Exploring the Role of Vision and Touch in Reinforcement Learning
for Dexterous Insertion Tasks
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Abstract

Robotic insertion tasks pose significant challenges due to perceptual uncertainties and the need for precise control, es-
pecially in unstructured environments. Humans naturally integrate vision and touch to navigate such scenarios, yet
replicating this seamless multimodal coordination in robotic systems remains an open research problem. This study
investigates the roles of visual and tactile feedback in reinforcement learning for dexterous insertion tasks, aiming to
understand their relative contributions. We analyze the interplay between these modalities by training and evaluating
vision-only and vision-tactile policies on a range of insertion scenarios with varying levels of difficulty. Our findings re-
veal that tactile feedback significantly enhances task performance in precision-critical conditions, such as high-tolerance
fits and challenging orientations, where visual input alone proves insufficient. Conversely, vision excels in initial align-
ment, highlighting the complementary strengths of both modalities. By systematically investigating the influence of the
two modalities, we highlight the roles of each modality and their impact on designing effective reinforcement learning
policies, contributing to the development of better multi-modal decision-making systems.
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1 Introduction

Humans effortlessly solve daily insertion tasks, like plugging a plug
into a socket, by leveraging vision, touch, and compliance. How-
ever, in robotics, such tasks remain challenging due to the inherent
uncertainty in unstructured environments. Robotic perception sys-
tems often lack the precision to accurately determine the plug’s and
socket’s positions, making success difficult given the small error mar-
gins typical of insertion tasks. While advances in tactile sensing tech-
nologies [1, 28, 20, 11] enable the incorporation of vision and touch to
robot systems, effectively integrating these modalities into perception
and control systems remains an open research problem.

Robotic dexterous manipulation has been an active field of research
for a long time. Many approaches rely on vision as their sole sensing
modality [5, 25, 22]. While these works highlight the importance of
vision for robotic manipulation tasks, vision alone is often insufficient,
as it provides no information on forces acting at the contact points and
suffers from occlusion by the robot’s end-effector.

Figure 1: Dexterous insertion platform using vi-
sion and touch. o0'®® shows the visual observa-
Prior work has utilized tactile sensing for dexterous manipulation [19, tion and o%° the tactile observation.

16,17, 9]. Many recent approaches rely on vision-based tactile sensors

[16, 17, 9], as they provide a rich, high-resolution representation of the contact patch while also allowing force estima-
tion [10]. A challenge is that tactile data is often difficult to interpret, making designing control loops with tactile sensors
non-trivial. To address this, many prior works choose a data-driven approach to extract interpretable features from tactile
data [17] or directly map tactile data to actions via end-to-end learning [19].

Both tactile and vision sensors provide limited information about the environment. While tactile sensors can only pro-
vide information about objects the agent is in contact with, vision sensors suffer from occlusion and cannot measure
contact forces. By combining both sources of information, one sensor can compensate for the other’s shortcomings. The
combination of vision and touch has been explored for 6D-pose estimation [8], grasping [15, 7], object manipulation, and
insertion [21, 27]. Like our work, Lee et al. [21] also learns peg insertion with reinforcement learning from vision and
touch. However, they first learn a representation of the multi-modal input with a Variational Auto Encoder (VAE) [18]
and then optimize the policy on the representation. While such a scheme can simplify the policy learning algorithm, it
also means that the representation is not task-specific and potentially contains unnecessary information.

In this work, we explore the role of tactile sensing in improving robotic insertion tasks and analyze the interplay between
visual and tactile inputs during complex manipulations. We adapt the platform proposed in [24] to include visual ob-
servations from an external camera and learn a policy using Dreamer-v3 [14]. Dreamer-v3 is an actor-critic algorithm
that learns latent representations of sensory inputs to inform its policy. Each input modality — visual and tactile — is
concatenated and encoded into an embedding, which is fed into a recurrent state-space model that captures temporal
dynamics essential for continuous control. By jointly learning input representations and the policy, Dreamer-v3 effec-
tively aligns the learning process of sensory inputs with action optimization. The latent representation is learned via a
VAE, enabling the model to generalize across complex manipulative tasks and adapt to variations in input signals. This
approach allows us to investigate how visual and tactile cues can complement each other in the context of precise and
adaptive control.

2 Autonomously Learning Visual-Tactile Peg Insertion in the Real World

Preliminaries. We consider solving a challenging insertion task from visual and tactile feedback, which will be for-
mulated as an infinite horizon finite-time partially observable Markov decision process (POMDP). We denote observa-
tions by o € O, the (hidden) state by h € #, actions by a € A, the reward by r € R, and the discount factor by
v € [0,1]. To solve the decision-making problem, we leverage Dreamer [13], which learns a policy w(a;|h;) conditioned
on the latent state representation. To deal with the partial observability, Dreamer learns a recurrent state-space model
p(helhi—1, a;—1, 0:) [12]. To see the direct influence of the different input modalities on the action predictions, we rewrite
the conditional dependence of the policy as 7(a;|hi—1, ai—1, 0¢).

Hardware setup. Our setup is inspired by the work of [24] and extends the authors’ setup. Figure 1 show our full
task setup, which requires inserting a peg into a hole in the base plate. The base plate is modular and the holes can
be swapped for different tolerances ¢ with respect to the peg. The peg is being held by a parallel gripper equipped
with Gelsight sensors [28] at the finger tips. We add an external Intel RealSense camera [4] for an external view of the
scene. The observations are the downsampled RGB images of the scene camera 0¥ € R54%64%3 and the tactile sensor
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Figure 2: (left) Performances of the visual-only (v) and the visual-tactile (vt) policies trained on 2mm tolerance in-
sertion hole and 0.5 mm respectively. (middle) Final performance is reported as the success rate (middle) and the
mean rollout length of successful insertions (right) over 20 trials across four varying insertion holes, with increas-
ing evaluation task difficulty from left to right due to decreasing tolerances and increasing hole angles (tol,a) €
{(2,0),(1,4),(0.5,0), (0.5,4) } [mm, °].

o' € R64x64x3 at 25 Hz. The policy outputs the relative new positions @ = [Az, Ay, Az]T of the end-effector at 10 Hz.
The target positions are passed to the franky control library [2], which integrates ruckig [6] for smooth motion planning
and leverages Franka’s internal Cartesian impedance controller for execution. To ensure safe exploration, the workspace
W is restricted to the area around the hole. The peg’s pose is continuously tracked using OptiTrack [3], but this data is
used exclusively for evaluation and not provided as input to the policy. The reward function

r=5-(0.1 - [py — pel) +500 - 16} (py) —50 - 1izy(py) 41077 - |a
—_——

74: proximity to the goal r,: terminal reward upon reaching goal ~ 7,.: peg rotational penalty ~ Ta: action penalty

is comprised of four components. (i) r4 proximity to the goal, (ii) r, a terminal reward upon reaching the goal G = {x €
R? : |p, — x| < (5,5,5)[mm]}, (iii) 7 a penalty to prohibit large rotational deviations R = {6]]0 — p,| > 10°} of the
end-effector rotation p,, and (iv) r, an action penalty to encourage smooth motions. For more details of the base-setup,
we refer to the previous work [24].

3 Experimental Results

We present two studies, which are designed to showcase the importance of touch for dexterous insertion tasks. The first
involves training vision-based policies with and without the added sense of touch. The second analyzes the relative
importance of each modality for action prediction.

The impact of tactile feedback during learning. We train four policies — two based solely on vision and the other two
combining vision with tactile feedback — for insertion tasks involving different tolerances ¢ between the insertion hole and
the peg. The first set of experiments is performed for tol = 2 mm over three seeds, where minimal jamming of the peg is
expected. The second configuration uses a hole with tol = 0.5 mm, which is anticipated to result in considerable jamming
during insertion and increased interaction forces between the gripper and the peg. We report the training curves and
the final performance of the respective models solving separate evaluation tasks in Figure 2. In the training phase, all
policies, except the vision-only policy trained on the 0.5 mm tolerance, successfully (r > 500) completed the peg insertion
after 100k environment steps. During the evaluation, the 2 mm and 1 mm configurations could be solved reliably by all
policies within 2.5 to 4 s. In the more challenging 0.5 mm tolerance tasks, both the vision-only and vision-tactile policies
exhibit a significant drop in success rates, except for the vision-tactile policy trained on the 0.5 mm configuration, which
maintains strong performance. The increased episode length for successful insertions is directly related to more frequent
jamming and tilting, highlighting the vt 0.5 policy’s ability to effectively handle these challenges.

Explaining the role of touch during an episode. To evaluate the influence of the two different observation modalities,
we leverage Shapley value [26] analysis. Shapley values provide a systematic way to assess the influence of different
input components of  on the output of a model f(x). In Dreamer, the input « for the action prediction a, = f(x)
consists of the previous hidden state h;_;, the visual 0}"®, and tactile information o}*‘,, and the previous action a;_1. To
evaluate the individual impact of each feature, we mask them by substituting their values with a default placeholder.
This results in a total of 2V, N = 4 distinct features, each identified by an integer label, allowing us to systematically
analyze their respective contributions to the model’s performance. Formally, we denote F as the set of the N different
features, then the Shapley value of feature ¢ € F is the attribution that the feature has on the outcome of the model
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Figure 3: Shapley value analysis over a single exemplary trajectory of the vt=0.5 experiment on the most challenging
hole (tol = 0.5mm, a = 4°). We report the individual contributions of the four input modalities on the action prediction
in x-, y-, and z-direction.

Calculating Shapley values often becomes intractable due to the exponential scaling with 2%V [23]. However, in our case,
with only 16 possibilities, we compute the Shapley values of the individual contributions exactly shown in Figure 3.
Along the x-axis, the model predominantly relies on its hidden state, with minimal influence from vision and tactile
inputs. This may be attributed to the camera’s orientation, which is primarily aligned along the x-direction, making
depth perception more challenging. In contrast, along the y-axis, visual observations contribute most to action prediction,
suggesting that visual feedback plays a key role in aligning the peg with the insertion hole. Finally, along the z-axis, tactile
feedback has the greatest influence on action prediction, likely because vertical movements of the end-effector lead to
increased tilts and jams, resulting in the highest impact on the contact forces applied between the peg and the hole.

4 Conclusion

In this work, we presented a comprehensive analysis of the interplay between visual and tactile feedback for robotic
insertion tasks. Our results demonstrate that incorporating tactile sensing can significantly improve success rates on
challenging insertions with tight tolerances (0.5mm) and varied orientations (up to 4° tilted insertion hole) that vision
alone struggles to solve. Through Shapley value analysis, we revealed that different input modalities dominate action
prediction along different axes — vision primarily guides alignment in the camera plane, while tactile feedback is crucial
for controlling vertical movements where contact forces are highest. However, it is essential to acknowledge that this
analysis is confined to single trajectories and could benefit from additional explainability studies, such as gradient-based
analyses. Furthermore, categorizing trajectories into distinct insertion stages may enhance the study’s depth and facilitate
statistical evaluation.

Our results suggest that the information the agent extracts from vision is effectively complemented by tactile sensor data.
In particular, when the hole tolerances are smaller and vision alone is insufficient for robust insertion, the agent learns
autonomously to rely more heavily on tactile sensing. Hence, our work demonstrates that RL is a powerful tool for
learning robust policies from multi-modal sensor inputs.

As the vision-tactile policies manage to insert the peg successfully even for tight tolerances and varying inclination
angles, increasing the task difficulty to different objects is a logical next step. In particular, screw and light-bulb insertion
is a challenging task with many real-world applications, which might significantly benefit from tactile feedback. A crucial
future direction is optimizing the representation learning part during policy optimization. Leveraging pre-trained vision
and visual-tactile models could be beneficial to reduce the number of real-world interactions required.
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