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Abstract—Muscle-skeleton systems as human arms feature 

variable impedance behavior so that they are applicable to a 

variety of manipulation tasks, some of which are difficult for 

current robots. Due to the inherent actuator flexibility and 

nonlinear friction, the implementation of impedance control on 

robots generally requires great control efforts. In this paper, a 

scheme for variable impedance control have been designed and 

implemented for a 7 degree-of-freedom robot manipulator in a 

cascading structure consisting of an inner loop torque servo and 

an outer loop impedance control. An active disturbance rejection 

controller in the inner loop is designed to reduce the effect of 

actuator nonlinearity, especially the motor friction and the 

compliance in transmission system. Results have been given in 

simulations and experiments in which the proposed joint torque 

controller with an extended state observer can effectively estimate 

and compensate for the total disturbance. Based on the 

satisfactory inner torque servo, a standard PD controller with 

gravity compensation in the outer loop is employed to achieve 

variable impedance control in both constrained and unconstrained 

robot motion. The overall control framework is analytically 

proved to be stable, and further it is validated in experiments with 

our robot testbed. 

 
Index Terms—Impedance control, torque feedback, ADRC, ESO, 

collaborative robot 

 

I. INTRODUCTION 

Traditional industrial robots are usually driven by gear-head 

motors and they are purely stiff positioning devices that 

preform on specific tasks such as welding, painting, and 

palletizing (Hogan, 1984). For collaborative robots designed for 

compliance manipulation, impedance control is preferred for 

the required interaction between a robot arm and an 

environment, which demands a robot arm capable of producing 

accurate joint torques such that the appropriate force is realized 

at the end-effector (Fiala and Wavering, 1992, Vallery et al., 

2008). Actuator dynamics must be considered in such torque-

based control methods: 

1) Joint torsional flexibility: The most commonly used 

harmonic reducer is a recognized source of joint flexibility 

(Hashimoto et al., 1991, Sweet and Good, 1984). In fact, 89% 

of the torsional compliance of industrial robots is due to 

compliance of the harmonic drive, by contrast, linkage 

 

 
 

compliance is insignificant (Rivin, 1985).  

2) Motor friction: The motor-side friction and stiction 

coming from supporting bearings and the input shaft of the 

reducer could become considerably large with the 

multiplication of the gear ratio. This can cause undesired 

behavior, in particular when coupled with integral control 

(Townsend and Salisbury, 1987), and deteriorate the compliant 

behavior of the robot.  

To address these problems, direct-drive actuators are adopted 

to supply the required drive torque directly between the two 

links without gears, which seems ideal for robot actuators 

(Hollerbach et al., 1993). However, compared with the 

commonly used actuator consisting of a servo motor and a 

reducer, currently available direct drive motors can be much 

bulkier for the same output torque and have larger power 

dissipation (Hunter et al., 1991). From another point of view, 

the inner loop torque sensing and control strategy is developed. 

The torque sensing devices are mounted on the joints of the 

robot to measure the reducer output torque and provide closed-

loop torque control. In early researches, only simple feedback 

control laws were used in the torque closed loop subject to 

controller hardware (e.g., PID controller in (Wu, 1985) and 

(Luh et al., 1983)). In (Albu-Schäffer and Hirzinger, 2001), a 

torque controller design with the idea of remaining the system 

passivity was introduced and has been implemented on the 

DLR’s lightweight robot (Albu-Schaffer et al., 2004, Ott et al., 

2004), which is actually a PD controller with model-based 

parameter setting and can be interpreted as a scaling of the 

apparent motor inertia. With this passivity-based method in the 

inner loop, effective damping of the joint oscillations could be 

achieved. This research result is now widespread in academic 

communities and also in industrial applications increasingly. 

However, the joint friction was not considered explicitly in the 

analysis of robot dynamics and the controller design. In (Hur et 

al., 2012), a time-delay control (TDC) method was used to 

control the joint torque and overcome high friction and other 

unknown disturbances without considering joint flexibility 

produced by the harmonic reducer. TDC does not require a full 

analytical description of the robot dynamics, while information 

about higher order derivatives of the output signals is necessary 

for this controller. The ATR Lab used a joint torque servo and 
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passivity-based approach for control of arms, legs and torso of 

their humanoid robot to achieve joint-level compliance (Cheng 

et al., 2007). In this research, the flexible joint is recognized as 

a part of the dynamic model and couples with the rigid robot 

dynamics via the relationship between joint torque and its 

displacement. This coupling effect results in a fourth-order 

flexible robot dynamic system and consequently complicates 

controller design and stability analysis. (See details in section 

2.) 

Decoupling-based approaches with a partial or full 

linearization of a closed loop system were considered to achieve 

the best theoretical performance (Mason, 1981). Taking 

advantage of the model analysis, it was proven that the robots 

with elastic joints can be linearized via dynamic feedback (De 

Luca and Lanari, 1995). Derived from the robot and actuator 

model, an inner loop nonlinear compensator in the joint torque 

loop has shown to be effective in the reduction of the motor 

friction of a PUMA manipulator (Pfeffer et al., 1989). In (Tian 

and Goldenberg, 1995) and (De Luca and Lucibello, 1998), a 

two-stage control strategy was employed that consisted of a 

motion controller and a computed-torque-based joint torque 

controller by using state feedback laws. This method has no 

restriction of joint flexibility but relies on an accurate dynamic 

model and measurement of state variables to ensure 

effectiveness. To manage uncertainties in the robotic system, 

adaptive extensions have been developed for most of these 

controllers (Tian and Goldenberg, 1995, Zhu and De Schutter, 

1999). Unfortunately, they are still sensitive to unmodeled 

dynamics even with enhancements. Singular perturbation-

based controllers have simpler control laws for the torque loop 

and they are easy to implement (Ott et al., 2002, Spong, 1989). 

Under this conception, the motor torque was divided into a slow 

part and a fast part, corresponding to the control inputs of the 

two subsystems of the robot dynamics that may be controlled 

separately, but the artificial division of the fast and slow parts 

limited theoretical and practical application to the case of high 

stiffness joint. In (Kawai et al., 2015) and (Kawai et al., 2016), 

an integral-proportional differential torque controller based on 

resonance ratio control was proposed. Joint torque feedback is 

utilized to suppress the vibration due to joint flexibility. 

However, careful parameter tuning is needed in this method and 

the tuning process is not easy. 

It is obvious that the existing solutions require either accurate 

mathematical model of the plant or the measurement of high 

order derivatives of the robot joint position. Usually, it is more 

applicable to build a disturbance observer to estimate the model 

uncertainties and disturbances (Pan et al., 2016). This approach 

of ADRC, which does not share the problems mentioned above, 

is represented by an active disturbance rejection concept that 

features an extended state observer (ESO) for the real-time 

estimation and compensation of total disturbance (sum of the 

unknown plant dynamics and the external disturbance) (Gao, 

2006a, Han, 2009). It has already proven a promising solution 

in practice (Przybyła et al., 2012, Wu et al., 2007, Xue et al., 

2015, Ren et al., 2018) and an adequate theory in research 

(Huang and Xue, 2014, Shao and Gao, 2016, Yang and Huang, 

2009, Zhou et al., 2009). In our previous work (Ren et al., 2017), 

we have proposed a torque controller with the idea of 

disturbance rejection where we focus mainly on the problem of 

time delay in the actuator and the experiments are restricted to 

a single joint testbed.  

The motivation of our work is to give out a simple yet 

effective force control scheme for collaborative robot by 

addressing the problem of disturbance rejection in joint torque. 

In this paper, a joint torque controller with a linear ESO is used 

to decouple the joint actuators from the multi-rigid-body system 

of a constrained robot and compensate for the motor friction. 

Moreover, in order to realize robot force control, we embed this 

controller into the impedance control framework. 

The main contributions of the presented work is the design 

of a model-free robot force controller with the ability to reject 

torque disturbances from robot-actuator coupling effect and 

motor friction, applicable for both constrained and 

unconstrained robotic applications. Simulation and experiment 

results from a 7-DOF robot are given to show the effectiveness 

of the proposed controller. In section 2, the models of a robot 

and joint actuators are introduced, and the dominant 

disturbances in the actuator system are identified. Section 3 

begins the discussion of joint torque feedback control by 

recapitulating the model-based controller and follows with a 

discussion of ADRC, taking advantage of an extended state 

observer. Then, the designed joint torque controller is 

incorporated into an outer loop impedance controller for robot 

manipulation in section 4. Experimental results are presented to 

exemplify the controller performance of the proposed 

impedance control in section 5. Finally, concluding remarks 

and comments are provided. 

II. PROBLEM STATEMENT 

A. Description of the Collaborative Robot Testbed 

A dexterous collaborative robot arm (DCRA) is developed for 

industrial and service applications (Fig. 1). It is a seven degrees 

of freedom (DOF) manipulator that incorporates a torque sensor 

and link-side encoder at each joint.  The joint of DCRA is 

actuated by a servo motor with its output shaft connected to the 

wave generator of a harmonic reducer. The flex-spline of the 

reducer is attached to one end of an analog torque sensor, while 

the manipulator arm is attached to the other end. In this way, 

the driving torque between the actuator and the link is gauged 

directly. The hardware structure of the robot is shown in Fig. 2. 
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B. Modeling of a Multi-joint Robot Manipulator 

The dynamic model of a n-DOF flexible joint manipulator is 

given as proposed in (Spong, 1987), consisting of a rigid robot 

arm (1) and a flexible joint actuator (2) 

( ) + ( , ) + ( ) = ext+M q q C q q q g q τ τ , (1) 

( )

m f
 + = −


= −

Bθ τ τ τ

τ K θ q
, (2) 

wherein,  nq  and  nθ  represent the link side and 

motor side angular positions, respectively, as reflected through 

the gear ratios. In this way, for the entire robot, each joint 

becomes a fourth-order system with the state determined by the 

position and velocity of both motor rotor and link. 

( ) n nM q , ( , ) nC q q q  and ( ) ng q  are the 

components of the rigid body model: inertia matrix, centripetal 

and Coriolis vector, and gravity vector.  diag( ) n n

iB = B

and =diag( ) n n

iK K  are the diagonal, positive definite 

motor rotor inertia matrices and joint stiffness respectively. 
n

m τ  represents the electromagnetic torque of the motors, 

and nτ  is the joint torque.  
n

ext τ  is the external torque 

acting on the robot joint. 
n

f τ   is the friction torque.  

C. Modeling of the Joint Actuator  

 
Fig. 3 and Fig. 4 shows the schematic model and the block 

diagram of a typical robot actuator respectively. It can be 

represented as a second-order system 

( ) ( )f m

K K K
Kq

B B B
   = − + − − +  (3) 

where ( )
K

B
−  is the actuator dynamics and ( )f

K
Kq

B
− −  

is the external disturbance.  It is noteworthy that the serial 

elastic actuator (SEA) (Pratt and Williamson, 1995) has the 

same representation of Fig. 3, but its stiffness is introduced 

deliberately to facilitate the position-based control so that it is 

much lower than that of the flexible joint that we focus on. In 

the viewpoint of joint torque control, the motion of a robot link 

q  is one of the biggest source disturbances from the robot-

environment system acting on the joint actuator, denoted as 

Link Motion Disturbance (LMD). Though it is impossible to 

predict the link motion when the robot moves in a constrained 

environment, its changing rate is limited by the robot resonant 

frequency hinging on the inertia of robot links and the stiffness 

of joints (Wu, 1985). Experimental results from unconstrained 

robot motion have shown that the  compliance of the electric 

joint actuator of articulated industrial robot could result in light-

damped vibrational modes with resonances typically from 8-

12 Hz (Mills, 1992). However, in constrained robot motion 

(when the robot interact with the environments), the dynamic 

system will change a lot as the stiffness of the structure is 

increased. So that in this working condition, the LMD with 

higher frequency but limited amplitude will be added to the 

robot joints, which is supposed to be compensated by the same 

controller. Motor friction f  is another significant disturbance 

which is affected by many factors: temperature, rotation speed 

and output torque. To understand this problem, we investigated 

our robot hardware through a static loading experiment in joint 

4. The motor torque is derived from the motor winding current, 

and the actuator output is directly measured by the joint torque 

sensor (Fig. 5).  The Coulomb friction is constant for low torque 

output, while it decreased when the actuator approaches the 

 

Fig. 1.  The experimental single joint manipulator with torque sensing. 

 

Fig. 2.  Hardware structure of the proposed robot controller system. 
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Fig. 3.  Schematic model of a typical robot actuator 

 

Fig. 4.  Block diagram of the joint actuator. 
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rated torque. It is therefore considered as one of the major 

source of nonlinear disturbance in the problem of robot control. 

Here, we do not model these disturbances for the presented 

control algorithms; instead, we use an observer to estimate it in 

real time and compensate for its negative effects. 

 

III. DESIGN OF JOINT TORQUE SERVO SYSTEM 

A. Identification of the Total Disturbance in the Actuator 

The design of the joint torque controller is independent of the 

manipulator configuration such that a SISO servo algorithm 

with a wide bandwidth is applicable. From (3), the dynamics of 

a joint actuator can be rewritten as a second-order integrator: 

( , ) mf w b  = +  (4) 

Herein, ( , ) ( ) ( )f

K K
f w Kq

B B
  = − + − −  is considered the 

total disturbance acting on a linear system where  ( , )fw q=  

contains the external perturbation. A good model of f  is not 

always available due to the complex motor friction. /b K B=  

is a system parameter and it can be calculated from the plant 

information. In the ADRC framework, it is not necessary to 

obtain the analytic form of f , but the estimation f̂  is 

obtained in real time (there is no noticeable delay in the 

observation) through an observer. The ESO originally proposed 

in (Han, 2009) has been shown to have a great capability of 

handling different types of disturbances (e.g., constant, square, 

sinusoidal) without adjusting the structure or parameters (Yang 

and Huang, 2009), and the magnitude of the observer error 

monotonically decreases with the observer bandwidth (Zhou et 

al., 2009).  

B. Torque Controller Design with Active Disturbance 

Rejection 

The main idea of an ESO is to use an augmented state space 

model that includes the unknown ( , )f w  as an additional state. 

Then, system (4) can be written in the augmented state space 

form as 

1 2

2 3

3

1

m

x x

x x b

x

y x





=
 = +


=
 =

  with  

1

3 ( , )

( , )

f

f

x w

w

x









=

=

=







. (5) 

Then the ESO is able to estimate the plant states. 

 1 2 3

T
x x x=x   is estimated by   1 2 3

T
z z z=z   within 

the observer. Consequently, 3f̂ z=  is the estimation of the 

total disturbance f . 

1

1 2 1

2 3 2

3 3

o

o

o m

o

e z

z z e

z z e b

z e





 



= −
 = −


= − +
 = −

 (6) 

where oe  is the estimation error of joint torque, and 

1 2 3, ,    are the gains of the observer parameterized by using 

a simple pole-placement method as proposed in (Gao, 2006b): 
2 3

1 2 33 , 3 ,o o o     = = =  (7) 

Where o  is the observer bandwidth that is restricted by 

noise amplitude in the feedback channel and it is usually 

determined though experiment (Gao, 2006b). Along with the 

disturbance estimation f̂  from the ESO, a controller is 

 

Fig. 5.  Relationship between the motor induction torque and actuator output 
torque in the steady state. The ideal relationship is the dashed line. The solid 

line is the experimental results of the single joint manipulator. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 7.  Simulation results. (a) Step response of the closed-loop joint torque 

controllers under motor friction and link motion disturbance. (b) Control 
signals of both controllers for the disturbed system. (c) The real-time 

estimation of the total disturbance by the ESO. 

 

Fig. 6.  Architecture of the developed active disturbance rejection controller 
for joint torque control 
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designed to guarantee trajectory tracking with the cancellation 

of the total disturbance. The governing signal is defined as 

follows. 

 
ˆ

m c

f

b
 = −  (8) 

In the proposed torque feedback system, a PD controller was 

chosen, and the control law is thus written as 

( )1 2c p d dk z k z = − −  (9) 

pk   and dk  are the gains of the feedback controller and 

parameterized as (Gao, 2006b): 
2 2

, .c c
p dk k

b b

 
= =  (10) 

wherein c  is the bandwidth of the closed-loop system and 

can be tuned as a regular PD controller (Gao, 2006b). High 

bandwidth can cause better tracking performance and reduce 

the apparent motor inertia observed at the output of the actuator. 

However, this will lead to severe actuator saturation and make 

the system sensitive to the torque sensor noise. Finally, an 

active disturbance rejection controller has been established for 

the robot joint torque servo and its architecture is illustrated in 

Fig. 6. Based on the assumption that f  is sufficiently 

compensated by the ESO, the closed-loop elastic joint is 

reduced to a double integrator, and furthermore, according to 

the theorem in (Khalil, 2014), the system is finite-gain 2L  

stable. These results are consolidated by (Zhou et al., 2009) and 

(Shao and Gao, 2016) based on singular perturbation analysis, 

in which there is a * 0o  , such that for all *

o o   the 

ADRC system is exponentially stable as o →  . 

C. Simulation and comparison with existing methods  

The ability of disturbance estimation makes the ADRC 

strategy adaptive to actual robot system subjected to even 

unknown disturbances other than those given in Sec. II-C. Here 

a simulation environment with synthetic disturbance is 

preferred to illustrate the performance of the ESO. A 

comparison in performance between the proposed method and 

the other two practical torque controllers: a classic PID 

controller and the passivity-based method used by DLR robots 

(Albu-Schäffer et al., 2007), is provided by simulation results.  

Parameters of the simulation model are specified in 

accordance with the 4th joint of the robot in Table I. A composed 

disturbance signal is designated carefully to simulate the real 

situation: a link motion of ( ) sin(15 2 t)mcq t
K


=   (considering 

the robot resonant frequency in (Wu, 1985)), and a motor side 

friction of  ( ) sign( ( )) ( ( ) )f fv fct q t q t  =  +  with 

2 Nmfv =  and 20 Nmfc =  (take the model of coulomb and 

viscous friction from (Kelly and Llamas, 1999)). In addition, a 

random signal with uniform distribution within the range of 0.1 

Nm (corresponding to the sensor noise and the filter used for 

signal processing) is introduced to the feedback signal of the 

torque sensor. In the conditions above, the controller systems 

are used to follow a reference signal of =30 Nmd  under the 

effect of the total disturbance. All controllers are tuned to 

provide the best performance according to the systematic 

approach [45](Wang et al., 1999).  The proportional, integral 

and differential gains of PID are chosen as 50, 150 and 1. In 

ADRC, c  is determined based on the system bandwidth 

TABLE I 

TECHNICAL SPECIFICATIONS OF THE SINGLE JOINT EXPERIMENT 

Parameter Notation Value 

Motor rotor inertia [kg.m2] B  3.701 

Joint stiffness [Nm/rad] K  32700 

Maximum continuous output torque [Nm] 
mc  81 

Acceleration allowable torque [Nm] 
ma  217 

Arm inertia [kg.m2] M  1.950 

 

TABLE Ⅱ 

PERFORMANCE COMPARISON OF THE THREE TORQUE CONTROLLERS 

Algorithm PID Passive-based method ADRC 

RTD 2.36 % 2.27 % 0.45 % 

Time cost [μs] 1.172 1.953 1.563 

 

 

Fig. 8.  The manipulator is commanded to exert torques on the environment 

according to the reference signal in joint torque control mode. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9.  System response of the passive-based method and ADRC to square 
wave input. (a) Joint torque. (b) Joint velocity. (c) Motor torque. 
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requirement and it is selected to be 350 rad/s. For the passive-

based controller, it share the same PD parameters with ADRC. 

By trading off between the rapidity and the sensor noise 

robustness, the bandwidth 0  of ESO is set to be 1800 rad/s . 

Comparison of the joint torque achieved for the three 

controllers is shown in Fig. 7 (a). In Fig. 7 (b), the control 

signals (motor torque) generated by the controllers are 

presented.  

  For ADRC, the shape of the control signal is slightly rugged, 

while it does not significantly differ from that of others. On the 

other hand, the difference in the phase between the three 

controllers is noticeable. With the compensation effect from the 

ESO, the ADRC react more swiftly (see Fig. 7 (b)). The 

controller systems of PID and the passivity-based method are 

obviously subjected to LMD and motor friction, while the 

system improved by ESO tracked the commanded torque with 

satisfactory results. In the first raw of Table Ⅱ, the Robustness 

to Total Disturbance (RTD) of the three controllers (Fig. 7 (c)) 

that is defined as the ratio of the fluctuation range of the output 

torque and the amplitude of total disturbance is quantitatively 

compared. Although there is no prior knowledge of the model 

and perturbation, ESO gives a satisfying reaction the total 

disturbance in the actuator.  

The simulation is set up at a workstation with a clock speed 

of 3501 MHz and a RAM of 24 GB. The sample time of the 

simulation is chosen as the cycle time of DCRA, 250 μs. From 

the report of computational time in Table Ⅱ, we can see that all 

of the three torque controllers are fast enough to satisfy the 

requirement of real-time control. The time consuming of ADRC 

is slightly higher than PID but lower than the passive-based 

method. 

D. Experimental verification  

In this experiment, we tested the proposed torque controller 

with the fourth joint of the 7-DOF manipulator(Fig. 8). The 

robot presses its end effecter (EE) onto a fixture with a desired 

torque. The reference signals are chosen as a square wave and 

harmonic wave. The performance comparison between the 

passive-based method and ADRC is shown in Fig .9 and Fig. 

10. Both of the controllers are tuned to give a moderate 

performance on response rapidity, steady-state error and 

stability to disturbances. 

As a multi-rigid system with bilateral support, the robot body 

is activated by the input torque with a resonant frequency of 40-

50 Hz. Therefore, LMD with the same frequency is introduced 

to the joint torque controllers. Fig. 9 (a) and (b) show that the 

actuated link produces an impulse link velocity which further 

leads to an overshoot in joint torque. By contrast, ADRC gives 

a much better result: 

a) LMP compensation: The interaction between the actuators 

and rigid robot can lead to oscillations in both joint torque and 

link displacement with high frequency beyond the closed-loop 

dynamics of the actuator  hardware. On the other hand, the ESO 

usually has a higher bandwidth than the closed-loop system so 

that it is capable to react to these LMD and suppress system 

vibration. 

b) Motor friction compensation: The detrimental effect of 

motor friction is mainly compensated locally by the high-

bandwidth ESO in ADRC, instead by the whole closed-loop of 

the passive-based method. When the motor rotor is going to 

switch its direction to follow the step input (Fig .7 (a)), it is 

blocked by a stiction. The ESO is able to detect this disturbance 

and generate spike-like signal to compensate it (Fig .7 (c)) 

without participation of the PD controller. Therefore, despite 

nonlinear disturbances, the behavior of the ADRC system is 

closed to a linear system with predictable performance. 

c) Steady-state error: It is clear that there exists a steady-state 

error in the output of the passive-based method due to the 

inaccurate torque constant of the motor hardware (calibrated, 

but with error). In ADRC, however, small deviation of from the 

reference signal is accumulated in ESO as a disturbance and 

finally eliminated by the controller (Han, 2009).  

The same result can be found in the experiment of harmonic 

signal tracking (Fig. 10). It is noteworthy that the PID controller 

is now removed from the comparison because it shows almost 

the same performance as the passive-based controller as 

 
(a) 

 
(b) 

 
(c) 

Fig. 10.  System response of the passive-based method and ADRC to harmonic 

wave input. (a) Joint torque. (b) Joint velocity. (c) Motor torque. 
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presented in the simulation result in the previous section 

(Fig. 7 (a)). Though the response speed constrained by 

hardware is similar, ADRC gives a much more stable output 

with better precision.  

 

IV. TORQUE-BASED VARIABLE IMPEDANCE CONTROL 

A. A Framework for Variable Impedance Control  

With the proposed joint torque controller, the complex 

flexible joint robot system described by (1) and (2) can be 

expressed as a cascaded system consisting of a rigid robot body 

and n closed-loop actuators, thus simplifying the design of the 

robot controller. Based on the elimination of the total 

disturbance in joint torque, the complete n-DOF manipulator 

model can be described in the form of state space as 

1

2

2

( , )

[ ]d

Dynmc



= +


= + +
 =

v v τ d

w Aw B τ d

τ Cw

 (11) 

with 

 

1

1 1( , ) ( ) [ ( , ) ( )]
T

Dynmc − + = + − − v τ d q M q τ d C q q q g q .  

2

2

0 0

2 20

2

n

c n c

n n

n





 
=  

− − 


I
A

Ω I Ω I
,  

2

0

2
0

n n

c

 
=   

 
B

Ω
, 

  20 n n

n

=C I , 0,0 diag( ) n n

cc i =Ω . 

Where 
0,c i  is defined as a preset bandwidth of the i-th robot 

actuator and based on it we can scale the effective bandwidth 

,c i  in (10) with scalar  : 
, 0, /c i c i  =  that is the actual 

bandwidth of the closed-loop system. Vectors 

  2T n=v q q  and   2T n=w τ τ  respectively 

represent the state variables of the rigid robot and actuating 

systems.  

The two disturbances, 
1 2, nd d , have definite physical 

significance. 1d  contains the perturbation torque coming from 

the external environment as well as the disturbance beyond the 

regulating capacity of ADRC. 2d  is the disturbance input of the 

closed-loop actuators consisting of the noise from joint 

encoders and torque sensors and the compensation error of 

robot gravity. The design of the outer loop controller ensures 

that the input/output mapping from  1 2,d d  to v  is finite-gain 

2L  stable with the 2L  gain less than a given tolerance 0  . 

To simplify the controller design of the feedback connection 

system, first assume 0 =  as (Khalil, 2014), that is, ,c i →  . 

Then, the actuator dynamics are neglected, and we have  

2 .d= +τ τ d  (12) 

Substituting (12) into the first equation in (11), a 

dimensionality reduction model is obtained. 

1 2( , ) ,dDynmc= + = +v v τ d d d d  (13) 

The state vector v  is measured directly by encoders at the 

link side. In both contact and noncontact robot manipulations, 

a PD feedback control law has been proved to produce stable 

behavior (Anderson, 1990, Kelly, 1997). To achieve a unified 

structure, a PD controller with gravity compensation is used for 

the simplified model (Fig. 11) 

( ) ,d e v gravity d= = − + = −τ v K q K q τ q q q . (14) 

,dia= g( ) n n

e ie K K  and ,dia= g( ) n n

v iv K K are 

stiffness matrix and damping matrix in joint space.

( )gravity =τ g q  provides model-based compensation for the 

effect of gravity. Substituting ( ) v   into the dimensionality 

reduction model in (13), we have the dynamic system: 

( ) ( , ) e v+ = − +M q q C q q q K q K q d . (15)  

A Lyapunov function chosen as 

1 1
( , ) ( )

2 2

T T

eV = +q q q M q q q K q . (16) 

Obviously, ( , ) 0V q q  is a semidefinite function. Then, its 

derivative with respect to time is calculated. 

( , ) T T

vV = −q q q d q K q . (17) 

So, we have ( , )T T

vV= +d q q q q K q , wherein 

0, 0T

v   q K q q , and further the mapping of →d q  is 

strictly passive for output, which is in agreement with the 

conclusions in (Anderson, 1990). Let min ( )v = K , then 

0  , and we have 

2

( , )

1 1
( ) ( )

2 2 2

1
( )

2

T T

T T T

T T

V 


 

 





 −

= − − + −

 −

q q d q q q

d q d q d d q q

d d q q

. (18) 

Therefore, we know from the lemma in (Khalil, 2014) that 

the dimension reduction system is finite-gain  2L  stable. 

2 2
0 0  +q d

L L  with 0

1



= , min ( )v = K . (19) 

If 0 1  , the closed-loop dimension reduction system is 

 
Fig. 11.  The overall control structure for both position and impedance control 

 

Fig. 12.  The feedback connection of the PD controlled rigid robot (S1) and 
the closed-loop joint actuators with active disturbance rejection (S2). 
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22
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1
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= −
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y Cη
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2 2=u d
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strictly passive for both input and output (Van der Schaft, 2016). 

The same control law is applied to the actual system with 

actuator dynamics, and the entire closed-loop system can be 

expressed as shown in Fig. 10. The corresponding actual robot 

system dynamics are described as 

1

2

2

( , )

[ ( ) ]

Dynmc

 

= +


= + +

v v Cw d

w Aw B v d
 (20) 

With the parametrization of eK  and vK , the robot can 

display corresponding compliant behaviors to adapt different 

tasks. Typically, the robot is required to display stiff behavior 

in directions of motion, while displaying compliant behavior in 

directions of forces.  

B. Input and Output Stability Analysis of the Proposed 

Framework 

To facilitate the analysis, we assume that 2d  is differentiable, 

which is reasonable in real systems with filtered sensor signals. 

Then a variable substitution is performed as follows: 
1

2[ ( ) ]−= + +η w A B v d  (21) 

Using the new variable η , the actual robot system (20) is 

rewritten as an equivalent robot system. 

1

2 2 1

2 2

: ( , ( ) ( ) )

: [ ( ) ]

Dynmc t

  −

= + +


= + +

S v v v d Cη

S η Aη A B v d
 (22) 

It can also be presented as a block diagram, as a feedback 

connection of two subsystems (Fig. 12). 

1S   is the closed-loop system of the rigid robot controlled by 

a PD controller with gravity compensation in real time, which 

is one of the simplest position controllers for robot manipulators 

on which numerous studies have been performed. It has been 

verified  that 1S  has a unique equilibrium (Kelly, 1997). 

* * 1

1 0
T T

e

−   = −   q q K e  (23) 

Herein, 1e  is the disturbance input of 1S  and ( ) v  the 

output added to 2S  

1

1( ) ( ) [ ( , ) ]

( )

e v e v −= − − + − −


+



v K q K M q e K q K q C q q q

g q
q

q

. (24) 

Considering (23), we have 1( ) 0e+ →e K q  when the system 

comes to equilibrium. In addition, there exists a positive 

constant Ck  meeting ( , ) CkC q q q . Therefore, (24) is 

simplified, and the following relationship is derived 

( ) c v q  with 

1 2

max

1

max max max

( ( ) )

( )
( ( ) ) ( ) ( )

e v

v C

c

k



  

−

−

= − +


+ +



K M q K

g q
M q K

q

.

 (25) 

The inequalities (25) and (19) imply that subsystem 1S  is 

finite-gain 2L  stable 

2 22
1 11 1( )  = +y v e

L LL
 with 1

c



= . (26) 

2S  represents the effect of the closed-loop actuator 

 

Fig. 14.  TCP trajectory and orientation in Cartesian space during the peg-in-

hole manipulation 

 

Fig. 15.  Robot velocities in joint space during the peg-in-hole manipulation 

 

Fig. 16.  Contact forces and torque in Cartesian space during the peg-in-hole 

manipulation 
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Constrained motionUnconstrained motion
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Fig. 13.  2D peg-in-hole manipulation by the DRCA robot enhanced by 

impedance controller  
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dynamics on the nominal rigid robot system. A  is Hurwitz as 

it is the simple superposition of the state matrices of n closed-

loop actuators. Then, the finite-gain 2L  stability of 2S  is 

confirmed (Khalil, 2014). So we have 

2 2

2

2 2 2 2  +y e
L L  (27) 

with 
1

2

2 max

min

2 ( )
( )

 


−

=
A B C

P
P

. (28) 

Where P  is the solution of the Lyapunov equation 
T+ = −PA A P I . If 2

1 2 1    , the stable relationship between 

the input and output from 1 2( , )d d  to q  in the equivalent 

system (22) is established. Eventually, we have 

2 2 2

2 20
2 2 1 2 02

1 2

[ ] .
1


   

  
  

−
+ ++ +q d d

L L L
 (29) 

In this framework,    decreases as the joint closed-loop 

bandwidth c  increases, which shapes the weight of the 

actuator dynamics in the whole robot system. Especially when 

  decreases to zero, the right side of (29) becomes

2
0 0 0 2( ) + +d

L . Here, a significant conclusion is made: 

the feedback controller designed for the rigid robot is applicable 

to the actual system with a sufficiently large c . Moreover, the 

upper bound of 2L  gain remains unchanged, and the passivity 

of the dimensionality reduction system (13) is reserved for the 

actual system (20) such that the manipulator will be stable in 

contact with passive environments and have asymptotically 

stable joint velocities when contacting arbitrary environments 

(Anderson, 1990). 

V. EXPERIMENT AND RESULTS 

A typical robotic assembly task includes robot motion in both 

unconstrained and constrained environment, and it can lead to 

complex contacts while in operation. Therefore, it is an ideal 

practical task to test the effectiveness and stability of the 

proposed controller. The peg-in-hole task has previously been 

implemented by using an industrial robot and a compliant F/T 

sensor. In this experiment, the DRCA robot is commanded to 

insert a shaft (aluminum alloy) into a slot with corresponding 

cross section (steel), which is a 2D peg-in-hole problem 

(Fig. 13). The joint 2, 4 and 6 are used for this task, and their 

stiffness are chosen empirically as 300 Nm/rad, 150 Nm/rad 

and 30 Nm/rad, respectively. According to the repositioning 

precision of the robot, the diameter clearance between the peg 

and hole is toleranced to 0.2 mm. The trajectory of the task is 

taught directly by human. Then, the robot moves according to 

the demonstrated trajectory with the proposed impedance 

controller and meanwhile the feedback signals from the 

position and force sensors are recorded. 

Fig. 14 is showing the trajectory and orientation of the end 

effector of the robot in assembly plane. In the first phase, the 

tool center point (TCP) approaches the position of hole in free 

space with a relatively high speed. When it contacts with the 

upper surface of the hole, the robot system gets into the phase 

of constrained motion in y-direction. As the peg sliding into the 

hole, the robot losses the other two DOFs of x-motion and 

rotation, and regains the motion in y-direction. During these two 

phase as well as the transient process, the robot velocities in 

joint space  keep stable  and no severe breaks in velocity signals 

are observed (Fig. 15). Fig. 16 shows the contact forces and 

torque in assembly plane measured by the F/T sensor. Slow 

force changes of in the phase of unconstrained motion are due 

to gravity while the dramatic force changes at the beginning of 

constrained motion result from the friction between the robot 

end and the upper surface of the hole (the lateral motion shown 

on the right in Fig. 14). In accordance to the results of stable 

analysis in Sec. Ⅳ-B, the robot is in continuous contact with 

the hole wall with stable force during the insertion. The reasons 

for the remaining contact force at the end of insertion are the 

robot positioning error and the high stiffness of the objects.  

VI. CONCLUSIONS 

A new, cascading approach to variable impedance control for 

flexible joint robots is presented in this work. Based on only the 

directly available joint torque signals, the proposed joint torque 

controller can properly track the reference signals while 

actively negating disturbance without explicit modeling of the 

plant or perturbations. Analysis and simulation results show 

that the ESO enclosed in the joint controller can effectively 

estimate the total disturbance and compensate for it, which, in 

this case, is the sum of actuator dynamics, link motion 

disturbance, motor frictions, and other unmodeled perturbations. 

Consequently, the closed-loop joint actuators become much 

closer to ideal torque sources. On the basis of the well-tuned 

joint torque servo systems, a simple outer loop is designed for 

impedance control of multi-joint robot. The stability of the 

double closed-loop system is analyzed with an input and output 

method, and the result shows that the system is robust against 

model uncertainties related to robot dynamics, payload changes, 

and the trivial torque error from the inner loop. Performance of 

the proposed controller is evaluated in an experiment on our 

collaborative robot, in which the robot successfully assembles 

the high stiffness parts. It is remarkable that the proposed 

impedance controller is easy to implement on robot systems. 

VII. APPENDIX FOR ABBREVIATIONS 

 

Abbreviation Definition 

ADRC Active Disturbance Rejection Control 

ESO Extended State Observer 

DOF Degree of Freedom 

LMD Link Motion Disturbance 

DCRA Dexterous Collaborative Robot Arm 

RTD Robustness to Total Disturbance 

TCP Tool Center Point 
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