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Abstract

Insertion tasks are a fundamental capability for robots when dealing with assembly
operations, and other automation issues in an industrial environment. Humans naturally
combine vision and tactile feedback to perform such tasks effectively, but integrating
multiple modalities in robotics remains a significant challenge. Prioritizing and combining
data from vision and touch often proves difficult, as these modalities typically produce
high-dimensional and complex information that isn’t easy to interpret even for humans.
This thesis addresses these challenges by leveraging a Deep Reinforcement Learning
algorithm called Dreamer to solve the classical peg-in-hole insertion task in a real-world
environment. A modular and enhanced experimental setup, based on previous work [47],
is introduced to increase the complexity of the task and evaluate Dreamer’s ability to
adapt to new conditions. The results demonstrate that for a hole depth of 4cm and a
tolerance of 0.5mm between the cylinder and hole, training a policy from scratch using
only visual feedback fails to solve the task. These findings underscore the critical role of
tactile feedback in learning and successfully performing peg-in-hole insertion tasks with
tight tolerances. Moreover, the real-world setup, developed in this work, can be reused to
test other algorithms and methods to solve the task with Dreamer’s results as a strong
baseline for comparisons.

3



Kurzfassung

Das Ausführen von Einfügeaufgaben ist eine grundlegende Fähigkeit für Roboter bei
Montagearbeiten und anderen Automatisierungsaufgaben in industriellen Umgebungen.
Um solche Aufgaben zu lösen, kombinieren Menschen ihre visuellen und taktilen Sinne
auf natürliche Weise. Die Integration mehrerer Modalitäten in der Robotik bleibt jedoch
eine große Herausforderung. Die Priorisierung und Kombination von Daten aus visuellen
und taktile Quellen erweist sich oft als schwierig, da diese Modalitäten typischerweise
hochdimensionale und komplexe Informationen liefern, die selbst für Menschen schwer
zu interpretieren sind. Diese Arbeit löst diese Herausforderungen, indem sie einen Deep
Reinforcement Learning-Algorithmus namens Dreamer einsetzt, um eine klassische Ein-
fügeaufgabe zu lösen und das in der realen Welt. Ein modularer und weiterentwickelter
Versuchstand, basierend auf einer früheren Arbeiten [47], wurde aufgebaut, um die
Komplexität der Aufgabe zu erhöhen und Dreamers Fähigkeit zur Anpassung an neue
Bedingungen zu evaluieren. Die Ergebnisse zeigen, dass bei einer Lochtiefe von 4cm
und einer Toleranz von 0.5mm zwischen Zylinder und Loch es nicht möglich ist, eine
Policy ausschließlich mit visuellem Informationen zu trainieren und die Aufgabe zu lösen.
Diese Erkenntnisse hebt die entscheidende Rolle taktiler Sensorik beim Erlernen und
erfolgreichen Ausführen von Einfügeaufgaben mit engen Toleranzen hervor. Darüber
hinaus kann der in dieser Arbeit entwickelte Versuchsstand genutzt werden, um andere
Algorithmen und Methoden zur Lösung dieser Aufgabe zu testen. Die Ergebnisse von
Dreamer können dabei als starke Vergleichsbasis dienen.
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1 Introduction

Humans effortlessly combine multiple senses to solve tasks encountered in everyday life.
For example, we rely on both vision and touch when plugging in a cable or inserting a key
into a lock. While these tasks may seem simple to us, they present a significant challenge
for machines and robots. Interpreting visual and tactile data and deriving suitable actions
from it is a complex problem that requires advanced algorithms. In the following work,
recent advancements in technology are utilized to address this issue, making a meaningful
contribution to the ongoing research in this field.

Recent advancements in tactile sensing technology offer exciting opportunities to enhance
robot performance in contact-rich tasks [17, 35, 57, 60]. High-resolution tactile sensors
now provide robots with the ability to sense detailed surface interactions, such as contact
forces [27], slippage [8], and surface textures [6]. This tactile feedback is invaluable
for tasks like insertion [13], where visual input alone is insufficient due to occlusions or
ambiguities in depth perception. However, this approach has the drawback that algorithms
must be capable of processing and interpreting high-dimensional data. While visual
feedback from cameras can address this challenge using computer vision techniques,
interpreting tactile data adds an additional layer of complexity since even humans can’t
directly interpret it.

Here comes Dreamer [24] into play. Dreamer is a Model-Based Reinforcement Learn-
ing (MBRL) algorithm that learns a latent dynamics model of the environment and uses
it to train a reinforcement-learning-driven policy. It shows that Reinforcement Learn-
ing (RL) is a powerful framework for training agents to solve complex tasks through
interaction with their environment. By continuously learning from trial and error, RL
agents develop policies that maximize cumulative rewards, making them highly effective
in domains like robotics. In robotics, RL is applied to a range of applications, including
locomotion [58], grasping [37], and high-precision tasks [32], enabling robots to perform
tasks that traditionally require a lot of engineering effort and expert knowledge.
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One often used task in robotics and industrial automation is the peg-in-hole insertion prob-
lem, a fundamental operation in assembly and manufacturing processes [53]. Peg-in-hole
tasks serve as the cornerstone for many assembly procedures, such as fitting components
into tight tolerances or assembling complex mechanical systems. Success in this task
directly translates to improved efficiency in production lines. Given its widespread rele-
vance, the peg-in-hole insertion task is often used as a benchmark for evaluating robotic
manipulation capabilities. It involves aligning and inserting a peg of any shape into a
corresponding hole, often under varying conditions and constraints. Several challenges
make this task particularly demanding. Precision is crucial, as even small deviations in
alignment can lead to failure. Integrating the multi-modal feedback into a cohesive frame-
work is another significant challenge coming with this task, as the robot must interpret
data from multiple inputs to guide its actions. Moreover, real-world complexities such as
variability in component dimensions, misalignments, and material properties introduce
further difficulty, requiring robots to adapt dynamically to new and unforeseen conditions.
Addressing these challenges is not only crucial for advancing robotic manipulation but also
for unlocking new possibilities in industrial automation, where reliability and adaptability
are key.

Lastly, this work utilizes Shapley values [54] to evaluate the significance of the different
modalities in influencing the outcomes of Dreamer’s policy. Originating from cooperative
game theory, Shapley values provide amethod for quantifying the contribution of individual
components to a final result. In this context, they are used to determine how the visual and
tactile inputs contribute to the actions Dreamer produces during the task. The assumption
is that the Shapley values will show that the policy relies on different modalities in specific
situations throughout a successful episode, e.g. while inserting, the tactile feedback should
be more relevant.

To summarize, this work makes three key contributions to the field of robotic manipulation
and Reinforcement Learning:

1. Highlighting the Importance of Tactile Sensing for Dexterous Manipulation:
This study demonstrates that tactile sensing is essential for solving complex manipu-
lation tasks, particularly those involving tight tolerances in real-world environments.
By deploying a peg-in-hole insertion task with tolerances of 0.5mm, it underscores
the critical role of tactile feedback in achieving the necessary precision. This contribu-
tion reinforces the importance of tactile sensing for advancing robotic manipulation
in scenarios where visual feedback alone is insufficient.
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2. Showcasing Dreamer’s Performance in the Real World: The work highlights
the effectiveness of the Dreamer algorithm in solving diverse tasks in the real
world with multi-modal inputs. Dreamer demonstrates impressive sample efficiency,
solving tasks with relatively fewer interactions while maintaining a fixed set of
hyperparameters. This underscores not only the high performance of Dreamer but
also its flexibility in adapting to different scenarios, making it a valuable tool for
reinforcement learning research and real-world applications.

3. Introducing a Versatile and Flexible Testing Platform: The work introduces a
versatile platform for testing machine learning algorithms in the real world, which
is based on previous work [47]. This platform enables researchers to deploy and
evaluate other algorithms in a physical environment with a range of challenging
configurations. The results produced by Dreamer on this platform also establish a
strong baseline for future algorithms, encouraging further research and innovation
in robotic manipulation and tactile integration.
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2 Related Work

This chapter begins with an introduction to Dreamer and the concept of world models,
followed by a section on multi-modal sensing. Next, typical peg-in-hole insertion tasks and
the application of Reinforcement Learning (RL) in robotic manipulation are discussed.

2.1 Dreamer and World Models

The main machine learning framework utilized in this work is Dreamer, a Model-Based
Reinforcement Learning (MBRL) approach developed by Hafner et al. [24]. Dreamer
stands out for its promise of sample efficiency, meaning that it needs fewer interactions
with the real environment, a critical point for experiments where hardware resources and
time are limited. Therefore, it learns a world model that captures the dynamics of the
task environment. By leveraging this model to predict and optimize future trajectories in
a compact latent space, Dreamer reduces the need for extensive interaction with the real
environment. Moreover, it is well-suited for tasks where only partial information about
the environment is available.

The development of Dreamer has been an iterative process, with three key versions released
to date. In the following, they are referred to as DreamerV1 [21], DreamerV2 [23], and
DreamerV3 [24] respectively. Each version introduced advancements in architecture and
performance, demonstrating the continuous improvement of this approach. In addition
to these core versions, the framework’s history includes two related papers by the same
authors. The following section will introduce the papers with their core concepts in
chronological order.

In the first paper, "Learning Latent Dynamics for Planning from Pixels" [22], the authors
introduce the Deep Planning Network (PlaNet). PlaNet is designed specifically for planning
tasks involving image-based inputs, a significant step forward in enabling reinforcement
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learning agents to handle high-dimensional visual data. In this context, the authors
introduce the concept of Recurrent State Space Models (RSSMs), which play a central role
in learning latent dynamic models of the world. RSSMs enable the agent to operate entirely
in the latent space, abstracting away the complexity of high-dimensional observations.
This approach combines deterministic and stochastic transition components, ensuring
the model can capture both predictable and uncertain aspects of the environment. A
more detailed description of RSSMs will be provided in Section 3.2 of this work, as
they constitute the world model that underpins Dreamer’s planning and decision-making
capabilities.

DreamerV1 [21] is the first version of the Dreamer framework to integrate a learned
world model with an agent based on RL. Its world model is realized by using a RSSM
from the previously described paper. A key innovation in DreamerV1 is its use of imagined
rollouts generated by the world model. The agent learns its behavior solely through these
imagined trajectories, that only rely on the learned world model. By using an initial
real-world observation to seed the latent state, the model generates a complete trajectory
within the latent space. This approach not only improves sample efficiency but also allows
DreamerV1 to optimize policies in a scalable and computationally efficient manner.

DreamerV2 [23] introduces another important improvement. The stochastic component
of the latent state is represented as a vector of multiple categorical variables. This discrete
formulation differs from the continuous stochastic state used in both PlaNet and Dream-
erV1. By combining this discrete representation with deterministic transitions, DreamerV2
improves its ability to model complex dynamics as human-level performance on the Atari
benchmark shows.

Next, the DayDreamer paper [58] demonstrates that the capabilities of Dreamer extend
beyond simulated environments to solving complex tasks in the real world. In this work,
the authors employ Dreamer to train policies on four different physical robots, showcasing
its adaptability and efficiency in real-world scenarios. One of the most striking examples
involves a quadruped robot, which successfully learns to perform a series of challenging
tasks, including rolling off its back, standing up, and walking. Remarkably, the robot
accomplishes this entirely from scratch and without resets, completing the training in just
one hour of real-world interaction. A key aspect of these experiments is the consistency of
the approach, every experiment is conducted using the same hyperparameters, demon-
strating the robustness and generalizability of the Dreamer framework. The success of
DayDreamer highlights the potential of MBRL for practical applications in robotics and
beyond. Therefore, it is an important inspiration for this thesis.
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The most recent iteration, DreamerV3 [24], introduces further improvements to the
framework, solidifying its position as a state-of-the-art reinforcement learning algorithm.
One improvement is the use of symlog predictions as loss functions for reconstruction and
predicting rewards and other values. The challenge is that their scale varies across domains.
Symlog predictions promise to make this issue manageable and have a stable training
process. Among its notable achievements, DreamerV3 is the first algorithm to collect
diamonds in Minecraft from scratch, accomplishing it without relying on human-provided
data or predefined curricula. This breakthrough demonstrates the framework’s ability to
solve highly complex, long-horizon tasks with minimal external guidance, showcasing its
potential for tackling challenging problems in both simulated and real-world environments.

A fascinating approach leveraging DreamerV3 is presented in Hu et al. [29]. The authors
draw a motivating analogy to the process of learning to tie shoelaces. Initially, humans
must look closely at the task throughout the process, but as proficiency increases, visual
attention becomes unnecessary, and tying shoelaces can be done without looking. This
example illustrates how additional sensory input during the learning phase can scaffold
skill acquisition. Building on this idea, the authors propose that similar principles can be
applied to training machine learning models. Specifically, they introduce privileged data,
additional observations that are accessible only during training but not during deployment.
By incorporating this privileged information, the model gains a richer understanding of
the environment, enabling the learning of more robust and effective policies. The results of
this approach show that policies trained with privileged data during the learning process
outperform those trained only with the target data.

While Dreamer’s model-based approach shows great promise, alternative methods also
offer innovative solutions to RL challenges. One such approach is Temporal Difference
Learning for Model Predictive Control (TD-MPC) [26], where the authors propose a
method that tries to combine the strengths of model-based and model-free techniques.
The core idea behind TD-MPC is to optimize local trajectories generated by a learned
dynamics model over short horizons while simultaneously accounting for long-term returns
using a learned terminal value function. TD-MPC also introduces a different strategy
for learning the latent dynamics model. While Dreamer aims to learn a comprehensive
representation of the entire environment, TD-MPC focuses on modeling only those aspects
of the environment that are directly relevant for predicting the reward. This targeted
approach reduces the complexity of the world model, making it more efficient and less
resource-intensive than broader representations. By combining shorter rollouts with a
reward-focused latent dynamics model, TD-MPC demonstrates an effective hybrid of
model-based and model-free RL, offering a promising alternative to Dreamer’s paradigm.
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2.2 Multi-Modal Sensing in Robotic Manipulation

Successfully performing arbitrary tasks with a robot requires meaningful data to guide
it and make intelligent decisions. To address the complexities of robotic tasks, many
researchers have adopted multi-modal approaches, combining data from various sens-
ing modalities to enhance performance and robustness of their solutions. Commonly
used modalities include visual, tactile, force/torque, and depth information, providing
complementary information for decision-making.

The first important modality in robotic manipulation is vision provided by a camera. Vision
serves as a primary source of information for understanding the environment, identifying
objects, and guiding actions during complex tasks. Cameras can be positioned in two
primary ways within robotic setups. The first approach places the camera outside the
scene, where it provides a static, global view of the environment [8, 32, 36, 52]. This setup
allows for a broad perspective of the workspace, which is particularly useful for monitoring
interactions between the robot and multiple objects or maintaining situational awareness.
Alternatively, the camera can be mounted directly on the robot’s end-effector [7, 16, 25,
30, 37], offering a localized view that focuses on the specific task being performed, and
the environment near the end-effector.

In addition to standard visual data, many cameras are equipped to capture depth infor-
mation, providing a 3D understanding of the environment. Depth data can significantly
enhance robotic policies by enabling accurate spatial reasoning, improving object interac-
tion, and handling complex geometries. Therefore, this modality is often used when it is
available through the camera [13, 36, 38].

In recent years, the technology and availability of tactile sensors have advanced signif-
icantly, enabling more sophisticated and effective robotic manipulation. These sensors
are crucial for providing feedback on physical interactions, especially when performing
contact-rich tasks that require precision, such as peg-in-hole insertion [12, 59] or grasping
objects [8, 25]. There are two main types of tactile sensors commonly used in robotics:
vision-based and texel-based sensors.

Vision-based tactile sensors, such as the GelSight Mini [18], rely on an optical system to
capture detailed surface deformations during contact. These sensors operate by using a
coated gel that deforms when pressed by objects. Behind the gel, LEDs of different colors
illuminate the deformation, and a camera captures the changes in the gel’s surface. This
setup allows estimating forces and surface textures with high resolution to algorithms,
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providing rich, detailed feedback for dexterous manipulation tasks [7, 8, 12, 16, 25, 34,
46, 59].

Texel-based tactile sensors, like the uSkin sensors by XELA Robotics [49], consist of an
array of distinct measuring units called texels. A texel is the tactile equivalent of a pixel in
vision systems and can measure forces along different directions. Texels are capable of
measuring normal forces in the surface’s normal direction and shear forces in the tangent
plane of the surface. Compared to vision-based tactile sensors, texel sensors help reduce
the complexity of tactile feedback and improve data efficiency. Therefore, they are also
commonly used in research papers [19, 30, 32, 37, 52].

Vision-based tactile sensors are increasingly favored over texel-based sensors for dexterous
applications due to their ability to provide high-resolution, detailed feedback about the
interaction between the sensor and the environment. Recent papers use the rich deforma-
tion data captured by vision-based tactile sensors to reconstruct both normal and shear
force distributions between the sensor and the pressed object [27, 52]. By leveraging
these methods, texel-based sensors can be replaced with vision-based ones making them
a universal alternative.

Incorporating force and torque sensors in robotic manipulation tasks remains a common
approach [7, 12, 32, 34, 36, 37], despite the potential of tactile sensors to provide
richer and more informative data. For example, Dong et al. [12] show that policies
trained with force and torque sensors tend to learn more efficiently, while tactile feedback,
particularly from vision-based sensors results in better generalization to new scenarios.
This phenomenon can be attributed to the complexity of the data provided by vision-based
tactile sensors. This high-dimensional, detailed information about the interaction between
the robot and its environment requires policies to first learn how to interpret this data
effectively and then derive appropriate actions. In contrast, force and torque sensors
provide more direct and lower-dimensional feedback, simplifying the learning process
and enabling policies to converge faster. However, the work also shows, that the richer
tactile data enables policies to generalize better.

Less commonly used modalities like audio [13] can also help solve robotic tasks. For
example, audio input can be used to reduce noise by introducing the objective to minimize
the amplitudes of the audio signal. Indeed, Feng et al. [13] show that audio has higher
attention scores in some stages of the task than vision and touch when pouring water
from one container to the other.

Recently, research has begun incorporating transformer architectures for robotic manip-
ulation tasks [25]. This architecture, initially popularized by advancements in natural
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language processing, gained widespread attention with the development of large language
models [45]. Transformers have proven effective in processing and integrating diverse
data modalities due to their ability to handle sequential and high-dimensional inputs. For
example, Han et al. [25] employ a transformer model to process both visual and tactile
inputs to tackle the challenge of grasping deformable objects such as fruits.

2.3 Peg-in-Hole Insertion Task in Robotics

Classical peg-in-hole insertion tasks are a cornerstone in robotic manipulation research,
serving as a benchmark for testing and comparing different models. These tasks typically
involve pegs of various shapes and dimensions, such as cylindrical [59], rectangular [12],
or more complex geometries, paired with corresponding holes designed to match the pegs.
The primary goal is straightforward: to insert the peg into the hole in a straight, smooth
movement, demonstrating the model’s ability to perform accurate and efficient alignment
and insertion.

Jin et al. [32] use square, pentagonal, triangular, and cylindrical shapes to test their
approach. This diversity in geometry introduces unique challenges for alignment and
insertion, providing a robust evaluation of the proposed method. Their approach relies on
multi-modal input for feature extraction, such as determining the offset between the peg
and the hole. Additionally, the study explores which combinations of sensory modalities
yield the best performance. By systematically examining the contributions of different
inputs, the authors identify the most effective configurations for accurate and efficient
peg insertion.

Lee et al. [36] also evaluate their method using pegs of various shapes, such as squares,
triangles, hexagons, and semicircles, to assess its performance. Notably, they incorpo-
rate VAEs, similar to those used in Dreamer. However, rather than having the decoder
reconstruct the original input data, their approach uses the decoder to predict alternative
self-supervised learning objectives, such as the next end-effector position. This strategy
aims to create a latent state that focuses solely on task-relevant information, omitting
unnecessary details and improving task efficiency. A potential downside of this approach
is that the self-supervised learning objectives must be measurable and may sometimes
be incomplete, limiting the representation’s ability to capture all relevant environment
states.
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Beyond generic insertion tasks with simple geometric shapes, more specialized scenarios
closely related to real-world applications are explored. For example, Fu et al. [16] address
the insertion of a USB cable, a task that requires both precise alignment and robust
handling of the connectors. In the context of laboratory automation, researchers apply
tactile sensing to tasks such as placing vials on racks [7] and positioning well-plates
onto holders [46]. Warehouse automation presents another domain where tactile data
is leveraged effectively to perform box-packing tasks. Liang et al. [37] combine vision
and tactile data to grasp and push objects into the correct positions within a box. In
contrast, Dong and Rodriguez [11] rely solely on tactile input to address challenges such
as detecting slip for maintaining a stable grasp and estimating object positions to minimize
disturbances to the surrounding environment. These real-world use cases illustrate the
versatility and importance of tactile sensing in solving complex manipulation problems
across diverse domains.

Another use of tactile sensing in real-world scenarios is presented by Higuera et al. [28],
where the focus is on estimating extrinsic contact between objects, such as mugs, bowls,
and bottles, and tactile sensors. This estimation is achieved using a specialized network
architecture called Neural Contact Fields (NCF), which combines the 3D model of the
object with tactile data to infer precise contact points. The detailed contact information
derived from this approach is then utilized to learn robot insertion policies.

In standard insertion tasks, where a single straight movement is sufficient to achieve
successful insertion, visual input alone is often adequate for solving the task. However,
to highlight the importance of multi-modal feedback, Feng et al. [13] propose a more
complex, multi-stage insertion task requiring rotation around the z-axis for completion. In
this setup, the first stage involves inserting the peg into a larger hole, allowing for partial
insertion. In the second stage, the hole perfectly matches the peg’s shape but is occluded
from the camera’s view. Here, rotation is necessary to find the correct orientation for
full insertion. With this work, the authors demonstrate that the relative importance of
different sensory modalities varies across the stages of the task. While visual input is
sufficient for the initial insertion, tactile feedback becomes critical in the second stage to
determine the peg’s orientation and achieve precise alignment.

The concept of dividing a task into distinct stages with varying sensory priorities is explored
in several other studies. Feng et al. [13] propose a method that dynamically adjusts the
priority of different sensory modalities based on the current stage of the task, allowing
the system to leverage the most relevant information at each step. Similarly, Fu et al.
[16] divides the task into two phases: first, aligning the connectors of two USB cables
using tactile feedback by estimating the plug’s rotation, and second, completing the
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insertion using visual input for precise guidance. In Lu et al. [38], the task is also split
into two stages but employs two separate neural networks. The first network handles
coarse alignment, ensuring the connectors are positioned roughly correctly, while the
second network performs fine insertion with greater precision. Another related approach
is presented in Kamijo et al. [33], which introduces a dual-policy architecture. This
system separates the alignment and insertion into distinct policies, each optimized for its
respective stage of the task. All these methods highlight the effectiveness of stage-specific
strategies and multi-modal sensing in tackling dexterous manipulation challenges.

Another often-used approach in the reviewed papers is to estimate the in-hand position
and rotation. Gibbons, Albini, and Maiolino [19] use texel-based tactile sensors to gain
this information and use it in a handcrafted search policy to find the hole which has only
0.1mm clearance to the peg. A similar approach can be found by Sferrazza et al. [52] and
Pai et al. [46].

Besides the peg-in-hole insertions tasks addressed in this section, there are other tasks
where tactile feedback can be helpful. For instance, in Ichiwara et al. [30], tactile feedback
is employed to tackle the task of opening a flexible bag with a zipper, demonstrating how
fine-grained touch data can guide precise and adaptive actions. Similarly, Calandra et al.
[8] use the combination of vision and tactile input to grasp a diverse set of 65 different
objects in real-world environments. Additionally, Han et al. [25] leverage tactile feedback
to grasp deformable objects such as fruits, showcasing its effectiveness in dealing with soft
and fragile items where precise force control is essential.

Tactile feedback has proven to significantly enhance the performance and generalization
ability of policies for solving complex robot manipulation tasks. Vision-based tactile
sensors, in particular, are gaining popularity due to their ability to provide rich and
detailed data. However, algorithms that rely on vision-based tactile feedback face the
challenge of processing the highly complex and high-dimensional observations these
sensors generate. To address this, many existing approaches focus on deriving interpretable
values from the raw input data or splitting tasks into distinct stages that leverage different
modalities or even separate models. While effective, these methods often result in highly
application-specific solutions requiring considerable engineering effort.

This work takes a different approach by employing the Dreamer framework, which directly
consumes real-world observations captured by the sensors and outputs actions, leaving
the intermediate processes as a black box. This significantly reduces the engineering effort
needed for task-specific tuning but raises questions about the model’s decision-making
process and the importance of different data modalities for its performance. To address
these concerns, traditional ablation studies will be employed. Additionally, this work will
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explore the use of Shapley values [54] in a later section as another approach to analyze
and interpret the model’s behavior, shedding light on its decision-making process.

2.4 Reinforcement Learning in Robotic Manipulation

RL has emerged as a widely used approach for solving peg-in-hole insertion tasks and other
robotic manipulation challenges. Its ability to learn from interactions with the environment
makes it particularly well-suited for tasks requiring adaptability and precision. Notably,
Dong et al. [12] demonstrate that RL outperforms supervised learning approaches for
these tasks. It is largely due to RL’s capacity to explore and optimize non-greedy policies,
allowing it to find more efficient and robust solutions than those derived from supervised
methods, which often rely on fixed datasets and are prone to overfitting.

Various RL algorithms have been employed across different studies to tackle such tasks.
Prominent methods include Proximal Policy Optimization (PPO) [32, 52], Twin Delayed
Deep Deterministic Policy Gradient (TD3) [16, 34], and Soft Actor-Critic (SAC) [59]. Each
of these algorithms offers unique advantages and trade-offs, making them suitable for
specific problem settings and requirements. The choice of algorithm often depends on
factors such as the complexity of the task, the available computational resources, and the
desired balance between exploration and exploitation during training.

23



3 Technical Background

The following section outlines essential concepts for understanding the Dreamer frame-
work. It begins with an introduction to Variational Autoencoders (VAEs), Recurrent State
Space Models (RSSMs), and Reinforcement Learning (RL), which together provide the
foundation for Dreamer’s model-based approach. Next, the integration of these elements
within Dreamer is described, highlighting its use of latent space planning and imagined
rollouts to learn effective policies directly from high-dimensional inputs. Finally, Shapley
values are introduced as a method to make arbitrary models interpretable.

3.1 Variational Autoencoders

Dreamer is specialized in dealing with high-dimensional input data, like images. Therefore
it uses Variational Autoencoders (VAEs) to reduce the dimensionality of this data and map
all important information into the so-called hidden or latent space.

The basic idea behind VAEs is to learn a distribution P (x) over the input data x. That
makes it possible to draw (or sample) new data points that are completely imagined but
very similar to the original input. Therefore VAEs are called probabilistic generative models,
and can also be used for other tasks like denoising or anomaly detection.

The explanation of VAEs in the following section is based on Prince [48, Chapter 17].
Unless explicitly stated otherwise, all statements are based on this source.

3.1.1 Nonlinear Latent Variable Models

Latent variable models are a class of probabilistic models that describe the observed data
P (x) indirectly by introducing a joint distribution P (x, z), where z represents the hidden
or latent state. This state captures underlying structures or factors in the data that are
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not directly observable. The observed probability P (x) is obtained by marginalizing over
the latent variable z, which means integrating over all possible values of z:

P (x) =

∫︂
P (x, z) dz. (3.1)

To construct P (x, z), the joint probability is expressed using the rules of conditional
probability which leads to

P (x) =

∫︂
P (x | z)P (z) dz. (3.2)

Here, P (z) is the prior distribution over the latent variables, and P (x | z) is the likelihood,
representing the probability of observing x given a specific value of z. This decomposition
provides a structured way to model the complex data distribution P (x) by leveraging the
hidden structure encoded in the latent states.

In the next step, both of these distributions are specified. For a nonlinear latent variable
model, the observed data x and the latent variables z are continuous and multivariate.
The prior distribution over the latent variable P (z) is typically chosen to be a standard
multivariate normal distribution:

P (z) = N (0, I).

The likelihood P (x | z,ϕ) is also modeled as a normal distribution

P (x | z,ϕ) = N
(︁
x |f(z,ϕ),σ2I

)︁
,

where the mean is represented by a nonlinear function f(z,ϕ), and the covariance σ2I
is spherical with constant variance for each dimension. The function is realized by a Deep
Neural Network (DNN) with parameters ϕ that allows the model to capture complex,
nonlinear relationships between the latent variables and the observed data. Next, both
distributions can be plugged into Equation (3.2) to get the data probability

P (x |ϕ) =
∫︂
N

(︁
x |f(z,ϕ),σ2I

)︁
N (z |0, I) dz. (3.3)

with a given set of parameters ϕ. This results in an infinite weighted sum of spherical
Gaussians that is able to capture complex, nonlinear relationships between the latent
variable z and the input data x.
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3.1.2 Training

The objective in order to train the model is to maximize the log-likelihood

ϕ̂ = argmax
ϕ

[︄
N∑︂
i=1

log (P (xi |ϕ))
]︄

for a given training dataset {xi}Ni=1 with respect to the model parameters, where P (xi |ϕ)
corresponds to Equation (3.3). Since the objective is generally computationally intractable,
another way to solve the optimization problem must be found. The solution is to find a
lower bound on the log-likelihood. Therefore, Jensen’s inequality is used:

g(E(y)) ≥ E(g(y)).

Here, g is a concave function. With this prerequisite, the inequality says that g of the
expectation of a random variable y is greater or equal to the expectation of g(y). Now, we
can plug in the formula for the expectation of the random variable with the logarithm as
the concave function g, and get

log

(︃∫︂
P (y)y dy

)︃
≥

∫︂
P (y) log(y) dy. (3.4)

Next, we rewrite the log-likelihood using Equation (3.1), and extend the equation by
multiplying and dividing with an auxiliary probability distribution q(z) depending on the
latent variable:

log(P (x |ϕ)) = log

(︃∫︂
P (x, z |ϕ) dz

)︃
= log

(︃∫︂
q(z)

P (x, z |ϕ)
q(z)

dz

)︃
.

Finally, Jensen’s inequality (Equation (3.4)) is applied to get a lower bound:

log

(︃∫︂
q(z)

P (x, z |ϕ)
q(z)

dz

)︃
≥

∫︂
q(z) log

(︃
P (x, z |ϕ)

q(z)

)︃
dz.

The right-hand side of this equation is called the Evidence Lower Bound (ELBO). In
practice, q is a distribution that is approximated by another DNN and therefore depends
on the parameters θ which leads to:

ELBO(ϕ,θ) =

∫︂
q (z |θ) log

(︃
P (x, z |ϕ)
q (z |θ)

)︃
dz. (3.5)

26



Now, Equation (3.5) can be rewritten to better understand the implications of the equation.
Therefore, the numerator is separated using the rules of conditional probability. Then, the
integral is split into two using the arithmetic rules of the logarithm.

ELBO(ϕ,θ) =

∫︂
q (z |θ) log

(︃
P (x, z |ϕ)
q (z |θ)

)︃
dz

=

∫︂
q (z |θ) log

(︃
P (x | z,ϕ)P (z)

q (z |θ)

)︃
dz

=

∫︂
q (z |θ) log(P (x | z,ϕ)) dz +

∫︂
q (z |θ) log

(︃
P (z)

q (z |θ)

)︃
dz

=

∫︂
q (z |θ) log(P (x | z,ϕ)) dz −DKL (q (z |θ) ||P (z))

The first term, the reconstruction loss, ensures that the decoder accurately reconstructs
the input data from the latent representation. The second term is the Kullback-Leibler
divergence (KL divergence) which is always greater or equal to zero and measures the
distance between two probability distributions. In this case, it makes sure that the
approximate posterior distribution q (z |x,θ)matches the prior distribution P (z) as closely
as possible, encouraging the latent space to follow a structured distribution. To get a
simple approximation, q (z |θ) is parameterized as a multivariate normal distribution with
a mean µ and a diagonal covariance matrix Σ, both parameterized by a deep neural
network:

q (z |x,θ) = N (z | gµ(x,θ), gΣ(x,θ)) .
Finally, we get the equation for the ELBO:

ELBO(ϕ,θ) =

∫︂
q (z |x,θ) log(P (x | z,ϕ)) dz −DKL (q (z |x,θ) ||P (z)) . (3.6)

The problem remains that the first integral is still intractable. But since it calculates an
expectation, it can be replaced by using the Monte Carlo estimate:

Ez(log(P (x | z,ϕ))) =
∫︂

log(P (x | z,ϕ))q (z |x,θ) dz ≈ 1

N

N∑︂
n=1

log(P (z∗
n | z,ϕ)).

Here, z∗
n is the n-th sample from q (z |x,θ). We get the following approximation for the

ELBO:
ELBO(ϕ,θ) ≈ log(P (x | z∗,ϕ))−DKL (q (z |x,θ) ||P (z)) . (3.7)
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In the special case with two normal distributions where one is a standard normal distribu-
tion, the second term of Equation (3.6), the KL divergence, can be calculated as

DKL (q (z |x, θ) ||P (z)) =
1

2

(︁
Tr(Σ) + µTµ−Dz − log(det(Σ))

)︁
,

where Dz is the dimensionality of the latent space.

Now we can compute the ELBO with the following steps:

1. We take a data point x and insert it into g(x,θ) to get the mean and variance of the
approximate posterior distribution q (z |x,θ).

2. We sample a proposal latent variable z∗ from this distribution.

3. Finally, we use z∗ to evaluate the ELBO using Equation (3.7).

One remaining challenge in training the models is that the process involves sampling from
a distribution, which introduces a stochastic component. This stochasticity prevents the
computation of gradients, making it impossible to directly optimize g(x,θ). To address
this problem, the reparameterization trick is used. It reformulates the sampling process to
make it differentiable. Instead of sampling z directly from q (z |x,θ), z is expressed as a
deterministic function of a noise variable ϵ (sampled from a standard normal distribution),
and the parameters of the original distribution. In this specific case, the distribution is
reparameterized as

z∗ = µ+Σ1/2ϵ, ϵ ∼ N (0, I).

This reformulation separates the stochasticity from parametersµ andΣ, allowing gradients
to flow through the deterministic parts. By enabling differentiation through the sampling
process, the reparameterization trick makes it possible to optimize the model using
gradient-based methods.

3.1.3 Architecture

Figure 3.1 shows the architecture of a VAE. This name is composed as follows: It is called
variational because it approximates the posterior distribution of the latent variables with
a simpler distribution, typically a Gaussian. It is called autoencoder because it encodes
high-dimensional input data x into a lower-dimensional latent representation z and then
reconstructs the original data as closely as possible from this latent vector.
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x g(x,θ)
µ

Σ

q (z |x,θ)

z∗ = µ+Σ1/2ϵ∗ f(z∗,ϕ) P (x | z∗,ϕ)

Figure 3.1: Architecture of a Variational Autoencoder (VAE): The high-dimensional in-
put x passes through the encoder network g to generate low dimensional
latent representation z. The reparameterization trick is used to express z as
a deterministic function depending on the noise variable ϵ. This step enables
gradients to pass through the network. The original input data is then recon-
structed as close as possible by passing the latent representation through the
decoder network f . (Figure based on Prince [48, Figure 17.9 and Figure 17.11])

Training a VAE involves optimizing the Evidence Lower Bound (ELBO), which balances the
quality of reconstructions and the alignment of the latent distribution with the prior. The
parameters ϕ and θ are updated iteratively using mini-batches of data and an optimization
algorithm such as Stochastic Gradient Descent (SGD) or Adam.

3.2 Recurrent State Space Models

While Variational Autoencoders (VAEs) are an essential building block in mapping high-
dimensional, complex data into a low-dimensional latent space, they represent just one
part of Dreamer’s world model. The full world model relies on a more advanced concept,
the Recurrent State Space Model (RSSM), introduced in the PlaNet paper [22]. The RSSM
extends the concept of VAEs from one distinct observation to a sequence of observations,
creating what is referred to as a sequential VAE. It can also be interpreted as a non-linear
Kalman filter, where the latent state evolves over time based on observed dynamics. A
defining feature of the RSSM architecture is its division of the latent state into stochastic
and deterministic components. This separation enables the model to capture both the
uncertainty and consistency in the environment’s dynamics, making it a critical element
for successful planning and decision-making in reinforcement learning tasks.
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(a) Deterministic model (b) Stochastic model (c) RSSM

Figure 3.2: Latent dynamics models: This figure shows three different designs for gen-
erative latent dynamics models. Circles indicate stochastic variables and
squares deterministic variables. The solid lines denote generative processes
and the dashed lines the encoding of the first real observation. The colors
make it possible to distinguish between actions (yellow), latent states (red),
and observations/rewards (orange). (a) Deterministic transition model using
a Recurrent Neural Network (RNN). (b) The stochastic approach using a State
Space Model (SSM). (c) The combination of both methods enables the model
to remember information from all previous states and simultaneously incor-
porate uncertainties from the real environment. It is called Recurrent State
Space Model (RSSM). (Figure from Hafner et al. [22] with a view adjustments)

Figure 3.2a and Figure 3.2b show the deterministic and stochastic approach for a genera-
tive dynamics model, respectively. Both capture the generative process of observations
(e.g. images) and rewards, by leveraging a learned model and a first real observation
to give a starting point. The key feature of the deterministic model is that it can pass
information through the complete sequence of states {ht}Tt=1, but can’t handle uncertain-
ties. On the other hand, the latent state-space model is fully stochastic and can handle
uncertainties but loses information on previous states when dealing with longer sequences
{st}Tt=1.
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The RSSM architecture combines both concepts to get the best of both worlds. It is
described by

Deterministic state model: ht = fϕ(ht−1, st−1,at−1)

Stochastic state model: st ∼ p (st |ht)

Observation model: ot ∼ p (ot |ht, st)

Reward model: rt ∼ p (rt |ht, st) ,

where fϕ(ht−1, st−1,at−1) is implemented as Recurrent Neural Network (RNN) with
parameters ϕ realizing the deterministic path of the model. The RSSM is illustrated in
Figure 3.2c and introduces a key distinction by splitting the latent state into a stochastic
component st and a deterministic componentht. Together, these two states build the latent
state zt. The inclusion of the deterministic part ht is crucial for enabling the model to retain
information over multiple time steps. It allows the model to deterministically access all
previous states, providing a more robust mechanism for capturing long-term dependencies
and improving the predictive capabilities of the generative process. The stochastic part st
captures the inherent uncertainty and variability in the environment, which is essential for
modeling complex, high-dimensional data and making robust predictions under uncertain
conditions.

3.3 Reinforcement Learning

Reinforcement Learning (RL) [55] is a framework for sequential decision-making, where
an agent interacts with an environment by performing actions to maximize the rewards
it receives over time. The agent learns a policy (a strategy for choosing actions) that
leads to the best long-term outcomes. For example, in a robotics context, a robot (agent)
performs movements (actions) in the real world (environment) to complete a task, such as
assembling components, and earn rewards based on its success.

RL faces several key challenges. Rewards can often be sparse. For instance, in a game of
chess, the outcome (win, lose, or draw) is only determined at the end, and it is difficult
to assign rewards to individual moves during the game. This difficulty is linked to the
temporal credit assignment problem, where there may be a significant delay between
a critical action and its associated reward. Additionally, environments are frequently
stochastic. Sticking to the chess example, an opponent may make different moves in the
same situation, introducing unpredictability. Another fundamental issue is the exploration-
exploitation trade-off: the agent must balance exploring new actions to discover potentially
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better strategies with exploiting known actions that yield high rewards. Addressing these
challenges is central to designing effective RL algorithms. All information in this section
comes from Prince [48, Chapter 19]. Unless explicitly stated otherwise, all statements are
based on this source.

3.3.1 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework used in RL to model
decision-making in environments where outcomes are partly random and partly under
the control of an agent. An MDP is the tuple (S,A, P, r, γ), where S is the set of states, A
is the set of actions, P (st+1 | st,at) is the transition probability of moving to state st+1

from state st after taking action at, r(st,at) is the reward received for taking action at

in state st, and γ ∈ (0, 1] is the discount factor, which balances immediate and future
rewards. The cumulative reward starting from the state st is given by

Rt =

∞∑︂
k=0

γkr(sk,ak).

MDPs satisfy the Markov property, meaning the future state depends only on the current
state and action, not on the history of past states. The goal in an MDP is to find a policy,
a mapping from states to actions, that maximizes the expected cumulative reward over
time.

3.3.2 Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process (POMDP) extends the MDP to scenarios
where the agent does not have full access to the environment’s true state. In a POMDP,
the agent receives observations drawn from the observation model Ω (ot | st) that provide
partial information about the current state. Because the true state is hidden, the agent
must maintain a belief, a probability distribution over possible states, based on past actions
and observations.

In this specific case, the concept of a POMDP is crucial. Solving a peg-in-hole insertion
task using visual and tactile input causes that the robot does not have full knowledge of
the environment’s precise state. Factors such as sensor noise, occlusions in visual data,
or variability in the tactile feedback from the GelSight sensor create partial observability.
By modeling the task as a POMDP, the model can maintain a belief over the possible
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states of the environment, integrating uncertain observations from both visual and tactile
modalities.

3.3.3 Policy

The policy is the rule that determines the agent’s actions based on the current state of the
environment. It defines the agent’s behavior and can be either deterministic or stochastic.
A deterministic policy maps a state directly to a specific action, represented as π(s) = a.
In contrast, a stochastic policy assigns probabilities to actions for each state, represented
as π (a | s), allowing the agent to explore different actions in uncertain environments.

3.3.4 Value Functions

In reinforcement learning, evaluating the quality of states and actions under a given policy
is crucial. Therefore, the state value function and the state action value function are
introduced.

The state value function,
V π(st) = E (Rt | st, π) ,

represents the expected return (cumulative reward) starting from state st and following
a policy π thereafter. It captures how good it is for the agent to be in a particular state,
considering the long-term rewards achievable from that point.

The state action value function,

Qπ(s,a) = E (Rt | st,at, π) ,

extends this concept by evaluating the expected return for taking a specific action at in
state st, and then following the policy π for the remaining trajectory. This function is
crucial for connecting future rewards to current actions, addressing the temporal credit
assignment problem by quantifying how an action at a given moment influences future
rewards.
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3.3.5 Policy Gradient Methods

Policy gradient methods are a class of reinforcement learning algorithms that directly
learn a parameterized stochastic policy π (at | st,θ), where θ represents the trainable
parameters of the policy. Instead of relying on a fixed mapping between states and actions,
these methods produce a probability distribution P (at | st) over the possible actions,
from which actions can be sampled. The sampling step inherently introduces exploration
into the agent’s behavior, allowing it to discover new strategies and avoid prematurely
converging to suboptimal solutions.

To formalize the optimization process, policy gradient algorithms operate over trajectories
of state-action pairs τ = {s1,a1, s2,a2, ..., sT ,aT } generated by interacting with the
environment. The goal is to maximize the expected return r(τ ), which is the cumulative
reward obtained across a trajectory. This is achieved by iteratively updating the policy
parameters θ to increase the probability of trajectories yielding higher rewards.

The parameter update is expressed as:

θ ← θ + α · 1
I

I∑︂
i=1

1

P (τi |θ)
∂P (τi |θ)

∂θ
r(τi), (3.8)

where α is the learning rate and I is the number of sampled trajectories or episodes.
P (τi |θ) represents the likelihood to observe a trajectory τi under the current policy.

The parameter update equation for policy gradient methods can be understood as a
reward-weighted likelihood adjustment. It modifies the policy parameters θ to increase
the likelihood P (τi |θ) of an observed trajectory τi in proportion to its reward r(τi),
ensuring that higher-reward trajectories have a greater influence on shaping the policy.
Additionally, the probability of observing a given trajectory is normalized within the update
to account for the fact that some trajectories are naturally more likely to occur, independent
of their reward. This normalization prevents the policy from disproportionately prioritizing
frequent but suboptimal trajectories. For trajectories that are already common under the
current policy and yield high rewards, the gradient update introduces relatively small
changes. This reflects the intuition that these trajectories suggest the policy is already
effective in those areas of the environment. Conversely, the largest updates arise from
rare trajectories that produce significant rewards. These updates encourage the policy
to explore and exploit underutilized areas of the state space, facilitating the discovery of
new and potentially more effective strategies.
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Finally, Equation (3.8) can be rewritten and simplified to get its final form:

θ ← θ + α · 1
I

I∑︂
i=1

T∑︂
t=1

∂ log [π (ait | sit,θ)]
∂θ

T∑︂
k=t

r(τik), (3.9)

where t is the time and i the episode. For a complete derivation of Equation (3.9) see
Prince [48, pp. 389–391].

One challenge associated with policy gradient methods is the issue of high variance in the
gradient estimates. This high variance arises because the updates rely on the stochastic
sampling of trajectories, and the variability in trajectory rewards can make it difficult to
achieve consistent and stable parameter updates. Consequently, many episodes are often
required to obtain reliable gradient estimates, which can slow down the learning process.

A common solution to this problem is to subtract a baseline b from the trajectory returns
r(τi) during the parameter update. This baseline serves to reduce the variance of the
gradient estimates without introducing bias. One effective choice for the baseline is to
make it dependent on the current state sit, such as using the state value function V π(sit)
estimated by a neural network. The state value function provides a context-aware baseline
that accounts for the inherent value of the state. By using this baseline, the policy gradient
focuses on optimizing actions relative to the expected return of the current state, rather
than being influenced by the absolute magnitude of the rewards.

This adjustment leads to the parameter update

θ ← θ + α
1

I

I∑︂
i=1

T∑︂
t=1

∂ log [π (ait | sit,θ)]
∂θ

(r(τit)− V π(sit)), (3.10)

where r(τit) is the discounted return for the partial trajectory τit that starts at time t:

r(τit) =
T∑︂

k=t+1

γk−t−1rik.
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3.3.6 Actor-Critic Methods

Actor-critic methods fall under the category of Temporal Difference (TD) policy gradient
algorithms, where the policy is updated based on feedback provided by a state value
function. Instead of relying on the full sum of future rewards, actor-critic methods approx-
imate this sum by using the observed reward from the current step and the discounted
value of the next state:

r(τit) ≈ rit + γ · V π(si,t+1,ϕ). (3.11)

The ϕ indicates that the state value is estimated by a second neural network. By applying
the approximation from Equation (3.11) and substituting it into Equation (3.10), we
derive the following relation:

θ ← θ + α
1

I

I∑︂
i=1

T∑︂
t=1

∂ log [π (ait | sit,θ)]
∂θ

(rit + γV π(si,t+1,ϕ)− V π(si,t,ϕ)). (3.12)

This equation defines the update rule for the parameters of the policy, commonly referred
to as the actor. The expression within the brackets of Equation (3.12) is known as the TD
error. This term evaluates the consistency between the estimated state value V π(si,t,ϕ)
and the estimate obtained after a single step, rit + γV π(si,t+1,ϕ). In theory, the TD error
enables this approach to update the policy at every single step, allowing for a continuous
learning process. However, in practice, this step-by-step updating is barely used. Instead,
the agent typically collects a batch of experience, which is then utilized to compute
updates, balancing computational efficiency with learning stability.

The parameters of the second neural network, which estimates the state value, are updated
by minimizing the squared TD error:

L(ϕ) =

I∑︂
i=1

T∑︂
t=1

(rit + γV π(si,t+1,ϕ)− V π(si,t,ϕ))
2 .

The second network is also called the critic because it evaluates the quality of the actions
chosen by the actor. In practice, the two networks are often realized as one network with
two sets of outputs, one for the policy and one for the state values.
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3.4 The Dreamer Framework

This work uses DreamerV3 [24] to learn a multi-modal policy that solves a peg-in-hole
insertion task. It learns behavior by rolling out complete imagined trajectories in a
compact latent space. These trajectories are then used to train an actor-critic network.
Dreamer promises to work across various domains with fixed hyperparameters. This
section will motivate the theoretical background by describing Dreamer’s underlying idea
and architecture.

The fundamental element of Dreamer is its world model based on a RSSM described in
Section 3.2 (see Figure 3.3a):

RSSM

⎧⎪⎨⎪⎩
Sequence model: ht = fϕ(ht−1, st−1,at−1)

Encoder: st ∼ (st |ht,xt)

Dynamics predictor: ŝt ∼ (ŝt |ht)

Reward predictor: r̂t ∼ (r̂t |ht, st)

Continue predictor: ĉt ∼ (ĉt |ht, st)

Decoder: x̂t ∼ (x̂t |ht, st)

In the first step, the sequence model computes a recurrent or latent state ht using the
previous recurrent state ht−1, the prior stochastic representation st−1 of the environment,
and the previous action at−1. The used model corresponds to the deterministic state
model in Section 3.2. Next, the input xt and the recurrent state ht are encoded to a
stochastic representation st capturing the current state of the environment. Together the
recurrent state and the stochastic representation form the latent state zt of the model.
In comparison to the previously described stochastic part of a RSSM, this model uses a
discrete representation model indicated by the checkerboard pattern in Figure 3.3.

To enable imagined rollouts, the dynamics predictor, corresponding to the stochastic
state model in Section 3.2, is trained to replace the encoder by relying solely on the
recurrent state. This capability allows Dreamer to simulate trajectories using only one
initial real-world observation to generate complete imagined rollouts, making it possible
to optimize its policy entirely within the latent state. Besides these models, Dreamer also
needs a predictor for the reward and whether the trajectory should continue or not. The
last model, the decoder, tries to reconstruct the original observations to ensure that the
recurrent state and the stochastic representation retain all necessary information about
the environment. Its equivalent in Section 3.2 is the observation model.
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The encoder and decoder are realized as Convolutional Neural Networks (CNNs) for high-
dimensional (visual) inputs and as Multi-Layered Perceptrons (MLPs) for low-dimensional
inputs. The other predictors are also implemented as MLPs and the sequence model as
RNN.

x̂ x◌̂ x◌̂

sss

(a) World model

s s s

(b) Actor critic learning

Figure 3.3: Dreamer’s world model: (a) Dreamer learns a dynamics model combining a
deterministic recurrent state h and a stochastic, discrete representation s of
the observations. Together, these states build the latent state z. (b) With the
learned dynamics model, Dreamer is able to to simulate complete trajectories
needing only one real observation to start the process. It uses these imagined
trajectories to optimize its actor-critic network. (Figure from Hafner et al. [24])

Once the world model is learned, Dreamer leverages it to simulate rollouts entirely in the
latent space, requiring only one initial real-world observation to begin the process. These
imagined trajectories enable Dreamer to optimize its actor-critic network by iteratively
refining the policy and the state value estimation based on simulated interactions. The
updated policy is then deployed in the real world to collect new data, potentially achieving
higher rewards and providing new insights into the environment. This new data is
subsequently incorporated to enhance the world model, creating a self-improving cycle
that integrates learning, simulation, and real-world interaction.
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3.5 Shapley Value Analysis

Shapley values [54], originating from cooperative game theory, provide a method to fairly
distribute the value generated by a group of contributors based on their individual contri-
butions. To illustrate, imagine three persons collaborating to develop a groundbreaking
new technology and founding a company valued at €1 million. The question arises: how
should the value, or company shares, be divided among them based on their contributions?

At first glance, an equal split might seem fair, as it is challenging to determine precisely
how much each person contributed to the company’s success. However, if time travel
were possible, you could evaluate the value of the company under various scenarios: if
only two of the three individuals collaborated, or even if only one worked on the project.
These hypothetical evaluations could reveal whether certain contributors were more or
less crucial to the final outcome. Shapley values formalize this approach by calculating
the value of all possible subsets of contributors and determining each individual’s exact
contribution to the final value.

While this evaluation might be infeasible in real-world scenarios like the example above,
the concept can be effectively applied to machine learning. In this context, Shapley
values are used to evaluate the importance of specific features or inputs of a model. By
repeatedly testing the model’s performance with and without certain features, Shapley
values quantify the unique contribution of each feature to the model’s overall performance.
This ability makes Shapley values a powerful tool for interpreting and understanding
machine learning algorithms.

This idea is formalized by the equation

Φi(x) = |F|−1
∑︂

S⊂F\{i}

(︃
|F| − 1
|S|

)︃(︁
f(xS∪{i})− f(x)

)︁
(3.13)

to calculate the expected contribution or the Shapley value Φi(x) of feature i. F is the set
of all features and S ⊂ F \ {i} is the subset of features excluding feature i. The absolute
value of a set is considered the total number of features inside this set. The last term of
Equation (3.13) measures the marginal contribution of feature i. It compares the output
of f when feature i is added to subset S versus when it is excluded.

Shapley values, while a powerful tool for understanding feature contributions, come with
a significant limitation: their computational cost. As the number of features N increases,
the number of possible feature combinations grows exponentially, scaling with 2N . This
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rapid increase in complexity makes the calculation of Shapley values computationally
expensive, especially for models with a large number of features.

Despite this limitation, the Shapley value framework is sufficient for analyzing the model
in this work due to the manageable number of features under consideration. However, for
cases where the number of features becomes prohibitively large, alternative methods such
as SHapley Additive exPlanations (SHAP) [41] can be utilized. SHAP offers an efficient
approximation of Shapley values, making it suitable for high-dimensional models while
retaining the interpretability benefits of the original method.
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4 Methodology

This chapter provides an overview of the hardware setup and offers a brief explanation of
the software implementation. Following that, the integration of Shapley value analysis
into Dreamer is discussed.

4.1 Experimental Setup

The experimental setup, illustrated in Figure 4.1, is based on the work of Palenicek et al.
[47]. The primary objective is to insert the cylinder into the hole located at the center of
the base plate. During each episode, the cylinder is held by specialized grippers that can
mount GelSight mini sensors [18], positioned on the left and right sides of the cylinder.

To address scenarios where the cylinder rotates inside the gripper or is dropped, a self-
resetting mechanism is incorporated, which was first introduced by Palenicek et al. [47].
A thin thread attaches the cylinder to the end-effector, allowing it to hang down when the
gripper is opened. This setup enables the robot to reposition the cylinder consistently by
moving with the open gripper above the reset box, lowering it to let the cylinder settle
into a predefined position, and regrasping it in the same position and orientation every
time. This automated reset mechanism ensures uninterrupted operation, enabling the
robot to practice the insertion task continuously over extended periods without requiring
human intervention.

In this work, the original design from Palenicek et al. [47] has been enhanced with two
significant upgrades to improve the flexibility and complexity of the experimental setup.
The first upgrade introduces a modular base plate. This allows the hole’s diameter and
depth to be easily adjusted by 3D printing different hole inserts and replacing them within
the base plate. The second upgrade adds the ability for the hole to rotate around its
vertical axis. This adjustment makes it possible to randomize the orientation of the hole,
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particularly when the hole does not go straight down but has a specific angle. Before
diving into the details of these two adjustments, the 3D printing process and the hardware
are first described.

Figure 4.1: Experimental setup: The experimental setup features specialized grippers
designed to mount the GelSight sensors, which securely hold the cylinder
between them. To prevent the cylinder from being dropped completely, a
thin thread is attached to its upper end, allowing it to hang down from the
end-effector when the gripper is open. For consistent repositioning, the robot
regrasps the cylinder in a predefined position by moving with an open gripper
above a reset box, lowering down, and grasping the cylinder again. The ob-
jective of the experiment is to insert the cylinder into the barely visible hole
located in the center of the base plate. Additionally, the camera films the
scene, providing important observations (besides the GelSight images) to
solve the task.

4.1.1 3D printing

An essential aspect of constructing the experimental setup is the use of 3D printing
technology, which provides the flexibility to rapidly prototype and adjust components as
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needed. Several parts of the setup are 3D printed, including the gripper for mounting the
GelSight sensors, the base plate, modular holes with varying diameters, the reset box, and
the cylinder equipped with arms to hold OptiTrack markers.

The 3D printing process was carried out using the Prusa i3MK3S [1], a reliable and versatile
3D printer well-suited for creating high-precision parts. For 3D modeling, Autodesk
Fusion [31] was used to design the components, while the PrusaSlicer [2] was deployed
to convert the 3D models into G-code files, which are instructions for the printer.

The advantages of 3D printing were particularly evident in this project. It enabled rapid
prototyping, allowing for iterative design and testing. Additionally, it facilitated quick
adjustments to the experimental setup without waiting for new parts to be manufactured
and delivered.

4.1.2 Hardware

The central part of the experimental setup is the Franka Research 3 robot [20], a state-
of-the-art robotic arm with 7 degrees of freedom, which provides high precision and
flexibility for manipulation tasks. This robot can be controlled via the Frank Control
Interface (FCI) at a frequency of 1 kHz, enabling real-time control and communication for
complex tasks.

Depending on the observation space configuration, the hardware is capable of incorporat-
ing tactile feedback, visual feedback, and the end-effector position. The robot’s internal
measurement system is used to track the end-effector’s position. Tactile sensing is provided
by the GelSight Mini [18], a high-resolution sensor capable of capturing detailed surface
contact information. Visual feedback is provided by an Intel RealSense camera [10], which
can offer depth and color images for additional context during the task.

OptiTrack [44] is used for precise tracking of objects in the environment, providing critical
spatial information for the experiment. Specifically, OptiTrack is used to monitor the
position of the base, which is necessary for calculating the location of the hole and the
reset box. Additionally, OptiTrack tracks the position and orientation of the cylinder,
allowing for accurate reward calculation and ensuring that the cylinder remains within a
defined workspace. The tracking also helps to limit the angle of the cylinder relative to
the end-effector’s orientation, which is crucial for avoiding damage to the cylinder and
other parts of the setup.
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4.1.3 Original setup

The original experimental setup from the previous work [47] had some significant lim-
itations. The hole diameter was fixed at 23mm and the hole depth was 17mm, which
restricted the range of possible experiments. But in the beginning, it was used to perform
a proof of concept, since visual data was never utilized in this setup before.

Initially, the camera was mounted directly onto the end-effector to provide highly dynamic
visual feedback during the task. However, this setup presented a number of challenges.
The camera often covered the OptiTrack markers, making it difficult to track the position
of the cylinder in the environment. Furthermore, the movement of the camera during the
task caused problems with the cables, which would often become wiggled or disconnected,
leading to a termination of the training process. To resolve these issues, the camera was
repositioned to a fixed perspective, overlooking the entire scene.

4.1.4 Upgrade 1

In the first iteration of improving the experimental setup (Figure 4.2), the system was
made modular to increase its flexibility. The base plate was redesigned to include a 5 cm
hole at its center, which allows for quick and easy replacement of the hole insert (see
Figure 4.2a). This modular design enables the system to accommodate holes with varying
diameters and depths by simply swapping out the insert. The hole inserts are securely
attached to the base plate using a screw, ensuring that the robot cannot accidentally pull
them out during operation. This robust attachment method still allows rapid adjustments.
With the modular approach, printing a new hole insert takes only 2-3 hours, a significant
improvement compared to the more than 10 hours required to print a completely new base
plate. This not only reduces the time required for deploying new hole configurations but
also minimizes material usage, making the setup more resource-efficient and adaptable to
different experimental requirements.
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(a) Hole insert (b) Exploded view

Figure 4.2: Drawing of upgrade 1: This modular upgrade to the setup allows to quickly
change the parameters of the hole by simply replacing the insert in the center
of the base plate. The insert is secured by a screw, avoiding that the robot
accidentally pulls it out. The lines of long and short dashes resemble sym-
metry lines. (a) shows the design for the insert with a hole for the screw.
(b) shows the exploded view of the setup providing a visualization of how it
is assembled.

4.1.5 Upgrade 2

The second upgrade of the setup, shown in Figure 4.3, builds upon the modular design
established in the first iteration, leveraging the rotational symmetry of the hole inserts.
Each hole insert (Figure 4.3a) is now equipped with a gear at its bottom, enabling
controlled rotation. To prevent any vertical displacement during operation, the inserts
are again secured by a screw that engages with a rotationally symmetrical groove on the
insert. A smaller motor-side gearwheel, attached to a stepper motor, drives the rotation of
the hole insert. This precise motion is monitored by a Hall sensor, which is directly linked
to the hole insert and provides accurate information about its rotation angle. Both the
Hall sensor and the stepper motor are mounted securely on a dedicated frame that holds
the components in place, ensuring stability and reliable operation.

The stepper motor is controlled, and the Hall sensor outputs are processed, by an Arduino
Uno [4]. This microcontroller acts as the interface for managing the rotation mechanism of
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the hole insert. Commands can be sent to the Arduino via serial communication, allowing
precise control over the stepper motor. Specifically, the Arduino can receive instructions to
rotate the stepper motor by a specified number of steps, either in the positive or negative
direction. Additionally, it provides feedback on the current angle of the hole insert by
measuring the output voltage of the Hall sensor.

This experimental setup was specifically developed to increase the complexity of the task,
pushing the boundaries of what the model can learn and accomplish. One significant
enhancement is that the holes can now be oriented at angles of up to 15°, introducing
an additional challenge for the model. Therefore, the end-effector is now capable of
adjusting its orientation, adding another layer of difficulty to the insertion task. With these
adjustments, the hope is that Dreamer will need to rely more heavily on its sense of touch.
While the camera can provide a clear view of the hole’s position, it cannot determine the
hole’s precise orientation. This limitation makes it essential for Dreamer to "feel" its way
through the task using tactile feedback.
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(a) Hole insert (b) Exploded view

Figure 4.3: Drawing of upgrade 2: In this upgrade, the hole insert can now rotate around
its vertical axis. This is achieved by equipping the insert with a gear that is
driven by a smaller gearwheel connected to a stepper motor. A rotary encoder
(Hall sensor) is directly linked to the hole insert, providing feedback on its
current rotation angle. To prevent vertical displacement, the insert is secured
by a screw, which engages with a rotationally symmetrical groove. A mount
for the Hall sensor and the stepper motor holds everything in place. The lines
of long and short dashes resemble symmetry lines. (a) shows the hole insert
turned upside down to see the hole where the Hall sensor gets linked to it.
(b) shows the exploded view of the setup leaving out the screws for mounting
the Hall sensor and the stepper motor to keep a better overview.
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4.2 Software and Computation Hardware

Dreamer utilizes a model with a parameter count ranging from 8 to 200 million, depending
on the specific configuration. This considerable model complexity naturally results in
significant computational demands for executing and optimizing the model effectively and
in real time. To accommodate these requirements, a high-performance PC was employed
with the following specifications: an AMD Ryzen 9 7950X3D 16-Core Processor, 64 GB of
RAM, and a GeForce RTX 4090 graphics card. This setup ensures that the computational
load associated with training and executing Dreamer can be managed efficiently, providing
the necessary resources for the model’s intensive operations.

The software stack used in this project incorporates various tools to facilitate development,
environment management, and experimental logging. Version control for the source code
is managed with Git [9], ensuring a robust and collaborative workflow. Miniconda [3]
is utilized to create and manage isolated environments, streamlining dependency han-
dling and ensuring reproducibility. Development is carried out using Visual Studio Code
(VS Code) [42] as the integrated development environment (IDE), enhanced with Python
extensions to support debugging, linting, and code navigation. For processing data from
the OptiTrack system, Motive [43] is employed. Experiment results are logged and vi-
sualized using Weights & Biases [5], enabling comprehensive tracking and analysis of
experimental progress. The project runs on Python version 3.11.9, and the Python pack-
ages used for implementation and analysis are introduced incrementally in the subsequent
sections, offering detailed insights into their roles and integration.

4.3 Implementation

This section outlines the implementation of the various hardware interfaces and explains
how they are integrated into the environment class. It also details the structure of the
reward function and describes how Dreamer is incorporated into the setup.

4.3.1 Hardware Interfaces

A key component of the implementation is the codebase that facilitates interaction with
the hardware used in the experimental setup. It consists of various classes developed to
serve as interfaces to the respective hardware systems.
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The first class PandaReal enables interaction with the Franka Research 3 robot. It uses
an existing Python package, franky [50], which itself builds upon the official Franka
library [15]. It delivers smooth motions and leverages Franka’s internal impedance
controller for the execution of movements. The class provides several essential functions,
including moving the robot to its neutral position, performing absolute and relative motions
along a specified axis, or executing movements across all three axes simultaneously. These
motions can either maintain a default end-effector orientation or adjust it based on a
quaternion passed to the function. Additionally, the class includes methods for retrieving
the robot’s state in various forms, such as its joint positions or the position and orientation
of the end effector.

Two additional classes handle input from the GelSight Mini and the Intel RealSense
cameras. Despite having similar structures and naming conventions, the classes are
implemented separately due to the use of distinct Python packages, each tailored to its
respective hardware. Attempts to merge the functionality into a single class resulted
in errors related to hardware or implementation incompatibilities, making separation
necessary.

Another interface class is dedicated to receiving data from the OptiTrack system. This
class is built using the Python NatNet Client package by Schneider [51]. It provides a
straightforward way to access and process the position and orientation data of tracked
objects, such as the cylinder.

Finally, a class was implemented to manage serial communication with the Arduino,
which controls the hole insert’s orientation. The core function of this class is the new_angle-
method, which sends a command to the Arduino to rotate the hole insert by a randomly
determined amount. After waiting for the rotation process to complete, the method sends
another command to retrieve the current rotation angle of the hole.

4.3.2 The Environment Class

All hardware interface classes are integrated into a central environment class, built using
the Gymnasium framework [14]. This environment class serves as the foundation for
the interaction between the system and the real-world setup, coordinating all hardware
components.

Key functionalities of the environment class include the step and reset methods. The step
function defines how the system executes an action, capturing the resulting observations,
rewards, and termination signals. The reset function ensures the system is ready for a new
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episode by reinitializing the hardware setup, such as repositioning the robot, resetting
the cylinder, and adjusting the hole orientation. These are the key methods to interact
with the real environment and collect data for Dreamer.

Reset function

The reset function is primarily adapted from the methodology outlined by Palenicek et al.
[47], with a few adjustments to accommodate the changes made to the experimental setup.
The reset procedure begins by pulling the cylinder out of the hole if the last episode was
successful. First, the gripper is opened and then the cylinder is pulled out to protect the
thin thread from unnecessary stress. If the cylinder was not successfully inserted during
the previous episode, the end-effector instead raises to a predefined height and releases
the cylinder, ensuring that the thread does not become entangled with the OptiTrack
markers. Afterward, the robot moves the end-effector to a neutral position, defined via
joint positions, to prevent the robot from entering singularities over extended operations.
The reset process then continues by positioning the end-effector above the reset box. The
robot lowers the end-effector, grasps the cylinder securely, lifts it back up, and moves to
the random initial position of the next episode. Throughout this sequence, each step is
carefully monitored using OptiTrack to verify the cylinder’s orientation and placement.
If any issues arise, such as the cylinder being twisted or misaligned during the insertion
into the reset box, the procedure attempts to recover multiple times. If these recovery
attempts fail after several retries, the entire training process is halted to avoid continued
errors. In cases where the cylinder remains correctly aligned and untwisted at the end of
an episode, the next episode can commence immediately without a reset. However, this is
limited to a maximum of five consecutive episodes to ensure stability. After this threshold,
the system automatically resets the cylinder without verifying its orientation.

With the incorporation of the second upgrade to the experimental setup, the reset function
requires further adjustments to accommodate the rotational capabilities of the end-effector.
If the cylinder was successfully inserted into the hole during the previous episode, the
end-effector must now maintain its orientation while pulling the cylinder out. It is ensured
by a straight extraction aligned with the cylinder’s current orientation and the gripper
closed, preventing unnecessary stress on the thin thread or damage to the experimental
components. Only after the cylinder has been fully removed from the hole, the end-effector
can adjust to its neutral orientation. The measurement of the cylinder’s orientation has
also been updated. It is now determined relative to the orientation of the end-effector
when deciding whether the next episode can proceed without a reset. Additionally, the
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orientation of the hole must be randomized before each new episode, regardless of whether
a full reset procedure is needed. Importantly, this randomization can only occur after the
cylinder has been fully extracted from the hole, ensuring that the reset procedure and the
task preparation remain sequential and organized.

Step function

The step function in the environment can be divided into three distinct parts:

1. Performing the action

2. Maintaining the action frequency

3. Calculating the reward and returning values

The first part of the step function focuses on executing the action provided by Dreamer.
When using the first upgrade of the setup, this process is straightforward. The action vector
a = [∆x,∆y,∆z]⊺ specifies a relative movement along the three axes. The robot performs
this motion asynchronously, meaning the function does not wait for the movement to
complete before returning. This approach ensures continuous and smooth operation,
avoiding interruptions between actions. With the second upgrade of the setup, which
introduces rotational capabilities for the end-effector, the action vector expands to five
components: a = [∆x,∆y,∆z, θ1, θ2]

⊺. The first three values still govern the relative
translational movement, while the additional two control the rotation of the end-effector.
For a detailed explanation of how the orientation is modified using these values, refer to
Section 6.1. The key concept to understand here is that the rotation design ensures the
gripper consistently faces the same direction avoiding to turn the cylinder around the
symmetry axis.

The second part of the step function ensures that the action frequency of 10Hz is main-
tained throughout all experiments. To achieve this, the function waits for an appropriate
amount of time after starting the action. However, simply waiting for a fixed duration is
not sufficient, as the execution of the code within the step function, along with Dreamer’s
processing time to compute the next action, also takes up noticeable time. To address
this issue, the function estimates the duration of these intermediate computations and
adjusts the waiting time accordingly. This dynamic adjustment ensures that the overall
timing aligns with the desired action frequency, maintaining a consistent and predictable
interaction with the environment.
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In the third part of the step function, the reward is calculated based on the current state
of the environment after taking the agent’s actions. Details about the reward computation
are provided in the next section. Additionally, the function checks whether the episode
has reached its termination conditions. An episode is considered finished under several
circumstances:

• The goal is successfully achieved, meaning the cylinder is inserted into the hole.

• The cylinder leaves the defined workspace.

• The cylinder tilts beyond a predefined threshold, indicating excessive rotation.

• The maximum number of steps N = 400 for the episode is reached, at which point
the episode is also truncated.

When using the second upgrade of the setup, the orientation of the end-effector introduces
an additional termination condition. If the end-effector rotates too far beyond the allowable
limits, the episode ends to prevent undesired behaviors.

At the end of each episode, the function also fills an info dictionary with relevant data
about the episode, such as whether it was successful, the insertion time for successful
attempts, and the individual reward shares. This information is valuable for analysis and
debugging purposes. Finally, the step function returns all the required values, including
the current state, the reward, whether the episode is finished, and the info dictionary.

Reward

The reward function, much like the experimental setup, underwent numerous adjustments
throughout this work. To provide precise mathematical expressions for the reward function,
the following vectors are defined: pc ∈ R3 represents the position of the lower tip of the
cylinder, pg ∈ R3 represents the goal position, ph ∈ R3 represents the position of the hole
on the base plate, and β denotes the rotation of the cylinder within the gripper, described
as a rotation around a single axis. Initially, it included several components designed
to guide the robot’s learning process effectively. A significant final reward of +100 was
granted for successful task completion. Conversely, substantial penalties were assigned to
discourage undesirable outcomes: a final penalty of −100 was applied if the cylinder left
the workspace, and another penalty of −50 was given if the cylinder’s absolute rotation
exceeded 10° leading to the end of that episode. These terminal rewards and penalties
are summarized in the following equation:
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rt = 100 · 1{G}(pc)⏞ ⏟⏟ ⏞
terminal reward

−100 · 1{W}(pc)⏞ ⏟⏟ ⏞
workspace penalty

−50 · 1{R}(β),⏞ ⏟⏟ ⏞
terminal rotation penalty

where G = {x ∈ R3 : |pg − x| < (5, 5, 5)[mm]} and 1{G}(pc) is 1 when pc lies inside the
set G, otherwise its value is 0. The workspace is described in relation to the position of
the hole ph by the setW = {x ∈ R3 : (−3,−3,−5)[cm] < x− ph < (3, 3, 6)[cm]} leading
to cubic workspace with the edge length 6[cm] on the surface of the base plate. Notice
that the workspace also goes underneath the surface of the base plate, avoiding that the
cylinder goes out of the workspace when it is inserted into the hole. The set of all possible
rotations is described by R = {ϕ ∈ R3 : ϕ < 10◦}.
Additionally, intermediate penalties were included to fine-tune the robot’s behavior. A
linear penalty was introduced for rotations of the cylinder between 4° and 10°, encouraging
the system to minimize misalignments. Another linear penalty discouraged all distances
from the goal, incentivizing closer alignment with the target position. Finally, an action
penalty was implemented to encourage efficient use of actions, discouraging unnecessary
or overly large movements. These continuous rewards and penalties are summarized in
this equation:

rc = −5 · |pg − pc|⏞ ⏟⏟ ⏞
linear penalty

−0.1 ·max{(β − 4◦), 0}⏞ ⏟⏟ ⏞
rotation penalty

−10−3 · |a|,⏞ ⏟⏟ ⏞
action penalty

resulting in six different reward terms when adding up continuous and terminal reward
shares.

While this reward function was designed to account for a variety of factors influencing
the robot’s performance, it quickly became apparent that its complexity posed significant
challenges to the learning process. Although the original setup allowed the agent to learn
the task with this reward function, introducing the first upgrade revealed some serious
downsides. Specifically, the agent frequently adopted a counterproductive strategy: it
learned to exit the workspace as quickly as possible. This approach minimized the linear
penalty for distance from the goal and avoided penalties related to cylinder rotation.
Attempts to address these issues led to further modifications of the reward function.
However, these adjustments only increased the complexity of the reward structure and
often yielded limited improvements. The challenge lies in creating a reward system
that effectively guides the agent toward successful task completion without encouraging
unintended behaviors or adding unnecessary computational overhead. These experiences
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underscored the importance of balancing simplicity and effectiveness in reward function
design.

After extensive trial and error, the reward function was completely revised. The new
approach replaced the linear penalty, which was originally designed to attract the cylinder
to the goal by minimizing the penalty near the goal, with a linear reward. This new term
is nearly zero at the edges of the workspace and reaches its maximum value at the goal
position, directly encouraging the agent to move closer to the goal. Introducing this linear
reward significantly simplified the reward function by making many of its components
redundant. For example, the final penalty for leaving the workspace became unnecessary.
Since leaving the workspace early reduces the agent’s opportunity to accumulate the
linear reward, it implicitly discourages the agent from exiting the workspace. Similarly,
the final penalty for the cylinder rotation was also removed. Tilting the cylinder still ends
the episode prematurely, reducing the linear reward the agent can earn and naturally
penalizing this behavior without requiring an explicit term. The revised reward function
was stripped down to just three essential terms:

1. The linear reward encourages proximity to the goal by increasing as the cylinder
gets closer.

2. A final reward, granted upon successful completion of the task.

3. An action penalty, to prevent excessive or unnecessary movements.

It is expressed using the following mathematical equation:

r = 5 · (0.1− |pg − pe|)⏞ ⏟⏟ ⏞
proximity to the goal

+500 · 1{G}(pg)⏞ ⏟⏟ ⏞
terminal reward

−10−3 · |a|,⏞ ⏟⏟ ⏞
action penalty

using the same set for G as described above. This new reward structure means a real
simplification compared to the previous one and additionally guides the agent successfully.

4.3.3 Integration of Dreamer

With the environment fully implemented, the next step is integrating Dreamer to train
and evaluate the model. Dreamer provides various scripts to execute its model, and for
this work, the parallel script is utilized. This script enables the parallelization of data
collection by interacting with the environment and the simultaneous training of the model
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using the collected data. This parallel execution is crucial because, without it, the training
process would interrupt the flow of an episode, causing breaks that make it impossible
to maintain the required action frequency. Such interruptions would result in episodes
unusable for training. Additionally, the eval_only script from Dreamer is employed to
evaluate the model’s performance. This script is also used to collect replay data, which is
later utilized to perform Shapley value analysis.

To execute Dreamer, the environment provides observations in the form of visual and
tactile inputs. Specifically, the visual observations are denoted as ovis ∈ R64×64×3, and
the tactile observations as otac ∈ R64×64×3. Both types of observations are scaled down
to these specified dimensions to match the input requirements of Dreamer. Although
these dimensions might seem small compared to typical high-resolution inputs, they have
been found sufficient in this work for Dreamer to successfully learn the task. Dreamer
processes these inputs and determines the next action, which is then passed back to the
environment for execution. The action returned by Dreamer is either a three-dimensional
or five-dimensional vector, depending on the setup as described in Section 4.3.2. A visual
summary of the integration of Dreamer and the environment class is shown in Figure 3.3.

Adjustments to the Default Dreamer Implementation

During the integration of Dreamer, several adjustments were made to the framework to
enhance its compatibility and usability. One of the key changes was adding support for
Gymnasium environments. Originally, Dreamer only supported the legacy gym environ-
ments, but this limitation was overcome by incorporating a ready-to-use class from Toyer
[56], enabling seamless integration with Gymnasium.

Dreamer also manages the logging of important metrics to Weights & Biases, which is
crucial for tracking and evaluating the training process. To log additional data, developers
traditionally needed to extend the observation space by introducing so-called log variables
(the keys of these variables start with the string "log_"). While these variables are not
visible to the policy, they are recorded during the logging process. However, this approach
proved inconvenient during development, as it required modifications to the observation
space whenever new data needed to be logged. To address this issue, the implementation
was revised to pass the info dictionary through Dreamer and log all relevant data from it.
This adjustment not only simplifies the logging process but also keeps the observation space
clean. The new approach provides the flexibility to log new data effortlessly, improving
the overall development workflow.
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Figure 4.4: Integration of Dreamer and the environment class: The RealSense,
GelSight, or PandaReal classes deliver the observations, depending on
the configuration of the observation space. Dreamer sends back actions a
through the environment to the robot. The dashed lines visualize the flow of
data to calculate the reward. The OptiTrack class sends information about
the current positions p of the cylinder and the goal. The reward function then
calculates the reward r. In the newest upgrade of the setup, the Arduino
class is used to adjust and measure the orientation of the hole. This graphic
is not intended to be exhaustive but illustrates the most important data flows
between the environment and Dreamer.
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While using the parallel script to integrate Dreamer, a significant issue was discovered
related to the saving of checkpoints during the parallelized processes. Many functions
within the script rely on a should_save variable to determine when to save the current
checkpoint. However, this variable is not initialized simultaneously across all parallel
processes. As a result, there were inconsistencies in the timing of checkpoint saves, leading
to relatively large and unpredictable time spans between saves. To address this issue,
a centralized should_save variable was introduced. This central variable is shared
among all processes that need to check its state, ensuring synchronized checkpoint saving
across all parallel tasks. The functionality for this shared variable was implemented using
Python’s BaseManager class from the multiprocessing package.

In the original implementation of Dreamer, visual input modalities were processed by
stacking the images on top of each other to form a single 64× 64× 6 vector. This combined
input was then passed through a single CNN in the encoder. While this method is effective
for multiple cameras capturing the same scene from different angles, it is not an ideal
solution when dealing with distinct visual modalities, such as visual and tactile inputs, even
though tests showed that it remains functional when using the original implementation.
To improve upon this, the encoder was restructured to use separate CNNs for each high-
dimensional input modality. This change not only allows for more tailored processing
of each input type but also introduces the flexibility to handle inputs with differing
dimensions.

Hyperparameters

The hyperparameters of Dreamer remained fixed throughout all experiments to ensure
consistency in the algorithm’s performance. However, the experimental setup introduced
additional hyperparameters that required careful consideration to optimize the learning
process. Examples of these hyperparameters include the dimensions of the workspace,
the maximum length of an episode, and the operational velocity during an episode. A
detailed list of these hyperparameters can be found in Section 6.2 for reference.

To simplify the manipulation of these experimental hyperparameters, a YAML configura-
tion file was introduced. This file not only allows easy adjustment of hyperparameters but
also contains other essential configuration values. For instance, it specifies how frequently
Dreamer should log videos to Weights & Biases, helping to avoid excessive logging.
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4.4 Integration of Shapley Value Analysis

To conduct Shapley value analysis, it is necessary to load both a checkpoint of the current
model and the corresponding replays of real trajectories. The most reliable way to obtain
these checkpoints and replays is by utilizing data from an evaluation phase. During evalu-
ation, the model remains static and does not update its parameters, ensuring consistent
and reproducible results. The evaluation process is designed to facilitate this analysis by
saving the specific checkpoint used and its associated replays in a separate folder.

The first crucial question in performing Shapley value analysis is determining which input
features to include in the computation. Initial experiments explored separating the images
from visual and tactile feedback into 128 equally sized sections or features, resembling a
checkerboard pattern. However, this approach resulted in highly noisy Shapley values,
making it challenging to draw meaningful conclusions. One potential explanation for this
behavior is the sheer number of feature combinations involved in this setup. With 128
features, the possible combinations scale exponentially to 2128, making the estimation of
Shapley values computationally expensive and less reliable due to the limited sampling
possible in practical scenarios. An alternative approach that yielded better results was
to define four distinct features: the hidden state, the previous action, the visual input as
a whole, and the tactile input as a whole. This reduction in feature count improved the
results of the Shapley value analysis, providing clearer insights into the contributions of
these key components to the model’s decision-making process.

The next important consideration in Shapley value analysis is determining how to appro-
priately mask the modalities when they are absent. This masking process is critical to
ensure that the model’s behavior under different feature combinations accurately reflects
the impact of the omitted inputs. For the hidden state, the masking is handled using a
built-in Dreamer function. This function initializes the hidden state in the same way it
does at the start of a new episode when the hidden state carries no information other than
the initialization itself. The previous action is masked by simply replacing it with zeros.
This straightforward approach ensures that the policy does not receive any actionable in-
formation when the previous action is considered absent. For the visual and tactile inputs,
both image modalities are masked by replacing them with zero-filled arrays, effectively
creating completely black images. These black images are then passed into the policy
when an image modality is absent.

The implementation of Shapley value analysis in this work leverages an existing SHAP
framework [40]. Specifically, the Exact Explainer [39] is utilized, as it is well-suited for
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cases with fewer than 15 input features and as the name suggests calculates exact Shapley
values without estimation. To use the Exact Explainer, its constructor requires two key
inputs: a policy function and a mask for the data. A common approach to define this
mask is to use arrays of zeros and ones, where an array of 4 zeros indicates the absence
of all features, and an array of 4 ones signals the presence of all features. This masking
convention allows the explainer to systematically generate and test all combinations of
feature presence and absence. For each combination, the explainer passes the mask to the
policy function. To handle these masks, a custom policy function needs to be implemented.
This function is designed to process the masked input, apply the required transformations
(e.g., masking the hidden state, previous action, visual input, or tactile input), and then
execute Dreamer’s policy using the modified input data. The remaining steps are handled
by the SHAP framework. The explainer computes and returns the Shapley values, showing
how each input feature contributed to every action value. For example, with 4 input
features and 3 action values, the framework produces 12 Shapley values in total. These
values provide a detailed insight into the importance of each feature in determining the
model’s actions, forming a basis for analyzing and interpreting the model’s decision-making
process.
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5 Results

This section presents the results of two separate studies. The first study involves experi-
ments using the original setup, incorporating both tactile and visual feedback to serve
as a proof of concept. During this phase, an ablation study is conducted to evaluate the
impact of removing tactile feedback. In the second study, experiments are performed using
an upgraded, modular setup (upgrade 1), which introduces varying hole diameters and
deeper holes with a depth of 4cm. Similar to the first study, an ablation of tactile feedback
is conducted to assess its influence on task performance. Following the training phase,
the different policies are evaluated, and Shapley value analysis is applied to investigate
the relative importance of each modality. Although a second upgrade to the setup was
developed to further increase the task complexity, experiments with this version have not
been conducted yet.

5.1 Experiments with the Original Setup

The experiments begin with the original setup and original reward function, serving as
a proof of concept to validate the system’s functionality and initial assumptions. In this
configuration, the camera is mounted to the end-effector. The the cylinder has a diameter
of 20 mm, the hole has a diameter of 23 mm and a depth of 17 mm. As part of the initial
experimentation, an ablation study is performed to evaluate the importance of tactile
feedback. By removing the tactile sensor input, the experiment assesses how the absence
of this modality impacts task performance.

The experiments demonstrate that Dreamer is capable of solving the peg-in-hole insertion
task using both visual and tactile data in the original setup within approximately 100, 000
steps. This performance is significantly better than all experiments conducted in previous
work [47], where no visual input is utilized.

60



0 0.2 0.4 0.6 0.8 1

Env Steps (100k)

-120

-60

0

60

Score

vision + tactile vision + tactile vision only

Figure 5.1: Training results with the original setup: In the first experiments consist of
three runs in total, the first two including visual and tactile feedback, and the
third with vision only. The results showed in this figure suggest that vision
alone can handle this specific task better compared to the two runs including
both modalities. However, this assertion is made with the three available runs,
reducing its significance. At the same time, the confirms the assumption that
this specific task is too simple, and tactile feedback has no impact on the
training process.
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As shown in Figure 5.1, the vision-only policy performs better than the previous runs that
combined visual and tactile feedback. However, due to the limited amount of data available,
this result does not necessarily indicate a general trend. It is possible that the vision-only
run benefits from a degree of “luck” compared to the other two runs, for instance, by
having more favorable random initial positions or more frequent goal-reaching events
during the early exploration phase of training. On the other hand, it is also plausible that
the inclusion of tactile feedback introduces noise, which could hinder the performance of
the vision-tactile policies. Regardless of which explanation is accurate, the outcome of
these experiments indicates that tactile feedback does not provide a significant advantage
for solving this specific task. The peg-in-hole insertion task in this setup appears to be
simple enough that visual input alone is sufficient to solve it.

5.2 Experiments with Upgrade 1

In the second phase of the experiments, the setup is upgraded to the first modular version,
incorporating the simplified version of the reward function. Additionally, the camera
is repositioned to provide a fixed view of the scene. One of the key advantages of this
upgraded setup is the ability to easily change the hole inserts, enabling the use of different
configurations for training.

5.2.1 Training

Two distinct hole inserts are employed for training, each designed with a hole depth of
40 mm. The first insert has a hole diameter of 22 mm, while the second has a diameter
of 20.5 mm. It is important to note that these dimensions are based on the digital 3D
models and may differ slightly from the actual measurements of the physical, 3D-printed
components. For each hole insert, two separate policies are trained: one using only
visual input and another utilizing both visual and tactile input. In total, this creates four
distinct experimental configurations. To ensure the results are statistically significant
and to account for variability during training, multiple models (2–3) are trained for each
configuration. This redundancy strengthens the reliability of the findings and helps identify
consistent trends across experiments. The results of these experiments are summarized in
Figure 5.2, showcasing the training progress of each policy under the respective conditions.
In addition, Dreamer logs a lot of other valuable data. A selection of additional figures
and graphs can be found in Section 6.3.
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Figure 5.2: Training results with the first upgrade: Four different policies were trained
with individual combinations of modalities and hole tolerances. The letters
in the beginning of the label indicate the used modalities ("v" for visual, and
"t" for tactile). The number afterward represents the tolerance between peg
and hole in [mm]. Every model was able to solve the task in nearly 100k steps,
except the vision-only policy trained on the tighter hole.
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It is striking that all experiments, except for one, learned the task in nearly the same
amount of time, regardless of the tolerance or whether tactile input was included. The
only exception was the visual-only policy trained with the 0.5mm tolerance. This policy
failed to solve the task. During the corresponding experiment, it was observed that the
cylinder often got jammed inside the hole. Without tactile feedback, the policy struggled
to adjust the alignment and find a way to insert the cylinder deeper into the hole. To
verify this result, an experiment was conducted, extending the training time to over 150k
steps. However, the policy still failed to solve the task, further confirming that visual input
alone was insufficient for successful training in such precise conditions.

5.2.2 Evaluation

To thoroughly evaluate the performance of the trained models, various hole configurations
are tested. This evaluation includes hole diameters that are smaller than those used
during the original training, introducing additional challenges that require the models
to adapt to tighter tolerances. Furthermore, the evaluation incorporates slightly angled
holes, which test the models’ ability to handle scenarios where the hole is not perfectly
vertical, increasing the complexity of the insertion task. A detailed summary of all the
hole configurations used for evaluation can be found in Table 5.1.

Configuration Tolerance between peg and hole Angle of the hole
1 2 mm 0◦

2 1 mm 4◦

3 0.5 mm 0◦

4 0.5 mm 4◦

Table 5.1: Hole configurations to evaluate the performance of the trained policies with
increasing complexity.

With the trained policies from the first upgrade of the setup, their performance can
now be evaluated using the evaluation configurations proposed in Table 5.1. These
configurations test the policies’ ability to generalize and adapt to new scenarios, including
tighter tolerances and slightly angled holes. Figure 5.3 illustrates the success rate and the
average insertion time for each of the four policies evaluated across the four configurations.
Each evaluation was performed 20 times to ensure statistical significance and to account
for variability in the results.
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Figure 5.3: Evaluation using the four proposed evaluation configurations with increasing
complexity. (a) shows the percentage success rate of the policies over 20
evaluation episodes. The four bars, illustrated with every individual policy,
display the performance using the four evaluation configurations. (b) shows
the average insertion time over 20 evaluation episodes, when an episode
was successful. The gray lines illustrate the 95% confidence intervals of the
episode length.

First of all, it is clear from Figure 5.3 that the visual-only policy trained with 0.5mm
tolerance (v 0.5) fails to solve any evaluation task. This outcome is expected, as the
policy never experienced any successes during training. Consequently, it did not learn
what to do even when it managed to reach the hole or insert the cylinder slightly. It lacked
the understanding of how to complete the task.

On the other hand, both policies trained with a 2mm tolerance (v 2.0 and vt 2.0)
demonstrate some success in evaluation tasks with tighter tolerances. Particularly note-
worthy is the fact that the visual-only policy (v 2.0) achieves success even with a 0.5mm
tolerance. This is remarkable, given that training a policy from scratch with vision only
and such tight tolerances shows to be infeasible in this work. This result suggests that
tactile feedback during training plays an important role in guiding the alignment process
and avoiding jamming. However, once the policy has a clear understanding of the task
(locating the hole and pushing down) vision alone can solve tasks with tighter tolerances,
even though with much lower success rates. Interestingly, the vt 2.0 policy shows a
significant performance improvement over v 2.0 in the second evaluation task, where the
tolerance is 1mm, and the hole is angled at 4◦. This indicates that tactile feedback becomes
more critical in scenarios involving additional complexity, such as slightly angled holes,
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where precise alignment is challenging using vision alone. Overall, the best-performing
policy across all evaluation tasks is vt 0.5. It achieves the highest success rates and the
shortest insertion times.

5.2.3 Shapley Value Analysis

In the next step, Shapley value analysis is employed to evaluate the contributions of each
input to the model’s final decision-making process. As previously outlined, the inputs
under analysis are the previous action at−1 , the previous latent state ht−1, the current
visual observation ovis

t , and the current tactile observation otac
t . This analysis aims to

quantify the relative importance of each modality and input source in guiding the policy’s
actions. Figure 5.4 illustrates the results of the Shapley value analysis for an example
trajectory taken from the vt 0.5 policy. This policy was evaluated on the most complex
configuration in the evaluation set, which includes both a tight tolerance and a slightly
angled hole.
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t [s]
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1.0
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|∆x|

0.0 2.5 5.0
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Figure 5.4: Shapley value analysis with an example trajectory from the vt 0.5 policy
evaluated the on most complex evaluation configuration. Each plot shows
the percentage contribution of each model input to the action in this axis.

For the example trajectory, the Shapley value analysis shows clear differences in reliance
on the different inputs depending on the axis of motion. For movements along the x-axis,
the latent state emerges as the most important factor. This makes sense given that the
x-axis corresponds to depth from the perspective of the camera. The policy relies on the
latent state to estimate depth by leveraging temporal information about previous states in
the trajectory. For movements along the y-axis, visual input plays the dominant role. This
is expected, as the y-axis controls lateral motion (left-to-right) relative to the camera’s
viewpoint. In contrast, movements along the z-axis, which control vertical motion, are
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influenced most strongly by tactile feedback. However, the dominance of tactile input in
this axis is less pronounced compared to the reliance on visual input for y-axis movements
or latent state information for the x-axis. This suggests that tactile sensing is primarily
used to detect physical contact, such as identifying when the peg reaches the surface of the
base plate or the hole. It plays a smaller role in fine-tuning alignment or guiding insertion,
underlining the thesis from before that tactile feedback becomes less critical once the
policy has learned the general strategy of locating the goal and pushing downward.
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6 Discussion and Conclusion

The initial experiments with the original setup provided a successful proof of concept,
demonstrating that a simple peg-in-hole insertion task could be solved using Dreamer
with visual and tactile input. However, these results also revealed that the setup was
too simple, as the task could be accomplished using only visual input without requiring
tactile feedback. To introduce greater complexity, a modular setup was developed for
the second phase of experiments, incorporating varying tolerances between peg and
hole, ranging from 0.5mm to 2mm, as well as hole depths of 4cm. The results of these
experiments indicated that training a policy from scratch with a 0.5mm tolerance required
tactile feedback to successfully complete the task. At the same time, the evaluation phase
showed that policies trained solely with visual input on a 2mm tolerance hole were still
capable of solving the task with 0.5mm tolerances, even though with a significantly lower
success rate. Further analysis using Shapley values provided insights into how different
sensory modalities contribute to the learned policy. The results showed that visual feedback
primarily guides the end-effector in the camera plane, while tactile feedback plays a crucial
role in controlling vertical movement, where contact forces are most significant. However,
it is important to highlight that these findings are based on a single trajectory. To further
validate these conclusions, additional investigations and alternative explanation strategies
are necessary to ensure the significance of the results.

The results from the first experiments using the original setup were very promising and
demonstrated Dreamer’s impressive capabilities. The system was able to successfully
learn and solve the peg-in-hole task, even with complex multi-modal inputs. However,
these results raised a significant question: why were the performance results in these
experiments so much better compared to those observed in previous work [47], which
also used tactile observations and the end-effector position? Intuitively, you would expect
that the information provided by the end-effector position should be more useful for the
task compared to visual input from the camera. After all, knowing the exact position
of the end-effector should theoretically allow for more precise control over the peg’s
movements. However, this was not the case in the experiments. Despite the expectation,
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the performance with visual input exceeded that of the model using the end-effector
position. To investigate this discrepancy further, additional experiments were conducted
that included a normalization strategy for the end-effector position. However, these efforts
did not resolve the issue, and the question remains unsolved.

At the same time, the results of the first experiments showed that vision-only policies were
able to solve the task just as effectively, if not better, than policies that combined both vision
and tactile feedback. Therefore, the first upgrade to the setup was developed, making
it more challenging by using deeper holes and arbitrary hole diameters. Subsequent
experiments with very tight tolerances, specifically 0.5mm, demonstrated that tactile
feedback became essential for training the model effectively on these tighter tolerances.
However, it was still possible for vision-only policies to solve the task with 0.5mm tolerances,
although with lower success rates and longer episode lengths. One possible interpretation
of this result is that tactile feedback serves as a form of scaffolding during the training
process, assisting the model when it encounters challenges with tighter tolerances. This
assumption aligns with the concept of Scaffolded Reinforcement Learning, as described in
the related work by Hu et al. [29]. But to make a final assertion about the role of tactile
feedback in this context, further investigations and experiments would be necessary.

The Shapley value analysis further supports the assumption that while tactile feedback
does play a role in Dreamer’s decision-making process, it is not a crucial one, at least not
in the final policy. The analysis also revealed that the Shapley values do not show distinct
stages within the specific tasks. This observation contrasts with several related studies [13,
16, 38], which explicitly divided their tasks into distinct stages. In these works, the distinct
stages of the task were often supported by specific modalities. However, in Dreamer’s case,
there were no noticeable jumps in the Shapley values that would indicate clear transitions
between stages of the task. To address this fact and hopefully make the task more reliant
on tactile feedback, the second upgrade to the setup was developed.

Besides the already mentioned possibilities for future investigations, there are numerous
other aspects for further research. First, the constructed platform provides an excellent
opportunity to test different RL and Machine Learning (ML) algorithms. Therefore, the
experiments with Dreamer can serve as a strong baseline against which other models can
compete. Another possible direction for future work is the use of differently shaped pegs,
where the end-effector would need to rotate around the z-axis. This would require the
robot to utilize all 6 degrees of freedom, adding an additional layer of complexity to the
task. A third potential direction for future research is to modify the setup to simulate a
more real-world scenario, such as inserting a key into the corresponding lock. As shown,
there are many possibilities for future work, and the setup developed in this and previous

69



work [47] can be reused for a wide variety of projects, making it a versatile platform for
advancing research in robotic manipulation and multi-modal learning.
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Appendices

6.1 Appendix A: Changing the End-Effector Orientation

The rotation of an object can be described using various representations. In this work, the
matrix representation is used, where each unit vector of the 3x3 matrix corresponds to an
axis (x, y, and z) of the rotated coordinate system relative to the base system. In this case,
the z vector of the rotation is of particular interest. When the end-effector is not rotated,
the z vector points straight down, aligning with the symmetry line of the cylinder. The
x-axis points away from the robot toward an observer standing directly in front of the
setup, and to form a coordinate system with standard orientation, the y-axis must point
to the left from the observer’s perspective.

Now, the idea is to influence the orientation of the z vector by using the two additional
components in the action vector to adjust the x and y components of the z vector, leading
to

zn = zo +

⎛⎝ θ1
θ2
0

⎞⎠ ,

where zn is the new z vector, zo is the old one, and θ1 and θ2 are the adjustments applied
to the components. After this modification, the new z vector is normalized to a length of
one to ensure it remains a unit vector.

Next, the new x vector has to be calculated. To ensure a unique vector, certain constraints
are applied. The first constraint is that the x vector stays inside the x-z-plane of the base
coordinate system, ensuring that the end-effector does not rotate around the z-axis. This
constraint implies that the y component of the x vector remains zero. Additionally, the
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angle between the x and z vectors must be 90◦, and the length of the x vector has to be
one. These constraints result in the following equation system:

0 = zxxx + zzxz,

1 = x2
x + x2

z,

where the indices determine the component of the according vector, leading to the follow-
ing solution:

xx = ±
√︃

1

1+
z2x
z2z

,

xz = −zx
zz
xx,

and the vector x = [xx, 0,xz]
⊺. Since the x vector must still point toward the observer

and away from the robot, the positive result for xx is chosen. With the given z and x
vectors, the y vector is calculated by forming the cross product

y = z × x.

The matrix formed by the three vectors x, y, and z defines the new rotation of the end-
effector, which can be converted into a quaternion and passed to the robot’s movement
functions.

To limit the rotation, the angle between the current z vector and the neutral position
vector z0 is calculated and constrained to a specified value.
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6.2 Appendix B: Hyperparameters

Name Value Description

tactile_shape [64, 64, 3] Shape of the tactile observations

visual_shape [64, 64, 3] Shape of the visual observations

max_steps_per_episode 400 Maximum of steps per episode

goal_reached_delta 0.005 Absolute distance in all three axes between
cylinder and goal to evaluate "success"
(in m)

max_cyl_to_ee_delta 0.005 Absolute distance in all three axes be-
tween cylinder and end-effector to eval-
uate "cylinder lost" (in m)

episode_velocity 0.05 Relative velocity during the episode (value
between 0 and 1)

workspace_radius 0.03 Radius of the workspace form the center
of the base plate (in m)

workspace_height 0.06 Height of the workspace measured from
the surface of the base plate (in m)

workspace_depth 0.05 Depth of the workspace measured from
the surface of the base plate (in m)

hole_depth 0.04 Depth of the hole (in m)

gripper_force 30 Force of the gripper (in N)

gripper_speed 0.05 Speed of the gripper (in m/s)
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6.3 Appendix C: Additional Experimental Results and Graphs

This section introduces some interesting additional data that is logged by Dreamer or the
environment class. All results refer to the experiments performed with the first upgrade
of the setup (see Section 4.1.4). The labels of the different experiments are composed
as follows: The letters in the beginning of the label indicate the used modalities ("v" for
visual, and "t" for tactile). The number afterward represents the tolerance between peg
and hole in [mm].
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0
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v 2.0 v 0.5 vt 2.0 vt 0.5

Figure 6.1: Episode length: This figure shows the progression of the episode length of
different policies during training. The v 0.5 policy fails to solve the task
and instead learns to remain within the workspace near the hole to maximize
its reward. After 400 steps the maximum number of steps is reached. In
contrast, the other policies converge to a similar episode length clearly below
the maximum.
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Figure 6.2: Success: The episode success is recorded as either 0 or 1. The curves are
smoothed using a running average over the last seven values. It is clear that
the v 0.5 policy fails to solve the task, while the other policies follow similar
trajectories, all achieving a success rate close to 1.
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Figure 6.3: Reconstruction of the visual input: The first row presents the real-world ob-
servations, the second row displays the reconstructions generated by the
decoder network, and the third row illustrates the differences between them.
Due to the camera’s fixed perspective, variations in the difference images
are primarily caused by the movement of dynamic elements in the scene, in
particular the cylinder and end-effector.
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Figure 6.4: Reconstruction of the tactile input: The first row presents the real-world
observations, the second row displays the reconstructions generated by the
decoder network, and the third row illustrates the differences between them
which are very small compared to the reconstruction of the visual input. This
is due to the fact that the cylinder does not move much inside the gripper.
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