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Abstract— Acquiring new robot motor skills is cumbersome,
as learning a skill from scratch and without prior knowledge
requires the exploration of a large space of motor configurations.
Accordingly, for learning a new task, time could be saved by
restricting the parameter search space by initializing it with
the solution of a similar task. We present a framework which
is able of such knowledge transfer from already learned move-
ment skills to a new learning task. The framework combines
probabilistic movement primitives with descriptions of their
effects for skill representation. New skills are first initialized
with parameters inferred from related movement primitives
and thereafter adapted to the new task through relative entropy
policy search. We compare two different transfer approaches
to initialize the search space distribution with data of known
skills with a similar effect. We show the different benefits of the
two knowledge transfer approaches on an object pushing task
for a simulated 3-DOF robot. We can show that the quality
of the learned skills improves and the required iterations to
learn a new task can be reduced by more than 60% when past
experiences are utilized.

I. INTRODUCTION

Currently, most robots can only execute a fix amount

of (pre-defined) movement skills and are thus not able to

adapt to their environment by learning new skills on the

fly when required. At the same time, when learning a new

motor skill with, for example, reinforcement learning, the

algorithm usually starts with a wild guess resulting in a large

exploration phase leading to unpredictable robot movements

and usually resulting in a single learned skill. When taking a

look at human development instead, we see that at a young

age, human babies and infants also perform quite random

movements with their bodies in response to changes in the

environment (or themselves), but once they have learned basic

movement skills, they are able to narrow down the required

exploration for solving a new task from randomness to task

specific movements [1]. From a robotics point of view, such

specific exploration not only enables efficiency in human

learning, but also provides some safety as new movements

are close to past experienced solutions and therefore neither

(over)stretch joints nor lead to collisions with the environment.

In machine learning and especially in robot learning, one

*This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 713010
and No 640554.

1Intelligent Autonomous Systems, Technische Universität
Darmstadt, Hochschulstr. 10, 64289 Darmstadt, Germany
svenja@robot-learning.de

2Institute for Robotics and Cognitive Systems, Universität
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Fig. 1. An exemplary depiction of the 2D learning scenario which is used
within this work. The robot arm has to solve the new task labeled as 10 of
which it only knows the task descriptor. The task descriptor consists of the
desired object trajectory depicted in red. The robot already knows how to
solve the other nine depicted skills and has the two closest skills 8 and 9
selected to learn from. Their task descriptor is depicted by the dashed line.
The workspace of the robot is marked by the gray half-circle. The darker
robot arm marks the starting position for training set A and the lighter one
marks one possible final position for the given task.

could also profit from such a transfer of knowledge when

learning solutions to new tasks, as in this case as well, it not

only reduces the learning time, but also the randomness (and

thus possible danger) of explored movements. For scenarios

where the exact desired movement can not be demonstrated,

which is especially the case for highly precise tasks on a

robot, transferring knowledge from other tasks could enable

the learning of the desired task.

In the long run, transfer learning can enable robots with a

faculty for lifelong learning, such that they can adapt to new

tasks or environments. The adaptation will become easier and

easier over time thanks to the growing skill knowledge.

For making some small steps towards closing the gap

between human adaptivity and the current state of the art in

robotics, we want to enable transfer learning on a robotic

setup and therefore present an approach for enabling such

transfer on robotic motor skills within this paper. For this

purpose, we combine several existing approaches into a

single knowledge transfer framework. We use Probabilistic

Movement Primitives (ProMPs) [2], a probabilistic skill

representation which defines a skill as a Gaussian distribution

over trajectory parameters. Thus, we are able to re-use the

mean and the covariance of known source skills to initialize

an already pre-shaped and narrowed down search distribution

for learning a new task via reinforcement learning. Such

an initialization points the learning algorithm towards a



promising direction. Furthermore, each skill in our framework

consists of a description of its effect alongside the movement

trajectory itself. This additional description of the effect, i.e.,

the task the skill solves, enables the framework to select

respective source knowledge for learning a new task and

to evaluate the current learning progress. We assume that

such task descriptors for new target tasks are provided by an

external planner or a human. Our approach allows us to use

knowledge from multiple source skills.

We demonstrate the effectiveness of our framework on a

2D scenario with a 3-DOF planar arm (Figure 1). We show

that using the knowledge of already learned skills to narrow

down the parameter search space for learning a new task

results in faster convergence and safer exploration.

II. RELATED WORK

The idea of transferring past experience to the process

of solving a new task is well known and has already been

used extensively [3]–[6] and on a broad variety of learning

problems and algorithms such as classification, regression

and clustering [5], deep learning [7] and reinforcement learn-

ing [3]. Despite its extensive use, there is still a great potential

seen in the concept of transfer learning to further propel the

machine learning community in different domains [8], [9]

and for robotics, to drive it towards autonomous, lifelong

learning robots.

While transfer learning has already been applied within the

field of robotics, i.e., for transferring knowledge between

robots [10], [11], transferring skills from simulation to

reality [12] or policies between robots [13], there has been

relatively little research on transferring knowledge from one

(motor) skill of a robot to the next, especially in the context

of reinforcement learning. In [14], the value function of

SARSA(λ) is transferred when learning a new skill. In

contrast, we use a search-distribution-based reinforcement

algorithm and transfer the policy search space.

Such an approach of reusing previously learned policies has

been labeled as Policy Reuse [15] or, in a broader context, as

a starting point method [16]. For genetic algorithms, instead

of policies, populations have been transferred [17]. As we

use a distribution over polices, our approach does not use

concrete offsprings but transfers the whole distribution from

which samples in each iteration are drawn and evaluated.

Regarding the usage of task descriptors, there have already

been other search distribution methods incorporating features

of the desired effect of the skill in the skill learning process,

such as e.g. contextual relative entropy policy search [18]. In

contrast to contextual reinforcement learning, our approach

is non-parametric and thus does not require a structural

dependence between the context and the skill trajectory. Also,

as we not only use a final goal position but a full trajectory,

we restrict the solution space further, making the resulting

trajectories safer and more similar to already known skills.

III. SKILL LIBRARY SETUP

In our framework, all acquired skills S of a robot are

collected within a skill library S = {S1, S2, ..., Sn}. Each

skill Si = (p(τ i),Ti) is the combination of a movement

trajectory distribution p(τ ) and a description T of the effect

of the movement, i.e., the task or problem it solves.

Thus, the application of our approach requires a search dis-

tribution over the movement trajectories, which, for example,

can be realized by parametrized movement representations

with a prior distribution over the parameters. Probabilistic

Movement Primitive (ProMP) [19] are such kind of represen-

tation and we thus use them for each movement trajectory

distribution p(τ ) as explained further in Section III-A.

Each task descriptor T captures the desired or experienced

effect of the movement trajectory τ on the environment, e.g.,

in the form of the object movement trajectory in task space.

Our approach requires that the representation of the task

descriptors allows the application of a distance measure: When

receiving the description of a new target task T∗ which shall

be solved, the most appropriate, i.e. similar, past experience(s)

to learn from can be selected by comparing T∗ to all known

task descriptors T[1..n].

The movement trajectory distribution(s) of the selected

skill(s) can be used to form the initial search distribution for

learning the solution τ ∗ of the task T∗. In this work, we use a

policy search algorithm for this purpose. It is further explained

in Section III-B. The different possibilities of utilizing the

knowledge from the skills within the library are presented in

Section III-C.

A. Movement Trajectory Representation as ProMPs

We use ProMPs as probabilistic representations for the

movement trajectory, as the probability of this representation

directly provides a distribution p(τ ). Simple linear approxi-

mations would only estimate the weight parameters w for a

linear approximation of a trajectory τ = Φᵀw which at most

can keep variations over (system) noise Στ

p(τ |w) =
∏
t

N (τt|Φᵀ
t w,Στ ).

A ProMP additionally captures a variance of the trajectory

itself by keeping a Gaussian distribution over the weights w ∼
N (μw,Σw) and thereby yields a distribution over trajectories.

Thus, the probability of observing trajectory τ is given by

p(τt;θ) =

∫
N (τt|Φᵀ

t w,Στ )N (w|μw,Σw)dw

= N (τt|Φᵀ
tμw,Φ

ᵀ
tΣwΦt +Στ )

and the open parameters θ defining a ProMP are μw and Σw,

which we estimate when learning a new skill.

For the features Φ, we use Gaussian basis functions which

span over time and which are also linearly distributed over

time. Accordingly, each weight wi mainly influences a certain

time span of the trajectory as it weights its respective basis

function. As the basis features are the same for all learned

trajectories, the weights represent a dimension reduction of

the trajectory τ . Such a reduction can be learned for all

kinds of trajectories, e.g. trajectories in joint space as well

as in task space. Abstract concepts such as being close to



an object or orienting the end-effector towards an object are

not incorporated within the weights. It shall be noted that

also the task descriptors T can be represented by a ProMP

to yield a reduced representation to, for example, compare

the learned weights.

To fill a library with n initial skills which can be reused later

on, we provide their probabilistic movement representation via

learning from demonstration. The parameters μw and Σw can

be obtained by providing several demonstrations of the same

movement. For each demonstration, we learn the weights w
via linear regression or expectation maximization [20], [21].

Subsequently, we estimate the mean μw and the covariance

Σw via maximum likelihood estimation.

B. Learning a New Skill with REPS

To learn a new movement trajectory τ ∗ from source knowl-

edge which solves task T∗, we use the reinforcement learning

algorithm Relative Entropy Policy Search (REPS) [22]. More

specifically, we employ the episode-based formulation of

REPS [23], which allows a parameterized policy πθ(τ ) to

encode a full movement trajectory in an open-loop manner.

The reward signal is obtained only after the full execution of

one episode.

In our scenario, using a stochastic search algorithm has

multiple benefits. First, we can conveniently use the ProMP

framework to represent the search distributions of REPS,

πθ(τ ) = p(τ ). Hence, the final optimized policy parameters

θ are the parameters of a new ProMP, i.e., a Gaussian

distribution. Furthermore, each τ drawn from policy πθ(τ )
is a linear combination of the learned weights and the

basis functions, thus, an executable movement trajectory.

This formulation additionally allows to incorporate source

knowledge into an initial distribution q(τ ), which makes

REPS a natural choice for optimizing new movements given

prior experience. Second, REPS is a sample-based black-box

optimizer, that assumes no knowledge of the accumulated

reward function R(τ ). This fact is convenient, as even if

the desired object trajectory T∗ is known, the task descriptor

contains no knowledge of the environment, such as (inverse)

kinematics or motor and contact dynamics.

As a policy search algorithm, REPS iteratively optimizes

the parameters of the search distribution πθ(τ ) such that the

final policy attains maximum expected accumulated reward.

The optimization is formulated as a constrained problem

for which the Kullback-Leibler divergence (KL) between

the optimal policy πθ(τ ) and an initial distribution q(τ ) is

limited to a threshold ε to limit information loss and greedy

updates

max
θ

∫
πθ(τ )R(τ )dτ ,

s.t. ε ≥
∫

πθ(τ ) log
πθ(τ )

q(τ )
dτ ,

1 =

∫
πθ(τ )dτ .

This optimization is solved by constructing the Lagrangian

function and optimizing the dual problem. The resulting

optimal new search distribution πθ(τ ) is given by

πθ(τ ) ∝ q(τ ) exp(R(τ )/η),

which can be seen as a re-weighting of q(τ ) based on

the performance measure R(τ )/η, where η is the Lagrange

multiplier corresponding to the KL constraint. In practice,

this update is performed over the sample set {τ i, Ri(τ )} as

weighted maximum likelihood estimate.

Given that policy reward is only gradually optimized, REPS

can implement a safe exploration strategy, by considering

local policy updates around a stable trajectory distribution,

thus limiting greedy jumps into unfavorable regions in the

parameter space. In theory, any other regularized optimization

algorithm operating on a (Gaussian) parameter distribution

may be used in our framework, such as natural evolution

strategies [24], the covariance matrix adaptation evolution

strategy [25] or random search [26].

C. Selection and Transfer of Relevant Source Knowledge

When getting the description of a new task T∗, there are

several possibilities to select the appropriate initial policy for

REPS to start learning from. As we assume a task descriptor

representation T which allows calculation of similarity, we

can compare T∗ to all familiar task descriptors T[1..n] in the

skill library and use the k-nearest neighbors algorithm (k-

NN) [27] to select the k closest skills to learn from in case

the library contains more than k skills. For a setting of k = 1,

only the skill with the task descriptor most similar to the

target task descriptor is selected to learn from, while for a

setting of k = n the whole library knowledge is utilized.

We propose two different approaches for transferring the

selected knowledge. For both approaches, the covariance

matrix is scaled using a hand-tuned factor s. Otherwise, the

search distribution is too restricting to allow the learning of

a different movement.

The first approach is to transfer only the movement

trajectory distribution mean of the k selected source skills

μk and combine it with uniform variance sI as initialization

of the REPS search distribution Ip = (μk, sI). We call this

approach partial transfer, and the transferred knowledge could

also be gained from other movement representations such as

e.g., Dynamical Movement Primitives [28].

The second approach is to transfer the mean μk as well

as the scaled covariance s/(max(Σk))Σk of the source

skills, leading to a pre-shaped and thus smaller initial search

space for REPS If = (μk, s/(max(Σk))Σk). We call this

second approach full transfer and it is only possible with a

probabilistic skill representation providing the covariance of

the source skill(s).

As a baseline, we also use a ‘random’ parameter initial-

ization which is not based on any source knowledge. To

ensure that at least at the beginning of the learning process

the robot arm starts in the same position as the other transfer

approaches, the weights of the random initialization are

a weighted mean between the average over the means of

all available skill data μN =
∑N

n=1 μn/N and randomly

drawn parameters μr, thus μb = λμN + (1 − λ)μr. The
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Fig. 2. Mean reward per iteration for learning on a large library, averaged over the learning of all ten different skills. The source knowledge is selected
from a library containing all skills except the target skill, i.e., N = 9 for all settings. Such a large library allows k-NN to choose the optimal initialization
and it is the optimal setting we introduced within this paper. The label k = x denotes from how many source skills the initialization was compiled. Each
iteration evaluates 60 samples to update the covariance matrix and each transfer setting has been repeated 5 times for all of the ten target skills. The left
plot shows the results for learning on dataset A, the right plot shows results for learning on dataset B. The plots include the standard deviation to indicate
the variety of the results. The three different initialization modes show different learning characteristics: the random initialization starts with the lowest
reward and has the highest variation regarding learned results. The full transfer modes converge fastest, and for k > 1, they reach the same final reward as
the partial transfer. The partial reward outperforms the baseline regarding final reward and higher start for all k.

weights of the average parameters λ refer to how large the

value of the related basis function ψi is at start time 0, i.e.,

λi = ψi
0/max(ψ0). The baseline is thus set to Ib = (μb, sI).

IV. EXPERIMENTS AND EVALUATION

We evaluate the presented transfer approach on a scenario

of ten object pushing tasks. The task descriptors T are the

desired trajectories that the pushed object has to cover and

the movement trajectories τ are joint space trajectories of

the robot.

The task of pushing an object is non-trivial for an open

loop setup, due to the difficulty in modeling the interaction

between the robot and the object. A few millimeter difference

in contacting the object can result in completely different

object trajectories (e.g., the end-effector pushing the object

vs. rotating and passing by it). Thus, the robot must not only

push along the correct line (which would be a similar task

to the end-effector tracking a desired trajectory), but also

has to touch the object in the right angle, at the right point,

over the whole trajectory. Furthermore, the object has low

friction to allow sliding if the arm pushes too forceful. This

interplay also makes the accumulated reward function R(τ )
non-linear and thus hard to model, even with the presence

of the known target task descriptor, as the interplay between

the end-effector and the object is unknown.

One of our goals is safe learning in robotics, and for us,

this means that when the robot learns a new movement τ ∗,

the new movement should have a similar shape to what is

known already. Such behavior is more predictable and also

sticks to areas of the workspace which are known to be safe.

Thus, in addition to a quantitative evaluation regarding the

final reward, we evaluate our transfer approaches regarding

this safety criterion within a qualitative comparison.

A. Task Setup

The task uses a 3-DOF planar arm with a gripper and

a moveable cylinder in a 2D environment. The dynamics

of the environment are simulated by the Bullet engine

(PyBullet [29]). The arm is controlled in joint space and

besides a gripper is mounted to make the pushing easier,

the gripper is never closed to actually grasp the object. We

use 6 basis functions for each joint trajectory, resulting

in overall 18 parameters for the movement trajectory τ ∗.

The information available from the environment include the

end-effector positions, the cylinder positions and the actual

joint positions of the robot during execution. The tasks T∗

are described by the x and y position of the cylinder at each

time step. A snapshot of a possible task learning setup with

a large library of nine skills of which two are selected as

source knowledge is depicted in Figure 1.

1) Datasets: We evaluate on two different skill datasets,

of which both are handcrafted. Dataset A starts with the robot

being in a position where the gripper already encompasses

the object. In dataset B, the robot starts in a position with

a larger distance between the end-effector and the object.

A larger distance makes it less likely to randomly push

the object at all, but such pushing is necessary for the

learning algorithm being able to exploit the respective reward

function component.

2) Task Similarities & k-NN Modalities: As we represent

our task descriptors T as object trajectories in task space, the

Euclidean distance is informative enough for the trajectory

comparison [30]. Thus, the Euclidean distance between the

desired object trajectory T∗ and the known tasks Ti is

calculated DTi =
∥∥T∗ − Ti

∥∥
2
.
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Fig. 3. Mean reward per iteration for learning on a small library, averaged over the learning of all ten different skills. The source knowledge is selected
from a library containing only the number of skills needed to select k skills, i.e., N = k for all settings. Such a small library annihilates k-NN, as there is
no choice possible and thus enforces choosing non-optimal source knowledge. The upper row shows results for learning from a library with size N = 1,
the lower one for learning from a library with size N = 2. The label k = x denotes from how many source skills the initialization was compiled. The left
plot shows the results for learning on dataset A, the right plot shows results for learning on dataset B. The plots include the standard deviation to indicate
the variety of the results. The plots show that the partial transfer is more robust to suboptimal source knowledge, as it still yields the same performance as
in the previous plot, while the full transfer only manages to outperform the baseline for k = 2 on dataset A.

We use the calculated distances and k = 1, k = 2, and

k = 9 as hyperparameter of the k-nearest neighbor algorithm

to select the source knowledge. We combine these three

modes with the partial transfer and with the full transfer.

Together with the baseline, this yields seven different

evaluation settings.

3) Reward: As due to the episode-based formulation of

REPS, each sampled trajectory is executed at once, the reward

is calculated only afterward for the whole sampled trajectory.

The accumulated reward function for a trajectory R(τ i)
consists of a component rT

i which evaluates how close the

current object trajectory oi is to the target task descriptor

T∗ to evaluate the quality of the current movement (and the

resulting object trajectory). Again, the Euclidean distance is

used to determine the similarity rT
i =

∥∥T∗ − oi

∥∥
2
. To punish

the robot when throwing the object instead of pushing it,

we extend the reward function by a second component rpi
to reward pushing movements, which is formulated as the

Euclidean distance between the end-effector trajectory ei and

the object trajectory oi over the whole execution time, thus

R(τ i) = arT
i + brpi

= a
√

(T∗ − oi)ᵀ(T∗ − oi) + b
√

(ei − oi)ᵀ(ei − oi).

The factors a and b are hand-tuned such that the mean value

of rT
i has 1.5 times the value of the mean value of rpi . While

in theory, zero would be the optimal possible reward, due

to taking the Euclidean distance over 1250 time steps and

also, the gripper not allowing for zero distance between the

end-effector and the object, the robot is practically not able

to actually gain a reward of zero.

B. Evaluations

In [16], three possible quantitative benefits are listed which

can be gained from transfer learning: higher start, higher
asymptote, and higher slope. The first benefit is defined as

the performance level gained by using only the transferred

knowledge without any learning update. The second benefit

is defined as a higher final performance level. The third one

is defined as the time it takes to fully learn the target task.
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Fig. 4. Mean reward for each iteration, averaged over the learning of all ten different skills. The source knowledge is selected from all possible skill
combinations, thus N ∈ {1, 2, 9}. The label k = x denotes from how many source skills the initialization was compiled. The left plot shows the results for
learning on dataset A, the right plot shows results for learning on dataset B. The plots include the standard deviation to indicate the variety of the results.

We evaluate all transfer possibilities between the skills,

thus all possible source knowledge combinations are formed

and used as initialization for learning each task which is

not part of the source knowledge. Hence, we have settings

in which the robot knows all skills and chooses the most

appropriate one via k-NN, and we have settings in which

there exists only a minimal library of exactly k skill(s), i.e.,

the number of source skills the robot has to choose. The latter

setting forces the robot to take suboptimal initializations as

it has no actual choice when selecting the source knowledge.

This is not the setting we have described within this paper,

but settings which may occur during actual lifelong learning,

as in such a scenario, not always the optimal set of source

skills has been learned yet.

We run REPS for 200 iterations for all setups, but as all

settings converge latest around iteration 60, we show only 80
iterations. In each iteration, 60 parameter samples are drawn

from the search distribution and each resulting trajectory is

evaluated via the accumulated reward function R(τ ). Each

trajectory has a length of 1250 time steps and each time step

takes 0.004 seconds, resulting in 5 seconds per trajectory

execution.

Each of the transfer possibilities is evaluated five times.

This results in overall 5 × 460 = 2300 evaluations. For

each evaluation of one of the settings, we also evaluate the

baseline. The results for a large initial library allowing us

to choose optimal k source skills are provided in Figure 2.

The results of enforcing suboptimal source knowledge are

shown in Figure 3. The average overall obtained results are

shown in Figure 4.

1) Evaluation On a Large Library: Figure 2 shows the

average reward of the different transfer modalities for the

learning of all skills from a large skill library. We can see

that both introduced transfer approaches reach a higher

asymptote than the baseline on almost all settings (except

the full transfer with k = 1 on dataset B). All full transfers

reach their maximum fastest, within latest 25 iterations, thus

have the highest slope according to [16] and learn with

the least amount of required samples. The partial transfer

outperforms the full transfer approach in the setting of

k = 1. The convergence takes approximately 60 iterations,

which is about the same number of iterations as the baseline.

Regarding the highest start criterion, both transfer approaches

yield the same initial reward as the reward is calculated

based on the mean only.

2) Evaluation on a Small Library: For a small library not

allowing optimal source knowledge, the transfer results are

shown in Figure 3. For almost all settings, the partial transfer

yields the highest asymptote and it always clearly outperforms

the baseline. The full transfer approach still has the shortest

slope and thus the least amount of required samples, but it

only excels on dataset A and k = 2. For the other cases, even

the baseline reaches a higher reward level. This shows the

sensitivity of the full transfer approach regarding the quality

of the selected source knowledge. Thus, the full transfer

benefits from a large library to select source knowledge from.

Figure 4 shows all of the evaluated transfers in one plot

and further emphasizes how much the full transfer depends

on good source knowledge, as in overall average, full transfer

is only able to reliably reach the same asymptote as the

partial transfer when using k = 9 source skills. In contrast,

the results of the partial transfer are invariant regarding the

amount of library skills the source knowledge is selected from.

3) Qualitative Evaluation: Though the reward values

shown in Figure 2 indicate that the robot learns to push

the object closely along the target trajectory in most of the

cases, there are qualitative differences between the solutions

which we depict in Figure 5. We visualize these qualitative

differences by comparing the end-effector trajectories. Espe-

cially for dataset B, where the robot arm has to learn how to

approach the object, the different shapes of the solutions are
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Fig. 5. To grasp the qualitative results of the transfer learning approaches, we show exemplary resulting behavior of five learning trials for each of the
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dataset. For the random initialization on the very left, the resulting skills were rather random movements resulting in mediocre obstacle trajectories. For the
partial transfer (middle), the resulting object trajectories improved but the end-effector trajectories still deviate a lot from the initial movement and thus have
unpredictable behavior. For full transfer (right), the resulting trajectories were similar to the source knowledge, though, in the case of k = 1, transfer
usually did not take place at all.

obvious: when starting only from a source knowledge mean

or from a random initialization, the results are chaotic end-

effector movements and resemble often a hitting or throwing

movement instead of a gentle pushing. In contrast, for an

initialization with a full transfer, the shape of the trajectory

is preserved. Thus, the learned movements are similar to the

already known ones and by this are more predictable and

safer (as they do not enter dangerous areas) than the other

initialization possibilities.

Thus, Figure 2 and Figure 5 together show that there is

a trade-off when transferring knowledge. One can either

learn a specific, predictable solution with small variance

regarding the learned trajectory and high similarity to its

initialization, yielded by using full transfer. Alternatively, one

can learn a solution with a less similar movement trajectory

but guaranteed to achieve a high reward, thus the objectively

better solution to the provided task. The latter is yielded by

using partial transfer.

4) Discussion: Within the presented evaluations are two

observations which are contrary to (at least our) intuition and

thus may be from interest. First, when using full transfer,

taking only the most similar skill as initialization (k = 1)

does not always allow a good transfer. It happens that the

parameter search starts in a local optimum and has too little

exploration space which it would need to leave the initial

optimum. A larger scaling factor s for the covariance matrix

did not solve this problem, which means that the shape of the

search space is important. This is especially the case for the

training dataset B, where the robot starts with a distance to the

object and thus is unlikely to actually touch the object when

executing random movements. In some cases, adding terms

such as novelty, or aversion, towards the initial solution to

the cost function help overcoming this problem, but they also

tend to move the solution away from the pushing movement

we are aiming at towards movements hitting or throwing the

cylinder. This observed transfer behavior (but not necessarily

the internal process) for k = 1 in the full transfer show

an interesting similarity between our framework and actual

human learning: for humans, a negative transfer appears

usually in tasks which have high perceptual similarity [31]

as this circumstance allows for confusion [32]. Furthermore,

this also relates to humans having difficulties to unlearn

already learned mistakes from earlier stages of training [32],

though our framework is nowhere near to taking anything

into account like muscle memory or habits.

Second, when the source knowledge is selected from a large

skill library, it happens that for k = 2, the mean of the two

closest skills gives an already almost perfect initialization, as

an interpolation between the provided tasks works sufficiently

for the 3DOF robot. Interestingly, those initializations do not

always gain the best final reward. Often, a seemingly worse

(because more general and thus further away) initialization

of k = n yields a better final reward, which can be seen

in Figure 2. This is most likely due to a search distribution

being gained from more as well as wider source knowledge,

providing fewer restrictions.

V. CONCLUSION

In this paper, we showed that a deliberate choice of the

parameter search space for a learning algorithm working

on a search distribution enables safer, more predictable and

faster learning of a new motor skill, which all are favorable

properties for skill learning in robotics. We showed that the

selection of such an appropriate initial search distribution

can be done by transfer learning as demonstrated within this

paper. We proposed two different approaches for transferring

of already gained knowledge to the new task. Depending on

the overall aim, there are different criteria according to which

we recommend respective transfer approaches: in case of only



the solution of the task being important, independently of

how the solution may be executed, then simply transferring

the mean of the source search distribution enables the robot

to find solutions which may be more accurate but also further

away from the skills it knows already. For the case of wanting

safe exploration on the robot or movements which are similar

to the ones the robot knows already, the full transfer approach

is the initialization to go with. It is also our recommendation

for setups where evaluations are hard to obtain, as the full

transfer needs the least amount of learning samples.
The ideal setting for full transfer is to have as many as

possible similar skills of which the source knowledge can be

combined. In this case, the full transfer yields an initialization

balanced between providing useful knowledge to the robot and

yet being not too restricting on the exploration space. Further

investigations on how to provide optimal source knowledge

for the full transfer could enable faster learning on the robot

itself, as a well initialized full transfer saves about 60% of

samples. Thus, it might be fruitful to investigate into finding

optimal orders of skill learning to always provide the best

possible source knowledge to the robot.
Our approach is one step towards enabling future intelligent,

adaptive and thus autonomous robots which are capable of

lifelong learning. Such robots could be delivered with a small

set of basic skills that allows them to rapidly build their

skill library of required skills to deal with their environment.

Such a basic skill set also enables simple teaching by non-

expert humans, who have to demonstrate only a few desired

trajectories and then can let the robot learn by itself without

having to supervise it closely, or, can demonstrate skills which

are easy to demonstrate but not actually solve the desired

task and then let the robot improve the demonstration.

REFERENCES

[1] K. E. Adolph and J. M. Franchak, “The development of motor behavior,”
Wiley Interdisciplinary Reviews: Cognitive Science, 2017.

[2] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in Neural Information Processing
Systems 26, 2013.

[3] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey,” The Journal of Machine Learning Research, 2009.

[4] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big Data, 2016.

[5] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, 2010.

[6] D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick,
“Neuroscience-inspired artificial intelligence,” Neuron, 2017.

[7] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey
on deep transfer learning,” CoRR, 2018.

[8] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman,
“Building machines that learn and think like people,” CoRR, 2016.

[9] B.-H. Kim. NIPS 2016 tutorial: Nuts and bolts of building AI
applications using Deep Learning by Andrew Ng. Youtube. [Online].
Available: https://www.youtube.com/watch?v=wjqaz6m42wU

[10] M. K. Helwa and A. P. Schoellig, “Multi-robot transfer learning: A
dynamical system perspective,” CoRR, 2017.

[11] N. Makanda, B. Rosman, and O. Hasegawa, “Accelerating model
learning with inter-robot knowledge transfer,” 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018.

[12] J. van Baar, A. Sullivan, R. Cordorel, D. K. Jha, D. Romeres, and
D. Nikovski, “Sim-to-real transfer learning using robustified controllers
in robotic tasks involving complex dynamics,” CoRR, 2018.

[13] D. Schwab, Y. Zhu, and M. M. Veloso, “Zero shot transfer learning
for robot soccer,” in International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2018.

[14] S. Barrett, M. E. Taylor, and P. Stone, “Transfer learning for reinforce-
ment learning on a physical robot,” in Ninth International Conference
on Autonomous Agents and Multiagent Systems - Adaptive Learning
Agents Workshop (AAMAS - ALA), 2010.

[15] F. Fernández and M. Veloso, “Probabilistic policy reuse in a reinforce-
ment learning agent,” in Proceedings of the Fifth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2006.

[16] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods,
and Techniques, 2010.

[17] M. E. Taylor, S. Whiteson, and P. Stone, “Transfer learning for policy
search methods,” in In ICML Workshop on Structural Knowledge
Transfer for Machine Learning, 2006.

[18] A. Abdolmaleki, D. Simes, N. Lau, L. P. Reis, and G. Neumann,
“Contextual relative entropy policy search with covariance matrix
adaptation,” in 2016 International Conference on Autonomous Robot
Systems and Competitions (ICARSC), 2016.

[19] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Using proba-
bilistic movement primitives in robotics,” Autonomous Robots, 2018.

[20] E. Rueckert, J. Mundo, A. Paraschos, J. Peters, and G. Neumann,
“Extracting low-dimensional control variables for movement primitives,”
in Proceedings of the International Conference on Robotics and
Automation (ICRA), 2015.

[21] E. Rueckert, J. Camernik, J. Peters, and J. Babic, “Probabilistic
movement models show that postural control precedes and predicts
volitional motor control,” Nature PG: Scientific Reports, 2016.
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