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Abstract—Despite its apparent ease, grasping is one major
unsolved task of robotics. Equipping robots with dexterous
manipulation skills is a crucial step towards autonomous and
assistive robotics. This paper presents a task space controlled
robotic architecture for open-ended self-supervised learning of
grasp strategies, using two types of intrinsic motivation signals.
By using the robot-independent concept of object offsets, we are
able to learn grasp strategies in a simulated environment, and to
directly transfer the knowledge to a different 3D printed robot.

I. INTRODUCTION

Despite a lot of recent significant progress in robotics and
computer vision, robots are still far from being autonomous, as
they lack lifelong learning skills. Therefore, one of the biggest
remaining challenges is to turn the assistants of tomorrow into
lifelong learners, able to adapt to their changing environment,
and to transfer learned knowledge [1]. As a step towards this
goal, we propose an architecture that autonomously learns
grasp positions for different object shapes, enabling a robotic
arm to grasp previously unknown objects. The learning process
is self-organized through the usage of performance improve-
ment, a type of competence-based intrinsic motivation.

II. APPROACH

The Goal-Discovering Robotic Architecture for
Intrinsically-Motivated Learning (GRAIL) [2] allows a
robot to discover abstract goals in its environment, create
internal representations of those, and use Competence-Based
Intrinsic Motivation to self-supervise its learning. The
architecture is equipped with a predefined number of goals
and experts. Experts compete for solving the goals and
each expert will eventually be assigned to one goal. Both
goals and experts are assigned scores, representing their
recent performance improvement. At timestep t, the goal
to train on, and the expert to train are chosen through a
softmax on the respective scores. After execution of the
expert, the score of the selected goal (Gt) is updated with the
performance improvement, i.e., the difference between the
current performance pt and the previous performance pt−1,
smoothed with a moving average given by

Gt = (1− α)Gt−1 + α(pt − pt−1) ,

∗This project has received funding from the European Unions Horizon 2020
research and innovation programme under grant agreement #713010 (GOAL-
Robots) and #640554 (SKILLS4ROBOTS).

Fig. 1. Left: Training environment with a 7DOF Kuka arm simulated in
V-REP. Right: Real 3D printed robot environment for the evaluation of the
knowledge transfer.

with α as smoothing factor. The score of the selected expert
is updated analogously.

A. Extending the Architecture

Acquiring knowledge about previously unknown objects on-
the-job is crucial for lifelong learning [3]. We thus adapted
GRAIL s.t. at any point, the architecture can incorporate
new goals. When a new goal is discovered, the architecture
instantiates random experts for it. Existing experts of other
goals are also tested. If they perform well, i.e., succeed in
grasping at least one object, they are duplicated and the
duplicate is added to the new goal (expert transfer). We thus
bootstrap the learning process on newly discovered goals, and
allow a not predetermined thus unlimited number of goals and
experts. This extension of the architecture is depicted in Fig. 2.

GRAIL uses Maximizing competence progress motiva-
tion [4] to self-organize the learning order of different goals,
as goals and experts making the most progress have higher
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Fig. 2. A schematic depiction of the goal-expert relation within the architec-
ture. The goal selector selects a goal to train on (e.g. Goal 1) by sampling
from the softmax of the goal scores. The expert selector of the selected goal
selects one of its experts (e.g. Expert 1) analogously. The selected expert
predicts the offset pose according to the object size.



Fig. 3. Left: The end effector is sent to the center of the object which is
permeable for demonstration purpose. Right: The predicted offset (5cm along
y-axis, and 90 degrees around x- and around y-axis) is added.

chances to be selected. We use the performance, which is part
of this intrinsic motivation model, to initialize the score of the
experts, by setting it to the initially observed performance (p0).
The initial goal score is the maximum score of its experts. We
thus encourage the robot to first train on goals with experts that
show promising performances, hence maximizing the chances
to have stable grasping positions in a short training period.
We use the average score as temperature in the softmax, to
balance between exploration and exploitation.

B. Application to Grasping

To learn grasp strategies in a time efficient manner, we let
the architecture predict the robot end effector pose which is
necessary for grasping a target object. Therefor, we categorize
different object shapes as goals. This representation enables
the architecture to learn experts which, for every object shape
and size, determine the offset (position and orientation) which
is added to the pose of the target object. An example is shown
in Fig. 3. Hence, for any given object pose, the architecture
predicts an end effector pose enabling a stable grasp.

III. EXPERIMENTS AND RESULTS

The learning setup is simulated in V-REP and consists of a
Kuka LBR R820 manipulator and a table on which objects are
placed. During learning, the robot encounters objects of certain
shapes, which differ in their size and pose. In the following,
we exemplary describe the self-supervised learning procedure
of one run, for which the results are also shown in Fig. 4.
We initially place a cube and a cylinder in the simulated
environment. The architecture successfully discovers these
two goals by checking if the observed shapes have already
been seen. For the cube shape (Goal 1), four experts are
instantiated (i.e. they successfully grasped at least once), and
two for cylinders (Goal 2). Fig. 4 shows the evolution of
these experts, how they are selected and updated during the 19
first episodes. One episode corresponds to the selected expert
performing stochastic hill climbing to improve its performance
with 10 trials. For each goal, experts with high score are
first selected, and if no (further) progress is made, their
selection probability decreases. Hence, the worse performing
cylinder expert (Goal 2) is selected after the better one fails to
improve. Grasps are considered successful when the object is
lifted without slipping, i.e., a stable grasp achieves maximum
performance. After Episode 10, we place a new object in the
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Fig. 4. An exemplary Development of the goal probabilities and the expert
performances during 19 episodes. In each episode, first a goal, and then one of
its experts is selected. The dots mark the selected expert. Goal 3 is detected
at the beginning of Episode 10. Top: The precise performance values are
marked for the initial scores and after each competence progress. Bottom:
The plot shows the softmax of the goal scores which are based on their
learning progress. It is also their probability of getting selected.

environment and the architecture autonomously discovers it.
Four new experts are instantiated for the new goal, but only
two are selected during training (see Fig 4). After few training
iterations on this new goal, performances and progress are
similar to the other goals, and the architecture automatically
trains on all of them.

Working with offsets in task space allows an easy transfer
of the learned grasp strategies. We show this by transferring
the strategies learned on the Kuka arm in simulation to an
open source 3D printed robot, Thor [5]. The robot has per-
formed successful grasps for several object positions despite
its different kinematics and shape1, as shown in Fig. 1.

IV. CONCLUSION AND DISCUSSION

To enable real open-ended learning, we extended GRAIL’s
self-supervised learning to handle infinitely many goals and
experts and to transfer knowledge between experts. Further,
it is possible to transfer strategies from one robot to another,
which we show by training on a simulated robot manipulator
and a successful transfer to a different 3D printed robot. We are
currently training the architecture on a wider range of goals,
and we are planning to integrate an object decomposition
framework to learn grasping of more complex objects.
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1Video of a successful grasp: http://quentindelfosse.me/index.php/thor
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