
Towards Safe Robot Foundation Models

Maximilian Tölle⋆,1,2 Theo Gruner⋆,1,3 Daniel Palenicek⋆,1,3 Jonas Günster⋆,1

Puze Liu1,2 Joe Watson4 Davide Tateo1 Jan Peters1,2,3,5,6

Abstract— Robot foundation models hold the potential for
deployment across diverse environments, from industrial ap-
plications to household tasks. While current research focuses
primarily on the policies’ generalization capabilities across
a variety of tasks, it fails to address safety, a critical re-
quirement for deployment on real-world systems. In this
paper, we introduce a safety layer designed to constrain
the action space of any generalist policy appropriately. Our
approach uses ATACOM, a safe reinforcement learning algo-
rithm that creates a safe action space and, therefore, ensures
safe state transitions. By extending ATACOM to generalist
policies, our method facilitates their deployment in safety-
critical scenarios without requiring any specific safety fine-
tuning. We demonstrate the effectiveness of this safety layer
in an air hockey environment, where it prevents a puck-
hitting agent from colliding with its surroundings, a failure
observed in generalist policies. https://sites.google.
com/robot-learning.de/towards-safe-rfm

I. INTRODUCTION

Deploying autonomous agents in real-world environments
requires motion generation that is both feasible and adapt-
able to various scenarios. Robot foundation models (RFMs)
advance this goal by being trained across a variety of em-
bodiments, tasks, and environments. However, a critical com-
ponent—safety—remains unaddressed despite its importance
in many real-world applications. Current RFMs [1], [2] are
typically trained with behavior cloning (BC) to imitate expert
trajectories. Given that expert data predominantly consists of
safe demonstrations, RFMs may implicitly reflect a notion of
safety as a result of this data bias. However, while this may
encourage conservative behavior in safety-critical tasks, it
does not provide any formal safety guarantees. Additionally,
BC policies may catastrophically damage the robot during
deployment when encountering unseen observations due to
the distribution shift [3], [4], [5]. Therefore, we argue that
integrating domain expertise is essential for ensuring reliable
safety.

Inductive biases combat several shortcomings of purely
data-driven approaches in robot learning [6], [7], [8], [9],
[10]. Incorporating analytic models into these optimization
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Fig. 1. Composition of a safe VLA policy. The proposed safety module
ψ depends on a pre-specified set of safety constraints g and can be added
on top of the output of the VLA policy. While the initial output of the VLA
policy does not guarantee safe actions, the added safety module ensures safe
state transitions.

techniques enables sound inference [10], data-efficient learn-
ing [9], and safety [6] by exploiting the problem’s inherent
dynamic structure. Safety has thereby been a major concern
within the control community which has developed several
safety-ensuring methods using control barrier functions [11],
[12], [13], [14], [15], reachability analysis [16], [17], [18],
[19], [20] and shielding [21], [22], [23], [24]. Commonly,
all these approaches exploit domain knowledge to construct
a guaranteed safety filter. For more details, refer to the
following reviews [25], [26], [27].

In this paper, we introduce a safety module that enables
a pre-trained RFM to operate safely within an environment
by adhering to domain-specific safety constraints. This is
accomplished by utilizing system dynamics to control actions
within the robot’s null space. Following [6], [28], we create a
safe action space from the constraints and system dynamics,
which ensures that an initially unsafe action from a RFM is
mapped to a safe action. By doing this, the module ensures
safe transitions during deployment.

II. A SAFETY MODULE FOR GENERALIST POLICIES

Today’s RFMs [29], [30], [1], [2] are trained on large-
scale datasets [30] to predict actionable outputs from multi-
modal observations x, such as images, language instructions
and proprioceptive data. We define the policy that maps
language instruction and observations to robotic actions as
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a ∼ πVLA(· | x). Our goal is to make an already trained RFM
safe at test time. Therefore, we adopt ATACOM [28] to ensure
guaranteed safe actions. We pose the following requirements
for the system:

Requirement 1: Access to the system’s state s and a
control affine system ṡ = f(s) +G(s)a.

Requirement 2: We define the safety conditions as con-
tinuously differentiable constraints 0 ≥ g(x) ∈ C1.

Most robotic manipulators in [30] fulfill rigid-body as-
sumptions and thus already comply with Requirement 1.
Furthermore, we assume that practitioners have prior knowl-
edge of the robot’s safety requirements and can effectively
define the system’s constraints (Requirement 2). Thus, while
the above-stated requirements may seem restrictive at first,
we deem that these assumptions hold for most currently
considered robotic platforms VLAs are trained on.

Acting on the tangent space of the constraint manifold.
Building on the aforementioned requirements, ATACOM [6],
[28] constructs a constraint manifold of safe configurations.
Actions are then mapped into the tangent space of this
manifold, ensuring safe transitions. As such, ATACOM can
be seen as a mapping from actions a, the state s, and the
safety constraints g to safe actions

asafe = ψG,f (a, s, g), a ∼ πVLA(· | x).

In this way, we ensure that actions that are drawn from a
VLA policy are mapped to be safe actions that guarantee
compliance with the safety constraints g.

III. EXPERIMENTS

We empirically evaluate the proposed approach on a robot air
hockey task. The objective is to hit a puck into the goal while
adhering to multiple safety constraints, such as keeping the
end-effector on the table surface, preventing the arm from
colliding with the table, and ensuring joint position limits.
We refer to [28] for a detailed description of the experi-
mental setup. The policy’s observation consists of language
instructions, a goal image of the scene, and proprioceptive
data in the form of joint positions, joint velocities, puck
position, and puck velocity. While not needed for safety but
for improved performance in the air hockey task, we fine-
tune a pre-trained OCTO [1] policy using behavior cloning
in both a simulated MUJOCO [31] environment and a real-
world setting. Importantly, we obtain the fine-tuning data
by an expert policy that does not leverage ATACOM. The
policy outputs desired end-effector velocities in the x-y plane
of the table surface, which are converted to joint velocities
using inverse kinematics. The ATACOM layer then maps these
joint velocities to safe ones before passing them to a joint-
space controller. We compare our safety-aware approach to
an unsafe baseline, where the joint-space controller directly
executes the unfiltered joint velocities.

We evaluate the safety module for various fine-tuning
checkpoints of OCTO on the physical system. Several deploy-
ment videos of OCTO playing air hockey can be found on
our project page. Fig. 2 shows that the OCTO agent with the
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Fig. 2. Safety violations of the OCTO policy w/o the safety module on
the air hockey hitting task for different checkpoints during the training
phase. We report the maximum constraint violation a trajectory as well
as the success rate of the robot hitting the puck into the goal. When the
ATACOM safety module is added, the policy remains compliant with safety
constraints throughout fine-tuning. It progressively improves its success rate,
whereas the unmodified OCTO policy continues to breach safety limits while
achieving a lower success rate.

added safety module does not violate the safety constraints
during inference. On the contrary, OCTO without the added
safety layer heavily violates the constraints even though the
fine-tuning data contains safe expert demonstrations. Look-
ing at the success rates, we observe a steady performance
improvement in the number of training iterations when using
the safety module. Importantly, while the fine-tuning data is
not obtained with ATACOM, we still obtain high success rates,
which underlines that ATACOM does not generate overly
conservative control actions. Interestingly, we see that the
constraint violations of the OCTO baseline increase with
added training time, which negatively impacts the policy
performance.

IV. CONCLUSION

We propose a safety module that can be added as the
final layer of a Robot foundation model (RFM) by lever-
aging domain-specific knowledge. Although leveraging do-
main knowledge may seem counterintuitive for RFMs, we
hypothesize that reasoning with system dynamics is essential
for ensuring safety. Additionally, by designing this module
as an independent safety layer, it does not incorporate
any additional computational burden, such as fine-tuning,
to ensure safety. We demonstrate the effectiveness of the
safety layer by evaluating a VLA policy with BC on an
air hockey hitting task for which it is critical not to crash
with the tabletop. While we emphasize that ensuring safety
requires domain expertise, it can also be a demanding task to
formulate all scene-specific safety constraints. One intuitive
research direction is to automate the process by leveraging
the inherent knowledge of vision-language models (VLMs).
However, so far, VLMs have only been used to integrate
semantic safety constraints such as “keep the cup upright”
into an already existing set of constraints [32], [33]. Beyond
the formulation of safety constraints, it remains an open
research question of how a more generalizable concept
of safety can be formulated and applied across different
embodiments, environments, and tasks.
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