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Abstract— Physical human-robots cooperation is desirable for 

future robotic applications while poses the fundamental problem 

of how to ensure personnel safety. Dynamic impact and quasi-

static clamping are two common scenarios that could potentially 

lead to human injuries and should be detected as sensitive as 

possible. Combining insights from of the extended state observer 

(ESO) and robot dynamics, an efficient collision detection method 

based on only proprioceptive sensors (encoders and torque sensors) 

is introduced. In addition to detection, the proposed method 

provides magnitude and direction information of force signals 

covering a general class of actuator faults. Simulations give a 

quantitative comparison between the proposed scheme and the 

widely used method based on general momenta. Experimental 

results with a 7-DOF collaborative robot further illustrate the 

effectiveness of the proposed method. The collisions occurring in 

the form of dynamic impact as well as quasi-static clamping are 

verified.  

 

Keywords—human-robot interaction; robot manipulator; 

collision detection; ESO 

 

1. Introduction 

Physical cooperation between human and robot has become 

a topic of major focus in robotics. A primary concern of a robot 

designed for cooperation with human or uncertain environment 

is that it should not pose any threat to human in any cases [1, 2]. 

The close human-robot interaction (HRI) inevitably lead to 

physical contact, which is usually divided into two fundamental 

groups: dynamic loading and quasi-static loading. An overview 

of the potential injury threats from robot manipulator to human 

is summarized in [3]. The primary task in safety protection is to 

detect the collision occurrence and identify its position and 

magnitude [4]. 

The existing detection strategies can be separated into two 

subclasses [5]: model-independent methods and model-based 

methods. As its name implies, model-independent methods take 

the advantage of being independent of a specific model. They 

are generally based on the analysis of signals involved in robot 

control, such as instantaneous variation of position error or 

control input signals [6, 7]. These signals are related directly to 

the structure and parameters of the controllers, so that it is 

difficult to generalize this class of methods to different control 

architectures [8]. Benefiting from the progress in machine 
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learning, the detection algorithms based on neural network (NN) 

[9, 10], support vector machine (SVM) [11] or Fuzzy system 

[12, 13] reveal an important trend for model-independent 

methods. These intelligent agents are able to learn to identify 

accidental collision from labeled data with even less model 

information. However, none of these algorithms can give a 

completely accurate prediction of collisions (usually under 

95%), and the collection of training data is very problematic in 

practices. 

On the other hand, parameter estimation and observer-based 

techniques belong to the second class. The detection schemes 

with parameter estimation rely on the comparison between the 

predetermined and the identified parameters. Generally，they 

need appropriate system excitation and thus work only with 

certain types of impact [14]. Observer-based methods require 

no special excitation and therefore can handle more scenarios 

of collision. In addition, most of the observer-based methods 

are able to work in parallel to the robot controller. These 

strategies usually comprise two steps: (a) the generation of a 

diagnostic signals carrying the collision signature, and (b)  the 

comparison between signals and preset thresholds to determine 

if the fluctuation is due to a collision or just the system noise. 

The diagnostic signal is termed as the residual signal. In 

classical model-based methods, residuals are calculated by 

comparing the current parameter estimates with their nominal 

values, i.e., the difference between measured and estimated 

joint torque [14, 15]. As an enhancement of this scheme, the 

generalized momenta-based (GM) method removes the 

requirement of acceleration computation and thus significantly 

reduces the influence of measurement noise [16, 17]. An 

observer built with an internal state of the generalized 

momentum ( )=p M q q  realizes the collision detection in this 

scheme. It takes the joint torque, link position, and link velocity 

as inputs and generates a first-order filtered version of external 

forces [18]. Based on the idea of torque filter, another method 

is designed and proves to have the similar benefits of 

acceleration free as well as controller independence [19].  

Due to the intuitive design and reliable performance, the GM 

method is widely adopted by various robotic applications for 

safety issues [20-24]. However, in practice, it is found sensitive 

to modeling errors and disturbances from robot joint actuators. 
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The collision detection threshold must be raised to prevent false 

alarms, which significantly decreases the detection sensitivity. 

To overcome this problem, a band-pass filter is introduced to 

separate collision torque from unmodeled dynamic effects and 

measurement noise [25]. This method is based on the 

assumption that due to the structure inertia, motion of a robot 

and its actuators is limited to low frequency. Thus a high pass 

filter is capable of suppressing those low frequency signals 

while reserving the abrupt changes resulting from impact [26]. 

This filtered residual signal can provide a reliable indicator for 

dynamic impact, while the quasi-static threats like squeezing 

and clamping are totally overlooked. Furthermore, the band-

pass filter may distort the residual signals, which would result 

in a deformed estimation of the magnitude of contact forces.  

This paper is motivated by the requirement of sensitive 

collision detection and identification in HRI. Starting with the 

robot dynamic model, the extended state observer (ESO) from 

the active disturbance rejection control (ADRC) framework is 

introduced for fast and robust contact force detection. The main 

contributions of this work are the modified ESO (MESO) 

algorithm for whole-body collision detection and its application 

to a practical robot for physical HRI. Residual vectors 

generated by the MESO contain information of not only the 

presence, but also the location, magnitude and orientation of a 

collision.  Compared with classical model-based methods, the 

MESO circumvents the need for acceleration estimation. It is 

robust to torque disturbances and thus gives residual estimation 

with more accuracy.  

For practical verification, blunt impact experiments with a 

human volunteer are conducted on a 7-DOF dexterous 

collaborative robot arm (DCRA) [27] developed by our lab. As 

well as dynamic collision, we analyze the problem of the quasi-

static constrained impact, which poses a serious threat even 

with lightweight robots. The results prove that the MESO is 

able to suppress the disturbances from joint actuators and 

respond rapidly to accidental contacts. We evaluate the 

collision force during the impact tests and find that with a 

combination of MESO and the simplest “emergency stop” 

strategy, the robot is unlikely to cause damage to human in both 

dynamic and quasi-static collision. 

The paper is organized as follows. In Section 2, some 

preliminaries relative to our study are presented. Section 3 

describes the design of the proposed method motivated by the 

idea of ESO combining the analysis of robot model. To make 

this paper self-contained, a generalized review of the widely 

used GM method is included. Section 4 is devoted to the 

comparison between the MESO and the GM method with 

respect to the tracking performance in simulation. In Section 5, 

experiments are carried out to illustrate the effectiveness of the 

MESO in a collaborative robot concerning quasi-static and 

dynamic loading. We evaluated the detection sensitivity by 

using an external force/torque sensor. 

2. Preliminaries 

2.1. Robot manipulator model 

The analytical model for an n-degree-of-freedom (DOF) robot 

manipulator can be written in joint space as the following form:  

( ) + ( , ) + ( ) = ext+M q q C q q q g q τ τ  (1) 

where , , nq q q R  represent the link angular position, velocity, 

and acceleration. ( ) n nM q R  denotes the positive-definite, 

symmetric inertia matrix. ( , ) n nC q q R  and ( ) ng q R  

denote the Centripetal-Coriolis and gravitational effects. 
n

ext τ R   is the external torque vector due to physical contact 

with the environment which could act as an indicator of 

collision events. 
nτ R  is the joint torque generated by robot joint actuators. 

It can be measured directly from joint torque sensors or inferred 

by motor currents. It is noteworthy that depending on specific 

robot controllers, the joint torque may have varying degrees of 

disturbance from actuators. The actuator in each joint of a robot 

usually consist of a servo motor and a transmission system with 

transmission flexibility, motor inertia, and friction [28, 29] 

( )

a a m f

a

 + + = −


= −

B θ D θ τ τ τ

τ K θ q
 (2) 

where , , n n

a a a

B D K R  are the diagonal, positive definite 

motor rotor inertia matrices, damping and joint stiffness of the 

actuator respectively. n

m τ R  represents the electromagnetic 

torque of motors considered as the system input. 
nθ R  is the 

motor positions and it is measured by motor-side encoders. 
n

f τ R   is the friction torque. Combination of Eq.(1) and 

Eq.(2) lead to a complex model of flexible joint robot. Instead 

of working out its mechanism, we consider the actuator 

dynamics model Eq.(2) as disturbances acting on the dominant 

rigid robot model  Eq. (1) . 

The robot model given in Eq. (1) has the following well-

known property that is utilized in the subsequent analysis.  

Property 1: The matrix ( ) 2 ( , )−M q C q q  is skew-symmetry 

[30], and so it follows that 

( ) ( , ) ( , )T= +M q C q q C q q .  (3) 

2.2. Strategy of Extended State Observer  

As a unique observer design, the extended state observer was 

originally proposed by Han [31]. The main idea of the observer 

is to use an augmented state vector for nonlinear disturbance 

estimation. With consideration of a general model of a second-

order MIMO system 

 ( , , , )t= +y f y y w Bu , (4) 

where 
my R  is the state vector and 

mBu R  is the system 

input, 
mw R  is an external unknown input,  f represents the 

total disturbance including internal dynamics and external 

disturbances. Based on the idea of internal state extension, this 

plant can be augmented as 
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1 2

2 3

3

1

( , , , )t

=
 = +


=
 =

x x

x x Bu

x f y y w

y x

, (5) 

where the total disturbance  f  is considered as an extended 

state 3x . Here  f  and its derivative  f  are assumed unknown. 

Now it is possible to estimate  f  by using a simple state 

estimator. The ESO has been shown to be capable of handling 

different types of nonlinear disturbances without adjusting the 

structure or parameters [32], and the observer error 

monotonically decreases with the observer bandwidth [33]. The 

following property declares the scope of disturbance  f  that 

can be estimated by a linear ESO with bounded error. 

Property 2: lim ( )
t

t
→

E  is bounded if at least one of the 

following two conditions is satisfied [32]: 

1) 2rf , for a constant 2r  at any time. 

2) 1rf , for a constant 1r  at any time. 

3. Collision detection and identification method 

3.1. Review of the FDI method using generalized momenta 

In [16], a method for actuator faults detection and isolation 

(FDI) has been proposed for robotic systems based on the 

generalized momenta ( )  =p M q q . It is capable of detecting 

accidental collision as well as other type of actuator fault, such 

as free-swinging and saturated actuator fault.  

A first-order dynamic equation about p  can be written as 

( , ) ( )T

ext + −p = τ + τ C q q q g q . (6) 

Then by defining the residual vector r  as 

( ( , ) ( ) )T dt = − + − +
 r K p τ C q q q g q r , (7) 

with diag{ } 0iK= K , a linear system of  r  driven by  the 

external torque extτ  is obtained [17]. 

ext= − +r Kr Kτ  (8) 

Actually, every component of the residual is the filtered 

version of the external torque. For implementation, a standard 

observer is always needed to calculate the nonlinear term with 

measurable outputs only [16]. The GM method is realized as 

follows. 

ˆ ˆ( , ) ( ) ( )

ˆ( )

T= + − + −

= −

p τ C q q q g q K p p

r K p p
 (9) 

With this observer, for large values of iK , the evolution of ir  

will reproduce the evolution of contact torque 
,ext i  accurately. 

However, in most cases, the gain of the observer is limited by 

modeling error and system noise. The transfer function from 

joint torque τ   to residual r  is a first-order filter that we find 

in practice cannot provide enough attenuation for the noise in 

τ . Moreover, the observer is prone to get divergent with 

inappropriate parameters.  

3.2. The extended state observer design 

Considering the robot model in Eq. (1), the purpose of 

collision detection is to calculate the external torque extτ  

rapidly and accurately. In this section, a basic third-order ESO 

is introduced firstly. Then, by making full use of the system 

feedback, the observer order is reduced to decrease phase lag. 

Finally, the resultant second-order ESO is modified in a way 

that calculation of inverse matrix is no longer needed. 

Introducing a new variable  

( , , ) ( , ) ( )a = − −τ τ q q τ C q q q g q , (10) 

then Eq. (1) can be rewritten as 
1 1 = ( ) ( )a ext

− −+q M q τ M q τ .  (11) 

The robot dynamic model is transformed to a second-order 

integrator with disturbance, wherein 1( ) a

−
M q τ  and

1( ) ext

−
M q τ  are recognized as the system input and total 

disturbance respectively. Corresponding to the general model 

in Eq.(4), there is 
1

1

 ( )

 = ( )

n

a

n

ext

−

−

 = 




Bu M q τ R

f M q τ R
  (12) 

Then a third-order linear ESO is accordingly designed as 

following 

1

1 2 1

1

2 3 2

3 3

( ) ( , , )

t t

o

t t t

o

t t t

o a

t t

o

−

 = −


= −


= − +
 = −

e z q

z z β e

z z β e M q τ τ q q

z β e

 (13) 

1

2

3

ˆ

ˆ

ˆ

t

t

t

 =


=


=

z q

z q

z f

  (14) 

where 1 2 3, ,β β β  are diagonal matrix containing the gains of the 

observer, and the hat symbol (^) is used to denote estimated 

terms. Consequently, 3
ˆ =f z  is the estimation of the total 

disturbance f . Then the estimation of external torque is 

calculated as 

ˆˆ ( )ext =τ M q f .  (15) 

Here, in accordance with other FDI methods, the estimation 

of external torque given by the ESO is also called residual. In 

robot systems, the joint velocity q  are directly available from 

the motor drivers. These known system information can be 

utilized to reduce the order of ESO and further decrease phase 

lag in observation. Then a reduced-order ESO for collision 

detection is thus designed as 

1

1

1 2 1

2 2

( ) ( , , )

r r

o

r r r

o a

r r

o

−

 = −


= − +


= −

e z q

z z β e M q τ τ q q

z β e

 (16) 

1

2

ˆ

ˆ

r

r

 =


=

z q

z f
  (17) 
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With f̂ , the residual can be calculated using Eq. (15) in the 

same way. The reduced-order observer have a higher response 

speed than the preliminary design, which is critical for safety 

reaction in HRI. In the above collision observers, it is obliged 

to calculate the inverse of inertia matrix ( )M q  in each 

iteration, which is a large computing work especially for multi-

degree-of-freedom robots. Therefore, some modification of the 

algorithm is necessary. In Eq.(16), the inverse inertia matrix is 

used to acquire the driving signal of the integrator Eq.(11). 

Therefore, it is natural to think about transforming Eq.(11) into 

a new differential equation with new internal variables. In order 

to eliminate 1( ) −
M q , both sides of Eq. (11) are multiplied by 

( )M q  on the left.  

( )  = a ext+M q q τ τ .  (18) 

The term ( )M q q  can be obtained by differentiating the 

general momenta ( )  =p M q q : 

( )  ( )  = +p M q q M q q .  (19) 

Combining Eq.(18) and Eq.(19), a first-order differential 

equation about general momenta can be written as 

( , , )p ext= +p τ τ q q τ ,  (20) 

where  

( , , ) ( )  p a= +τ τ q q M q q τ   (21) 

is an intermediate variable. According to Property 1, 
pτ  can 

be calculated as follows. 

( , ) ( )T

p = + −τ τ C q q q g q   (22) 

Different from the previous two ESO-based methods, this 

modified ESO has new observer states. Consequently, the 

correspondence with Eq. (12) is changed to 

 

 = 

n

p

n

ext

 = 




Bu τ R

f τ R
.  (23) 

Then, a modified second-order ESO is designed to give 

estimation of the external torque as 

1 2 1

2 2

( , , )

m m

o o

m m m

o p

m m

o

 = −


= − +


= −

e z p

z z β e τ τ q q

z β e

  (24) 

1

2

ˆ

ˆ

m

m

ext

 =


=

z p

z τ
  (25) 

So far, we present three prototypes of external torque observer 

in a series of optimization: the original ESO, reduced-order 

ESO (RESO), and finally the modified ESO (MESO). It is 

interesting to find that the obtained algorithm is similar to that 

of the GM method [16] with exactly the same observer input 

(Comparing Eqs. (9) and (24).). Note that the ESO methods 

employ a higher-order design to give the external torque a 

proper state for robust estimation, which proves to have a 

positive effect on the bandwidth improvement with the 

existence of torque disturbance in robot systems in the 

following verifications. 

Remark: An observer usually works as a low pass filter for 

the state variable and therefore decreases the noise in feedback 

loop. However, it also brings undesired phase lag. To ensure a 

quick response, the delay must be minimized. The presumption 

of the reduced-order observer is that some of the system state 

variables are measurable and do not need to be observed. 

Benefit from the direct measurement of joint velocity in the 

robot hardware, a faster RESO can evolve from the original. To 

decrease computation load, further optimization is taken by 

changing the observer state from the joint velocity q  to the 

general momenta p . Comparing Eqs. (16) and (24), it is 

obvious that this modification brings two benefits: first, (a) the 

calculation of 1( ) −
M q  is circumvented. Considering that the 

computational complexity of matrix inversion is a cube of its 

dimension, this improvement makes the ESO method 

applicable to robots with even more degrees of freedom; in 

addition, (b) the lumped disturbance vector given from the ESO 

is exactly the residual vector for collision detection, eliminating 

the need for further processing in Eq.(15). 

3.3. Dynamics of the collision observer error 

In safe robotic applications, not only the occurrence but also 

the magnitude and location of the physical contact should be 

identified for safety reaction in higher level. Thus, the 

observation error, or the difference between residual and actual 

external torque, is supposed to be bounded in any case. 

As the proposed algorithm takes the form of a standard ESO 

from ADRC scheme, its stability and convergence are naturally 

guaranteed. Without loss of generality, the error dynamics of 

MESO is analyzed. Given the observing errors: 

ˆ

ˆ

f ext ext

p

T

p f


= −




= −


 =  

E τ τ

E p p

E E E

  (26) 

the error dynamics can be derived from Eqs. (5) and (24): 

= +E AE Bf   (27) 

where  

1

2

0
,

0

−   
= =   − −  

β I
A B

β I
.  (28) 

1 2,β β  are the gains of the ESO parameterized by using a 

pole-placement method as proposed in [34]. 
2

,1 ,1

1 2

2

, ,

2

,

2

o o

o n o n

 

 

  
  

= =   
     

β β  (29) 

wherein 
,o i  is the observer bandwidth of the i-th joint. Further, 

the observer error of RESO method is obtained by solving Eq. 

(27). 

0
( ) (0) ( )d

t
t t st e e e s s−= + 

A A A
E E Bf  (30) 

In most cases, 1β  and 2β  are chosen such that A  is Hurwitz 

and has real negative eigenvalues. For the concerned collision 

types, we assume that the dynamic impact and the quasi-static 

impact bring step and ramp signals respectively to the external 
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torque. In this case, conditions in Property 2 are satisfied and 

thus the boundedness of estimation error is gained. Actually, it 

is proved in [35] that the estimation error of ESO converges 

asymptotically when dynamic model is available, and in other 

cases is bounded with a mostly unknown plant model. 

3.4. Collision detection and identification with residual vector 

The proposed ESO methods are able to locate robot link with 

collision and provide directional information on the Cartesian 

collision force, which is valuable for further safety strategy. 

Residual  1 ...
T

nr r=r  from the ESO is the decoupled 

estimation of ,1 ,...
T

ext ext ext n =   τ . Contacts in scenarios 

of HRI will detected when lowrr  or, by working 

component-wise, when there exists at least one index j  for 

which ,j low jr r , where lowr  and 
,low jr  are detection thresholds 

determined by weighing algorithm sensitivity and noise level. 

When collision occurs on the i-th (1 i n  ) link of the robot 

kinematic chain, there is 

1

1

, ... , 0

, ... , 0

i

i n

r r

r r+




=
  (31) 

Within the time interval of contact, the first i components of 

r  are generically different from zero, and will start decaying 

toward zero as soon as contact is removed. In most cases, the 

contact forces and location in Cartesian space is more desired 

for safety investigations and perception fusion with other 

sensors. The calculation of Cartesian external force from extτ  is 

straight-forward by robot kinematics and readers can refer to 

[36] for details. In this work, we will focus on the technology 

of external torque estimation and the proposed method is 

evaluated in joint space. 

4. Simulation results 

In order to verify the proposed collision detection method, we 

have considered a 2-DOF planar robot moving in the vertical 

plane with gravity (Fig. 1).  

 

Fig. 1.  Considered 2-DOF planar manipulator for simulation. The equilibrium 
position of the robot movement is shown in dashed lines. 

 

The robot links are assumed to be rods of length 0.4 m with 

concentrated mass at the rod end of 3.1 kg and 2.1 kg, 

respectively. The dynamic model takes the form  

11 12 1 12 2 12 1 2 1

12 22 2 12 1 2

1 ,11

2 ,22

( )

0

 
extacc

extacc

M M q C q C q q q

M M q C q q

m g

m g

 

 

− − +       
+       

       

+  
+ =    +   

, (32) 

where 

2 2

11 1 2 1 2 2 2 1 2 2

2

12 2 2 2 1 2 2

2

22 2 2

12 2 1 2 2

( ) 2 cos( )

cos( )

sin( )

M m m L m L m L L q

M m L m L L q

M m L

C m L L q

 = + + +


= +


=
 =

, (33) 

and 
accg  is the gravitational acceleration. Without loss of 

generality, it is assumed that the robot motion is controlled by 

a PID controller with gravitational compensation. According to 

the technical parameters of the joint 4 and joint 6 of the DCRA, 

the control signals are input as the motor torques and go through 

the actuator systems with dynamic parameters of 

diag(3.701, 0.26)a =B , diag(0.01, 0.01)a =D , and 

diag(32700,16000)a =K  [37]. Measurement noise with 

uniform distribution is artificially added to the motor position 

feedback with a bound of 
52.75 10− . The manipulator starts at 

rest in a fully extended configuration and follows square wave 

inputs. The robot undergoes violent acceleration processes 

starting at time  1,3,5,7  in trajectory tracking (Fig. 2). 

 

Fig. 2. Acceleration magnitude of the robot joints in simulation. 

 

During the time intervals [2, 4] [7, 8] s and [3, 7] s, 

intermittent external torques are exerted on the two joints in 

forms of square wave and triangle wave respectively. So there 

exists concurrent external torques during [3, 4]  s. Three 

residual generation methods, GM, RESO, and MESO, are used 

to give estimation of the external torques and compare with 

each other. The simulation environment is built in the Simulink 

on a workstation with 3.5 GHz quad-core processor and 24 GB 

memory. 

 
(a) 

 

1q
2q
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(b) 

 
(c) 

Fig. 3.  Estimation of external torque generated by three detection methods. (a) 

GM method. The average delay in ramp fault tracking in joint 1 is 24 ms and 
the rise time in joint 2 is 55 ms.  (b) RESO method. The delay in ramp fault 

tracking is 10 ms and the rise time is 16 ms. (c) MESO method. It has the same 

bandwidth and performance as the RESO method. 

 

In Fig. 3, the residual evolutions show a practical 

reconstruction of the external torques and a totally decoupled 

behavior with the three methods. Figures 2 and 3 show the 

correspondence between the disturbances in residuals and the 

joint acceleration. Due to the drastic motor torque as the 

feedback controller is trying to position the robot, the coupling 

effect between the rigid body and actuators cause oscillations 

in residual signals. Notice that in the experiments the gains of 

the observers are tuned to make a similar noise level in residual 

signals among three methods. Consequently we have 45iK =  

for GM, and 
,i 200, 1, 2o i = =  for RESO and MESO. In 

general, the ESO methods outperform the GM method in terms 

of detection performance. While for RESO and MESO, the 

difference is negligible.  

Table.1 contains the specific response performance of the 

three methods with the computational time in each iteration. 

Clearly, the MESO has the same performance with the RESO 

while significantly reduces computational time. On the other 

hand, the response speed of the MESO is much faster than that 

of the GM at the expense of a little more computation due to the 

extended state. 

Table 1 

Comparison of GM, RESO and MESO method with respect to respond 

performance and computational time. 

Method Delay in J1 Rising time in J2 Computational time  

GM 24 ms 55 ms 11.6 μs 

RESO 10 ms 16 ms 26.6 μs 

MESO 10 ms 16 ms 15.5 μs 

5. Experiments 

5.1. Experimental setup 

Extensive tests on the proposed method have been performed 

with the DCRA robot. DCRA has 7 rotary joints with spherical 

shoulder and wrist axes which are similar to that of a human 

arm. The maximum load of the robot is 7 kg and its outreach is 

1.2 m. It has embedded strain gauge sensors in each joint. 

Therefore, the state variables (joint torque, position, and 

velocity) used in the GM and ESO methods can be directly 

measured. Figure 4 shows the hardware of the DCRA robot 

prototype. A PC-based controller is used for algorithm 

implementation. It communicates with drivers and a data 

acquisition unit through EtherCAT bus with a cycle time of 

250 μs. 

 

Fig. 4.  Hardware structure of the DCRA robot 

 

As stated in Sec. 3, both the GM and MESO methods require 

the robot dynamic model. In this study, only the rigid robot 

model is used, while the dynamical behaviors of actuators (i.e., 

motors and reducers) are considered as disturbances. It is 

noteworthy that the link positon q  and velocity q  used in the 

detection algorithms are estimated by the motor-side 

measurements ,θ θ  as they are available for most robot 

manipulators. Coincident with the simulation, the observer 

bandwidth of MESO is chosen as 
,i 200o =  for all seven joints.  

5.2. Comparison between the MESO and the GM method 

First, we verify the capability of the proposed observer to 

distinguish collision from internal inertia force. The MESO is 

implemented on DCRA, and the detection results are compared 

to that of the GM method. During the tests, the robot revolves 

its first joint back and forth with the large inertia of its body. 

The trajectory is designed with a maximum acceleration of 

280 °/s2 and a maximum velocity of 60 °/s. The robot collide 

with a cushion held by a human user for two times respectively 

within the cruise phase and acceleration phase of movement 

(see Fig. 5). Note that in this experiment, no reaction will be 

taken when collision occurs, and the robot will continue its 

movement after bouncing off the cushion.  

 

Fig. 5.  Dynamic impact test on the DCRA robot prototype for performance 
comparison of the ESO and the GM method. No reaction will be taken by the 

robot if collision is detected. 

 

The parameters of the GM method are chosen to ensure that 

the noise level is comparable to MESO. Figure 6 shows the 

residuals generated by the MESO and GM method with the 

measured torque in the first joint. In the cruise phase, the inertia 

force is trivial. It is reasonable to consider that any spikes in the 

joint torque result from physical impacts. While in the 

acceleration phase, the joint torque becomes a lumped signal 

superposed by inertia force and contact force. It is not easy to 

PC-based controller driver DAQ unit

motor encoder torque sensor

Master Slave 1 Slave 2
bus bus

collision

Joint 1

Joint 2

Joint 3
Joint 4

Joint 5

Joint 6

Joint 7
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recognize intuitively a simple impact from these lumped torque 

signals. The two observers give clear collision identifications in 

both kind of phase and the residuals are filtered from the torque 

signals. On the other hand, it is clear that the residual from the 

MESO raises to a higher value during the two impacts 

compared with that of the GM method. In the cruise phase of 

0.5 to 1.5 s, the joint torque is considered as the reference signal 

to evaluate the estimation error of the two methods (see Fig. 7). 

The estimation RMS values during this episode are 6.89 and 

5.36 respectively for GM and MESO. Observations from Figure 

6 and 7 reveal a faster response as well as a more accurate 

estimation of external torque with the MESO method. 

 

Fig. 7.  Estimation error of the GM and MESO method (Impact 1 in Fig. 6). The 

measured joint torque is used as the reference signal. The estimation RMS 
values during this episode are 6.89 and 5.36 respectively for GM and MESO. 

 

Fig. 6. Comparison of the measured torque of the joint 1 and the residual signals generated by GM method and MESO method.  Impacts occurs in the cruise phase 

as well as the acceleration phase. 

6. Applications in human-robot interaction scenarios 

6.1. Dynamic impact detection 

The dynamic impact is the first injury mechanism 

investigated in previous robotics literatures, and is extensively 

used to verify the collision detection and reaction strategy of 

robot systems [18]. Although it is concluded in [3] that no 

physical collision detection and reaction strategy is fast enough 

to reduce the impact force of fast and rigid unconstraint 

impacts,  absolute rigid part does not exist in a human body 

(even with the human head). Therefore, any deformation of the 

human body can prolong contact time such that active safety 

mechanisms have the chance to avoid further squeezing. In 

order to show the effectiveness of the proposed collision 

detection method, dynamic impact tests are conducted on 

DCRA with a non-clamped human arm. As soon as the 

collision is detected, the robot stops its movement in 

emergency.  

The test trajectory is designed to cover two representative 

robot movements that are very likely to cause collisions: 

rotating around the waist (joint 1), and stretching out from a 

bent configuration. Thus, a path is assigned to the joint 1, joint 

2 and joint 4 of the robot with the maximum angular velocities 

of 75 °/s, 40 °/s, and 80 °/s, respectively, as shown in Fig. 8. 

 

Fig. 8.  Velocity profile designed for the two dynamic impact tests. Motion 
was assigned to the joint 1, joint 2 and joint 4 of the 7-DOF robot. The dashed 

lines indicate two impact point of this trajectory in two collision tests. 

 

Before the introduction of impacts, the robot runs the 

designed trajectory in free space. The residuals generated by 

the MESO are observed to determine the threshold for collision 

detection. Figure 9 shows the residuals with the measured 

torque signals of the three joints during this unconstraint 

movement. Though there exists some noise resulting from the 

actuator systems, the MESO manages to keep the residuals 

near zero in spite of the dynamic force of the robot body. Then 

the collision threshold is set at 10 % of the maximum output 

torques available at each joint: 15 Nm, 15 Nm and 8 Nm for 

joint 1, joint 2 and joint 4 respectively.  

acceleration acceleration accelerationcruise cruise

Impact 1 Impact 2

impact 1 impact 2
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(a) 

 
(b) 

 
(c) 

Fig. 9.  Residual and joint torque signal of each joint in the trajectory designed 

for dynamic impact test. There is no collision happening.(a) the joint 1, (b) the 
joint 2, and (c) the joint 4. 

 

The collision points on the robot body are selected at the end-

effecter, so that a 6-DOF Force/Torque (F/T) sensor (ATI 

Mini40 SI-80-4) mounted at the end can be used to measure 

the contact force. This sensor is not used for detection, but only 

for validation purposes. Figure 9 shows the impact positions of 

the two experiments. During the experiments, the human keeps 

still and relaxed with his forearm placed at the impact positions 

ahead of time.  

 

(a) 

 

(b) 

Fig. 10.  Collision detection experiment of dynamic impact. The robot collides 

with human arm in two test scenarios within the designed trajectory. (a) The 

robot rotates around joint 1 and hits human arm at a TCP speed of  0.9 m/s. (b) 
The robot impacts human arm at a TCP speed of 0.5 m/s with its arm outstretch 

forward. 

 

The robot repeats the preset trajectory two times and collides 

with the human arm at two different points respectively with 

the TCP (Tool Center Point) velocity of 0.9 m/s and 0.5 m/s 

respectively (see Fig. 8). In the first impact test, the contact 

force, joint torques (Fig. 11a), and the resulting residuals (Fig. 

11b) are documented. In this scenario, as the moment of 

impulse with respect to the joints 2 and 4 is zero, only joint 1 

responds to the collision. The residual of joint 1 rises to its 

threshold in 30 ms and triggers the brake action of DCRA. 

Taking advantage of the decoupling characteristic of the ESO-

based methods, we can estimate the impact vector from the 

available residual signals with current robot configuration. As 

soon as contact is lost, the contact force and the residual start 

to decay toward zero. As it is shown in Fig. 11a, the 

propagation of the impulse over the robot inertia and the 

intrinsic joint elasticity leads to a considerable delay in the 

joint torque in relation to the contact force.  

Figure 12 shows the contact force and the residuals in the 

second impact test. Joints 2 and joint 4 are able to perceive the 

collision in this configuration. Note that the two residual 

signals do not rise simultaneously with a single impact 

excitation because of the impulse propagation. It took about 20 

ms for the residual of the joint 4 to reach its threshold, while 

the collision is detected by the joint 2 about 10 ms later.  

 
(a) 

 
(b) 

collision

F/T 

sensor

collision
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Fig. 11.  The first test scenario of dynamic impact. (a) Illustration of the 
delay between the peak of contact force and that of joint torque. (b) Residual 

and detection threshold of each joint. Collision is detected by the joint 1. 

 

 
(a) 

 
(b) 

Fig. 12.  The second test scenario of dynamic impact. (a) Magnitude of contact 

force. (b) Residual and detection threshold of each joint. Collision is detected 

by the joint 4 and the joint 2 in succession. 

 

Though the MESO method may take some time to respond 

to the peak of contact force, with the combination of this 

method and a simple “emergency stop” strategy, the force 

peaks last no more than 100 ms and stay under 120 N in the 

two impact tests. According to the collaborative operation 

requirements for industrial robots from ISO10218 [38]: the 

maximum static force at most 150 N, this robot system seems 

not to cause severe damage (as fracture) to human body. In 

addition to quantitative measures by the F/T sensor, however, 

the experience of the human operator indicates a high safety 

awareness. 

6.2. Quasi-static impact detection 

Getting hands or other parts of body locally clamped by robot 

manipulators can be very dangerous when the contact force is 

not limited properly. Clamping or squeezing will lead to slow 

changing residuals which is generally overlooked by filter-

based detection methods [25]. In this experiment, the 

detectability of the MESO for quasi-static impact is verified on 

DCRA. The minimal detected force in the elbow joint is 

experimentally evaluated for the potential squeezing injury 

from the angle between the upper arm and forearm of the robot.  

Joint 4 of DCRA moves according to a trapezoidal velocity 

profile with cruise speed of 10 °/s. The forearm moves 

downward in vertical plane until a collision occurs between the 

robot limb and an elastomer. A 6-DOF F/T sensor is placed 

under the elastomer to measure the contact force (Fig. 13). The 

detection threshold is kept unchanged from the previous 

experiment that is 15 Nm for joint 4.  

 

Fig. 13.  Collision detection experiment of quasi-static impact. The elbow joint 
(joint 4) of robot clamps an F/T sensor at a constant speed of 10 °/s. The F/T 

sensor is covered by an elastomer to simulation the inherent flexibility of 

human body. 

 

 

(a) 

 

(b) 

Fig. 14. Experimental results of the proposed collision detection method 

for quasi-static impact. (a) Contact force changed slowly within the squeezing 

phase, and so does the joint torque. (b) Residual begins to increase as soon as 
the clamping occurs and finally reaches the collision threshold. 

 

Figure 14 illustrates the contact force and joint torque (Fig. 

14a) with the residual generated by the MESO (Fig. 14b). 

Before the collision, the joint torque is a reflection of 

gravitational force and further depends on the robot 

configurations. Then the gradual increase in squeezing force 

leads to a slowly rising residual signal. Finally, the “emergency 

stop” is triggered when the residual rise to the threshold. 

Though the collision point is selected close to the elbow joint 

so that the arm of force is quite short, a clamp force as small 

as 48 N can be detected, which is unlikely to hurt any parts of 

a human body. Therefore, it is shown that a compression in 

quasi-static state can be efficiently detected by the propose 

method. 

In the two safety applications above, the MESO method 

mainly shows its capacity for collision detection. However, the 

residual signals contains information of not only the 

appearance of the impact but also its position, direction and 

form: (a) with the help of the decoupled estimation of external 

collision
elastomer

F/T 

sensor
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torques, we are able to derive intuitively the location and 

direction of a collision. In the first test of dynamic impact 

experiment, only the residual of joint 1 raised significantly for 

the collision. Therefore, it is directly perceived that the 

direction of collision force is parallel to the axes of the joint 2 

and the joint 4. In the second test, from the nonzero output of 

joint 2 and joint 4 and the quasi-zero output of joint 1, the 

external force vector can be speculated lying in the 

configuration plane of the robot. According to robot 

kinematics, the exact directions can be calculated as stated in 

Sec. 3.4, which is beyond the scoped of this research. (b) 

Benefit from the extended state for external torques in the 

observer, the MESO can provide accurate estimation of contact 

forces with limited error, so that it is able to recognize different 

types of collision from the profile of residual signals (e.g. 

dynamic impact from Figs. 10 and 11; quasi-static squeezing 

from Fig. 13). Therefore practical collision identification can 

be realized with the proposed method, while actually it has 

been achieved in joint space.  

7. Conclusion 

In this paper, we present a new collision detection method 

for multi-joint robots. Starting from the original ESO used for 

closed-loop control, a collision observer is designed iteratively 

through order reduction and reselection of observer variables 

for computational efficiency. 

The use of MESO provides a natural and efficient method for 

detecting and identifying collision in robot systems, without 

the need of estimating joint acceleration or inverting the inertia 

matrix. Compared to the well-known GM method, the MESO 

is able to provide better estimation of the collision force with 

similar noise level in practical systems. Though the extra state 

for external torque leads to slightly increased computation and 

potential observation delay, it is essential to suppress the 

significant disturbances from actuators and therefore ensure a 

high bandwidth of the observer. This method is general enough 

to handle the common dynamic impact as well as the quasi-

static impact. In fact, the residual vector involve richer 

information about both the robot dynamics and the external 

loads. As a result, future work is to extract the valuable 

knowledge from the residual and design collision reaction 

strategy based on it. On the other hand, the MESO should be 

enhanced with adaptability to the uncertainties in the robot 

model.  
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