks. We are especially interested in algorithm
performance in tasks with at least one local optima or non-informative (sparse or flat) rewards. In order to evaluate the
algorithms in these regards, we use stabilization of a pendulum with both regular and non-informative reward functions,
swing-up of a pendulum with a potential local optima and swing-up of a pendulum with a sparse reward function.
As a means of improving algorithm performance on these tasks, we introduce intrinsic motivation to the agents. We do
this by developing new measures Rim(ek), which encode intrinsic motivation factors, where ek is some event similar to
the definition in Rex(ek). By doing this, we aim to guide agents using Rim(ek) even when Rex(ek) is non-informative or
deceiving. As a result we arrive at two major questions:

1. How can we apply both Rim(ek) and Rex(ek) to our algorithms?

2. How do we choose to compute Rim(ek) in the first place?

We will first discuss the former and then the latter.

4.1 Applying Intrinsic Motivation Rewards

Agent

Environment

action
At

reward
R =R    +C·R t t, ex t, in

state
St

Rt+1

St+1

Figure 4.1.: Visualization of the RL loop with intrinsic mo-
tivation added according to the weighted ad-
dition approach.
Modified from: [Sutton and Barto, 1998]

In this section we briefly discuss the different ways to
apply intrinsic motivation. The general trade-off in this
regard is whether the approach is early in the RL loop,
which might make it more generally applicable, or later
in the loop, which make the agent to some extent aware
of the difference between intrinsic and extrinsic rewards.
However, our research is specifically targeted at produc-
ing a comparison between different algorithms. As a re-
sult, we stick with the approach of combining the rewards
outside of the RL agents boundaries. Thus we enhance
the regular, extrinsic reward as:

Rcombined(s) = Rex(s) + C · Rim(s), (4.1)

with C being a manually chosen scaling constant. The
new combined reward Rcombined(s) is then used in place of the regular reward Rex(s). A visualization of where in the RL
loop this is applied can be found in Figure 4.1
This approach is a very plug-and-play solution. Basically any existing RL algorithm can be enhanced without changing
fundamentals of the algorithm. However, one of the major problems is that it breaks the implicit promise of a single
optimization target the agent moves towards. Instead of having a single goal that is to be optimized (exploring or
exploiting), it gets a mash-up of the two, where the intrinsic reward is constantly moving. On top of that, the proper
scaling between the rewards needs to be optimized. One approach is similar to ε-greedy decay: reducing the factor
C over time to aid exploration in the beginning of the learning session while helping convergence once learning has
progressed further.

4.2 Predictive Novelty Motivation using Prediction Error

Since concrete estimations of our probability distribution prove difficult and do not scale well with complex state spaces,
we propose other methods of quantifying how familiar a state is. One approach to solve this problem is learning the state

15



transition function P(s′|s, a). For this approach we assume a deterministic environment, so that P(s′|s, a) = 1 for exactly
one s′ ∈ S and P(s′|s, a) = 0 for all other s ∈ S. If we can correctly predict the short term effects of an action a in state
s, executing said action is unlikely to result in an improvement of the agents understanding of the state space. As such,
we learn a neural network Φ(s, a)→ s′Φ with the mean squared error clamped to the interval [0,1]. We can then use the
average error between the predicted next state, s′Φ, and the actual observed next state, s′, as a base for an intrinsic reward
by computing

Rim =
1
Ns
·
∑

(clip[−1,1](s
′
Φ − s′))2, (4.2)

with s ∈ RNs and Ns being the dimensionality of the environment specific states. If we assume that our network is capable
of learning a full state transition model, this error will slowly converge towards zero over the course of the experiment.
This behaviour means that the intrinsic reward also slowly tapers out. As a result, the agent learns to maximise the
extrinsic reward Rex without any noise from intrinsic rewards. Additionally, we subtract a baseline from Rim, i.e. the
minimum Rim of the current update iteration. This measure ensures that the least familiar state-action pair always
receives zero additional reward. A different option for a baseline would have been the mean, but that would cause
the intrinsic rewards to reach into the negative numbers, something we want to specifically avoid since the agent could
possibly benefit from ending an episode early in that case.

4.3 Learning Progress Motivation using Surprisal

The last approach we want to introduce is Surprisal, which is also sometimes called “Learning Progress Motivation”.
This approach is strongly influenced by [Achiam and Sastry, 2017], introduced in Section 2.4. Surprisal is also based on
learning a state transition model P(s′|s, a). The model we learn is of the form

PΦ(s
′|s, a) =N (Φ(s, a),σΦ), (4.3)

where Φ is the trained neural network and σ is a separate, tunable parameter of the network. This differs from
[Achiam and Sastry, 2017], who propose learning a bayesian neural network.
We then use this model to compute the intrinsic reward as

Rim = C · (log PΦ′(s
′|s, a)− log PΦ(s

′|s, a)), (4.4)

where 0< C < 1.
This particular approach has the disadvantage that in order to estimate the intrinsic rewards, an update to the network
has to be made. This solution is well-suited for algorithms such as TRPO and PPO, which only update once for every
N sampled episodes. For algorithms such as DQN and DDPG that feature a replay buffer and update multiple times per
episode, this solution can be a problem. One has essentially two options in this case:
1) Predicting the intrinsic rewards for each update of the algorithm. So for each update, we also have to update the
transition model of our Surprisal module. The problem with this approach is that it is computationally very expensive,
making it impractical. Reducing the amount of algorithm updates per episode (and thus the amount of total updates
needed for a training run) helps to reduce the impact of this problem, however this approach remains unfeasible.
2) Predicting the intrinsic rewards for each state-action pair in the replay buffer once every training episode. The first
problem with this approach is that newly sampled transitions cannot be added to the replay buffer until the current
episode is finished, since there is no intrinsic reward computed for them yet. The second problem is that for large replay
buffers, one is likely to predict the intrinsic reward for state-action pairs that are never used in an algorithm update.
As such, we use the first option for the remainder of our research.

16



5 Experiments
The experiments feature multiple algorithms both in their base form as well as with added intrinsic motivation on multiple
gym environments, with added evaluation of learned policies on real robots. In the next sections, we introduce the tasks
and environments used for the evaluation of the different algorithms. Each environment can have different tasks, while
we mostly focus on classic mechanical tasks.

5.1 OpenAI Pendulum

Figure 5.1.: A visual representation of the Pendulum-v0
environment. The pendulum is mounted at
a fixed axis around which it can turn. The cur-
rent velocity is displayed as the arrow.

An example of the first environments used for each algo-
rithm is the Pendulum-v0. Previous experience allowed
us to make good guesses about certain parameters such
as γ = 0.999. At the same time, the simplicity of the
environment without many deceptive local optima and
low stochasticity allowed for a wider range of parame-
ters to produce good policies. On top of that, episodes of
Pendulum-v0 are fixed length and as such make advantage
estimation more straightforward.
The Pendulum-v0 is a standard OpenAI Gym environment
[Brockman et al., 2016]. It consists of a single pendulum
fixated on an axle. A visual representation is depicted
in Figure 5.1. The state space of the Pendulum consists of
the pendulum angle and velocity. The observation space is
similar, however instead of the pendulum angle, its sine
and cosine are returned. This transformation serves to
remove jumps from the pendulum angle where it would
jump from −π to π or vice versa. The alternative solu-
tion of letting the angle continue outside of a range of 2π
would result in state aliasing, which is also not desired in
this case. Actions are clipped between −2.0 and 2.0.

5.1.1 Pendulum-v0

The default task on the Pendulum-v0 is the classic swing-
up. The pendulum starts at a uniformly random angle
with a random velocity. As such, it is possible that the
pendulum is already in an upright, almost stable position
at the beginning of the episode, significantly decreasing the difficulty of the task for that specific episode.
The reward function is defined as

Rt = −(θ 2
t + 0.1 · θ 2

dtt
+ 0.001 · a2

t ), (5.1)

where θt is the pendulum angle, θd t t
is the pendulum angle velocity and at is the action taken at the current time-step,

after being clipped. This cost naturally guides the agent to conserve energy. It also ensures that the agent does not take
large actions that are clipped anyway so it does not leave the desired action space. This problem is mostly an issue for
algorithms that do not use discrete action spaces such as TRPO and PPO. We see the effects of omitting such a penalty
term when looking at environments that clip actions but do not penalize them in the reward.
It is important to note that just because an algorithm is able to solve this pendulum, does not necessarily mean that it
is implemented without errors. In our case, a bug with the Generalized Advantage Estimation did not prevent TRPO
from solving the pendulum since it only became apparent when bad actions could lead to a premature end of the current
episode.

17



5.2 CartPole Environments

Figure 5.2.: A visual representation of the CartPole envi-
ronments. The original visualization is part of
the OpenAI Gym environment, though usage
for the Quanser CartPole is analogous.

The main research platform we use are the Quanser Re-
inforcement Learning Benchmark Systems [Qua, 2019].
The following CartPole environments are implemented
in the quanser robots repository [Belousov et al., 2020].
They all feature a free swinging pendulum mounted on
a cart that can move along a line. The cart is controlled
by applying voltage to a motor, in this case between -24.0
and 24.0 Volts, which directly correlates to the actions an
agent can take. A visual representation is depicted in Fig-
ure 5.2. The state space of the CartPole consists of the cart
position, cart velocity, pendulum angle and pendulum an-
gle velocity. The observation space is similar, however
instead of the pendulum angle, its sine and cosine are re-
turned. Each episode either ends after 10000 time-steps
regularly, or prematurely when the cart reaches its posi-
tion limits to the left or the right edge of the visualization.
For the purposes of our research, we have noticed an im-
provement in performance if we repeat actions and thus
reduce the control frequencies. In all our experiments,
each action is applied five times transparently for the al-
gorithms and the rewards of these steps are added.

In our experiments we use an additional cut-off condition. Some agents can learn that spinning the pendulum at ever
increasing speeds is a local optimum. After certain speeds, this high velocity means that the pendulum angle can reach
arbitrary positions in each time-step, since the time deltas are large compared to the pendulum velocity. On top of that,
the agent might perform a successful swing-up, but “skips” over the topmost position, which also falsifies the overall
episode return.

Since policies that exhibit this behaviour exploit the simulation, and would also be potential damaging for the real robot
and outright dangerous for any experimenters, we introduce a safety shut-off at any pendulum velocities greater than
a certain threshold. Additionally, the CartPole environment technically allows for voltages in a range of [−24.0, 24.0].
However, applying these kinds of voltages to the real robot will result in increased wear, which is why we clip any actions
to the range of [−5.0, 5.0]. This constraint still allows fulfilment of all tasks on the pendulum, however, they get harder.

5.2.1 CartpoleStabShort-v0

In this simulation of the CartPole, the pendulum starts in an upright position with low velocities for both the cart and the
pendulum. In addition to the cut-off conditions mentioned in the previous section, the episodes of CartpoleStabShort-v0
also end when the pendulum angle deviates too far from the upright position, meaning swinging around fully is impos-
sible. The reward is defined as

Rt = − cos(θt) + 1, (5.2)

where θt is the pendulum angle at time t. The highest reward is achieved when the pendulum is in an upright position.
There are no penalties for taking actions and achieving large velocities. An episode is counted as terminated when either
the time horizon is reached or when

θt mod 2π ∈ [π− 0.25,π+ 0.25] (5.3)

is no longer true, i.e. the pendulum deviates to far from an upright position.

Since the reward is the cosine of the pendulum angle, and any deviations from the desired position end the episode
anyway, good total rewards are mostly dependent on keeping the episode going for as long as possible. A perfect policy
is mostly expected to reach a reward nearing the full 10000, from gaining close to 2.0 reward at each of the 5000
possible time-steps. In our preliminary experiments, algorithms such as DDPG, TRPO and PPO should be able to learn
perfect policies without extensive hyperparameter tuning. As such, this environment is well-suited for testing purposes,
especially of the computations for rewards-to-go and Generalized Advantage Estimates.

18



5.2.2 CartpoleStabShortNoInfo-v0

CartpoleStabShortNoInfo-v0 is a slight variation to the regular CartpoleStabShort-v0 environment we introduce addition-
ally. The only difference lies in the way the reward is shaped. Instead of being dependent on the pendulum angle, it is
always 2.0 until the episode ends. This task allows us to answer the question of whether the information about the angle
that is usually encoded in the reward signal is important for the algorithm to learn stabilization or not.

5.2.3 CartpoleSwingShortNiceReward-v0

Reward shaping is a classical alternative to intrinsic motivation and is used by us as a baseline comparison. Using reward
shaping can help guide an agent out of a local optimum, however, a reward function consisting of more variables is also
more difficult to learn for an algorithm.

Rsh = Rex − (λdtθ
2
dt +λaa2), (5.4)

with λdt = 0.1 and λa = 0.001
The difficulty when designing this task is that episodes can have variable lengths. As a result, the reward must not be
negative; otherwise the algorithm can be incentivised to end episodes such that it does not accrue a bunch of negative
reward early during the initial learning phases. This reward is also rescaled for each task so that the maximum reward
that can be gained is comparable to the maximum reward achievable when using the regular reward function.

5.2.4 CartpoleSwingShort-v0

The CartpoleSwingShort-v0 is an advanced task on the CartPole environment presented in Section 5.2. In this form of
the CartPole environment, the pole starts in a downward hanging position. To achieve the maximum possible reward, an
agent needs to perform a successful swing-up and then balance the pole for the remaining time of the episode. This task
requires at least a basic ability to perform two-step tasks and basic state-space exploration. The reward is defined as

Rt = − cos(θt) + 1, (5.5)

where θt is the pendulum angle at time t.
A close-to-perfect policy achieves around ∼9800 reward, only losing about ∼200 reward from the theoretical maximum
during the swing-up period. A policy that accrues around∼5000 reward usually performs a rotating motion, continuously
swinging the pendulum in one direction but not learning to stabilize it at the top.
The difficulty for transition-based methods such as DQN lies in the sparsity of absorbing states. Any agent needs
to learn the bounds in which the cart is allowed to move, since ending episodes prematurely by violating these bounds
greatly reduces the gained reward. One episode usually features several thousand state transitions. Since DQN uses a
replay buffer and only uses a small sample (usually in the double digit range) of these transitions each time-step, only
every dozen updates may even include such an absorbing state, leading to the algorithm constantly “forgetting” and
relearning the bounds. This behaviour leads to an erratic learning curve, where the agent jumps between policies that
are perfect, policies that just rotate the pendulum and policies that prematurely end the episode.
The difficulty for rollout-based methods such as TRPO and PPO lies in the exploration of the state space. Where
an algorithm like DQN randomly takes actions of which it has no idea how they will perform and can piece together
transitions from different runs, the actions TRPO chooses are always highly correlated to the current policy.

5.2.5 CartpoleSwingShortSparse-v0

It is important to state that similar tasks have been mentioned before, e.g. in [Achiam and Sastry, 2017] (further ex-
plained in Section 2.4). The CartpoleSwingShortSparse-v0 task is the last one we introduce for our research. This
task is analogous to the regular CartpoleSwingShort-v0, however the reward function is significantly less informative.
Specifically, the reward is defined as

Rt =

¨

− cos(θt) + 1, θt mod 2π ∈ [π− 0.25,π+ 0.25]
0, otherwise,

(5.6)

where θt is the pendulum angle at time t. The cut-off criteria for the reward is analogous to the point at which the
stabilization for all CartPole balancing tasks is considered to be failed.

19



6 Implementation
In this chapter, we talk about different implementation considerations for our environments, tasks and actions in order
to aid reproducibility of our results. Another integral part of RL research is the tuning of hyperparameters. Efficient
exploration of possible hyperparameters is an exploration problem on its own and we discuss our approach in this
chapter as well.
The different environments introduced in the last chapter are used during the implementation and testing of the al-
gorithm. This approach makes it easier to discern between bad hyperparameters and genuine bugs in the algorithms.
Another important technique are comparisons to other implementations of the same algorithms. Different, albeit cor-
rect implementations of the same algorithm can still produce significantly deviating results, but establishing a general
understanding for performance of different algorithm, parameter and environment combinations as well as comparing
different intermediate results for sanity checking greatly increases the efficiency of our implementation efforts.

6.1 Performance Considerations of CartPole Environments

Computations for this research are conducted on the Lichtenberg high performance computer of the TU Darmstadt. As
a result, we are able to repeatedly run experiments in order to increase the statistical validity of our research. One big
consideration when running on the cluster computer is that the main performance gain comes from the availability of
massive parallelization of execution. Profiling the execution of our algorithms, most of the computation time is spent on
gathering simulation data and backpropagation, i.e. updating the neural networks involved. Individual intrinsic motiva-
tion implementations might also impact computation time significantly. Looking at modern machine learning frameworks
such as PyTorch [Paszke et al., 2017], parallel execution comes as a standard feature and computing resources are ade-
quately used in most cases. When looking at the environment simulations however, for example the concrete CartPole
implementation used, not much gain can be made from having multiple computing cores available. This restriction proves
to be a significant bottleneck for our learning progress. In order to improve our efficiency, we resort to running multiple
simulations in parallel, effectively multiplying the amount of data we can gather by the amount of logical processors
available to us apart from a small overhead. The two major problems with this approach are the following:
a) It is mostly suited for working with algorithms that sample complete episodes between updates, in our case this applies
to TRPO and PPO.
b) Since episodes may vary in length, the total number of samples our algorithms use is not fully constant, though it
should not vary by a large amount.
The worst case for this approach is when all episodes are short except for one. In that case, one would have minimal
benefit from multiprocessing since a single episode cannot be split onto multiple cores. The benchmarks in Figure 6.1
show that in the best case, sampling time roughly halves when doubling the number of processes, which is an almost
linear scaling in the amount of samples generated. In the worst case, there is still a benefit of having at least two
processes. At that point, one process can sample the long episode, while the other process samples all 7 short episodes
in the same time. While this result means that increasing the number of processes beyond two in the worst case has only
marginal effects on sampling efficiency, it also means that we still benefit from applying this approach even in the worst
case.

6.2 DQN-Specific Hyperparameter Tuning

This section is about DQN-specific hyperparameter tuning. One of the most important decisions when tuning DQN is
whether to clip the Mean Squared Error to [-1.0, 1.0] or not. The advantage of this clipping is making the algorithm
more stable in general by filtering outliers. The big disadvantage is that the algorithm learns slower and if a type of
important state transition is rare, the algorithm might not fit properly in regards to those transitions.
The results for using DQN with and without MSE clipping are in Figure 6.2. As one can see, the 95% confidence interval
is smaller for the clipped MSE. The clipped MSE variant also peaks around ∼1500 reward on average and then slowly
declines towards ∼1000 reward. The variant without MSE clipping is more volatile. The confidence range is larger and
the average in general is less stable. However, the overall reward gained is steadily increasing until it peaks around
∼7000 reward on average.
As it turns out, clipping the MSE hampers the ability of DQN to converge significantly for this task. While clipping
stabilizes the algorithm performance even in this task, a closer look at the policies and learning progress of DQN reveals

20



(a) Worst case for the multiprocess sampling. One episode
featuring the maximum length and seven episodes of
minimum length. CartpoleStabShort-v0

(b) Best case for the multiprocess sampling. All
eight episodes featuring the maximum length.
CartpoleStabShort-v0

Figure 6.1.: Sampling benchmark results. Eight episodes are sampled on a multicore processor. Total number of samples is
constant within each benchmark. We can see that even in the worst case, using at least two processes reduces
computation time. In the best case, doubling the amount of processes almost halves the computation time
needed to produce a set number of samples.

Figure 6.2.: Results for DQN on the Quanser CartpoleSwingShort-v0 environment both with and without clipping
the Mean Squared Error. One can see that clipping the error reduces variance in the runs but severely
hampers the algorithm’s ability to learn on the environment.

21



Figure 6.3.: Results for DDPG on the Quanser CartpoleSwingShort-v0 environment with different activation func-
tions. One can see that learning progress with a hardtanh activation function, this DDPG configuration
is completely unable to learn.

the reason for the bad performance. Terminating states, such as the ones where the algorithm moves out of the allowed
state space happen relatively rarely (about 1/1000). As a result, only every few updates one of these states is seen by the
algorithm. In the case where we use a clipped error, since these state transitions are so rare, the Q-function approximator
is never successfully fitted to reflect the lower values of these states. The result of this happening is that the MSE clipping
prevents the algorithm from learning a policy that does not end episodes prematurely. The downsides of not clipping
the error in comparison only make the algorithm slightly less stable and more sensitive to parameter changes in our
experience. As such, we continue to use DQN without MSE clipping. For future work, investigating ways of sampling
these states more often in conjunction with MSE clipping might increase algorithm performance.

6.3 DDPG-Specific Hyperparameter Tuning

Since the other algorithms generally benefited from having a clipped activation function, we also try using the hardtanh
activation function for our DDPG configuration. The results can be found in Figure 6.3. In the case of DDPG, using the
hardtanh function completely prevented the algorithm from learning, which is the reason we stick to the ReLU activation
function for DDPG.

6.4 TRPO-Specific Hyperparameter Tuning

In this section, we present the hyperparameters that are most important in achieving stable algorithm performance for
TRPO. We begin by exploring action clipping, followed by Different values for γ. Finally, we investigate the resulting
policy.

6.4.1 Action Clipping

Action clipping means clipping the actions the agent applies after a certain threshold. The Quanser Benchmark Platform
CartPole has a default action range of [-24.0, 24.0]. The problem with these large actions is that the actual robot might
be damaged by the cart speeds one can achieve with such large actions. We clip all actions to the range of [-5.0, 5.0].
On the CartpoleSwingShort-v0 environment, we can see that clipping the actions actually has a positive impact on our
learning performance. The plot can be found in Figure 6.4.

22



Figure 6.4.: Results for TRPO on the Quanser CartpoleSwingShort-v0 environment with both action range being
normally between [-24, 24] and clipped between [-5, 5]. One can see that larger actions do not improve
the algorithm performance and in fact serve to reduce the algorithm’s ability to properly learn on the
environment.

6.4.2 γ and Action Repeating

γ and action repeating effectively control how far-sighted the agent acts. Higher γ means looking further into the future
by reducing the decay of rewards further into the future. Higher action repeat values are technically transparent to the
agent. However, if the agent looks five “logical” states into the future, and if the same agent has an action repeat of four
applied, it actually looks up to twenty states into the future. In general, action repeat can be used in order to reduce the
noise experienced by the agent.
These are the results for different values of γ and action repeat. Using just γ = 0.99 seems to be to short-sighted to
achieve proper swing-ups at all. The same is true for just γ = 0.999 and no action repeats. The best performance is
achieved with γ = 0.99 and an action repeat of 5. While not achieving stabilization, the best results are achieved using
γ = 0.99 and an action repeat of 5. While not achieving swing-up and stabilization, this is the best result so far and we
will stick with these hyperparameter settings. The confidence intervals are larger for the other configurations as well,
however this is likely due to the fact that the number of experiments run was lower.

6.4.3 Investigating the Resulting Policy

In this section, we investigate the resulting policy. In Figure 6.6 we can see the cosine of the angle of the CartPole. On
this task, the cosine of the pendulum angle is the only thing that the reward relies on. In this plot, a value of -1.0 relates
to the pendulum being at the bottom (starting position) and a value of 1.0 corresponds to the pendulum being upright at
the top. We can see that the agent does not manage to stabilize the pendulum, instead it swings up successfully, but then
starts propelling the pendulum at ever increasing speeds, until the terminal velocity we introduced is reached shortly
before the end of the episode. This result indicates that the agent has learned that spinning the pendulum fast is a good
local optimum, up to the terminal velocity. It has also learned that adding too much velocity to the pendulum to quickly
will end episodes prematurely and result in a reduced reward.

6.5 PPO-Specific Hyperparameter Tuning

For PPO, we start with hyperparameters strongly influenced by the information gathered during the TRPO optimization
due to the general similarity of how the algorithms operate. One key hyperparameter we still need to manually tune is
the error clipping value ε.

23



Figure 6.5.: Results for TRPO on the Quanser CartpoleSwingShort-v0 environment with different γ values and action
repeats. One can see the best performance is achieved with γ= 0.99 and repeating actions 5 times.

Figure 6.6.: Detailed look at the cosine of the pendulum angle of the policy TRPO learns on the Quanser
CartpoleSwingShort-v0. One can see that the agent successfully swings up the pendulum, but does
not manage to stabilize it properly. Instead, the pendulum is swung at ever increasing speeds until the
episode ends. Effectively, this means that the TRPO agent is in a local optimum that it cannot escape.

24



6.5.1 Trust Region Parameter ε

The results for different values of ε can be found in Figure 6.7. One can see that in both the stabilization and swing-up
tasks, a higher ε leads to marginally quicker initial learning progress. However, peak performance is lower for higher ε
in the stabilization task and in the swing-up task a higher ε actually leads to performance degradation over time. While
higher ε improve initial learning progress, they actually prevent the algorithm from reaching peak performance. This
result is to be expected; a higher ε allows for quicker changes to the policy, explaining the fast initial learning progress.
However, in the case of the stabilization task, larger policy changes actually make fine-tuning the policy harder. In the
case of the swing-up task we can even see performance degradation, which indicates that the trust region is too large,
which allows for policy changes that actually worsen overall performance. While in theory this configuration would help
the agent escaping local optima, in this case it prevents the algorithm from reaching any meaningful performance peak
at all.

25



(a) Different ε values compared on the stabilization task CartpoleStabShort-v0.

(b) Different ε values compared on the swing-up task CartpoleSwingShort-v0.

Figure 6.7.: Results for different ε values when evaluating PPO on the stabilization and swing-up tasks. Lower ε values
decrease exploration but increase algorithm stability. In this case we can see that a higher ε is too unstable
for the tasks we want the algorithm to perform.

26





7 Results
In this chapter, we present all results gathered during our research. All evaluations are run on the Lichtenberg high-
performance computer of the Technical University of Darmstadt. A Conda environment definition can be found in the
appendix in Chapter B. We begin by discussing the non-sparse stabilization and swing-up CartPole tasks. Afterwards, we
present the results of the sparse swing-up. Lastly, we present general metrics such as the samples used and the wall-time
of the different runs at the example of the non-sparse swing-up. We briefly discuss the results for each experiment before
moving to the next chapter for a general conclusion.

7.1 NoInfo Stabilisation

We begin by comparing the CartpoleStabShort-v0 (presented in Section 5.2.1) and CartpoleStabShortNoInfo-v0 (intro-
duced in Section 5.2.2) tasks, which only differ in their reward functions. The results can be found in Figure 7.1. DQN
takes about ∼800 epochs before starting the learning progress, in the CartpoleStabShortNoInfo-v0 while taking about
∼1000 epochs in the regular stabilization task. Overall, it manages to achieve higher rewards in the regular task. DDPG
is able to achieve the perfect reward in the CartpoleStabShortNoInfo-v0 task after about ∼500 episodes. It also manages
to achieve this in the regular task towards the end of the learning process. TRPO also manages to learning quicker in the
CartpoleStabShortNoInfo-v0 task but also manages almost perfect rewards in the regular task, with a more stable learning
curve in general. PPO has a larger variance in the CartpoleStabShortNoInfo-v0 task and generally performs slightly worse
until about epoch ∼1000.

Discussion

In general getting a close to perfect reward of ∼10000 is easier in the CartpoleStabShortNoInfo-v0 task, since the only
prerequisite is not ending the episode prematurely. Compared to the regular CartpoleStabShort-v0 where one not only
needs to reach the maximum episode length but also has to balance the pendulum upright instead of constantly shifting
slightly left and right. Since this is the case, we do not expect our algorithms to learn to keep the pendulum in a stable
position necessarily.
DQN seems to benefit from the additional information contained in the regular tasks reward. While it manages to learn
some better than random policy significantly quicker with the flat reward, it has a more consistent learning progress with
the regular reward.
DDPG manages to learn a nice stabilization in the sense that the pendulum is not being shifted all the time. Instead, it is
very stable, even though technically there was no reward guiding it to this policy a human would consider optimal. This
means that possibly the generated policy may not be stable in terms of larger deviations from this middle point.
TRPO manages to learn a consistent balancing of the pole. Looking at the policies in detail, the one learned with the
more informative reward is less jittery overall, while still catching the pendulum every time it deviates from the perfect
upright position.
PPO shows larger deviations between the two tasks. In contrast to TRPO, it does not manage to consistently balance the
pendulum after each training epoch when using the non-informative reward.
Overall it is surprising how well the algorithms DDPG, TRPO and PPO manage to stabilize the pendulum instead of just
swinging the pendulum from one side to the other.

28



Figure 7.1.: Different algorithms on the CartpoleStabShortNoInfo-v0 task. Top to bottom: DQN, DDPG, TRPO and
PPO. This graph is based on the reward signals actually perceived by the agents. One can see that DDPG
and TRPO manage to produce consistent results in both tasks, while PPO is somewhat unstable in the
CartpoleStabShortNoInfo-v0 task and DQN does not manage to learn a proper stabilization policy in
the 1500 training epochs.

29



7.2 Stabilization with Intrinsic Motivation

In this section, the results for the CartPole stabilization task CartpoleStabShort-v0 are presented and discussed. This
variant features no sparse rewards. The results can be found in Figure 7.2. The shadows behind the lines are the 95%
confidence intervals. DQN performs worse than DDPG, TRPO and PPO. DQN has a relatively flat learning curve for the
first ∼600 epochs. DDPG starts the learning progress later than TRPO and PPO, though it also manages to learn proper
stabilization. The Surprisal variant takes the longest to do so, while the Prediction Error manages to converge to an almost
perfect stabilization after about ∼300 epochs. In general, PPO seems to start the learning progress earlier than TRPO,
with and without intrinsic motivation. TRPO without intrinsic motivation performs the best and is the most stable. It
manages to reach close to perfect performance after around ∼400 training epochs. TRPO with intrinsic motivation also
performs well, but is on average about ∼500 reward worse and has larger error bars. PPO, despite learning quicker in
the beginning, does not manage to converge to a stable policy and falls off as the training epochs progress. This effect is
worsened when used in conjunction with Surprisal.

Discussion

DQN manages to produce some results towards the end of the training period. However, it is still the worst performing
algorithm on the stabilization task. The use of intrinsic motivation based on Prediction Error and Surprisal allowed the
algorithm to learn quicker in the beginning. However, Surprisal learns the slowest in the long-term and as such falls
behind regular ε-greedy exploration and Prediction Error variants, which are both close to equal at the end of training.
This result indicates that intrinsic motivation helps early exploration in this case, but does not help the algorithm converge
to a better optimum. As the possible exploration in this task is rather limited, this is in line with our expectations.
DDPG performs better than expected. We can clearly see in the graph that Surprisal slows down learning overall while
still allowing the learning of an almost perfect policy towards the end of the training session. Different hyperparameters
help a quicker convergence here. We can also see that the Prediction Error variant performs especially well, converging
after only ∼500 epochs in total.
TRPO is producing far better results than DQN and DDPG. Early learning progress is quick and once the algorithm
converges towards the optimum policy, the error bars are consistent. Comparing the baseline of no intrinsic motivation,
which solely relies on policy randomness for exploration, one can see that both Surprisal and Prediction Error learn quicker
in the beginning. Surprisal then averages around ∼500 reward less than regular TRPO with larger error bars. This result
indicates that the Surprisal overall forces the agent off of the global optimum but never manages to completely move
it out of its general vicinity. The Prediction Error variant does not suffer from this problem. Its error is only marginally
larger, and on average it seems to outperform regular TRPO, but not to a significant degree.
PPO is also performing far better than DQN and DDPG, but overall slightly worse than TRPO in this task. For PPO, the
Prediction Error outperforms regular exploration. However, it learns slower in the beginning. The Surprisal variant learns
quicker at first, but is all together less stable and as such performs worse than the regular variant long-term.
Overall, DDPG, TRPO and PPO vastly outperform DQN in this task. This result is probably caused by the fact that this task
requires relatively little exploration overall since there are no local optima and the reward function is well-defined. The
trust region methods as such can play to their strengths of guaranteeing policy improvements within certain assumptions,
without the risk of getting stuck in a local optimum. It is surprising that DDPG converges very early on, especially when
using the Prediction Error variant. Nevertheless, it is interesting to see that intrinsic motivation can still help with early
exploration in a significant manner for all algorithms.

30



Figure 7.2.: Different algorithms on the CartpoleStabShort-v0 task. Top to bottom: DQN, DDPG, TRPO and PPO.
TRPO performs the best, followed by PPO. Intrinsic motivation has minor effects on these two algo-
rithms and larger effects on DDPG and DQN.

31



7.3 Manually Shaped Reward Swing-Up

We begin the swing-up evaluations with our manually shaped reward function introduced in Section 5.2.3. The results
can be found in Figure 7.3. DQN starts around ∼800 reward and then quickly climbs towards around ∼4000 reward,
where it stays for the rest of the training period. DDPG does not start the learning progress until about ∼600 training
epochs have passed, after which it slowly climbs up to about ∼2000 reward. TRPO manages to achieve around ∼3000
reward from the very beginning, but stays at that point for the remainder of the learning process. PPO is very similar in
performance, although it starts with less variance and actually climbs to around ∼4000 reward at maximum.

Discussion

Since the theoretically highest achievable reward is ∼10000, we can conclude that none of our algorithms come close
to achieving a perfect policy. DDPG might improve learning after the 1500 epochs given, but it is highly unlikely that
it will manage to outperform the other algorithms. Since all algorithms converge to similar maximum rewards, we can
conclude that our reward function contains a local optima around the reward values achieved by the algorithms.
A closer look at the policies reveals that they barely move the cart and as such are far from performing a swing-up.
This leaves us with the conclusion that our penalty for large actions and velocities is still too punishing and as such the
algorithms learn that not moving the pendulum angle by much is desirable. This leaves us with a dilemma where we
would need to fine-tune these penalties exactly right. Having too little penalty would mean the shaped reward function
essentially regresses towards the original reward, defeating the purpose of an enhancement. Having too much penalty
resorts in the behaviour we see here. It is also possible that there is no sweet spot between the two extremes, i.e. the
behaviour would shift from not doing anything to being analogous with the non-shaped reward function.

32



Figure 7.3.: Different algorithms on the CartpoleSwingShortNiceReward-v0 task. Top to bottom: DQN, DDPG, TRPO
and PPO. This graph is based on the reward signals actually perceived by the agents. One can see that
all algorithms except for DDPG get stuck in local optima around ∼3000 to ∼4000 reward.

33



7.4 Swing-Up Non-Sparse

These are the results for the CartpoleSwingShort-v0 task. This variant features no sparse rewards. The results can be
found in Figure 7.2. DQN manages to convert to a result of around ∼7000 reward overall. The different intrinsic
motivation variants seem to make little difference. However, Surprisal seems to incur more reward in a shorter amount
of training epochs than the other variants.
DDPG performs worse, only reaching about ∼3500 reward at maximum. The Surprisal variant performs worse than
regular DDPG and the Prediction Error. The Prediction Error is similar in performance to regular exploration. However,
it seems to decrease in performance towards the end of the training period. TRPO with and without Surprisal converges
around ∼4000 total reward. PPO with and without Surprisal is worse, starting to rise to about ∼2000 total reward and
then slowly converging around ∼1000 total reward, with the Surprisal variant taking longer to decline. Taking a closer
look at the TRPO policies, one can see that the algorithm is generally converging towards a policy where it spins the
pendulum at high speeds instead of balancing, resulting in only capturing around 50% at maximum of the total possible
reward. This behaviour is discussed in Section 6.4.3 in greater detail.

Discussion

In this task, DQN is the best-performing algorithm by a significant margin. It manages to learn swing-up and stabilization
most of the times, even though it can be unstable in terms of learning progress. DQN does not manage to learn a stable
balancing policy - instead the pendulum is constantly being tipped slightly left and right. This behaviour might be
caused by the discrete actions DQN has available in conjunction with its generally lower ability to fine-tune policies when
compared to TRPO or PPO. Nevertheless, the resulting policy manages to keep the pendulum upright most of the time.
This can be seen as a weakness in the reward function: Since the cosine is used as a reward scaling based on the angle,
slight shifts in angle have barely any effect on the total reward gained, as long as the pendulum stays upright.
DDPG is the worst performing algorithm. In general, it seems like the exploration of DDPG is very fragile and strongly
dependent on the specific parameters of the Ornstein–Uhlenbeck process that is used for exploration.
TRPO seems to be stuck in a local optimum of spinning the pole instead of properly balancing it. This can be seen as a
deficiency in exploration, which is in line with our expectation of TRPO being prone to this kind of issue. Interestingly,
adding Surprisal or Prediction Error as intrinsic motivation does not yield the expected result of helping the exploration
in this case. In fact, it has barely any impact on learning progress.
PPO, performs significantly worse than TRPO. Intrinsic motivation seems to slow the rate of skill decay after the initial
peak around training epoch ∼100, but ultimately the performance is still within the realms of statistical insignificance as
time progresses.
Overall DDPG is performing badly in this task. PPO and TRPO are suffering from getting stuck in local optima, which
greatly hampers their ability to find the global optimum, a stark contrast to the stabilization task. In this task, DQN
performs significantly better, since it is less prone to getting stuck in local optima and its ε-greedy exploration is not
biased by the current policy state.

34



Figure 7.4.: Different algorithms on the CartpoleSwingShort-v0 task. Top to bottom: DQN, DDPG, TRPO and PPO.
In this task, TRPO and PPO get stuck in local optima. DDPG needs a lot of samples before learning
progress is significant. DQN performs the best.

35



7.5 Swing-Up Sparse

These are the results for the CartpoleSwingShortSparse-v0 task. This variant features no sparse rewards. The sparse
rewards actually perceived by the agents are plotted in Figure 7.5. The theoretical non-sparse rewards analogous to
the CartpoleSwingShort-v0 task are plotted in Figure 7.6. Plotting these rewards as well helps us differentiate between
policies that do nothing and policies that do show useful behaviour but do not manage a full swing-up. Some additional
plots of median values can be found in appendix Chapter C.
DQN barely managed to find any rewards before the ∼200 epoch mark, but does not start to incur any meaningful
rewards until about training epoch ∼800. Towards the end of the training period, even regular DQN manages to find
some actual rewards, but overall less than ∼200 reward. The Surprisal variant actually manages around ∼400 reward
and the Prediction Error peaks at around ∼700 reward at the end of the training period. Looking at the theoretical
non-sparse reward, one can see that DQN is actually producing some useful behaviour from the very beginning of the
training, probably due to its ε-greedy exploration.
DDPG does not manage to produce any meaningful behaviour at all, even when looking at the non-sparse reward. DDPG
without intrinsic motivation just drives the cart outside of the allowed state range using maximum actions. However,
while the same is true for Surprisal, some policies apply constant actions of around 2.5 instead of the maximum of 5 Volt.
The policies learned using the Prediction Error apply mostly 0 Volt as actions and thus do not produce any rewards at all
either.
TRPO both without intrinsic motivation and using Surprisal does not manage to find any actual rewards during training.
TRPO with Prediction Error actually shows a promising learning curve. However, looking at the individual runs shows
that only a single run out of 16 managed to show learning progress at all, which increases the average score significantly.
Looking at the theoretical non-sparse reward, TRPO without intrinsic component still does not manage to produce re-
wards of more than ∼15. Using Surprisal, one can see that TRPO manages to score a very consistent amount of reward
around ∼75 during almost all runs. The variant using the Prediction Error shows learning progress early and then stays
around the ∼500 reward mark.
It is important to note that PPO without intrinsic motivation component manages to find a little reward only to decline
again immediately towards the final training episodes. Looking just at the actually perceived rewards, Surprisal is per-
forming only marginally better. The first perceived reward using the Prediction Error occurred after about ∼400 training
epochs, peaking around ∼800 and then declining to close to 0 around the ∼1000 training epochs mark.
Looking at the theoretical rewards that would have been received by the agents in a non-sparse setting, one can see
that PPO without intrinsic motivation is producing around ∼20 reward throughout training runs, even though it never
manages to receive any actual rewards. Surprisal and Prediction Error start with similar learning curves. However,
Surprisal converges to a lower reward of around∼250 towards the end of training. The Prediction Error variant continues
to hover around ∼500 reward with a larger confidence interval until the end of the training period.

Discussion

Producing any actual received reward in the sparse setting directly correlates to learning a successfully swing-up of the
pendulum at least once.
DQN is the best-performing algorithm on the sparse CartPole by a significant margin. This statement is also true for the
variant without intrinsic motivation, which even outperforms other algorithms that use intrinsic motivation. The variant
using Surprisal is slightly better than regular DQN. The best results are achieved by DQN together with the Prediction
Error Method. However, since it looks like DQN just starts learning progress when the limit of 1500 epochs is reached,
we start another evaluation run for DQN with a limit of 3000 epochs, the results of which we discuss in the next section.
DDPG is not producing any useful behaviour at all. For the variant that does not use any intrinsic motivation, which is in
line with our expectations. When using intrinsic motivation such as Surprisal or the Prediction Error, the algorithm does
not produce better results, either. This fact leads to our conclusion that the Ornstein–Uhlenbeck process that is used for
exploration with DDPG is apparently not suited to being extended using intrinsic motivation in this task.
TRPO, both with and without intrinsic motivation does not manage to perform a successful swing-up at all during our
evaluation except for one run with the Prediction Error intrinsic motivation. We expected this result for the setting
without intrinsic motivation, as exploration is not guided. However, it is less expected for the variant using Surprisal.
Inspecting the theoretical non-sparse reward reveals a very consistent reward of ∼75, which is surprising since the
intrinsic motivation should serve to decrease consistency. Looking at the produced policies, this confusion is cleared
up. The agent consistently learns policies that simply accelerate the cart into a single direction until it crashes into the
simulation bounds. In this case, this means the Surprisal has failed to help exploration and instead keeps the agent
in a local optimum. This phenomenon can be explained by the way Surprisal works. As a form of Learning Progress
Motivation, rewards are gained whenever the agent manages to find states where learning progress can be made. Once
the agent is trapped in a policy space that consistently produces similar states, over time the network will fit a very

36



accurate model, resulting in little to no intrinsic rewards that could guide the agent out of said local optimum. In this
sense, Surprisal fails to help agents move out of local optima.
PPO performs less consistent but better overall. PPO without any external guidance even manages to find a single policy
that manages a single swing-up. Looking at the non-sparse reward, PPO without Surprisal component is still worse
than the crashing TRPO policy. When using PPO with Surprisal, one can see that it manages to swing-up the pendulum
after about ∼200 episodes. The peak average is around ∼300 reward at episode ∼800. After that, the agents decline
in performance again to around ∼75 reward. This result suggests that after finding any rewards at all, the agent is
consistently able to find rewards, while not getting stuck in a local optimum. Unfortunately, this result means that it
leaves the optimum it found and then never manages to find a better policy again. Looking at the theoretical non-sparse
rewards, one can see an average of about ∼500 reward starting from episode ∼200 all the way up to epoch ∼1200, at
which point it starts to decline. When comparing this development to the purely sparse rewards, which started to decline
around ∼200 epochs earlier, this result suggests that the agent started exploring again. During this ∼200 epoch long
process, while the sparse rewards declined, the overall useful behaviour of the agent did not decline. After that point, the
theoretical reward stayed consistent with the actually perceived reward in the sparse setting but overall useful behaviour
declined.
Overall, DDPG does not produce any meaningful results. TRPO and PPO suffer from sticking to their trusted regions,
which makes quick exploration of the state space difficult. DQN is able to explore the state space the best by a significant
margin.

37



Figure 7.5.: Different algorithms on the CartpoleSwingShortSparse-v0 task. Top to bottom: DQN, DDPG, TRPO and
PPO. This graph is based on the reward signals actually perceived by the agents. One can see that DDPG,
TRPO and PPO show almost no complete swing-ups. DQN performs the best.

38



Figure 7.6.: Different algorithms on the CartpoleSwingShortSparse-v0 task. Top to bottom: DQN, DDPG, TRPO
and PPO. This graph is based on the reward signals that would have been perceived in the non-sparse
setting. One can see that DDPG still shows no useful behaviour at all. PPO using Surprisal shows some
useful behaviour in contrast to the previous Figure.

39



Figure 7.7.: DQN on the CartpoleSwingShortSparse-v0-marathon task. This graph is based on the reward signals
actually perceived by the agent. One can see that the Prediction Error manages to outperform both
regular TRPO and the variant using Surprisal.

7.6 Swing-Up Sparse Marathon DQN

In this section we discuss our findings when giving DQN more training epochs in the sparse settings. The epoch limit is
now 3000. Everything else is configured analogous to the previous section. The results can be found in Figure 7.7. We
can see that the Prediction Error starts actual learning progress for the first time at around epoch ∼500. Nevertheless,
it takes until about episode ∼1000 before any meaningful shift in the mean cumulative reward occur. Both Surprisal
and regular DQN take until about ∼1000 episodes before before any shifts in reward can be seen and until about epoch
∼1400 before learning progress starts in a meaningful way. Afterwards, the curves for Surprisal and regular DQN are
similar in variance and average return. All algorithm variants continue on an upwards slope until epoch ∼3000. The
Surprisal and regular TRPO variants peak at around ∼3000 reward at the end of the training session, while the Prediction
Error variant manages to collect around ∼4000 reward.

Discussion

These test results show Surprisal working similarly well to regular ε-greedy exploration, which is invalidating the results
of the previous sections which suggested DQN might benefit from Surprisal in this task. In contrast to this, the Prediction
Error variant is showing better performance than the other two approaches. All three approaches have not converged to
a fixed reward level at the end of 3000 epochs. It is possible that they would eventually converge to the same results,
nevertheless we would expect the Prediction Error variant to arrive at such a value first. It is important to note that while
Prediction Error learns a better policy on fewer samples, it does incur large costs in the wall-time duration of learning
and is as such most useful when gathering samples for learning is time-consuming in itself.

40



7.7 Computation Time

The results for the computation time of the different algorithms can be found in Figure 7.9. DQN and DDPG without any
intrinsic motivation are the quickest algorithms by a significant margin. However, using intrinsic motivation significantly
slows them down, since both algorithms perform a lot of updates and for each algorithm update, we also need to predict
and update the intrinsic motivation variants. The Prediction Error has a far bigger impact on the computation times of
these algorithms than Surprisal. TRPO and PPO are very similar in computation time. They both take about twice as
long as DQN and DDPG. However, adding intrinsic motivation has a lesser impact than for the other algorithms. Since
both TRPO and PPO only perform 1500 updates each, significantly less time is needed to predict and update the intrinsic
motivation modules. For these two algorithms, Surprisal has less impact on computation than the Prediction Error.

7.8 Amount of Samples

The amount of samples used by each algorithm can be found in Figure 7.8. One can see that both DQN and DDPG use
around ∼150,000 samples each over the 1500 training epochs. TRPO uses the most samples, about ∼1,000,000 in total.
It is important to note that even though it uses around six times as many samples as DQN and DDPG, it only takes about
twice the computation time as is established in the previous section. This effect is most likely caused by the parallel
sampling introduced in Section 6.1. PPO uses about ∼600,000 to ∼800,000 samples overall. It is interesting to note
that more samples are used during the early training epochs. PPO is also the only algorithm where we can see that an
intrinsic motivation variant, in this case Surprisal, uses less samples overall. Seeing as the Surprisal variant offers similar
performance in terms of rewards gained, this is a positive result.

41



Figure 7.8.: Different algorithms on the CartpoleSwingShortSparse-v0 task. Top to bottom: DQN, DDPG, TRPO and
PPO. This graph shows the total number of transitions sampled during learning. One can see that DQN
and DDPG use vastly less samples than TRPO and PPO.

42



Figure 7.9.: Different algorithms on the CartpoleSwingShortSparse-v0 task. Top to bottom: DQN, DDPG, TRPO and
PPO. This graph shows the total wall-time the algorithm execution took. TRPO and PPO take about
twice as long than DDPG and DQN without any intrinsic motivation. The Prediction Error impacts
computation time of DQN and DDPG a lot, while Surprisal has less impact. The situation is reversed for
TRPO and PPO.

43



8 Discussion
During the research for this thesis, we aimed to investigate how intrinsic motivation can be used to improve performance
on the Quanser Reinforcement Learning Benchmark Systems in both sparse and non-sparse settings. We implemented
several new tasks in the CartPole environment to aid our research. We also enabled parallel sampling of OpenAI Gym
environments so that computation can take place on a multiprocessing scale. In order to properly discuss our results and
put our work into context, we begin by answering the questions we established in our motivation.

The first question we wanted to answer is how well do the different algorithms perform on the Quanser Reinforcement
Learning Benchmark Systems. Especially DQN has problems on a task like the CartPole stabilization, which requires
fine-tuning of policies. This task is where DDPG, TRPO, and PPO excel, with TRPO being slightly better than PPO. All
algorithms manage to learn a swing-up of some form in the non-sparse setting. However, DDPG, TRPO, and PPO do not
learn to swing-up and stabilize the pendulum at the same time, which DQN manages. Nevertheless, the stabilization
policy is suboptimal.

The second question we wanted to answer is if intrinsic motivation can help to guide agents out of local optima. In the
non-sparse settings, we are not able to effectively guide agents out of local optima. However, for some algorithms the
learning process is faster when using intrinsic motivation. A notable example of this is DDPG when using Prediction Error
intrinsic motivation.

The third question we wanted to answer is if intrinsic motivation can effectively guide an agent to explore systems
where rewards are sparse. In our research, intrinsic motivation did change the agent’s behaviour significantly in a
sparse environment. DQN seems to be the most benefiting from this exploration, while DDPG did not produce any
useful behaviour even when paired with intrinsic motivation. DQN was able to perform some useful behaviour even in
a sparse environment, which is improved by adding intrinsic motivation. TRPO and PPO went from barely any useful
behaviour towards performing at least some exploration, which is overall positive but far from learning proper swing-up
and stabilization, which is also difficult for them in non-sparse settings.

The fourth question we wanted to answer is how intrinsic motivation affects the convergence properties of these agents.
With our chosen parameters, the agent’s convergence properties were somewhat improved with Prediction Error in cases
such as TRPO and DDPG on the stabilization. Surprisal seems to slow down convergence overall in terms of samples
needed before a stable point is needed. This proves to be a constant trade-off: Having higher scaled intrinsic rewards
negatively impacts convergence while lower scaled intrinsic rewards reduce the benefits of intrinsic motivation harshly.

The fifth question we wanted to answer is how intrinsic motivation affects the computational complexity of the algo-
rithms. Overall, there is a significant impact on computational complexity for some intrinsic motivation variants. For
DQN and DDPG, Surprisal roughly doubled overall computation time and the Prediction Error took roughly seven times
longer than the regular algorithms. TRPO and PPO, on the other hand, are hardly impacted by the Prediction Error
variant. Surprisal roughly doubles the runtime of TRPO and impacts the computation time of PPO by 50%.

The final question we wanted to answer is how the different RL algorithms compare to each other. DQN and DDPG are
very sensitive to parameter tuning. Slightly wrong parameters can prevent the algorithms from converging at all. Since
we add additional noise to the observations from the perspective of the algorithm, this tendency makes using them with
intrinsic motivation difficult. DDPG is especially impacted negatively by this problem. TRPO and PPO suffer from the
inverse problem. They are in general very stable algorithms that converge to local optima nicely, even if in our tests
TRPO proved to be slightly more stable than PPO. However, this property negatively impacts their ability to explore state
spaces, even when supporting them in this regard with intrinsic motivation.

Based on our results, we come to the conclusion that the right forms of intrinsic motivation can help the convergence of
RL agents significantly by guiding them towards interesting parts of the state space. A specific example of this is DQN
with the Prediction Error using significantly less samples before learning progress starts to show.

However, using intrinsic motivation comes at a cost of higher computational complexity, which invalidates the advantage
of needing less samples depending on how expensive it is to gather them. On top of that, proper tuning of the parameters
is necessary in order to ensure that convergence happens as quickly as possible. Looking at the exploration properties
in sparse settings, we were able to show that the algorithms TRPO and PPO were able to produce useful behaviour
only when paired with intrinsic motivation. Notably, DQN managed to explore the sparse setting even without intrinsic
motivation, though slower.

44



8.1 Outlook

Further research should be conducted towards the most promising approach using DQN, for example by using different,
possibly adversarial strategies for sampling from the replay buffer. Further research into the exploration properties may
potentially explain some of the quirks found but is not advised as a result of the generally poor performance and high
sensitivity to parameter and environment changes. TRPO and PPO prove to be highly stable and suited for optimizing
existing policies. As such, approaches that use the exploration properties of an algorithm like DQN and then transfer the
resulting policy to algorithms such as TRPO and PPO might be promising. Additional computational resources could also
be used to benchmark the results on different tasks.
Reward shaping proved to be as difficult as expected, as such further research into intrinsic motivation is advised. During
our research, we mostly focused on enhancing the existing rewards. Different approaches such as automated curriculum
learning and adversarial learning show promising results for tasks such as Atari games, where learning progress is difficult
to measure and models are harder to learn.

45



Bibliography
[Qua, 2019] (2019). Quanser innovate educate. https://www.quanser.com/. Accessed: 2019-09-30.

[spi, 2019] (2019). Trust region policy optimization. https://spinningup.openai.com/en/latest/algorithms/
trpo.html. Accessed: 2019-09-30.

[Achiam and Sastry, 2017] Achiam, J. and Sastry, S. S. (2017). Surprise-based intrinsic motivation for deep reinforce-
ment learning. ArXiv, abs/1703.01732.

[Baranes and Oudeyer, 2013] Baranes, A. and Oudeyer, P.-Y. (2013). Active learning of inverse models with intrinsically
motivated goal exploration in robots. Robot. Auton. Syst.

[Bellemare et al., 2016] Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016).
Unifying count-based exploration and intrinsic motivation. In Proceedings of the 30th International Conference on
Neural Information Processing Systems.

[Belousov et al., 2020] Belousov, B., Muratore, F., Abdulsamad, H., Eschmann, J., Menzenbach, R., Eilers, C., Tosatto,
S., and Lutter, M. (2020). Quanser robots. https://git.ias.informatik.tu-darmstadt.de/quanser/clients.

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). Openai gym. ArXiv, abs/1606.01540.

[Fournier et al., 2018] Fournier, P., Sigaud, O., Chetouani, M., and Oudeyer, P.-Y. (2018). Accuracy-based curriculum
learning in deep reinforcement learning. ArXiv, abs/1806.09614.

[Legault, 2016] Legault, L. (2016). Intrinsic and extrinsic motivation. Encyclopedia of Personality and Individual Differ-
ences.

[Lillicrap et al., 2015] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N. M. O., Erez, T., Tassa, Y., Silver, D., and Wierstra,
D. (2015). Continuous control with deep reinforcement learning. ArXiv, abs/1509.02971.

[McDuff and Kapoor, 2018] McDuff, D. J. and Kapoor, A. (2018). Visceral machines: Risk-aversion in reinforcement
learning with intrinsic physiological rewards. In ICLR.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra,
D., Legg, S., and Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature.

[Nguyen et al., 2011] Nguyen, S. M., Baranes, A., and Oudeyer, P. (2011). Bootstrapping intrinsically motivated learning
with human demonstrations. 2011 IEEE International Conference on Development and Learning, ICDL 2011.

[Oudeyer et al., 2007] Oudeyer, P., Kaplan, F., and Hafner, V. V. (2007). Intrinsic motivation systems for autonomous
mental development. IEEE Transactions on Evolutionary Computation.

[Oudeyer and Kaplan, 2007] Oudeyer, P.-Y. and Kaplan, F. (2007). What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in Neurorobotics.

[Paszke et al., 2017] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga,
L., and Lerer, A. (2017). Automatic differentiation in pytorch.

[Ruder, 2016] Ruder, S. (2016). An overview of gradient descent optimization algorithms. ArXiv, abs/1609.04747.

[Ryan and Deci, 2000] Ryan, R. M. and Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and
new directions. Contemporary Educational Psychology.

[Schulman et al., 2015a] Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., and Moritz, P. (2015a). Trust region policy
optimization. In ICML.

46

https://www.quanser.com/
https://spinningup.openai.com/en/latest/algorithms/trpo.html
https://spinningup.openai.com/en/latest/algorithms/trpo.html
https://git.ias.informatik.tu-darmstadt.de/quanser/clients


[Schulman et al., 2015b] Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2015b). High-dimensional
continuous control using generalized advantage estimation.

[Schulman et al., 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. ArXiv, abs/1707.06347.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learning. MIT press
Cambridge.

[Uhlenbeck and Ornstein, 1930] Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory of the brownian motion.
Phys. Rev.

47



A Hyperparameters and Algorithm Tweaks
This chapter contains all hyperparameters used as well as information about data normalization and algorithm adapta-
tions.

trpoSwingupNormal : &trpoSwingupNormal
a lgor i thm : " t rpo "
env_name : " CartpoleSwingShort−v0 "
step_number : 1
max_steps_per_episode : 5000
max_episodes : 1500
ac t ion_space : [−24.0 , 24.0]
episodes_per_update : 10
actor_shape : [64 , 64]
l _ r a t e _ c r i t i c : 0.001
opt imizer : "Adam"
gamma: 0.99
a c t i v a t i o n _ a c t o r : " ReLU "
a c t i v a t i o n _ c r i t i c : " ReLU "
alpha : 0.8
max_j : 10
de l t a : 0.01
t r a i n _ v _ i t e r s : 80
lambda_ : 0.97
damping : 0.01
l2_reg : 0.001

ddpgswingupRARE :
a lgor i thm : " ddpg "
ac t ion_space : [−5.0 , 5 .0]
ba t ch_s i ze : 200
steps_between_frozen_network_updates : 5000
r e p l a y _ s t o r a g e _ s i z e : 50000
l _ r a t e _ a c t o r : 0.0001
l _ r a t e _ c r i t i c : 0.001
opt imizer : "Adam"
gamma: 0.99
a c t i v a t i o n : " Hardtanh "
targe t_network_update_ fac tor : 0.001
steps_between_updates : 10

dqnswingupRARE :
a lgor i thm : " dqn "
ba t ch_s i ze : 128
steps_between_frozen_network_updates : 5000
r e p l a y _ s t o r a g e _ s i z e : 50000
eps i l on : 0.1
a c t i o n s : [−5.0 , −1.0 , 0 .0 , 1 .0 , 5 .0]
l _ r a t e : 0.001
opt imizer : "Adam"
gamma: 0.99
a c t i v a t i o n : " Hardtanh "
steps_between_updates : 1
c r i t e r i o n : "MSE"
steps_between_updates : 10

48



ppoSwingupNormal3 :
a lgor i thm : " ppo "
ac t ion_space : [−5.0 , 5 .0]
episodes_per_update : 8
actor_shape : [64 , 64]
l _ r a t e _ c r i t i c : 0.001
opt imizer : "Adam"
gamma: 0.99
a c t i v a t i o n _ a c t o r : " Hardtanh "
a c t i v a t i o n _ c r i t i c : " ReLU "
t r a i n _ v _ i t e r s : 80
lambda_ : 0.95
l2_reg : 0.001
weight_decay_actor : 0.0001
pol i cy_epochs : 4
eps_ppo : 0.1
min i_batch_s i ze : 64

49



B Conda Environment
This is the Conda environment file used for our research. Additionally, one needs to install the quanser clients from
[Belousov et al., 2020]

name : jw−mas te r the s i s
channels :
− vpython
− d e f a u l t s
− pytorch

dependencies :
− matp lo t l i b =3.0.1
− numpy=1.16.2
− numpy−base =1.16.2
− pandas =0.24.1
− pip =19.1.1
− pyqtgraph =0.10.0
− python =3.6.6
− pytorch =1.3.1
− s c i k i t −l ea rn =0.20.2
− s c i py =1.2.1
− vpython =7.5.0
− s ta t smode l s =0.10.1
− pyyaml=5.1.2
− pip :
− gym==0.12.0
− pyinstrument ==3.0.1

50



C Median Plots
This chapter contains some additional results where we plot the median of run evaluations instead of the combination of
average and 95% confidence interval.

Figure C.1.: Different algorithms on the CartpoleSwingShortSparse-v0 task, median comparison. One can see that
when looking just at the median of the sparse reward function, TRPO and PPO did not manage to
produce useful behaviour.

Figure C.2.: Different algorithms on the CartpoleSwingShortSparse-v0 task, median comparison of the non-sparse
reward function. One can see that TRPO and PPO did produce some useful behaviour.

51


	Motivation
	Structure

	Related Work
	Bootstrapping Intrinsically Motivated Learning with Human Demonstrations
	Accuracy-based Curriculum Learning in Deep Reinforcement Learning
	Unifying Count-Based Exploration and Intrinsic Motivation
	Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning

	Methods
	Reinforcement Learning
	Deep Reinforcement Learning
	Exploration-Exploitation Trade-Off

	Approach
	Applying Intrinsic Motivation Rewards
	Predictive Novelty Motivation using Prediction Error
	Learning Progress Motivation using Surprisal

	Experiments
	OpenAI Pendulum
	CartPole Environments

	Implementation
	Performance Considerations of CartPole Environments
	DQN-Specific Hyperparameter Tuning
	DDPG-Specific Hyperparameter Tuning
	TRPO-Specific Hyperparameter Tuning
	PPO-Specific Hyperparameter Tuning

	Results
	NoInfo Stabilisation
	Stabilization with Intrinsic Motivation
	Manually Shaped Reward Swing-Up
	Swing-Up Non-Sparse
	Swing-Up Sparse
	Swing-Up Sparse Marathon DQN
	Computation Time
	Amount of Samples

	Discussion
	Outlook

	Bibliography
	Hyperparameters and Algorithm Tweaks
	Conda Environment
	Median Plots

