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Abstract

The sense of touch is regarded as one of the most crucial sensory modalities in humans,
enabling the dexterous manipulation of tools in daily activities. However, the integra-
tion of tactile sensing and its impact on robotic manipulation is still underexplored. In
this thesis, we investigate the importance of tactile sensing in robotic manipulation via
solving a challenging task, i.e. match lighting, which is considered to be a typical task
demonstrating that humans rely heavily on the sense of touch. As the whole task is
impractical to simulate, we propose a novel imitation learning framework based on the
multimodal visuomotor diffusion policy to learn match-lighting skills directly from human
demonstrations. The performance of our framework for solving the task is extensively eval-
uated through real-world experiments, with respect to two main aspects: different sensor
modality combinations and a wide range of match pose configurations. The evaluation
results reveal that our policy is capable of solving the task robustly under different task
configurations, and we also find that different sensor combinations can substantially affect
policy performance. We believe that our results can highlight the fact that tactile sensing
plays a significant role in improving policy performance for contact-rich manipulations,
and provide practical experiences for choosing appropriate sensor combinations in similar
tasks.
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Zusammenfassung

Der Tastsinn gilt als eine der wichtigsten Sinnesmodalitäten des Menschen und ermöglicht
die geschickte Handhabung von Werkzeugen bei täglichen Aktivitäten. Die Integration
des Tastsinns und seine Auswirkungen auf die Robotermanipulation sind jedoch noch
wenig erforscht. In dieser Arbeit untersuchen wir die Bedeutung des Tastsinns bei der
Robotermanipulation anhand einer anspruchsvollen Aufgabe, dem Anzünden von Streich-
hölzern, einer typischen Aufgabe, die zeigt, dass der Mensch stark auf seinen Tastsinn
angewiesen ist. Da die gesamte Aufgabe nicht simuliert werden kann, schlagen wir ein
neuartiges Nachahmungs-Lernsystem vor, das auf der multimodalen visuomotorischen
Diffusionspolitik basiert, um das Anzünden von Streichhölzern direkt von menschlichen
Demonstrationen zu lernen. Die Leistung unseres Frameworks zur Lösung der Aufgabe
wird in realen Experimenten umfassend evaluiert, und zwar in Bezug auf zwei Haupt-
aspekte: verschiedene Sensormodalitätskombinationen und eine breite Palette von Match-
Positionskonfigurationen. Die Evaluierungsergebnisse zeigen, dass unsere Strategie in der
Lage ist, die Aufgabe unter verschiedenen Aufgabenkonfigurationen robust zu lösen, und
wir finden auch, dass verschiedene Sensorkombinationen die Leistung der Strategie erheb-
lich beeinflussen können. Wir glauben, dass unsere Ergebnisse die Tatsache hervorheben
können, dass die taktile Wahrnehmung eine bedeutende Rolle bei der Verbesserung der
Leistung von Richtlinien für kontaktreiche Manipulationen spielt, und dass sie praktische
Erfahrungen für die Auswahl geeigneter Sensorkombinationen bei ähnlichen Aufgaben
liefern.
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1 Introduction

Tactile perception is considered one of the fundamental human perceptual systems, allow-
ing us to gather important information about the environment through touch, including
pressure, texture, temperature, etc. In addition, tactile sensing also provides us with the
ability to recognize and discriminate materials and positional features of the objects in our
hands, i.e. the size and pose of the object, complementing other senses such as vision and
hearing to guide us to perform all kinds of daily tasks e.g. opening drawers, turning keys,
and folding clothes. However, in the field of robotics, despite the huge potential of tactile
sensing in the manipulation of real-world objects, it has received less research attention
compared to other sensory modalities such as vision [1]. Moreover, from the existing
works, we notice that many tactile-involved manipulations are based on relatively slow and
precise movements, e.g. pick-and-place, insertion, assembly, etc. [2]. The success of these
tasks often primarily relies on the tactile sensor’s ability to detect stable contact, identify
object properties, or ensure precise alignment via haptic feedback. Nonetheless, tactile
sensing in dynamic and fast-paced manipulation tasks, such as throwing and catching [3],
and slip detection [4, 5], where the awareness of dynamic object displacements and rapid
force variation are crucial, remains relatively underexplored.
To extend the research on these aspects, this thesis aims to investigate the importance of
tactile sensing in dynamic manipulation tasks. Specifically, we focus on solving the match
lighting task with the integration of tactile sensors. This task is considered to be one of
the typical tasks in which humans rely heavily on the sense of touch [6]. Additionally,
we investigate the effectiveness of solving the match lighting task with different sensor
combinations.
In recent years, rapid advances in tactile sensory technology have improved the com-
pactness, resolution, and robustness of tactile sensors available for robotic applications.
Traditional tactile sensors, e.g. capacitive and piezoelectric types, offer less detailed mea-
surements compared to modern optical tactile sensors like the popular GelSight Mini [7],
which uses an RGB camera to capture high-resolution images of tactile deformations.

4



However, GelSight Mini is considered to lack temporal resolution due to the low updating
rate of the RGB cameras (25Hz). To address this drawback, a novel event-based optical
tactile sensor, i.e. Evetac [5] was developed, employing a neuromorphic camera that
captures brightness change on individual pixels rather than a whole frame of tactile
measurement, enabling it to capture rapid deformations at 498Hz—nearly 20 times faster
than GelSight Mini, though with lower image spatial resolution. In this work, we employ
both of the mentioned tactile sensors, i.e. GelSight Mini and Evetac, to provide tactile
information during the task learning and execution, such as match in-hand pose and
match displacement during the strike.
Considering the match-igniting task is generally unrealistic to simulate, reinforcement
learning approaches are thus not ideal, as they require extensive trial-and-error interactions
with the environment, which are not practical in our real-world scenarios. Therefore, we
propose to employ a state-of-art imitation learning approach, i.e. Diffusion Policy [8],
to learn the match-lighting skills directly from human demonstrations. Based on the
Deep Denoising Probabilistic Models (DDPM), Diffusion Policy learns the gradient field of
the action-distribution score function such that during the inference the expected action
sequence can be sampled through a series of stochastic Langevin dynamics steps w.r.t. the
learned gradient field [9]. Besides, the denoising process is conditioned on the multimodal
observation sequence, improving the accuracy and consistency of the generated actions.
Since dynamic environment interactions are involved in our task, it is also necessary to
apply constraints on the contact force during the task execution to prevent the breakage
of the match. We thus involve a Cartesian impedance controller with empirical stiffness
and damping values to regulate the robot’s behavior more compliantly and gently during
the interaction while preserving sufficient tracking accuracy.
Eventually, our imitation learning framework is comprehensively evaluated with multiple
sensor combinations across various match pose configurations. Results indicate that our
framework is capable of solving the match-lighting task and is robust against certain
external perturbations. Furthermore, significant variations in policy performance with
different sensor combinations are observed.
The thesis structure is organized as follows: Chapter 2 introduces previous works on
learning tactile manipulation policies. Chapter 3 provides preliminary foundations of
our proposed imitation learning framework. Subsequently, chapter 4 introduces the
key components of our framework comprehensively. Chapter 5 reports the framework
configurations and details of evaluation experiments. Chapter 6 presents the results of the
evaluation experiments and corresponding discussions. Finally, in chapter 7 we summarize

5



our conclusions and propose future work against the limitation of our framework in
chapter 8.
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2 Related Work

In this chapter, we first motivate the popularity of optical tactile sensors in robotic appli-
cations. Subsequently, key approaches for learning tactile manipulation policies will be
introduced. Lastly, we review recent advancements in addressing dynamic manipulation
tasks using tactile sensing.

2.1 Optical Tactile Sensors

The role of tactile sensing is often considered an intermediate link between the exterior
environment and the manipulator. Although vision systems can provide the robot with
rich global information about the environment, extracting local features of the physical
interaction between the object and the environment is often challenging due to visual
occlusion [10]. Tactile sensors provide the robot with informative contact features and
can potentially improve the manipulation performance.
Optical tactile sensors have long been developed and extensively studied to replicate the
human sense of touch, which is a key sensory function in everyday life. Modern optical
tactile sensors typically use cameras or other optical components to capture detailed
tactile deformations on an elastic membrane placed above the camera in specific light
conditions, enabling precise detection of texture, shape, and force. These features are
quite beneficial for robotic applications, especially for object feature exploration [11, 12],
dexterous manipulation [1, 3], human-machine interactions (HMIs) [13, 14], etc.
Nowadays, one of the most popular optical tactile sensors is GelSight Mini [7, 15], which
can provide high spatial resolution RGB images that contain complex tactile information.
Besides, the compact housing design and universal USB interfaces allow for easy integration
with other robotic hardware. However, due to the limitations of the RGB camera, this
tactile sensor can only measure tactile features at a relatively low frequency, i.e. 25Hz.
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Recently, a novel event-based optical tactile sensor called Evetac [5] has resolved this
problem. Evetac is equipped with a neuromorphic event-based camera that can measure
light intensity change on every single pixel with a measurement frequency of 498Hz.
With this practical feature, Evetac is highly sensitive to dynamic tactile features and
has enormous potential to be applied in downstream tasks like fast and small contact
movement detection. Nonetheless, Evetac’s high measurement speed comes with the trade-
off of a relatively lower image spatial resolution. Moreover, due to the working principle
of event-based cameras [16], when there are no movements across the membrane, i.e. no
light intensity change, Evetac is not able to capture any touch events and preserve any
static tactile features.

2.2 Tactile Manipulation Policies

To better leverage high-dimensional readings from tactile sensors, learning-based ap-
proaches are usually used to capture implicit relationships between sensor measurements
and manipulator dynamics. Nonetheless, online predictive approaches have also demon-
strated remarkable results.

2.2.1 Reinforcement Learning Approaches

Reinforcement learning has been one of the most popular approaches to learning robotic
manipulation policies [17] for a long time, enabling robots to learn task-specific skills
through iterative interactions in simulated environments. Recent works [18–21] demon-
strated the effectiveness and remarkable performance of integrating tactile feedback
into a reinforcement learning framework for solving complex contact-rich manipulation
tasks. [10, 19, 22] learned policies first in a simulation environment and subsequently
transferred to a real robot system.
However, these approaches are usually very computationally expensive during the training
stage as extensive exploratory learning requires a large number of training steps. Moreover,
physics engines in the simulation environment necessarily approximate the real-world
dynamics, leading to a sim-to-real gap where dynamics and visuals differ between simula-
tion and reality [23]. To tackle such shortcomings, [24, 25] proposed to first learn an
initial policy representation directly from a real system, later the learned policy is adapted
with the tactile feedback via reinforcement learning approaches to generalize to different
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task settings. Nevertheless, in these works, only capacitive tactile sensors are employed
that can provide dozens of measurement points at most. Although the computational
complexity is lowered, additional features such as object texture and shape are unable to
be captured and the generalization remains limited.

2.2.2 Imitation Learning Approaches

In contrast, imitation learning approaches focus more on learning skill insights from a
set of expert demonstrations that can be obtained either through kinesthetic teaching or
teleoperation. As one of the most fundamental categories in imitation learning, behavior
cloning (BC) allows training policy in a supervised style, significantly reducing computa-
tional costs. However, traditional BC policies [26–29] are not suitable for incorporating
high-dimensional multimodal observations from demonstration, and these models also
tend to be sensitive to distribution shifts w.r.t. training data. Their generalization ability
is therefore very brittle in dynamic or unseen environments. Recently, diffusion-based
visuomotor policies [8, 30–32] have addressed most of these shortcomings, allowing the
policy to make long-horizon consistent action predictions while receiving informative
multimodal observation sequences. In terms of our goal, i.e. to investigate the role of
various modes of tactile information in the dynamic manipulation task, our framework
is based on the diffusion policy [8] that naturally supports multimodal tactile images as
input and has promising trajectory generation quality.

2.2.3 Online Predictive Approaches

Besides learning-based policies, some prior works formulated tactile manipulation tasks
as online optimization problems in closed-loop control systems. Shirai et al. [33], Tian
et al. [34] proposed MPC closed-loop controllers for tactile object manipulation. The
tactile feedbacks are used to guide the online optimization of the predictive model and the
framework showed high robustness against external disturbances. In addition, Wilson et al.
[35] proposed an online motion primitive predictive framework that solves challenging
cable routing and assembly tasks. During the online policy execution, various motion
primitives will be predicted based on current tactile features. Despite the motion efficacy
and robustness in closed-loop control, these non-learning approaches suffer from poor
generalization ability and lack of scene-motion consistency.
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2.3 Tactile Manipulation in Dynamic Tasks

Although dynamical tactile feedback was exploited in many prior works, i.e. object
movement on the deformable membrane, to detect contact status or pose change, most
of the task executions were rather slow, such as object grasping, pushing, door opening,
peg-in-hole, etc. Only a few works [3, 4, 36] investigated how tactile information will
affect policy performance on dynamic tasks, such as stick swing-up and slip control, with
swift movements. Similar to us, George et al. [37] has also investigated the role of
tactile sensing in manipulation tasks with a BC policy. However, their task setting, i.e.
cable plugging, also executes slow movements. In our work, the understanding of tactile
features in a dynamic scenario is crucial for the match ignition task, as such information
not only indicates the timing of the contact between the match and the matchbox but
also whether the contact is properly maintained during the subsequent striking motion to
provide sufficient friction to ignite the match.
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3 Foundations

In this chapter, we present the foundations of our proposed imitation learning framework.
We begin with the background of the Diffusion Policy for learning tactile match-lighting
skills. Subsequently, we introduce the Cartesian impedance control strategy that executes
the policy-generated robot actions with a compliant behavior. Finally, we introduce the
functioning principles of the optical tactile sensors, i.e. GelSight Mini and Evetac.

3.1 Diffusion Policy

Based on the fundamental schema of behavior cloning, Diffusion Policy [8] practically
mapped observations to actions by formulating the robot visuomotor policy as a conditional
denoising diffusion process [9]. This formulation generates actions by indirectly inferring
the denoising process, which removes the noise added to the expected action sequence step
by step, guided by the observation conditions. Most of the advantages of diffusion models
are thus preserved, including expressing multimodal action distributions, outputting
sequences in high-dimensional space, stable training, etc. In this section, we will go
through the major theoretical details of diffusion policy.

Figure 3.1: General demonstration of forward diffusion process (from xT to x0), and
reverse diffusion process (from x0 to xT ). Figure is adapted from [9].
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3.1.1 Behavior Cloning

Behavior cloning (BC), also called learning from demonstrations (LfD), is a commonly used
technique in the field of imitation learning, where the policy learns task constraints and
requirements from one or multiple expert demonstrations to eventually achieve adaptive
behavior in unstructured environments [38]. A BC policy can be formulated as a mapping
π : X ! Y, where X is the observation space and Y is the action space. Both X and Y
come from the expert demonstration dataset during training.

3.1.2 Diffusion Probabilistic Models

Diffusion Probabilistic Models [39] (also called diffusion models) are generative models
that can model complex data distributions and generate high-quality samples.

Forward Process

Assume a data point x0 is sampled from a real data distribution q(x), i.e. x0 ⇠ q(x). As
illustrated in 3.1, by adding a small amount of Gaussian noise to the sample for T times,
a sequence of noised samples x1, · · · , xT can be obtained. This Markov chain is defined as
the forward process of diffusion model:

q(x1:T |x0) :=
T
Y

t=1

q(xt|xt�1)

with
q(xt|xt�1) := N (xt;

p

1� βtxt�1,βtI)
where t represents how many times (steps) the noise is added to the sample and {βt 2
(0, 1)}Tt=1 are used to control the variance of added noise in each step. During this process,
the original sample becomes increasingly noisy and indistinguishable, and if T ! 1
the final distribution xT will become isotropic Gaussian. It’s worth noting that xt can be
sampled at any time step t in closed form using the reparameterization trick [40]:

xt =
p
ᾱtx0 +

p
1� ᾱt✏ (3.1)

where αt = 1� βt, ᾱt =
Qt

i=1 αi, ✏ ⇠ N (0, I).
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Reverse Process

To remove added noise from time step t and reconstruct the sample at time step t� 1, a
model pθ needs to be learned to estimate q(xt�1|xt) from which the true sample before
noising can be sampled. This process is called the reverse process of diffusion models which
is defined as a Markov chain as well with transition starts at p(xT ) = N (xT ;0, I):

pθ(x0:T ) := p(xT )
T
Y

t=1

pθ(xt�1|xt)

with
pθ(xt�1|xt) := N (xt�1;µθ(xt, t),Σθ(xt, t))

Direct calculation of pθ(·) is intractable and thus we can obtain pθ(·) by optimizing the
variational lower bound on negative log-likelihood [9]:

L = Eq(x0:T )



log q(x1:T |x0)
pθ(x0:T )

�

(3.2)

= Eq

"

log
QT

t=1 q(xt|xt�1)

pθ(xT )
QT

t=1 pθ(xt�1|xt)

#

(3.3)

= Eq

"

� log pθ(xT ) +
T
X

t=1

log q(xt|xt�1)

pθ(xt�1|xt)

#

(3.4)

= Eq

"

� log pθ(xT ) +
T
X

t=2

log q(xt|xt�1)

pθ(xt�1|xt)
+ log q(x1|x0)

pθ(x0|x1)

#

(3.5)

= Eq

"

� log pθ(xT ) +
T
X

t=2

log q(xt|xt�1, x0)
pθ(xt�1|xt)

+ log q(x1|x0)
pθ(x0|x1)

#

(3.6)

= Eq

"

� log pθ(xT ) +
T
X

t=2

log
✓

q(xt�1|xt, x0)
pθ(xt�1|xt)

·
q(xt|x0)
q(xt�1|x0)

◆

+ log q(x1|x0)
pθ(x0|x1)

#

(3.7)

13



= Eq

"

� log pθ(xT ) +
T
X

t=2

log q(xt�1|xt, x0)
pθ(xt�1|xt)

+
T
X

t=2

log q(xT |x0)
q(xT |x0)

+ log q(x1|x0)
pθ(x0|x1)

#

(3.8)

= Eq

"

� log pθ(xT ) +
T
X

t=2

log q(xt�1|xt, x0)
pθ(xt�1|xt)

+ log q(xT |x0)
q(x1|x0)

+ log q(x1|x0)
pθ(x0|x1)

#

(3.9)

= Eq

"

log q(xT |x0)
pθ(xT )

+
T
X

t=2

log q(xt�1|xt, x0)
pθ(xt�1|xt)

� log pθ(x0|x1)
#

(3.10)

= Eq

"

DKL (q(xT |x0)kpθ(xT )) +
T
X

t=2

DKL (q(xt�1|xt, x0)kpθ(xt�1|xt))� log pθ(x0|x1)
#

(3.11)

It is noteworthy that in Eq. (3.5), q(xt|xt�1) is only tractable when conditioned on the
start x0 in Eq. (3.6). Following Bayes’ rule, the reverse conditional probability can then
be transferred and further substitute q(xt|xt�1, x0) in Eq. (3.7):

q(xt|xt�1, x0) = q(xt�1|xt, x0)
q(xt�1|x0)
q(xt|x0)

/ exp
✓

�1

2

✓

(xt �p
αtxt�1)

2

βt
+

(xt�1 �
p
ᾱt�1x0)2

1� ᾱt

� (xt �
p
ᾱtx0)2

1�p
ᾱt

◆◆

= exp
✓

�1

2

✓✓

αt

βt
+

1

1� ᾱt

◆

x2t�1 �
✓

2
p
αt

βt
xt +

2
p
ᾱt�1

1� ᾱt�1
x0
◆

xt�1

+C(xt, x0)))
(3.12)

where C is components that are without xt�1.
Decomposing the variational lower bound loss (3.11) into separate components based on
various time steps, we have:

L0 = � log pθ(x0|x1) if t = 0 (3.13)
Lt = DKL (q(xt�1|xtx0)kpθ(xt�1|xt)) if 1  t  T � 1 (3.14)
LT = DKL (q(xT |x0)kpθ(xT )) if t = T (3.15)

The major advantage of using KL-Divergence is that the loss can eventually be calculated
in closed form instead of high variance Monte Carlo estimates.
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3.1.3 Denoising Diffusion Probabilistic Models (DDPMs)

The highly versatile implementation of diffusionmodels allows for the application of various
simplifications to the reverse process, whereby latent variable models are transformed into
a practical tool for generating high-quality samples. Ho et al. [9] proposed to fix LT (3.15)
as constant since q(·) has no learnable parameters after the reparameterization and thus
can be ignored during training. Besides, for L0 (3.13), an independent discrete decoder
derived from N (x0;µθ(x1, 1),σ2

1I) was introduced to obtain discrete log likelihoods.

Parameterization and Simplification of Lt

Recall that the goal of the reverse process is to learn a model

pθ(xt�1|xt) = N (xt�1;µθ(xt, t),Σθ(xt, t)) for 1 < t  T (3.16)

that can estimate the forward process posteriors q(xt�1|xt) which are tractable when
conditioned on x0, i.e. q(xt�1|xt, x0) = N (xt�1; µ̃(xt, x0), β̃I). According to the standard
Gaussian density function of the posterior (3.12), the mean and variance can be extracted
through:

µ̃(xt, x0) =

⇣p
αt

βt
xt +

p
ᾱt−1

1�ᾱt−1
x0
⌘

⇣

αt

βt
+ 1

1�ᾱt−1

⌘ =

p
αt(1� ᾱt�1)

1� ᾱt

xt +
p
ᾱt�1βt

1� ᾱt

x0 (3.17)

β̃ =
1

⇣

αt

βt
+ 1

1�ᾱt−1

⌘ =
1� ᾱt�1

1� ᾱt

βt (3.18)

where αt = 1� βt, ᾱt =
Qt

i=1 αi as defined before. Furthermore, following the reparame-
terization trick (3.1), x0 can be represented as:

x0 =
1p
ᾱt

(xt �
p
1� ᾱt✏t) (3.19)

plugging into the mean (3.17), we have:

µ̃t =
1p
αt

✓

xt �
1� αtp
1� ᾱt

✏t

◆

(3.20)
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Ultimately, µθ from Eq. (3.16) is trained to estimate µ̃t (3.20) given xt. Since xt is
available as model input during the training, similar parameterization can be applied to
µθ:

µθ(xt, t) =
1p
αt

✓

xt �
1� αtp
1� ᾱt

✏θ(xt, t)
◆

(3.21)

As proposed by [9], Lt that used to minimize the difference between µθ and µ̃t can be
written as:

Lt = Eq

"

1

2 kΣθk22
kµ̃t(xt, x0)� µθ(xt, t)k2

#

(3.22)

Expanding Eq. (3.22) with Eq. (3.20) and Eq. (3.21):

Lt = Ex0,✏

"

1

2 kΣθk22
kµ̃t(xt, x0)� µθ(xt, t)k2

#

(3.23)

= Ex0,✏
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xt �
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✏t

◆

� 1p
αt

✓

xt �
1� αtp
1� ᾱt

✏θ(xt, t)
◆�

�

�
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#

(3.24)

= Ex0,✏

"

(1� αt)
2

2αt(1� ᾱt) kΣθk22
k✏t � ✏θ(xt, t)k2

#

(3.25)

Experimentally, Ho et al. [9] concluded that the unweighted version of Lt has advantages
in improving the sample quality and reducing implementation effort. Thus Eq. (3.25) can
be simplified as:

Lt,simple(θ) = Et,x0,✏
h

k✏t � ✏θ(xt, t)k2
i

(3.26)

In summary, minimizing Eq. (3.26), which is generally a mean squared error (MSE),
leads to minimizing the variational lower bound L (3.11) with KL-Divergences comparing
distribution difference between forward and reverse process posteriors.
Once the model pθ(xt�1|xt) in Eq. (3.16) is trained, we can sample xt�1 from this distri-
bution with simplified variance P

θ(xt, t) = σ2I:

xt�1 =
1p
αt

✓

xt �
βtp
1� ᾱt

✏θ(xt, t)
◆

+N (0,σ2I) (3.27)
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3.1.4 Observation Conditioned Denoising for Action-Sequence Prediction

To adapt DDPM to the generation of robot actions, Chi et al. [8] replaced the x that exists
originally as images with a sequence of robot actions, which are typically M -dimensional
end-effector Cartesian poses x 2 R

Tp⇥M , where Tp is the fixed length of the sequence. The
action sequence generation is thus achieved by denoising a fully-noised action sequence
for T steps. Another key modification of DDPM for visuomotor policy learning is to make
the noise prediction network conditioned not only on the action sequence itself and the
time step (3.27) but also on observations from external sensors e.g. cameras. More
specifically, this conditioned denoising leads to predicting the distribution of the noised
action sequence explicitly according to the sensor observations:

xt�1 =
1p
αt

✓

xt �
βtp
1� ᾱt

✏θ(xt,Ot, t)

◆

+N (0,σ2I) (3.28)

where Ot is the observation data. It’s worth noting that the observation data is not
necessarily acquired from only a single time step but can be accumulated with multiple
steps, i.e. Ot = {o0, . . . , oTo

} where To indicates the history length of observation.

3.1.5 Training Diffusion Policy

As described in Section 3.1.4, the noise prediction network ✏θ(xt,Ot, t) will predict the
noise added from the previous time step, conditioned on the observation history, the
noised action sequence and sampled time step. Based on Eq. (3.26), the training criteria
for this network can be written as:

Lt,conditioned(θ) = MSE (✏t, ✏θ(xt,Ot, t)) (3.29)

where MSE stands for mean squared error.

Multimodal Representation of Visual Observations Ot

Before sending the sensor observations to the noise prediction network, all of the image
modalities of each observation step o 2 {ot, ot�1, . . . , ot�To

} must be encoded into latent
embedding space independently and concatenated with other low-dimensional modality
embeddings as a multimodal representation.
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Subsequently, all of the encoded single-step multimodal representations will be concate-
nated along time dimensions as the final observation condition embedding Ot for later
conditional denoising. CNN-based models e.g. ResNet [41], VGG [42], AlexNet [43],
etc are ideal candidates for image encoding. It’s worth noting that as the model is used
for feature extraction, corresponding structures thus must be modified to maintain the
spatial information of the image. Experimentally, Chi et al. [8] suggested training the
CNN-based image encoder end-to-end from scratch rather than using pre-trained weights.

Noise Prediction Network ✏θ(Ot, xt, t)

Chi et al. [8] proposed two neural network architectures for noise estimation, i.e. CNN-
based and transformer-based neural networks for estimating ✏θ, both networks accept
observation sequence Ot, noised action sequence xt and corresponding noise step t and
predict the noise added from last time step (theoretically, the network can also be trained
to predict the original sample x0 directly but with the cost of worse sample quality [9]).
CNN-based noise prediction network is implemented by combining 1D temporal CNN [44],
which encodes the noised action sequence along the time axis and Feature-wise Linear
Modulation (FiLM) [45], which applies the observation conditioning to the action genera-
tion process.

Time-series transformer-based noise prediction network is generally based on a
decoder-only transformer structure [46]. The condition data, i.e. time step t and observa-
tions Ot will be first concatenated with the order of t as first place, and then encoded into
condition embeddings through an MLP encoder and later used as input features for the
transformer decoder. Action sequences are then encoded by the same MLP and passed to
the transformer decoder as the prediction target sequence. Finally, the decoder output
will be the predicted noise with the same shape as the target sequence.

3.2 Cartesian Impedance Control

In our imitation learning framework, the policy-generated Cartesian trajectories will be
directly sent to a Cartesian impedance controller with proper stiffness to keep the robot
soft and compliant during the interaction.
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Cartesian impedance control is a unique control strategy in robotics used to regulate the
dynamic interaction between the robot manipulator and the external environment, which
is very practical in the applications of contact-rich manipulation tasks.
Specifically, the impedance reflects how compliant the robot reacts to external perturbation.
The Cartesian impedance control law abstracts the dynamic system between the robot
end-effector and the environment into a virtual spring-damper system [47], and the
external wrench applied to the end-effector frame will result in Cartesian displacements.
The controller accepts the motion as system input and subsequently yields torque signals
that make the robot react compliantly.
The rigid-body dynamics of the N joint robot can be written as:

M(q)q̈+ C(q̇,q)q̇+ g(q) = ⌧ c + ⌧ e (3.30)

where q̈, q̇, and q denote the joint parameters of the robot, i.e. joint position, velocity, and
acceleration. M(q) 2 R

N⇥N is the inertia matrix, C(q̇,q) 2 R
N⇥N is the Coriolis matrix,

g(q) 2 R
N is the gravity torque vector. ⌧ c 2 R

N and ⌧ e 2 R
N are control torque vector

and torque caused by external wrench, respectively. Assume the gravity is compensated
internally, Eq. (3.2) can be simplified as:

M(q)q̈+ C(q̇,q)q̇ = ⌧ c + ⌧ e (3.31)

3.2.1 Cartesian Impedance Control Law

The task space control torque ⌧ task 2 R
N generated by Cartesian impedance control

law [48] with M -dimensional Cartesian task space can be defined as:

τtask = JT (q) (Ktask∆x� Dtask∆v) (3.32)

where J(q) 2 R
M⇥N is the Jacobian matrix relative to the end-effector frame, Ktask 2

R
M⇥M and Dtask 2 R

M⇥M are diagonal Cartesian stiffness and damping matrices, ∆x =
xd � x, x 2 R

M is Cartesian pose error with xd as desired pose, detailed calculations
under specific task configurations will be discussed in Sec. 4.5; ∆v = vd � v, v = J(q)q̇ is
Cartesian velocity error with vd as desired Cartesian velocity if applicable.
It’s worth noting that we only consider the critical damping situation in this thesis, i.e.
Dtask = 2

pKtask. Nevertheless, our policy generates Cartesian poses without extending to
velocities, i.e. it’s only applicable to positional control. In the damping part of Eq. (3.32),
the velocity error thus becomes ∆v = �v = �J(q)q̇.
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3.2.2 Nullspace Stiffness Regulation

For a robot with redundant joints, e.g. Franka Emika Robot (Panda) [49], con-
straining nullspace behavior is necessary while applying Cartesian impedance control, as
Cartesian poses will have different joint space solutions with compliant flexible joints and
inconsistent joint configurations will cause potential collisions in the environment. Null-
space stiffness regulation [50, 51] helps the joint configurations remain consistent w.r.t. a
desired one by applying joint impedance control. Conveniently, this control behavior is
also projected into the nullspace of the robot’s Jacobian, therefore it will not affect the
Cartesian motion. The nullspace control torque ⌧ null 2 R

N can be written as:

⌧ null =
⇣

I� JT (q)(JT (q))†
⌘

⌧ ref

⌧ ref = Knull∆q + Dnull∆q̇
(3.33)

where (·)† is pseudo-inverse matrix, I is identity matrix, Knull and Dnull are joint space
diagonal stiffness and damping matrices. ∆q = qd � q and ∆q̇ = q̇d � q̇ are joint space
position and velocity error, respectively. Similar to the damping in task space torque,
Dnull = 2

pKnull.

3.2.3 External Torques

A more precise impedance control can be achieved if torques exerted from the external
wrench ⌧ ext 2 R

N are involved in the controller:

⌧ ext = JT (q)Fext (3.34)

where Fext 2 R
M is external wrench applied on the end-effector, can be measured from

F/T sensor or estimated from joint torque measurements.

3.2.4 Ensemble Control Torque

The eventual control torque ⌧ c 2 R
N in (3.31) for achieving compliant Cartesian behavior

will be the superposition of Eq. (3.32), Eq. (3.33), and Eq. (3.34):

⌧ c = ⌧ task + ⌧ null + ⌧ ext (3.35)

More implementation details will be presented in Sec. 4.
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3.3 Optical Tactile Sensing

In this thesis, we employ two types of optical tactile sensors, i.e. RGB-based and event-
based tactile sensors. These sensors share similar working principles but are produced
with different optical components and hardware designs to achieve diverse modes of
tactile sensing. As illustrated in Figure 3.2, the most fundamental components of optical
tactile sensors are the camera, elastic gel membranes with transparent acrylic support
plates, and LED illumination. When an object is pressed on the gel membrane, it distorts
to take on the shape of the object’s surface [7], with LED illumination the camera will be
able to capture the dynamic movement on the membrane. The key difference between
these two tactile sensors is how they capture the image of deformation to interpret the
tactile feedback.

3.3.1 GelSight Mini

Equipped with a regular RGB camera, GelSight Mini (lower row in Figure 3.2) captures
the tactile image across three color channels and outputs the pixel intensity values of the
whole frame at once in a fixed frequency. The global tactile information, such as the object
shape and pressure magnitude, can be preserved (as shown in Figure 3.3), bringing the
additional context of contact to the downstream tasks. However, this continuous capture
of full frames leads to the generation of vast amounts of data, even in scenarios where
there is minimal or no change on the membrane. Therefore, one of the major drawbacks
of RGB-based tactile sensors is the low measurement frequency caused by heavy data
processing load.

3.3.2 Evetac

We will first introduce the key working principle of the event-based camera mounted
inside Evetac, and then explain how Evetac captures tactile features.

Event-Based Vision

Unlike traditional frame-based CMOS cameras that output an entire image frame, the
pixels of event-based cameras work independently and only respond to the brightness
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Figure 3.2: Components of vision-based tactile sensors. Upper row: Evetac [5] with an
event-based camera and single-tone LED strip. Lower row: GelSight mini [7]
with RGB camera and tri-colored LED. Both sensors have similar gel mem-
branes that can be exchanged.
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Figure 3.3: Tactile feature of a match contacting surface, captured by Evetac and Gel-
Sight Mini. Evetac (left) reads out the pixel intensity change of each pixel
independently while GelSight Mini (left) outputs the whole frame at once. For
better visualization, the Evetac image is the accumulation of the latest 10
measurements, i.e. the events triggered within the last 10ms.

magnitude change [52]. Assuming a constant illumination and a noise-free scenario,
at time tk, the brightness of a pixel located at (x, y) can be written as the log of the
photocurrent I(x, y, tk):

L(x, y, tk) = log(I(x, y, tk)) (3.36)
After time interval ∆tk, the brightness change reaches a temporal contrast threshold ±C,
i.e.:

∆L(x, y, tk+1) = L(x, y, tk+1)� L(x, y, tk) (3.37)
= Cpk+1 (3.38)

where tk+1 = tk + ∆tk, C > 0, and pk 2 {+1,�1} is the polarity that indicates
the brightness change tendency i.e. increase or decrease. At this change, an event
ek+1(x, y, tk+1, pk+1) will be instantly triggered. Subsequently, further events will be
triggered w.r.t. the changed brightness L(x, y, tk+1) = L(x, y, tk) +∆L(x, y, tk+1). The
measurement time intervals ∆tk (also called temporal resolution) are typically extremely
tiny, for instance, 65µs� 200µs.
Empirically, to reduce the sparsity of the data and obtain a consistent output frequency,
the events are configured to be accumulated for 1ms before sending to the computer.
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The events to be transmitted SE(ti) with a total amount of NE that are measured in the
previous millisecond ti can be written as:

SE(ti) = {ek(xk, yk, tk, pk), k 2 NE} (3.39)

where tk 2 [ti�1, ti) with ti � ti�1 = 1ms. The final output of the event-based camera will
be a stream of these pre-accumulated events. The high temporal resolution allows the
event-based camera to capture fast movement with a relatively lower power consumption
due to a small data processing load.

The Evetac Sensor

The Evetac event-based optical tactile sensor is built with off-the-shelf hardware compo-
nents, including 3D-printed housing, LED strip, gel membrane with imprinted black dots
(exchangeable with GelSight Mini), and Inivation DVXplorer Mini event-based camera.
To visualize the tactile features as an image, Funk et al. [5] proposed to assign gray color
to the pixels where no events are triggered, assign white to the event-triggered pixels
with increasing brightness, and black to decreasing brightness. However, the functioning
principle of the event-based camera results in rather sparse information on the tactile
images, so further accumulation of events for obtaining more comprehensive tactile
features is necessary.
As shown in 3.3, the example image is the accumulation of 10ms and the imprinted dots
are therefore visible when there are distortions on the membrane such as the grasped
match in contact with the surface. More configurations and implementation details of the
pre-processing of tactile images will be introduced in Sec. 4.
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4 Methodology

In this chapter, we start by introducing the challenging manipulation task that we aim
to solve: lighting up a match, and providing an overview of the proposed imitation
learning framework. Next, we detail the process of collecting human demonstrations and
corresponding dataset preprocessing. Following that, we outline the training pipeline for
Diffusion Policy. Finally, we present the action inference pipeline of Diffusion Policy based
on multimodal sensor observation, integrating with other components of the framework,
to achieve real-world task execution.

4.1 Task Specifications and Assumptions

Task Description

Since the motivation of this thesis is to investigate the importance of tactile sensing in
dynamic manipulation tasks, we introduce the match-lighting task. This task requires the
robot to automatically light up a match by striking it on the matchbox, then stop and wait
for the fire to extinguish.
There are three main phases to this task:

1. Approach the matchbox, specifically the striker paper, and bring the match in contact
with the striker paper.

2. Strike the match along the striker paper until the fire is lit.
3. Stop in a safe position and wait for the fire to extinguish.
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Figure 4.1: Environment setup for match ignition task. A safety match is a type of match
that can only be ignited by striking against specially prepared striker paper.

Environment Setup

The regular matchboxes are made of paper, which results in short durability after a few
experiments. Herein, we decompose the matchbox and only keep the striker paper for
repeat use in experiments. As illustrated in Figure 4.1, we design and 3D-print a thin round
plate with a diameter of 120mm as the substitution of the matchbox to support the striker
paper. A rectangular shallow groove with a rough dimension of 20mm⇥ 120mm⇥ 3mm
is made across the diameter to help locate the striker paper.
Moreover, to prevent potential robot joint singularities that occur when the plate is flat
on the table, we raise the plate to form a tilt angle of 75�. Close to the striker paper
support, we place a mini-ventilator that can provide strong airflow to put the fire out and
clear smoke. In addition, to ensure the safety of the experiments, we always kept fire
extinguishers within handy reach. The matches we used for experiments are standard
safety matches with a dimension of (100mm± 5mm)⇥ (4mm± 1mm)⇥ (4mm± 1mm).
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Assumptions

For the task evaluation, we have the following assumptions:
1. Brightness of the ambient illumination is homogeneous.
2. The match is already properly gripped in the gripper and stays in a fixed start pose

before the experiment trials.
3. The connection between the striker paper holder and the table is rigid.
4. The mounting positions of the sensors are fixed from data collection to experiments.

Requirements

This task was previously proposed by Kronander and Billard [53], and they solved this task
by learning a variable impedance policy based on a time-conditioned Gaussian process
(GP). Specifically, the policy only learns when to adjust the Cartesian stiffness to an
appropriate value given human feedback, so that the robot doesn’t break the match with
too much force while maintaining sufficient tracking accuracy to successfully reach the
matchbox. Despite the high efficiency of their approach, the generalization ability of the
policy remains unfortunately at a lower level, since no sensors were involved to observe
the external environment and the in-hand pose of the match.
With their experiences, reconsider this task with description in Sec. 4.1, the key require-
ments for finishing this task lie in the following perspectives:

1. Adjust robot end-effector pose according to different in-hand poses of the match
before striking.

2. Correctly find out where the striker paper is and the correct contact area for the
match tip.

3. Fast and robust contact status estimation, i.e. whether the match is in contact with
the striker paper.

4. During striking, regulate the contact force appropriately to prevent the match from
breaking while providing sufficient contact friction to ignite the match.
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To solve this task with all its requirements, we propose a framework that is based on an
imitation learning policy, i.e. Diffusion Policy, which accepts multimodal sensor observation
sequence as input and output corresponding action sequence prediction. In addition,
besides the wrist camera, we involve different kinds of tactile sensors to provide informative
tactile feedback on the match e.g. in-hand pose and movements during dynamic contact.
Lastly, since we are tackling a contact-rich task without complex joint-space motion
planning, a Cartesian impedance controller is thus employed to make the robot’s behavior
more compliant and prevent excessive contact force during the interaction.

4.2 Data Collection

Since our policy typically learns tactile skills from human demonstrations, data collection
is one of the most important preliminaries. In this section, we present the method of
demonstration collection and corresponding dataset preprocessing.

4.2.1 Kinesthetic Teaching

The human demonstration collection is commonly performed in two ways: teleoperation
and kinesthetic teaching. Despite teleoperation has advantages in reducing the physical
effort of the demonstrator and providing a broad range of movement range, for the match
ignition task, it is essential for the demonstrator to have an immediate haptic sense of
the contact establishment and continuous precise contact feedback while striking the
match to ensure that the match is successfully lit up without breaking. With these specific
requirements, we choose to use kinesthetic teaching to collect human demonstrations.
We employ a joint gravity compensation controller [54] that automatically
compensates the gravity applied to the robot and sensors, which allows the demonstrator
to grab and move the robot without pressing the guiding buttons on the wrist, such that
the task can be demonstrated easily and precisely.

4.2.2 Sensor Mounting

For further investigation of how different sensor combinations affect policy performance,
we involve all the sensor modalities in the collected demonstrations. Experimentally, we
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Figure 4.2: Sensor mounting positions. The RealSense is mounted on the wrist joint (7th
joint) of Panda to provide a gripper view (mini figure on the top left corner).
GelSight Mini and Evetact are mounted on both fingers of the gripper with
3D-printed holdings that guarantee the gel membranes of each sensor are
aligned.

mount the RealSense camera with a 3D-printed holder on the wrist to provide a clear and
complete view of the gripper and the gripped match as displayed inside Figure 4.2.

4.2.3 Demonstration Categorization

In our demonstration dataset, each demonstration contains information on GelSight Mini,
Evetac, RealSense, and robot proprioception. The recording rate of each sensor can
be found in Table 4.1. Note that for Evetac, there is an important trade-off between

Sensor Data Recording Rate
Robot Proprioception 600Hz
Evetac 100Hz
RealSense 30Hz
GelSight Mini 18Hz

Table 4.1: Demonstration recording rates of all the involved sensors.
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Figure 4.3: Characterizing the match pose. The left figure displays the robot end-effector
frame with the red line indicating the x-axis, the green line indicating the
y-axis, and the blue line indicating the z-axis. The axes are projected onto
the right figure, which illustrates the match angle (angle between the match
tip direction and the z-axis) and match coverage (the length of the match
projected on the central vertical dotted white line of the tactile image).

the measurement rate and the information density on tactile image frames. We thus
choose 100Hz, i.e. 10ms of event accumulation time, for a better representation of tactile
features.
Due to the uniqueness and non-reusability of the matches, recording demonstrations with
identical match poses is impossible. In order to make the dataset more structured in terms
of the match pose, the demonstrations are characterized by two major factors that define
the in-hand pose of the match, i.e. match angle and match coverage. Both factors are
evaluated by observing the tactile image of GelSight Mini.
As illustrated in Figure 6.5, match angles is defined as the angle between the match
tip direction and the z-axis of the robot end-effector frame (left part of the figure). The
match coverage indicates how long the match is covered by the gel membrane, and is
defined by the projection of the visible match length onto the vertical center reference
line. We designed a match stand that can hold the match vertically with the match tip
pointing to the table, a pre-defined trajectory will command the robot to grasp the match
with a specific match angle and coverage.
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4.2.4 Dataset and Preprocessing

Assume a dataset of ND human demonstrations SDi
= {Di}

ND

i=1, each demonstration
contains time-stamped sensor data and robot end-effector trajectory, i.e. Di = {Φi,T i}.
The sensor data includes images from the Realsense camera �rs,k 2 R

Hrs⇥Wrs⇥3, GelSight
Mini �gs,k 2 R

Hgs⇥Wgs⇥3, and Evetac �et,k 2 R
Het⇥Wet⇥1, with H(·) and W(·) as height and

width, respectively:
Φi = {[φrs,k]

lrs
k=1, [φgs,k]

lgs
k=1, [φet,k]

let
k=1} (4.1)

where l(·) indicates the total amount of images of each sensor. It’s worth noting that these
amounts are different due to the various sensor measurement rates. The end-effector
trajectory is represented in the Cartesian space with C dimensions:

T i = [τk]
lτ
k=1, τk 2 R

C (4.2)

where lτ is the trajectory length. In our framework, we use the full Cartesian pose with
quaternion rotation, i.e. C = 7.
To reduce the size of the dataset, we downsample both the sensor data and trajectory
with a specific frequency fds, that is lower the frequency of the slowest sensor fmin. After
downsampling, all data sequences have the same length of l̂data:

ddata =
fdata
fds

l̂data =
ldata
ddata

(4.3)

where the subscript data indicates the data to be downsampled i.e. raw sensor data and
trajectory; ddata is the downsample factor, l̂data is the length after downsampling, and fdata
is the data collection frequency.

Sequence Sampling

As described in Sec. 3.1.5, the noise prediction network ✏θ(xt,Ot, t) is trained upon the
robot actions xt(x0, ✏) and sensor observations Ot, which are both temporal sequences
with specific length. Herein, for the convenience of training, we split the demonstrations
into short observation-action-paired temporal sequences:

Di = {Sk|Sk = (Ot, xt)}NS

k=1 (4.4)
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where xt = [xt�T0 , . . . , xt, xt+1, . . . , xt+(Tp�To)], 8xt 2 T i; Ot = [Ot�To
, . . . , Ot�1, Ot],

8O 2 {Φi,T i} are multi-modality observation history sequence with the length of To

and corresponding expected future action sequence with the length of Tp with only low-
dimensional-modalities, respectively. NS 2 (0, l̂data) is the total number of sequences.
More details about observation modality combinations will be presented in Sec. 5.

Normalization

As suggested by [9], all the data used for training the denoising model should be normal-
ized between (�1, 1). Thus, for the low dimensional data in the sampled sequences, e.g.
robot end-effector pose, we use the modified min-max normalization:

x̂data = 2 ·

✓ xdata � xmin, data
xmax, data � xmin, data

◆

� 1 (4.5)

where x̂data 2 (�1, 1) is the normalized data while x is the original data. xmax, data and
xmin, data are the maximum and minimum of the data across the whole dataset, and these
values will be preserved for later denormalization. More details are described in Sec. 4.4.
For image modalities, e.g. tactile images, we employed mean-std normalization:

x̂data =
xdata � xmean, data

xstd, data
(4.6)

where x̂data 2 (�1, 1) is the normalized data while x is the original data. xmean, data and
xstd, data are the configurable mean and standard deviation on each color channel.

4.3 Policy Training

Given a preprocessed dataset, we then train the noise prediction model of Diffusion Policy
w.r.t. the observation and action sequences.
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Visual Observation Encoder

To reduce the image dimensionality and extract informative features, in each time step
Ot, we first encode all the image modalities into latent space. Subsequently, the encoded
vectors will be concatenated with each other, and also with the rest of the low-dimensional
modalities as a single flat vector:

Ot = [m1| . . . |mNm
], Ot 2 R

lo (4.7)

where | operator indicates concatenation, m is the modality, Nm is the total number of
observation modalities, do is the length of the vector after concatenation.
Finally, we concatenate the observation vectors along the time dimension as the final multi-
modal observation representation vector Ot 2 R

To⇥lo as mentioned in (4.4). Empirically,
each image modality should have its own encoder and not share weights with other
encoders, and CNN-based models are ideal candidates due to their simplicity and efficiency.
In this thesis, we employ ResNet18 models from [55] that can be configured to accept both
RGB images (e.g. GelSight and RealSense) and grayscale images (e.g. Evetac) and output
latent vectors with specific lengths. The weights of encoders are randomly initialized and
the batch norm layers are replaced by group norm layers to ensure training stability [8].
During the training, the optimization of encoder weights is guided by the same MSE error
from noise prediction.

Noise Prediction Model

Considering the relatively high velocity of policy execution in our task configuration that
will potentially cause a fast action changing rate, we choose the time-series transformer
as the noise prediction model introduced in Sec. 3.1.5 to improve the action sequence
prediction consistency in a dynamic scenario. Besides, to reduce vanishing or exploding
gradients and accelerate the converging speed, we initialize the transformer decoder with
He initialization [56].

Training Pipeline Overview

The complete training process is illustrated in Figure 4.4. Assume the preprocessed
observation Ot and action xt sequences from the dataset are available, we draw a noise
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Figure 4.4: Traning pipeline of the noise prediction transformer. The dataset are split into
observation-action paired temporal sequences. The image modalities are
encoded into latent space and concatenated as a single vector. During the
training, the clean trajectory from the dataset will be noised with randomly
initialized Gaussian noise, the decoder-only transformer has to predict the
added noise according to observation and time steps. MSE loss is calculated
to guide the training process.
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sample ✏t ⇠ N (0, I) from Gaussian distribution and a random time step of forward
diffusion process k. The sampled noise ✏t is added to the original action sequence with
the magnitude w.r.t. time step k and then the noisy sequence is encoded into embedding.
Similarly, the observation sequence is combined with the time step and then also encoded
into embedding. Both embeddings are passed through the multi-layer transformer decoder
to obtain a predicted noise ✏. As introduced in Sec. 3.29, the mean squared loss between
the sampled noise ✏t and predicted noise ✏ is calculated and backpropagated through both
the transformer and encoder networks, guiding the optimizer to update model weights.

4.4 Policy Inference

Once the noise prediction network is successfully trained, it can be integrated into the
policy inference pipeline to generate task-oriented trajectories. Figure 4.5 demonstrates
the whole inference-control pipeline similar to the paradigm of Model Predictive Control
(MPC).
Assume the observation sampling is running at the same frequency as the dataset frequency
after downsampling fds that’s used in Sec. 4.2.4. The observations that include all of
the required modalities are first stored in an observation buffer, which will only preserve
To steps of history. As this buffer operates in a First-In, First-Out (FIFO) style, new
observations will replace the old ones immediately when squeezed in and thus guarantee
that the buffered observations are always the latest. Normalization and image encoding
are applied to the sampled observation sequence and produce the multimodal observation
history vector Ot = [Ot�To

, . . . , Ot] with Ot indicating the current time.
Subsequently, we randomly initialize a fully noised trajectory atK time step: xKt 2 R

Tp⇥C .
With all the ingredients for conditional denoising ready, the noise prediction network starts
predicting noise that has been added to the K � 1 step conditioned on the observation
sequence, and the noise scheduler will sample the trajectory from the previous time step
w.r.t. the noise prediction using (3.27). This conditional denoising process will iterate for
K times and eventually yield a clean trajectory. However, this trajectory is normalized and
can’t be directly sent to the controller, a denormalizing transform is thus necessary. Recall
Eq. (4.5) in Sec. 4.2.4, assuming xmin, data and xmax, data are available, the denormalization
can be written as:

xdata =
(x̂data + 1) · (xmax, data � xmin, data)

2
+ xmin, data (4.8)
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Figure 4.5: Policy inference and control pipeline. The observation buffer takes observa-
tions for To steps. Multimodal observation latent vectors are produced with
specific frequency online. The conditional denoising process will remove
noise from the randomly initialized trajectory step by step. The clean trajecto-
ries are buffered while the trajectory inference is still running for trajectories.
The latest trajectory will be sent to the controller.
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where x̂data is the normalized data and xdata is the original data.
The denormalized trajectories are first truncated with the length of Ta, then interpolated
to the frequency of the robot controller which is 1000Hz for Panda, and then they’re ready
to be sent. For the positional part of the Cartesian trajectory, we used linear interpolation,
while for the quaternion rotation part, we used Spherical Linear Interpolation (Slerp).
Additionally, in order not to block subsequent trajectory inference, we push the current
trajectory into a trajectory buffer, which is also FIFO-like with a specific length.

4.5 Robot Control

Once the trajectory buffer is full, it will publish the latest interpolated trajectory point-by-
point, since the controller we use only supports single target pose setting rather than a
whole trajectory with motion planning. The trajectory publishing rate is the same as the
controller torque command updating frequency, i.e. 1000Hz.

4.5.1 Cartesian Error Calculation

In Sec. 4.2.4, we introduced that our framework uses full Cartesian poses as the trajectory
representation. The calculation of the Cartesian error ∆x 2 R

6 is split into two parts, i.e.
positional error ∆xpos 2 R

3 and rotational error ∆xrot 2 R
3 [57].

The positional error is simply the element-wise subtraction between the current xpos and
the target xpos,d position:

∆xpos = xpos,d � xpos (4.9)

For the rotational error, we first assume the rotation matrix of the current Cartesian pose
is R 2 SO(3), then we calculate the difference between the current quaternion ✓ and
target quaternion ✓d, i.e. ∆✓ 2 R

4:

∆✓ = ✓�1✓d (4.10)

Subsequently, we rotate it back to the current task frame to obtain the final rotational
error:

∆xrot = �R∆✓̂ (4.11)
where ∆✓̂ = Im(∆✓) 2 R

3 is the imaginary vector of the difference quaternion. Note that
in this thesis, the task frame is the nominal end-effector frame of Panda.

37



4.5.2 Error Smoothing

As introduced in Sec. 3.2.1, the task space control torque is significantly affected by the
Cartesian error ∆x. The policy-generated trajectories are sometimes quite spiky, which
will cause bumpy Cartesian errors and result in unexpected shaking of the task frame. To
reduce this instability, we apply an online low-pass filter to the errors. Assuming at time t:

∆xt+1 = ∆xt(1� η) + η∆xd (4.12)

where ∆xd is the Cartesian error between the current pose and the next desired pose,
η 2 (0, 1] is a tunable value that adjusts the smoothness magnitude.
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5 Experiments

In this chapter, we discuss the details of the experiment setup, including the software
and hardware platforms for the framework implementation. Subsequently, we present
the demonstration dataset categorized according to different match poses, and policy
configurations in both training and inference scenarios.

5.1 Framework Implementation Overview

The implementation of our imitation learning framework is based on the open-sourced
communication software ROS (Noetic Ninjemys) [58] and Ubuntu 20.04 Linux
operating system. The robot platform is Franka Emika Robot (Panda) [49] with
parallel Franka Gripper.
The deep learning frameworks involved in the thesis are PyTorch [59] and Huggingface
Diffusers [60]. The policy implementation is partially adopted from the GitHub repos-
itory of [8].
The implementation of ROS-based controllers is adapted from libfranka [57] and
Franka Interactive Controllers [54].

5.2 Dataset Overview

We collected a total of 108 demonstrations of match lighting demonstrated by one demon-
strator using kinesthetic teaching. As introduced in Sec. 4.2.3, we categorize the dataset
regarding the match angle and coverage, the overview of the number of demonstrations
collected according to match coverage and angle can be found in Table 5.1. Note that
the match coverage has an average error of ±6mm and the match angle has an average
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�20� �10� 0� 10� 20� 30�

7mm (Short) Coverage 8 8 5 5 5 5

14mm (Middle) Coverage 8 8 5 5 5 5

21mm (Long) Coverage 8 8 5 5 5 5

Table 5.1: Number of demonstrations categorized by match coverage and angle. The
match coverage (rows) has an average error of ±6mm while the match angle
(columns) has an average error of ±5�.

error of ±5�. Besides, for negative match angles, �20� ± 5� is already the maximum
angle that the human demonstrator can deal with, greater angles will lead to a high
failure rate. Herein, to prevent an unbalanced dataset, we collected more negative-angle
demonstrations.

5.3 Policy Configurations

In this section, we report the key parameter configurations for the training and inference
of the Diffusion Policy.

5.3.1 Training Configurations

Policy meta parameters are reported in Table 5.2, hyperparameters for observation encoder,
transformer, noise scheduler, and training can be found in Table 5.5.

Dataset Split

We split the demonstration dataset into two parts, i.e. train and test set. For the test set, we
randomly pick 2 demonstrations from match poses {(C,A)|C 2 {Short,Middle, Long},A 2
{�20�,�10�}}, and randomly pick 1 demonstration from match poses of {(C,A)|C 2
{Short,Middle, Long},A 2 {0�, 10�, 20�, 30�}}. Eventually, 2 ⇥ 6 + 1 ⇥ 12 = 24 demon-
strations are used to compose the test set, and the rest 84 demonstrations are used as the
train set.
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Type Steps
Observation History To 2

Action Prediction Length Tp 10

Action Execution Length Ta 8

Table 5.2: Policy Meta Parameters.

Sensor Raw Shape Final Shape
GelSight Mini (3, 3840, 2160) (3, 144, 108)

Evetac (1, 640, 480) (1, 144, 108)

RealSense (3, 640, 480) (3, 120, 120)

Table 5.3: Sensor image shapes before and after preprocessing.

Image Preprocess and Augmentation

After sequence sampling in 4.2.4, we preprocess the image modalities. Specifically, for
GelSight Mini and Evetac, we resize the tactile images to the same size; for RealSense
images, we first center crop the image to preserve only the ROI where the sensor fingers
and the match are visible, then resize the image to a smaller size. During the training,
we also apply data augmentation on the image modalities with transformations from
Torchvision [61] to increase the generalization ability of the model. Experimentally,
we apply RandomCrop on all of the images to increase data spatial variety; for GelSight
Mini and RealSense images, we apply ColorJitter and RandomAutoContrast that
randomly shifts the color and brightness of the image respectively to simulate sensor color
change w.r.t. illumination; for Evetac we apply GaussianNoise to simulate event noise.
For detailed values please refer to Table 5.3.

Sensor Modality Combination

For the evaluation experiments, we trained multiple combinations of sensors with other
hyperparameters fixed. The sensor combinations are categorized with the number of
modalities Nm in Table 5.4.
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Combination Num. Modalities Nm

RealSense, GelSight Mini, Evetac 3

RealSense, GelSight Mini 2

RealSense, Evetac 2

GelSight Mini, Evetac 2

RealSense 1

Table 5.4: Sensor combinations that are used for model training and evaluation.

5.3.2 Inference Configurations

The hyperparameters for inference are presented in Table 5.6.

ONNX Inference Acceleration

To increase the trajectory sampling speed of the policy, we use the ONNX runtime frame-
work [62] to reduce the precision of transformer weights from fp32 to fp16. This results
in a 3⇥ faster inference speed than the full-precision model, and allows the trajectory
generation to run at 10Hz on average.

Stiffness Tuning for Controller

Apart from the Cartesian error, another key factor that contributes to the task control
torque is the task frame stiffness. It is necessary to tune the stiffness to carefully trade
off both a compliant behavior of the task frame while interacting with the external
environment, and sufficient tracking accuracy to ”honestly” follow the policy-generated
trajectory. Experimentally, we found diag([1200, 1200, 1200, 50, 140, 50]T ) meet our needs
perfectly.
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ResNet18
Input Shape {(3, 108, 144), (3, 120, 120), (1, 108, 144)}

Output Shape 128

Pre-trained No
Transformer

Input and Output Shape (Tp, 7)

Observation Conditional Feature Length (Nm ⇥ 128 + 7)

Weight Initialization He Initialization
Num. Decoder Layer 8

Num. Head 4

Len. Embedding 512

DDPM Noise Scheduler
Num. Timesteps 100

β Range [0.0001, 0.2]

β Schedule Cosine
Training

Training Epochs 2000

Batch Size 128

Learning Rate 0.0001

Learning Rate Scheduler Cosine Annealing
Warmup Steps 500

Table 5.5: Hyperparameters for observation encoder, transformer, noise scheduler, and
training. Nm indicates the sensor modalities involved in the model training.
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DDPM Noise Scheduler
Num. Timesteps 30

β Range [0.0001, 0.2]

β Schedule Cosine
Transformer

Input and Output Shape (Tp, 7)

Observation Conditional Feature Length Nm ⇥ 128 + 7

Weight Precision fp16

Num. Decoder Layer 8

Num. Head 4

Len. Embedding 512

Cartesian Impedance Controller
Nullspace Stiffness diag([1, 1, 1, 1, 1, 1]T )
Task Frame Stiffness diag([1200, 1200, 1200, 50, 140, 50]T )

Cartesian Error Smoothing Factor 0.1

Table 5.6: Inference parameter configurations. diag indicates a diagonal matrix.
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5.4 Evaluation Experiments

In this section, we introduce the experiments that are used to evaluate the performance
and robustness of our imitation learning framework on solving the match-lighting task,
and the experiments for analyzing latent space observation embedding w.r.t. different
sensor modalities.

5.4.1 Evaluating Policy Performance on Match-Lighting Task

As the main experiment of this thesis, we evaluate the performance of our imitation
learning policy with the experiment setup described in Sec. 4.1 across 3 match coverages
i.e. {Short, Middle, Long}, and 6 match angles i.e. {�20�, �10�, 0�, 10�, 20�, 30�} that
results in 18 match pose situations. In addition, we perform an ablation study on 5 sensor
combination options, i.e. {RealSense, GelSight Mini, Evetac}, {RealSense, GelSight Mini},
{RealSense, Evetac}, {GelSight Mini, Evetac}, {RealSense}. For each match pose, we
perform 20 trials of the experiment and repeat with all sensor combinations.

5.4.2 Robustness Test

To test the robustness of the policy, we apply external perturbations during the task
execution of each sensor combination to see if the policy can resume approaching the
striker paper. The perturbations are:

• Force perturbations, i.e. apply an external force temporarily to the end-effector in
the direction of the y-axis (refer to Figure 4.2.3).

• Visual perturbations, i.e. block the camera view of RealSense for a certain time.
• Tactile perturbations, i.e. apply an external force temporarily to the match tip.

It’s worth noting that we only apply these perturbations during the task phase of ap-
proaching the striker paper before the initial contact.
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5.4.3 Temporal Responsiveness Analysis

This experiment aims to analyze how fast each sensor modality can react to specific
interactions, e.g. match initial contact, striking movements, etc.
We first introduce a metric that expresses the dynamic variations of latent space embedding
that occur across the observation history To, i.e. temporal responsiveness λ. Assume an
end-to-end trained observation encoder as mentioned in Sec.4.3 which maps the sensor
image into a latent embedding ⇠t:

⇠t = {ξ1| . . . |ξNm
} (5.1)

where t indicates the observation time, ξ represents the embedding of each modality, |
is the concatenation operation, and Nm is the total number of the modalities. With the
observation history length To, the temporal responsiveness λ 2 R can be written as:

λ =

PTo

t=1

�

�⇠t � ⇠t�1

�

�

2

To

(5.2)

where k·k2 is the L2-norm.
We then select a successful trial with all sensor modalities i.e. {RealSense, GelSight Mini,
Evetac}, and obtain the temporal responsiveness of each modality.

5.4.4 Match Pose Recovery Analysis

This analysis experiment aims to investigate whether the end-to-end trained observation
encoder is capable enough to recover the match in-hand pose in latent space under
different sensor modalities to further discriminate different poses. However, from a single
latent observation sequence of a fixed match pose, it is difficult to discover whether the
corresponding pose information is recovered in the embedding. Thus, we propose to
compare the embedding across various match poses to express the differences.
With this purpose, for each match pose, we continuously collect a sequence of To images
from all the sensor combinations, i.e. o = {ot�To

, . . . , ot�1, ot}, while keeping the robot
in the same position to prevent background change, especially for RealSense. For each
modality, we only keep the latest image ot and encode it into a latent space embedding ξ.
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By concatenating all of the latent embeddings from all the modalities under this specific
match pose, we obtain a matrix of embeddings X 2 R

Nm⇥lemb:

X = {ξm0 | . . . |ξmNm
} (5.3)

where ξm(·)
is the latent embedding of the latest step encoded by sensor m, lemb is the

length of the embedding, and | is the concatenation operation. For the visualization of the
most essential information of this embedding matrix, we first apply Principal Component
Analysis (PCA) to X:

� = PCA(X, NPCA) (5.4)
where � 2 R

Nm⇥NPCA is the principal component vector, and NPCA = 1 is the number of
principal components, and we only pick the most significant one.
Subsequently, we apply this operation for all match poses and obtain an intermediate
matrix X̄(�) 2 R

(Ncov⇥Nang)⇥(Nm⇥NPCA), with Ncov and Nang representing the number of
match coverage and angle variations, respectively.
We then flatten this matrix into a vector X̄flat(�), and calculate the pairwise cosine
similarity between all the elements to evaluate a new matrix M 2 R

Ncov⇥Nang:

Mij =
X̄flat,i(�)X̄flat,j(�)

�

�X̄flat,i(�)
�

�

�

�X̄flat,j(�)
�

�

, i, j 2 [0, 1, . . . , Ncov ⇥Nang] (5.5)

Finally, this matrix M is used to demonstrate the encoder’s ability to discriminate and
recover the match poses when trained with different sensor modalities.
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6 Results and Discussion

In this chapter, we report the results of all the experiments introduced in Sec. 5.4 and
provide corresponding discussions.

6.1 Policy Performance Evaluation on Match-Lighting Task

As described in Sec. 5.4.1, we evaluated the policy performance across 3 match coverages
i.e. {Short, Middle, Long}, and 6 match angles i.e. {�20�, �10�, 0�, 10�, 20�, 30�} that
results in 18 match pose situations. Moreover, we perform an ablation study on 5 sensor
combination options, i.e. {RealSense, GelSight Mini, Evetac}, {RealSense, GelSight Mini},
{RealSense, Evetac}, {GelSight Mini, Evetac}, {RealSense}. It’s worth noting that although
the match poses used to evaluate the policy performance are the same as the dataset,
they are actually different ones due to uncontrollable grasping errors and different match
dimensions. More specifically, for each match grasp, match coverage has an average error
of ±6mm and the match angle has an average error of ±5�. Therefore, the match poses
that occurred in the experiments are generally distinct from the cases in the training
dataset.
For each match pose, we conduct 20 trials and repeat with all sensor combinations. Besides,
for a simpler expression, in the following sections, we use the tuple containing the match
angle and coverage to represent the match pose, e.g. (Long, 20�), and we also use GelSight
to replace GelSight Mini.

6.1.1 Policy Performance Upon Different Sensor Combinations

Figure 6.1 presents the average success rates of the 5 different sensor combinations over
all the 18 match poses. The pure tactile combination i.e. {GelSight, Evetac} achieved the
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Figure 6.1: Average success rates of different sensor combinations over all 18 match
poses, the y-axis indicates the success rate.

best results with 54%, while the vision-only combination i.e. {RealSense} has the lowest
success rate of 17%. The full-sensor combination i.e. {RealSense, GelSight, Evetac} results
in a strong performance of 53%, closely following the best performance. For the vision &
tactile type of combinations, {RealSense, GelSight} yields 46% which is 12% higher than
{RealSense, Evetac}. It turns out that the policies trained with combinations involving
tactile modality generally outperform the vision-only policy, demonstrating that tactile
information can make a significant contribution to improving manipulation performance.
For more details, Figure 6.2 shows the complete evaluation results of the policy perfor-
mance over all the match poses w.r.t. sensor combinations.
For the policy trained with only vision i.e. {RealSense}, its best performance can only
reach a success rate of 40% in the match pose of (Short, 10�). From the experiments,
we observed that the most frequent failure mode is due to early strikes without even
making initial contact with the striker paper, i.e. the robot reached above the striker
paper and then proceeded to execute a strike movement directly. Other than that, it was
also observed that the policy applied too much force on the contact and broke the match
during striking.
When incorporated with tactile observation, i.e. GelSight and Evetac, the policy perfor-
mance is enhanced in different aspects. In the case of {RealSense, Evetac}, the performance
for all match coverages is greatly increased, especially for the angles of 10� and 20�, the
success rates are all above 75%. We observed that in many trials, the initial contact can
be detected quickly, followed by smooth strikes, indicating that the event-based tactile
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Figure 6.2: Evaluation results with y-axis as success rate. The three plots correspond
to different match coverages, with each plot comparing policy performance
over different angles.
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signal might potentially enhance the contact awareness of the policy. However, with
this combination, the policy is still unable to generalize to a wide range of angles, e.g.
in negative angles of �20�, and �10�. Nevertheless, if the contact area was incorrectly
selected, the subsequent strikes were also executed in the wrong direction immediately
and resulted in a failure case. In contrast, when the policy is trained with the combination
of {RealSense, GelSight}, although the best performance of 80% was not exceptionally
high, the range of feasible match poses is expanded, especially in the negative match
angles. We observed even a 50% success rate in the match pose of (Middle, �10�). How-
ever, the policy often stagnated for a long time when preliminary contact was established,
and eventually resulted in a failed trial. Similar stuck cases are also observed in [8]. In
summary, with the match pose information provided by GelSight, the policy might be able
to better adjust the end-effector pose accordingly to enlarge generalization on extreme
match angles.
Combining all three sensors, i.e. {RealSense, GelSight, Evetac}, our policy achieved the
best performance of 90% in multiple match poses i.e. (Short, 10�), (Middle, 10�), and
(Long, 20�). With this combination, the correct contact area can be identified and proper
end-effector pose adjustments can be achieved, resulting in a wide generalization of all
match poses. Although this policy satisfied all the requirements for a successful strike, the
stuck problem still exists but is greatly reduced in comparison with {RealSense, GelSight}.
Moreover, during the execution, the policy might generate some redundant movements,
such as a fast pull-back after striking, which results in a decrease in smoothness and
completeness of task execution. Based on this behavior, we observed a special ability of
the policy trained with this combination: in the situation that the policy initiates a strike
without initial contact, it will promptly cease and perform a rapid retraction. Subsequently,
it brings the end-effector slightly towards the striker paper and performs a strike again.
If still no contacts appear, the policy will repeat the similar behavior until the contact is
established, and eventually, it will perform a regular long strike to ignite the match.
When the policy is only observing both tactile modalities, i.e. the combination of {GelSight,
Evetac}, its performance remains competitive in almost all match poses. Although its
best performance of 85% is lower than e.g. the full-sensor combination (90%), this policy
achieved remarkably high performance on negative angles, i.e. almost all the results are
exceeding 60%. However, with the angle of 30� of all the match coverage, the policy
always produces an over-rotated angle in the yaw-axis that leads to a zero success rate.
Apart from this, one of the most significant improvements of this combination is the
elimination of stuck behavior. Furthermore, the striking movement is more fluent than
the vision-involved combinations. Other instances of failure exhibit a similar pattern, i.e.
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the end-effector pose was not correctly adjusted or just reached outside the striker paper
plate.

6.1.2 Policy Performance upon Match Poses

To gain a deeper statistical insight into the results of Figure 6.2, we provide Figure 6.3
that shows the distribution of policy performance over different match coverages at fixed
angles and vice versa.
From the top figure, the largest performance change upon match coverage is 25%, while
the smallest is 5% while in the bottom plot, the policy performance changes drastically
w.r.t. match angles ranging from 15% to 90%, indicating the policy performance is more
sensitive to the variations in match angles than coverages.
Looking at the top figure, the performance of nearly all combinations demonstrates
reaching the best performance in the angle of 10� with 69% and dropping gradually as the
angles vary to the negative (end with 20% at �20�) or positive direction (end with 14% at
30�). This trend suggests that policies are better suited for positive match angles, while
their ability to accurately handle extreme angles is limited. The exception is the {GelSight,
Evetac} combination, which shows more consistent performance across a wider range of
angles, indicating a stronger capability for handling diverse match angle variations in the
match-lighting task.
Furthermore, in the bottom figure, the performance of {GelSight, Evetac} and {RealSense}
has the relatively smaller average range of variation (26%, 30%), in comparison to other
three modalities ({RealSense, GelSight, Evetac} with 73%, {RealSense, GelSight} with
78%, and {RealSense, Evetac} with 76%). It turns out that when combining both tactile
and vision modalities, the policy performance might exhibit inconsistency across different
match angles, potentially due to a vision-tactile mismatch during the task execution.

6.2 Robustness Test of Match-Lighting Policy

In this experiment, we constrain the perturbations to certain magnitudes, e.g. for force
perturbation, we apply a gentle push to the end-effector; for visual perturbation, we block
to the camera view for 1 to 3 seconds; for tactile perturbation, we apply a quickly touch
on the match tip within 1 second.
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Figure 6.3: Results analysis over same match angle and coverage with y-axis as success
rate. The top plot shows the distribution of policy performance over different
coverages at fixed angles, and the bottom plot vice versa. The light blue bars
are the average success rate across all sensor combinations under each
match pose.
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Combination Force Perturb. Visual Perturb. Tactile Perturb.
RealSense, GelSight, Evetac Robust Robust Robust

RealSense, GelSight Robust Robust Robust
RealSense, Evetac Robust Robust Not Robust
GelSight, Evetac Robust N/A Not Robust

RealSense Robust Robust N/A

Table 6.1: Policy robustness against various external perturbations.

The results are reported in Table 6.1. It turns out that all of the policies are robust
to external force perturbations. With visual perturbations, all the policies that include
RealSense tend to be robust against short visual occlusion before getting close to the striker
paper. However, for the policies involved with tactile modalities, only the combination
of {RealSense, GelSight, Evetac} and {RealSense, GelSight} exhibited robustness against
unexpected tactile disturbs. Especially, for the full-sensor combination, i.e. {RealSense,
GelSight, Evetac}, when applied with force on the match tip, the policy would try to strike
but stopped shortly after, and conducted the pull-back behavior described in Sec. 6.1.1,
then continued approaching the striker paper. For the rest two tactile combinations,
i.e. {RealSense, Evetac} and {GelSight, Evetac}, the strike movement was immediately
triggered when applied force on the match tip. It appears that the tactile features extracted
from Evetac could cause overreactions to the policy, leading to sub-optimal decisions.

6.3 Temporal Responsiveness

For this experiment, we calculate the temporal responsiveness from a successful match
lighting trail with the sensor combination of {RealSense, GelSight, Evetac}, presented
in Figure 6.4. According to the results, Evetac has the lowest latency regarding the
occurrence of contact and the largest magnitude for detecting a change in contact state
due to the event-based working principle. Beyond that, the contact feedback remains
active during the whole striking movement. These fast and strong responsive features
could be considered as one of the reasons why the Evetac-involved policy can perform
a strike shortly after contact establishment. However, despite sharp and swift contact
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Figure 6.4: Dynamic temporal responsiveness λ of different sensors in terms of the
encoded latent embeddings. The x-axis is time and the y-axis is the temporal
responsiveness λ. The dotted line and corresponding snapshots indicate
three key time points of the task execution, i.e. initial contact (green), match-lit
(red), and task finished (blue).
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detections, Evetac suffers from over-sensitive triggered events caused by tiny inertial
displacements or mechanical vibrations of the match during movement, e.g. the unusual
spike in the first row of Figure 6.4 at 0.5 and 4 second where no contact happened. This
might result in the proneness of the policy to tactile perturbation and cause early strikes
when the sensor combination involves Evetac.
Followed by GelSight, the contact is detected with a tiny signal spike and only lasts
for a short moment at the beginning of the strike (i.e. around 2.1 s) since during the
strike the tactile images are mostly the same except for initial contact establishment.
This might result in an unclear contact status feedback to the policy, leading to delayed
decision-making for a strike movement and causing stagnation, as described in Sec. 6.1.1.
For RealSense, we are not able to directly confirm whether the responsiveness change
of this sensor is caused by contact phenomena or visual cues. However, the continuous
response due to the fast shift of visual cues w.r.t. the fire light is obvious to identify.
During other task phases, the various visual cues also introduce noise to the embedding as
small spikes suggest. For sensor combinations that include both RealSense and GelSight,
the sensor noise and weak contact detection might lead to a performance decrease or
redundant behaviors.

6.4 Match Pose Recovery

As introduced in Sec. 5.4.4, we sample the latent embeddings of each sensor combination
and investigate the ability of the observation encoder to recover and discriminate the
static feature of match poses.
The results are illustrated in Figure 6.5. Each heatmap demonstrates the pairwise similarity
of the multimodal latent embedding between different match poses, brighter (in color
white) pixels indicate a higher similarity while darker (in color blue) pixels indicate a lower
similarity. Observing the overall brightness of the heatmaps, { GelSight, Evetac, RealSense
} and { GelSight, Evetac } are darker in comparison to the other three combinations.
This reveals a better ability of the encoder, because the darker the pixels, the lower the
similarity between the latent embeddings of both match poses, which could indicate that
the encoder is more capable of recovering the accurate match pose in latent space.
Recall our results in Sec. 6.1.1, we find that the policy with a better generalization on
match poses corresponds to the sensor combination with a darker heatmap here. Apart
from that, we also noticed that the encoders of almost all the combinations tend to extract
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Figure 6.5: Static feature similarity spectrum of each sensor combination in terms of
match poses. The x-axis and y-axis are the match poses with S, M, and
L indicating Short, Middle, and Long match coverage. The pixel value of
each heatmap is the pairwise cosine similarity of multimodal observation
embedding. Pixels with darker blue indicate a lower similarity and whiter
pixels indicate a higher similarity.
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more information from the short and middle match coverage, which is consistent with the
results in Figure 6.3.
In summary, the latent embedding similarity analysis provided evidence that the obser-
vation encoder trained with different sensor modality combinations may influence the
performance of the match-lighting policy. However, the underlying factor that substantially
affects the conditional denoising process and results in biased actions remains uninvesti-
gated. Many recent works have also pointed out the difficulties of interpreting diffusion
models, as the latent transformations in intermediate steps have no specific semantic
meaning. This makes it difficult to attribute contributions to the overall content of the
generation [63–66]. Therefore we leave the further advanced analysis for our future
work.
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7 Conclusion

In this thesis, we investigated the importance of tactile sensing in solving a challenging
robotic manipulation task, i.e. lighting up a match. This task requires both precise contact
status awareness and match in-hand features e.g. static pose and dynamic movements.
Besides, proper contact-force control is also necessary since the match is quite brittle and
fragile, any excessive force will result in breakage. To fulfill the task requirements, we
proposed to learn the skills directly from human demonstrations through an imitation
learning framework that’s mainly based on diffusion policy and a Cartesian impedance
controller. The action sequence prediction of diffusion policy guaranteed a fast and
consistent trajectory generation, while the Cartesian impedance controller can regulate
the robot behavior compliantly. In addition, we involved two types of vision-based tactile
sensors, i.e. GelSight Mini, which captures global tactile features with whole RGB frames,
and Evetac, which only captures dynamic tactile features with a rather low latency. Apart
from that, by leveraging the multimodal input support of the diffusion policy, we are able
to alter the combination of sensor observation modalities to investigate the performance
change of the policy.
We extensively evaluated our framework with multiple task configurations and sensor
combinations. It turns out that our policy is capable of lighting up a match with various
task configurations and is robust against certain perturbations. From the results, we also
find out that sensor combinations significantly influence the performance of the policy.
Despite involving all the sensors results in the best performance in certain match poses
and the widest range of feasible match angle, combining only the two types of tactile
sensors can also achieve remarkable success rates. The vision & tactile combinations
demonstrate performance highlights from different perspectives, while the policy trained
with single vision modality yields the worst performance. Afterwards, we further discussed
the underlying causalities between the sensor combinations and policy performance by
investigating both static and dynamic features from latent observation embeddings.
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Eventually, the evaluation results indicate that tactile sensing is a crucial sense modality
for solving the match-lighting task with high success rates.
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8 Limitations and Future Work

Although we have demonstrated the match can be successfully lit up with all kinds of
match poses and sensors, there are still limitations that remain for future work.
The first of our concerns is the inference speed of our policy. Our policy typically runs at
10Hz with 30 steps of denoising and ONNX precision downgrade as introduced in Sec. 5.3.2.
This low frequency is due to the enormous calculation of the transformer-based diffusion
policy. In our future work, we tend to introduce new lightweight and efficient backbone
model structures for the diffusion policy that could accelerate the inference speed.
Secondly, beside model capacity, the data source is the key aspect of improving the model
generalization ability. However, human demonstrations are expensive to collect, whether
through kinesthetic teaching or teleoperation. Take our task as an example, a dataset of
108 demonstrations costs already about 10 hours of work. In our future work, we will try
to investigate how to extract human demonstrations from existing videos, which could
significantly reduce physical effort and increase the number of data. On the other hand,
for contact-rich tasks, it’s also challenging to figure out how to extract tactile skills from
videos.
Moreover, the current training pipeline of our framework is limited to a single task. We
are also very interested how to blend the trained individual policies to achieve more
sophisticated manipulations.
Last but not least, as time goes by, the dataset can be outdated eventually, but re-training
or fine-tuning the policy with a new dataset might eliminate some key features that are
still useful. In our future work, we also tend to investigate how to maintain the trained
policy continually.
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