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Abstract

We present RoboXim, a novel simulation platform developed using the Unity Game Engine
[48] to investigate the generalization capabilities of generalist robot policies. The simula-
tion platform facilitates the generation of demonstration datasets and the evaluation of
robot policies. Using our platform, we test whether generalist models such as Octo [28],
RT-1-X [9], and OpenVLA [23] can perform tasks zero shot in our environment and find
that they are generally not capable of doing so. Therefore, we fine-tune models to our
environment in order to evaluate generalization across dimensions such as visuals, skills,
and objects. Through extensive experiments with the Octo model, we demonstrate that
while fine-tuning enables high success rates for specific tasks, performance varies signifi-
cantly with diverse objects and skills, particularly those requiring precise manipulation.
In addition, we propose a benchmark that can measure generalization and knowledge
transfer across multiple dimensions. Evaluating Octo with this benchmark reveals that
Octo can transfer knowledge across dimensions effectively.



Zusammenfassung

Wir stellen die Simulationsumgebung RoboXim vor, die mit der Unity Game Engine [48]
entwickelt wurde, um die Generalisierungsfähigkeiten von generalist robot policies zu
untersuchen. Die Simulationsplattform ermöglicht die Erzeugung von Demonstrations-
datensätzen und die Evaluation von policies. Mithilfe unserer Plattform testen wir, ob
generalistische Modelle wie Octo [28], RT-1-X [9] und OpenVLA [23] in unserer Umge-
bung Aufgaben direkt ohne dediziertes fine-tuning ausführen können und stellen fest,
dass sie dazu im Allgemeinen nicht in der Lage sind. Aus diesem Grund fine-tunen wir die
Modelle auf unsere Umgebung, um anschließend die Generalisierung für Dimensionen wie
Bildmaterial, Fähigkeiten und Objekte zu bewerten. In umfangreichen Experimenten mit
dem Octo-Modell zeigen wir, dass das fine-tuning zwar hohe Erfolgsquoten bei bestimmten
Aufgaben ermöglicht, die Leistung jedoch bei verschiedenen Objekten und Fähigkeiten,
insbesondere bei solchen, die eine präzise Manipulation erfordern, erheblich schwankt.
Des Weiteren stellen wir eine Benchmark vor, die Generalisierung und den Wissenstransfer
über mehrere Dimensionen hinweg messen kann. Die Bewertung von Octo mit dieser
Benchmark zeigt, dass Octo Wissen effektiv über mehrere Dimensionen hinweg übertragen
kann.
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1 Introduction

The advancement of large-scale models in domains like vision and natural language
processing, has inspired new possibilities for robotic control. Typically, robot policies are
trained with a dataset of demonstrations specific to a narrowly defined task. However
recently, a number of so-called generalist robot policies have been released that aim to
control robots for a wide range of task settings [9, 23, 28]. These models are often derived
from large-scale vision-language models (VLMs) by fine-tuning them to interpret their
outputs as robotic actions instead of a natural language sequence. Employing generalist
models is desirable because collecting robotic training data for a task is resource intensive
since it is often manually generated by human teleoperation. According to the original
authors, many of the generalist models which we present in more detail in chapter 3
show generalization capabilities across different skills, objects, and even various robot
embodiments [9]. While some of the generalist models even exhibit zero shot capabilities
in environments seen in their training [5, 6, 28], an important aspect of such a model is
that it can be effectively fine-tuned to a new task with only a few demonstrations [28].

The main goal of this work is to benchmark and conduct an in-depth investigation of
the generalization capabilities of generalist robot policies. This is done by utilizing our
own custom simulation platform that is specifically developed to evaluate these policies.
The generalization and transfer of knowledge is investigated across various dimensions,
such as vision, different skills, and objects. Our research questions are (1) whether the
generalist models can run in our new simulation environment zero shot, (2) whether
we can fine-tune these models to our environment, (3) to what extent knowledge is
transferred from the pretraining, and (4) how well the model can generalize and transfer
knowledge across dimensions. To this end, we contribute a simulation platform that can
be used for both the collection of demonstrations for fine-tuning, and the evaluation of
robot policies. We also develop and demonstrate a benchmark to measure and compare
the generalization capabilities of a model.
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2 Foundations

This chapter contains some preliminaries for our work. First, we provide background
information on generalist robot policies in section 2.1. Then, we present the Unity Game
Engine [48] that is used to implement our simulation platform in section 2.2.

2.1 Generalist Robot Policies

We describe the architecture of generalist robot policies in detail in chapter 4 where we
present a number of existing models. In the following sections we provide basic definitions
in the field of robot learning and some background on imitation learning.

2.1.1 Environment

A robot exists and learns in an environment. For the definition of an environment and of a
task (see section 2.1.2) we adopt the definitions of an existing taxonomy called STAR-Gen
[15]. An environment is a tuple

E = (S,O,A,L, fo, ft),

where S is the state space, O is the observation space, A is the action space, L is the space
of language instructions, fo : S → O is the observation function, and ft : S × A → S
is the transition function. O consists of images, e.g., of the workspace or images from a
camera attached to the robot end effector. A consists of robot actions, e.g., delta poses
for the end effector [15].
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2.1.2 Task

The definition of a task varies in the literature. In this work, we mostly use the definition
from STAR-Gen [15]. The definition of a task may vary in chapter 4 where we present
related works that use their own definitions. A task space T is defined for a given
environment E. A task is a tuple τ ∈ T

τ = (pτ (s0), lτ , Rτ ),

where pτ (s0) is an initial state distribution for E, lτ ∈ L is a language instruction, and
Rτ : (S ×A)∗ → {0, 1} is a success function that maps a sequence of states and actions to
either 0 for failure or 1 for success [15].

2.1.3 Policy

A policy π(a | on, l) is a function that takes in n ≥ 1 observations, and a language
instruction. It outputs an action distribution. An expert policy πE is a policy that leads to
the success function Rτ yielding 1 after a number of actions produced by πE are applied
to the environment E [15].

2.1.4 Robot Learning

In the context of our work, the goal in robot learning is to learn a policy to solve a task
with a language instruction and image observations. At each timestep t the policy π is
provided with a language instruction l and image observations ot. We control the robot
by sampling an action at from the action distribution π(· | l, ot). This process ends when
a termination condition is reached, e.g., the task is solved successfully or a maximum
number of steps is reached. The complete sequence of interactions l, {(oi, ai)}Ti=0, from the
initial step t = 0 to the final step T , is called an episode. When an episode is completed
successfully, that is, the robot performed the language instruction, the agent receives a
reward of 1. Otherwise, the reward is 0. The objective is to learn a policy that maximizes
the average reward for a given environment and task distribution [5].
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2.1.5 Imitation Learning

Imitation learning is a machine learning paradigm in which an agent learns to perform
tasks by mimicking the behavior of an expert demonstrator. A policy π is trained with
a dataset D = {(ln, {(ont , ant )}T

n

t=0)}Nn=0 of successful episodes [30, 58, 20]. A common
approach to learn π is behavioral cloning [30], where the agent learns a mapping from
states to actions via supervised learning. Imitation learning is particularly effective in
domains like robotics due to the difficulty of specifying reward functions [16].

2.2 Unity

Figure 2.1: A screenshot of the Unity editor showing the scene view (1), the hierarchy (2),
the inspector(3), the game view (4), and the project files (5).

In this section we provide an overview of the Unity Game Engine [48] that is used to
implement our simulation platform. Unity is an established game engine that features
a user friendly editor. It provides a robust feature set to create a robotics simulation,
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including rendering, a physics simulation powered by PhysX, and scripting. A screenshot
of the Unity editor is shown in figure 2.1. In the top left is the interactive scene view
marked with the (1). A scene is a 3D space used to organize objects and other elements
of the simulation. In Unity, objects that exist in a scene are called GameObjects and are
listed in the hierarchy view (2). Each GameObject can have components that determine
its function or behavior. All GameObjects have the Transform component because it
determines the GameObject’s position and rotation in the 3D scene. Other components
are optional. Some components are provided by Unity, such as a Renderer to render
objects in the 3D scene, and a Rigidbody to enable the physics simulation. Users
can also author their own components using C# to implement custom functionalities.
When a GameObject is selected in the hierarchy, the inspector view (3) shows all the
attached components of this GameObject. A component can expose variables that can
be configured directly in the inspector. The game view (4) shows a preview of the camera
that renders to the screen when we run the simulation. We can enter play mode directly in
the editor by clicking on the play button at the top. This allows us to instantly test out new
configurations or even adjust variables while in play mode from the inspector. Window (5)
shows all project files such as 3D objects, textures and scripts. The implementation of our
simulation platform called RoboXim is detailed in section 4.2. We use the Unity scenes to
visually configure each of our experiments. In addition, we make use of a feature called
Prefabs. We can create a Prefab by dragging a GameObject from the hierarchy into
the project view. This saves all the property values of the attached components and syncs
them in between scenes if an object was instantiated from this prefab. For example, if we
change something on the Panda robot, we can propagate this change to all experiments,
saving a lot of configuration time.
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3 Related Work

In this chapter we present a selection of generalist robot policies in section 3.1. Then, we
describe existing benchmarks and simulators in section 3.2. In section 3.3 we introduce a
taxonomy designed for the evaluation of generalist policies.

3.1 Generalist Robot Policies

Generalist robot policies are inspired by the success of large and general models used in
domains like vision and natural language processing. Thesemodels often use a Transformer
architecture first introduced in 2017 [51]. RT-1 stands for Robotics Transformer 1 and is an
architecture that encodes camera images, language instructions, and end-effector actions
into token representations that can then be used by a Transformer [5]. Specifically, RT-1
takes a history of 6 images and tokenizes them by flattening the output of an ImageNet
pretrained EfficientNet-B3 [43] model into 81 tokens. Universal Sentence Encoder [7]
is used to produce a language embedding of the instruction. The image tokenizer is
conditioned on this embedding, promoting the early extraction of task-relevant image
features. Before the tokens are passed on to the Transformer, only 8 important tokens of
the 81 tokens are selected with TokenLearner [40]. This is done to increase the inference
speed of the Transformer and, therefore, make RT-1 viable for real-time control. Finally,
the Transformer predicts action tokens consisting of seven tokens for arm movement (x,
y, z, roll, pitch, yaw, gripper opening), three tokens for base movement (x, y, yaw), and
one token for switching between arm movement, base movement, or terminating the
episode. Each action token represents one of 256 bins that the action dimensions have
been discretized into [5].
RT-1 is trained on approximately 130k demonstrations of a robot performing various
tasks in a kitchen environment. The authors define a task as a verb surrounded by one
or more nouns, where the verb is also referred to as skill, and the nouns correspond to
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various objects in the scene. Eight different skills combined with several objects result
in a total number of approximately 700 tasks. When RT-1 is evaluated on tasks that
were present in the training data, a success rate of 97% is reached. In order to test
generalization capabilities, RT-1 is also evaluated for robustness to distractor objects,
changing backgrounds, and unseen tasks, i.e., certain combinations of skills and objects
that were withheld from the training data. The authors report success rates of 83% for
distractor robustness, 59% for new backgrounds, and 76% for unseen tasks. In addition,
the authors examine the generalization for a combination of the mentioned dimensions
by defining three levels. The first level is a new kitchen environment, the second level
introduces unseen distractor objects, and the third level includes new task objects or
objects in unseen locations. Success rates of 88%, 75%, and 50% are reported for levels
1-3. In conclusion, the authors show that RT-1 can successfully learn a large number of
tasks and is capable of generalizing to new tasks, distractors, and backgrounds. The RT-1
code is open source and trained checkpoints are publicly available [5].

Another model called RT-2 builds on RT-1, but instead of just training on robotic trajectory
demonstrations a large VLM pretrained on internet-scale data is co-fine-tuned with robotic
demonstrations [6]. As in RT-1 the actions for the robot are encoded as tokens and
therefore can be treated by the VLM in the same way as natural language tokens. Such
models are referred to as vision-language-action models (VLAs). There are two instances
of RT-2 that differ in the choice of the pretrained VLM. One is built on PaLI-X [8] the other
on PaLM-E [11]. The action space of the robot consists of six variables for the end-effector
pose, one for the gripper, and one for terminating the episode. Each continuous variable
is discretized into 256 bins. In order to fine-tune the VLMs to output robot actions, 256
existing tokens of a VLM are reserved to represent the bins. For PaLI-X [8] the tokens
representing integers from 1-256 are used. In the case of PaLM-E [11] such a token
representation does not exist, therefore the 256 least used tokens are repurposed instead.
To ensure that a model only produces valid robot actions, only the mentioned 256 tokens
are sampled for its output vocabulary [6].
The robotic demonstrations used in the co-fine-tuning are from the RT-1 dataset. The
authors also use the same notion of tasks and skills as in RT-1. RT-2 is evaluated for
seen tasks, unseen objects, unseen backgrounds, and unseen environments. While the
performance for seen tasks is equal to RT-1, the success rate for the unseen experiments
approximately doubles compared to RT-1 indicating that knowledge from the Internet-
scale pretraining is transferred and results in better generalization. RT-2 is also tested
for what the authors call emergent capabilities. These are capabilities not present in the
robotic training data that are supposed to emerge from the pretraining, i.e., semantic
and visual concepts of objects and their relations. The authors define the following three
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categories: Symbolic understanding evaluates the transfer of semantic knowledge from the
pretraining. Instructions include objects or relations that were not present in the robotic
data. The second category reasoning requires the VLM to perform the following examples
of reasoning: visual reasoning (e.g., "move the apple to cup with same color"), math (e.g.,
"move X near the sum of two plus one"), and multilingual understanding, i.e., executing
an instruction given in another language. The third category is called human recognition
and evaluates tasks related to humans (e.g., move the coke can to the person with glasses).
Both RT-2 variants outperform RT-1 in all categories. On average, the PaLI-X [8] variant
achieves more than three times the success rate of RT-1. The PaLM-E [11] variant performs
slightly worse than PaLI-X [8] especially in the category symbol understanding. While the
results show that transfer of knowledge from pretraining is possible, the authors find that
the robot is not able to perform new skills or motions that were not present in the robotic
fine-tuning data [6].

One challenge in training large general models in robotics is the availability of data. While
VLMs can be trained with data scraped from the Internet, collecting robotic demonstrations
is more time-consuming and often requires teleoperation of a robot by a human. For
example, collecting the training data for RT-1 took 17 months with the use of 13 robots
[5]. Open X-Embodiment is a collaborative effort by multiple institutions to provide a large
number of diverse robotic datasets [9]. At the time of its release, the Open X-embodiment
dataset is made up of 60 datasets from 34 robotic research labs. It contains 1M+ real
robot trajectories from 22 different robot embodiments. There are 311 different scenes,
5228 objects, and 527 skills, although most trajectories depict a skill from the pick-place
family [9].
Multiple X-embodiment datasets are then used to train the RT-1 and RT-2 models which
are called RT-1-X and RT-2-X. An RT-1-X checkpoint is publicly available. For a number
of X-embodiment datasets, these RT-X models are then compared to an RT-1 variant that
is trained only on the respective dataset. The evaluation is split between small- and
large-scale datasets. For small datasets, only RT-1-X is considered. It outperforms the
RT-1 variant on average by 50%, implying that domains with limited data availability
benefit from X-embodiment co-training. In the case of large datasets, RT-1-X achieves
lower success rates than the RT-1 variant. However, RT-2-X can outperform the RT-1
variant. The authors conclude that in the large-scale data domain, a sufficiently large
model architecture is needed to benefit from the X-embodiment co-training. In another
experiment, the transfer of knowledge between different robot embodiments is studied.
RT-2-X is able to execute additional skills that were only seen in other robot embodiments
[9].

Another model trained on the Open X-embodiment data is Octo [28]. It is open-source

8



and checkpoints of two versions, Octo-Small (27M parameters) and Octo-Base (93M
parameters) are available. Octo introduces a more flexible architecture that allows for
flexibility in task definitions, observations, and action spaces. The task can be specified
by a language instruction or by a goal image. In the observation space, a third person
camera and a wrist camera are supported. Actions can be predicted for end effector or
joint control. This design is supposed to make Octo usable in many robot applications and
enables efficient fine-tuning for different robot setups [28].
The architecture of Octo has three core components: Input tokenizers, a transformer
backbone, and action readout heads. First, input tokenizers are used to create tokens from
the language instruction or goal image, and the observation images. For language inputs,
a t5-base [32] model is used. Images are processed with a shallow convolution stack and
split into a sequence of flattened patches [10]. Then, the produced tokens are passed to
the transformer backbone. The Octo architecture introduces special readout tokens that
only attend to observation and task tokens, but are not attended by any of the observation
and task tokens. The action readout head then uses a diffusion process to produce actions
from the readout tokens [28].
To evaluate Octo, two types of experiments are performed: zero-shot evaluation and
fine-tuning evaluation. For the zero-shot evaluation, Octo is tested in four settings from
the pretraining data. Only seen tasks are considered, but lighting conditions and object
placement varies slightly from the original scenes. In these settings, Octo outperforms RT-
1-X and achieves a similar success rate to RT-2-X. However, only 10 episodes are executed
per experiment, which may cause inaccurate results. For the fine-tuning evaluation,
Octo is tested in six settings not present in the pretraining data. Approximately 100
demonstrations are collected per setting. While Octo is fine-tuned separately for each
setting, the same hyperparameter config is used across all runs. In the evaluation Octo
achieves an average success rate of 72% clearly outperforming a baseline model trained
from scratch. This shows that the pretrained Octo model is useful for fine-tuning to
new settings and that the provided default config is a good starting point for fine-tuning
applications. The authors do not further explore generalization capabilities in the sense of
unseen tasks and objects. Instead, generalization is primarily understood as being able to
execute many tasks with different robot embodiments, where all these tasks, embodiments,
and scenes were in the pretraining or fine-tuning data [28].

OpenVLA is a 7B-parameter model similar to RT-2-X [23]. It is also trained with the Open
X-embodiment data [9], but in contrast to RT-2 and RT-2-X it is open-source and pretrained
checkpoints are available. OpenVLA builds on the Prismatic-7B VLM [22]. Instead of
a single visual encoder, Prismatic uses two encoders in parallel and concatenates their
outputs which is beneficial for spatial reasoning [22]. The two encoders are the SigLIP
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[57] and DinoV2 [29] models. As its large language model (LLM) backbone, Prismatic
uses the Llama 2 model [47]. In order to turn the Prismatic VLM into a VLA, many of the
techniques presented in RT-2 [6] are used. The continuous robot actions are discretized
and represented with 256 action tokens. During fine-tuning the 256 least used tokens in
the Llama tokenizer’s vocabulary are overwritten with these action tokens [23].
To evaluate OpenVLA, two types of experiments are conducted in settings from the training
data. For the first type, the "Google robot" from the RT-1 and RT-2 evaluations [5, 6]
is used, and performance for in-distribution and out-of-distribution tasks is evaluated.
OpenVLA is compared to RT-1-X [9], RT-2-X [9], and Octo [28]. While RT-2-X achieves a
similar success rate to OpenVLA, RT-1-X and Octo are significantly outperformed for both
in-distribution and out-of-distribution tasks. The other experiment type uses the WidowX
robot from the BridgeData V2 evaluations [52]. Here, four generalization types are defined
that are called visual (unseen backgrounds, distractor objects, and the appearances of
objects), motion (unseen object poses), physical (unseen object sizes and shapes), and
semantic (unseen target objects, instructions, and knowledge from the Internet). OpenVLA
mostly achieves higher success rates than the other models for all generalization types,
except for semantic generalization where RT-2-X is slightly better [23].

3.2 Benchmarks and Simulators

Generalization capabilities are often evaluated to some extent directly in the work that
introduces a new model. However, these evaluations are not standardized and often vary
widely in the generalization dimensions that are looked at and the methods used for
evaluation. Because of this, several benchmarks have been proposed.

RLBench is a simulated learning environment and benchmark for robot learning [19]. It
is based on the robot simulation framework V-REP [36], and PyRep [18] which is a toolkit
that brings a number of improvements to V-REP, including more realistic rendering and
increased speed. RLBench features a single scene with the Franka Emika Panda arm. It
is possible to retrieve robot proprioceptive data and visual data from a workspace and
gripper camera. The authors introduce a concept of tasks, variations, and episodes. For
example, a task could be "Pick up <object>" and variations of this task could be "Pick
up the cube" or "Pick up the apple". For a variation, it is then possible to produce an
infinite number of episodes in which object positions are changed. Demonstrations of these
episodes can be generated by using the Open Motion Planning Library [42]. RLBench
features 100 unique tasks out of the box. The authors propose a few-shot challenge to

10



evaluate general policies. The 100 tasks are split into 90 tasks for train data and 10 tasks
for test data. While a policy can be trained arbitrarily with the train data, at test time it is
only provided with 1, 5, or 20 demonstrations of the test tasks. Success rates are then
measured for the 1-shot, 5-shot, and 20-shot cases [19].

The Colosseum is a benchmark designed specifically to evaluate generalization in robotic
learning [31]. It is a modification of RLBench and uses a selection of 20 tasks out of
the 100 implemented in RLBench. The authors define 14 perturbation factors that are
applied to the tasks. Perturbation factors are grouped into the categories manipulation
object perturbation, receiver object perturbation, background perturbation, and physical
perturbation. The first two perturbation categories change the color, texture, or size of
the respective objects. Background perturbation affects the light color, texture and color
of scene objects, distractor objects, or the camera pose. Physical perturbation modifies
physical properties of objects, like friction and mass. All of the perturbation factors are
used in The Colosseum Challenge which consists of four phases. First, a training dataset
with 100 demonstrations per task is generated without any perturbations. Then, a model
is trained with this dataset. In the third phase, this model is then evaluated for each
perturbation factor with a fixed set of 25 episodes per perturbation factor. The last phase
consists of ranking the models based on the change in success rate for each perturbation
factor. It is shown that success rates measured in simulation correlates with success rates
measured in a real setup [31].

Meta-World is a benchmark that focuses on reinforcement learning in robotics [56]. It
is based on OpenAI Gym [4] and offers 50 manipulation tasks implemented with the
MuJoCo physics engine [46]. The following two categories of evaluation are employed:
In the category Multi-Task a policy is evaluated for its ability to perform a certain number
of tasks. There are versions for 1, 10, and 50 tasks. Parameters like object position and
goal position are not randomized. For the other category Meta-Learning, five tasks are
hold out to test a policy. The training is done with either 10, or 45 tasks and initial object
and goal positions are randomized. Although Meta-World tests generalization in robotic
manipulation, it is not applicable for the models we investigate in this work because it is
not vision-based [56].

Robosuite is a simulation framework for robot learning [59]. It is built on the MuJoCo
physics engine [46] and provides two APIs for setting up and running the simulation. The
Modeling API can be used to define the simulation model that consists of a robot model,
object models, and the workspace. Out of the box, there are 10 robots available. Robosuite
provides a controller for each of the robots that can turn actions from various action spaces
into the low-level torque commands used in MuJoCo. Objects can be loaded via MuJoCo’s
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native MJCF format or procedurally generated from geometric primitives. The second API
is called the Simulation API and is used to interface with the MuJoCo physics engine. It
accepts actions from a policy or an I/O device, and provides observations and rewards
from the simulation. In terms of observations, cameras and proprioceptive measurements
are supported. Robosuite also provides a number of pre-made benchmark environments.
These include basic tasks such as block lifting, block stacking, pick and place, nut assembly,
door opening, table wiping, and some two arm related tasks [59].

LIBERO is a manipulation benchmark based on Robosuite [59, 25]. Its main features
are a task generation system and four task suites for benchmarking. The task generation
pipeline consists of three steps. First, a large-scale dataset of language descriptions of
human activities is processed to generate a set of task templates. These templates are then
used in combination with objects available in the simulator to create task descriptions,
e.g., the template "Open..." could be used to create the task "Open the drawer". The
second step consists of creating an initial state distribution. A suitable scene for the task is
selected, initial object placements are created, and the state of an object is generated, e.g.,
open/closed. In the third step, a task goal is specified based on the task description and
the initial state. The goal consists of a conjunction of predicates that can be evaluated and
terminate an episode when all predicates are true. The four task suites LIBERO-Spatial,
LIBERO-Object, LIBERO-Goal, and LIBERO-100 offer a fixed set of a total number of 130
tasks. The first three task suites all contain 10 tasks. LIBERO-Spatial is used to evaluate
the knowledge of spatial information. While the goal and objects are the same across
the tasks in this category, the robot has to manipulate one of two identical objects that
differ only in their spatial relationship to other objects. Tasks in LIBERO-Object include
different object types, and LIBERO-Goal employs the same objects in fixed spatial relations,
but introduces multiple task goals. LIBERO-100 is a set of 100 tasks from all categories
described above [25].

ManiSkill is a robotics platform that supports GPU parallelization for simulation and
photo-realistic rendering [44]. It is based on the SAPIEN simulator [55]. There are 12
premade environment types, including table-top manipulation and room-scale scenes. Out
of the box, more than 20 robots are provided with controller implementations. ManiSkill
introduces an object-oriented API for creating robotic environments and task building.
Additionally, tools are included for trajectory replay, action space conversion, and domain
randomization, e.g., to randomize camera poses. The GPU parallelization can be used to
run multiple environments at the same time and is especially useful for collecting a lot
of visual data. According to the authors, GPU memory usage is 2-3x lower than in other
simulators such as IsaacLab [27, 44].
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IsaacLab which is built on the IsaacSim platform is similar to ManiSkill [27]. It also
provides GPU parallelization and enables photo-realistic rendering. The framework allows
for custom task creation and is designed specifically for research areas in robot learning
such as reinforcement learning and imitation learning. Similarily to ManiSkill, 16 robot
platforms with their respective controllers are supported out of the box. IsaacLab also
provides 20 benchmark tasks [27].

For our simulation platform RoboXim, we choose the Unity game engine [48]. While
Unity is not specifically designed for robotic simulation, plugins are available that provide
the necessary functionality such as importing robot URDF files [50] and communicating
with ROS [37, 38, 35]. Unity can render realistic visuals, has an accurate, built-in physics
engine, and gives the user full authority over how to configure the simulation [21].
Google DeepMind uses Unity for research in reinforcement learning due to its versatility
and toolset to build diverse environments [53]. Their recently released generalist SIMA
agent, which is similar to the VLA models described in section 3.1 is also evaluated in
environments built in Unity [45]. While the DeepMind examples are not focused on
robotics, several robotic simulators have been developed with Unity, including DoorGym
[49], ThreeDWorld [14], and ManipulaTHOR [12].
In table 3.1 we compare simulators and benchmarks in regard to features that we require for
our in-depth analysis and benchmarking of generalist robot policies. The task generation
feature in the table refers to a system that can automatically generate tasks with language
instructions. In most of the mentioned simulators it is only possible to manually add
new tasks. Photo-realism is considered important because generalist models are mostly
trained on real data [9]. In general, ManiSkill and IsaacLab are probably good choices for
running and evaluating generalist policies. One issue with IsaacLab is that it consumes a
lot of VRAM while generalist models usually require a lot of VRAM too. Therefore, on
typical consumer GPUs it may become unfeasible to run IsaacLab and the model at the
same time. When running headless and for a simple environment, RoboXim typically
requires less than 200MB of VRAM with two cameras rendering images at a 256x256
resolution. However, the most important advantage of Unity is its versatility, user friendly
programming experience and editor. Although ManiSkill offers an interactive GUI it can
not be used for building environments and configuring every detail of the experiment like
the Unity editor. Our RoboXim platform is described in detail in section 4.2.
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Table 3.1: Comparison of features across different robotics simulators and benchmarks.

Feature Ro
bo
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et
a-W

or
ld

Ro
bo
su
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BE

RO

Photo-
Realism

✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Editor GUI ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Demonstration
Generation

✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗

Task
Generation

✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

VLA
Inference

✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Robot Em-
bodiments

1 20 16 1 1 1 10 1

Min VRAM 200MB ~2GB1 8GB2 n/a n/a n/a n/a n/a

3.3 Taxonomy for Evaluating Generalist Robot Policies

Most of the works on generalist policies and benchmarks described in section 3.1 and
3.2 evaluate certain aspects of generalization. However, the methods and the particular
categories of generalization vary and are not standardized. STAR-Gen is an attempt to
establish a comprehensive and systematic taxonomy for generalization in robotics [15].
STAR-Gen defines generalization as perturbations from a base task. The perturbations
are categorized into the modalities "visual" (visual input changes), "semantic" (language
input changes), and "behavioral" (action output changes). Combinations of the mentioned
modalities are also considered categories, e.g., a perturbation of the initial object pose

1Estimate based on a very simple environment without textures where 1.7GB of VRAM usage was measured
[44].

2Taken from the Isaac Sim requirements [17].
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belongs to the category "visual + behavioral", because both the input images and the
required action outputs change. To further formalize STAR-Gen, the authors introduce
factors which group together perturbations that affect tasks in a similar way. For example
the factor "lighting" could encompass perturbations like light intensity and light color.
In addition, the authors define axes which group together similar factors with common
modalities. Therefore, each axis is part of a specific category. The axes are subjectively
designed by the authors, e.g., the axis "Image Augmentations" consists of visual factors such
as "lighting", or "image blur" and belongs to the category "visual". The introduced concepts
of factors, axes, and categories form a hierarchy that allows to evaluate generalization
at multiple granularities, i.e., generalization to a factor, generalization to an axis, and
generalization to a category [15].
STAR-Gen is demonstrated by using it to benchmark several VLA models, including
OpenVLA [23], MiniVLA [2], and a reimplementation of π0 [34]. The evaluation is based
on the Bridge V2 dataset [52] and four base tasks that are similar to existing tasks in the
Bridge V2 data are selected. Initially, the VLA models are only trained on the Bridge V2
data. In addition, they are then co-fine-tuned with a few demonstrations of the base tasks.
This ensures that the base tasks are in-domain and it also allows for flexibility in choosing
the base tasks. During the evaluation, these base tasks are perturbed to create 55 task
variations that cover 13 axes across five categories. In general, the success rate is found to
be low for most of the tested axes. Especially in the "semantic" category, performance is
low for all models. In conclusion, STAR-Gen is a useful taxonomy for a detailed analysis
of generalization across various axes and categories, if generalization is understood as
perturbations to a base task. We will further discuss this prerequisite and point to some
issues when we formulate our own methods to evaluate generalization in chapter 4 [15].
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4 Methods

In this chapter we present our methods to investigate generalist robot policies. First, we
discuss how to evaluate generalist policies in section 4.1. Then, we provide a detailed
description of the implementation of our simulation environment RoboXim in section 4.2.

4.1 Evaluation of Generalist Robot Policies

In chapter 3 we have presented numerous works that evaluate and benchmark general-
ization in various ways. While we do not fully adopt a specific approach, our method is
influenced by previous works as discussed below. In order to structure our investigation
into the generalization capabilities of models, we split the evaluation into the following
four categories:

1) Zero Shot

2) Fine-Tuning and In-Domain Generalization

3) Cross-Domain Generalization

4) Out-of-Domain Generalization

The categories are explained in more detail in the following sections. The Experiments
chapter 5 is structured around the four categories and contains various experiments for
each category. In section 4.1.4 we also present our design for a benchmark.
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4.1.1 Zero Shot

Zero shot capabilities are reported for most models by their original authors, but only for
environments from the training data. We want to find out if any meaningful behavior
can be observed in our new simulation environment. Therefore, we test openly available
checkpoints of Octo [28], RT-1-X [9], and OpenVLA [23]. The experiments are described
in section 5.1.

4.1.2 Fine-Tuning and In-Domain Generalization

Since we do not expect contemporary models to generalize to a new unseen environment,
we fine-tune the models with demonstrations collected in our environment. This serves two
main purposes: (1) we prove that our simulation environment can be used to fine-tune and
evaluate generalist policies, and (2) we analyze the in-domain generalization capabilities
of models. More precisely, generalization is here interpreted in the sense that a single
model can complete multiple tasks it was trained on, i.e., perform multiple skills, recognize
various objects, etc. Experiments of this category are described in section 5.2. We start
with a single task "Pick up the cube" to verify our fine-tuning and evaluation pipeline.
Then we test in-domain generalization for different colors, objects, and skills. Due to
resource constraints we focus on the Octo-Small [28] model, but the same experiments
are applicable to any model.

4.1.3 Cross-Domain Generalization

We introduce the term cross-domain generalization to describe the transfer of knowledge
from the original training to our environment. A similar concept in the RT-2 evaluation is
referred to as emergent capabilities [6]. In the RT-2 case it is evaluated if knowledge is
transferred from the Internet-scale pretraining of the LLM. We focus on knowledge from
the robotic data that the models have been trained on. The main question we aim to answer
with these experiments is whether a model can be conditioned to a new environment to
exhibit behaviors it was already trained to perform. To this end. we deliberately leave out
instructions from the fine-tuning that exist in the original training data and then evaluate
on these instructions. The results are reported in section 5.3.
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4.1.4 Out-of-Domain Generalization

In this category, we want to analyze the ability of models to perform unseen tasks. Here,
out-of-domain means that some aspect of the task was not seen in our fine-tuning. For
example, a new camera angle, an unseen object, or a different interaction position in the
scene. We also consider unseen combinations of otherwise seen instances as out-of-domain.
If the tasks with instructions "Pick up the cube" and "Place the apple on the plate" are
in our training data, then we consider "Pick up the apple" out-of-domain, even though
an apple and the pick up skill were seen separately during training. We identify multiple
dimensions, such as object, skill, camera pose, etc., to evaluate a model’s capability to
generalize across each dimension. Our goal is to create a benchmark that provides a score
for each dimension to see how robust a model is and to help identify deficiencies for
certain dimensions.
While the success rates of unseen tasks may already be useful for a benchmark, we
are specifically interested in how well a model can generalize and transfer knowledge.
Therefore, we need other success rates to compare against, e.g., performance of seen tasks.
In section 3.3 we presented the STAR-Gen benchmark that always defines a base task [15].
Generalization for a dimension can then be measured by comparing the success rate of
the base task to that of a variation of the task, where the base task was perturbed for the
specific dimension. In our example above, the perturbed task would be "Pick up the apple".
There are, however, multiple possible base tasks. The task "Pick up the cube" could be
perturbed along the object dimension to replace the cube with an apple, or the task "Place
the apple on the plate" could be perturbed along the skill dimension to replace the place
skill with the pick up skill. This is an issue because the result of the comparison depends
on the chosen base task. STAR-Gen may be useful to determine how robust a model is to
perturbations, but we are more interested in analyzing the transfer of knowledge. Our
solution is to compare the task against itself, but when it was seen in training. To this end,
we collect two datasets and train two models. We call the first dataset leave-out dataset
because certain tasks are left out. The second baseline dataset contains all tasks present in
the leave-out dataset and in addition the tasks that were left out.

In this work, we do not design an exhaustive benchmark, but implement a simple version
with only three dimensions. We select the dimensions skill, object, and camera pose.
In order to create leave-out combinations, we combine all dimensions with each other,
resulting in three experiments (skill/object, camera/object, camera/skill). For example, in
the skill/object experiment certain combinations of skills and objects are not seen. We then
evaluate these unseen tasks and compare the success rates to the same tasks performed
by the baseline model. Based on this evaluation, a score is calculated that is attributed
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to both dimensions involved. This score is the percentage ratio of the success rate for
unseen tasks to the success rate for the same seen tasks. For example, in the skill/object
experiment, the unseen task "Pick up the apple" achieves a success rate of 0.6 while the
baseline model reaches a success rate of 0.8 for the same task. This means that the model
generalizing reaches 75% of the baseline. This score is then attributed to the object and
skill dimension. The total score of a specific dimension is influenced by all experiments in
which this dimension is involved. For simplicity, we take the average of all the respective
scores. This score only reflects the model’s ability to generalize to unseen tasks. It does
not provide information on the actual success rate. Therefore, we also provide the average
success rate for unseen tasks across the dimensions.
Evaluations in related works are often only conducted with around 10 episodes per task
and a single model [15, 28]. In our experiments, we notice that this is not enough to get
accurate results. Typically, we use five seeds to train models and conduct 20 rollouts to
evaluate a task, resulting in a total of 100 episodes per task. The experiments for this
category are described in section 5.4.

4.2 Simulation Platform

Figure 4.1: A screenshot of our simulation environment.

Our simulation platform is called RoboXim and is implemented with the Unity Game
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Engine [48] and a screenshot is shown in figure 4.1. It is used for both generating
demonstrations with an expert policy for training and for evaluating trained policies.
Figure 4.2 gives an overview of the main functionalities which are explained in more detail
in the following sections. Most functionalities are shared between episode generation and
evaluation.

The core loop looks as follows: When a new episode is started first the environment is
reset. This includes the task of the episode which is generated first. Task generation is
explained in section 4.2.1. When the task is generated the rest of the environment is
reset, see section 4.2.2. There is a resetter for each task that implements a reset function
and prepares the environment for the task at hand, i.e., spawns the manipulation object.
Next, the episode is executed. Either by an expert policy, described in section 4.2.3, or
by inference, see section 4.2.5. During episode execution the episode can be recorded
to acquire data for training which is explained in detail in section 4.2.4. Finally, section
4.2.6 describes evaluating episodes in order to determine if it was successful.
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Figure 4.2: Overview of the main functionalities in RoboXim. The left side shows the
process of generating demonstrations, the right side shows the process of
evaluating a robot policy.

4.2.1 Task Generation

For the purpose of generalist robot policies a task specification could just be a natural
language instruction. However, in our simulation environment a Task is a data structure
that provides information to set up the environment and evaluate the outcome of episodes.
Note that in this section and the following sections, the term task is used to describe this
data structure and not exactly as defined in section 2.1.2. This is due to historical reasons
of the implementation.
Fundamentally, a Task consists of a skill that determines what needs to be done. A
skill usually has one or more PhysicalObjects. For example, the PickUpObject
skill has a PhysicalObject that needs to be picked up. The PhysicalObject con-
sists of an id, in order to spawn it from a database, a name, and optionally modifiers
PhysicalObjectModifier that allow to change, e.g., the color or size of the object.
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By consolidating everything in this task data structure, it is both possible to generate a
natural language instruction and to have all information available to setup the environment
accordingly, e.g., spawn an object with the correct color.
Instead of setting up each task individually, tasks are created by task generators. For each
property, such as PhysicalObject, PhysicalObjectModifier, etc. there exists a
corresponding generator class. This allows us to generate tasks randomly and enables a
greater scalability because tasks do not have to be created manually. A simplified overview
of the task data structure and its generation system is shown in figure 4.3.

Figure 4.3: A simplified overview of the task data structure using the example of the
PickUpObject skill and its generation.

4.2.2 Resetting the Environment

At the beginning of each episode, the environment is reset. Figure 4.4 provides an overview
of this process. The first step is to generate a task as described in section 4.2.1. Dependent
on the task, an appropriate EpisodeResetter is used to initialize the environment
according to the task, or more precisely according to the skill of the task. For each skill
there is one resetter class that implements the EpisodeResetter interface. This is
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Figure 4.4: Overview of the reset process. First, the ResetTaskController is reset which
triggers the task generation. Then, an EpisodeResetter initializes the environ-
ment by resetting ResetComponents shown on the right.

done because some skills have specific requirements for the setup of the environment.
For example, when we have the place skill with the instruction "Place the cube in front
of the apple", then we can not just spawn the objects randomly, but we have to make
sure that the task is solvable, i.e., there is space in front of the apple, and we ensure that
the task is not solved already, i.e., the cube is not placed in front of the apple initially.
While some skills have these specific requirements, there is also a lot of functionality
shared between all skills. Therefore, we encapsulate shared functionality in so-called
ResetComponents. These components can then be reused by the EpisodeResetter
of a skill to reset most of the environment. Some of the ResetComponents are shown
in figure 4.4. They can be configured to enable domain randomization. For example, the
ResetCamera component can place the camera at different poses, the ResetLight
component can set the light to various intensities, colors, etc., and the ResetRobot
component can initialize the joint positions, or set the end effector to an initial pose.
Typically, each ResetComponent can be configured with a list of desired values, e.g.,
camera poses, light intensities, etc. When the component is reset, a value is then selected
randomly or in the order of the list. In place of a list, the user can also configure a range
of values, e.g., a range for light intensities, or a volume to randomly initialize the end
effector in.
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Figure 4.5: Overview of dataset generation and episode recording.

4.2.3 Demonstration Generation

In this section we describe the generation of demonstrations with an expert policy
and the creation of a dataset that can be used for fine-tuning. Figure 4.5 shows an
overview of this process. The main component is the DatasetGenerator. Here, the
user can specify how many demonstrations to generate and where to save the dataset.
The DatasetGenerator then uses the EpisodeGenerator to generate the desired
number of demonstrations. The EpisodeGenerator first resets the environment as
described in section 4.2.2 which also creates the task for the episode. Based on this
task, the EpisodeGenerator determines an appropriate TaskExecutor to execute
the episode with an expert policy. For example, if the task is to pick up a cube, we use
the TaskExecutorPickUpObject. The TaskExecutor controls the robot through
the PandaController. The PandaController provides functionalities to move the
end effector to given poses by querying a ROS [35] service. We implement the service
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using the motion planning framework MoveIt [41]. The service returns a trajectory that is
executed by the robot in Unity.
While the episode is executed, the EpisodeRecorder records the episode. This is de-
scribed inmore detail in section 4.2.4. At the end of an episode, it is evaluated if the episode
is completed successfully. This is required because in some cases the episode may fail due
to an error in trajectory planning. If the episode was successful, the DatasetGenerator
saves it to a file in JSON format. In order to use the generated dataset for training with
common Python machine learning platforms, and especially for fine-tuning contemporary
VLA models, the dataset is converted to RLDS format [33] using the rlds-builder1.

4.2.4 Episode Recording

Episode recording is implemented in the EpisodeRecorder component and illustrated
in figure 4.5. During the execution of an episode the EpisodeRecorder saves end
effector actions (pose deltas) and images of cameras at a certain recording rate. In addi-
tion, meta-data about the scene is saved such as initial object positions, camera setups,
initial robot state, etc., which allows us to exactly recreate a scene later. This recording
of scene objects is facilitated by the so-called RecordedParameters components. The
EpisodeRecorder finds all RecordedParameters components in the scene and se-
rializes them. For example, the RecordedSceneObject saves the position and rotation
of an object, the RecordedCamera saves the pose and field of view of the camera, and
the RecordedRobot saves joint values. A user of our simulation platform can therefore
select what to save by adding these components to objects. This system also allows us
to easily record custom parameters by implementing a custom RecordedParameters
component and adding it to an object in the scene.

4.2.5 Inference and Policy Evaluation

Evaluation of a generalist robot policy is handled by the Evaluator component and the
process is shown in figure 4.6. In the Evaluatorwe can specify several parameters of the
evaluation, e.g., the number of episodes and the maximum allowed steps. For each episode,
the Evaluator triggers the environment reset described in section 4.2.2 before starting
the InferenceController. The InferenceController collects the current instruc-
tion and camera images. These observations are then passed on to a Python script that

1Based on the bridge_rlds_builder [3].
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Figure 4.6: Overview of the policy evaluation process.
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implements the inference for a VLA model. This VLA server returns the actions predicted
by the model back to the InferenceController. The InferenceController com-
ponent exposes many properties such as inference rate, window size (number of images
in the image history), the action horizon, and which cameras to use. The actions returned
from the VLA are delta poses. The InferenceController calculates the absolute
end effector pose and controls the robot with the help of the PandaController. With
the help of a EvaluatorSkill component we check whether the task is completed
successfully and report the result to the main Evaluator component. This process is
described in more detail in section 4.2.6.

4.2.6 Episode Evaluation

Episode evaluation is performed by an EvaluatorSkill component and is required
for both demonstration generation (see section 4.2.3) and policy evaluation (see section
4.2.5). For each skill, there exists a specific EvaluatorSkill component that deter-
mines whether a task is completed successfully. In the example in figure 4.6 we show the
EvaluatorPickUpObject that checks if the manipulation object is lifted to a certain
height. Other examples would be the EvaluatorPlaceObject that checks if the ma-
nipulation object is close enough to a target location, or the EvaluatorRotateObject
that verifies that the manipulation object is rotated to the desired rotation within a certain
threshold. For most skills, we can configure these thresholds. For example, for the instruc-
tion "Rotate the cube clockwise by 90 degrees" we may choose a small threshold when
recording demonstrations to ensure high data quality. However, when we test a policy, we
may also consider an episode successful if the cube was only rotated by 80 degrees.
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5 Experiments

In this chapter we conduct multiple experiments for the categories mentioned in chapter
4. We start with the zero shot category in section 5.1. Then, we fine-tune the models
and conduct the in-domain generalization experiments in section 5.2. Next, we evaluate
models for cross-domain generalization in section 5.3 and finally perform the out-of-
domain experiments and benchmarking in section 5.4.

5.1 Zero Shot

In the best-case scenario and perhaps as the ultimate goal for generalist robot policies,
it would be possible to just have a random environment and have the robot execute a
given instruction. Although we do not expect this from contemporary models, we test
them out of the box in our simulation in a custom environment and an environment that
to some extent reenacts a setup from the Open X-embodiment data [9] that was used to
train these models.

5.1.1 Custom Environment

In a first experiment, the publicly available checkpoints of Octo [28], RT-1-X [9], and
OpenVLA [23] are tested for their zero-shot capabilities in our simulation environment.
The environment shown in figure 5.1 consists of a simple table and a concrete floor. A
cube is placed at a random position on the table and the models are instructed to pick up
the cube. Along with the instruction, the models are provided with a camera image of the
current and previous frames for both a workspace camera and a camera attached to the
gripper of the Panda robot. However, not all models use the gripper camera or a history
of images. Octo is the only model that supports a gripper camera, and it gets two images
for history. While RT-1-X receives 15 images, OpenVLA does not support an image history
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Figure 5.1: A screenshot of our simulation environment.

and only gets the current image.
For each inference call, Octo predicts four actions into the future. When these actions
are executed in the simulation environment, no meaningful behavior can be observed.
The end effector moves randomly and after some time usually ends up outside of the
workspace. RT-1-X also moves the end effector outside of the workspace or does not
move at all. OpenVLA usually moves around randomly and often ends up outside of the
workspace too.

5.1.2 Reenacted Environment

In this experiment, we try to modify our environment to be somewhat similar to environ-
ments seen in the training of the generalist models. We find that in another simulation
environment called SIMPLER [24], the RT-1-X model is sometimes able to pick up a
coke can zero shot. Therefore, we imitate this environment in the following ways: The
workspace camera is placed in a similar pose, the coke can model is imported in Unity
to be used in place of the cube, and we use the same world axes definition by mapping
the predicted actions on the axes definition used in Unity. However, the visuals of our
environment are not changed and therefore are not similar to the SIMPLER environment.
None of the models is able to pick up the coke can. Octo and RT-1-X often move down
to the table, but not necessarily towards the coke can. No difference in behavior can be
observed for OpenVLA compared to the first experiment described in section 5.1.1.
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5.2 Fine-Tuning and In-Domain Generalization

In this section, we fine-tune the models with data collected in our simulation environment
and then evaluate the models on tasks from this training data. This is done to show that
our simulation can be used for data collection and evaluation. We also verify that the
tested models can be fine-tuned as claimed by the original authors, and we get a first
impression of their performance.

5.2.1 Pick up the Cube

Figure 5.2: Workspace camera view of the scene. The cube is spawned randomly on the
table in the blue area. The end effector is randomly initialized within the green
box.

In order to check if fine-tuning with our simulation environment is feasible, we start with
a single skill and a single object. The task is to pick up a cube from a table. There is
no generalization, except that the cube and the end effector are initialized at random
positions. The scene is shown in figure 5.2. A dataset of 200 episodes is collected and
converted to RLDS format [33]. Then, Octo [28] is fine-tuned with the script released by
the original authors. The model is trained for 100k steps with a batch size of 128. Other
than that, the hyperparameters are left mostly unchanged, as the default configuration
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has been shown to be a good choice for most fine-tuning scenarios [28]. Checkpoints
are saved at intervals of 5k steps. Each checkpoint is evaluated with 50 rollouts in our
simulation environment and the results are shown in figure 5.3. An episode is considered a
success if the cube is picked up to a certain height, and failed if this is not achieved within
100 steps. At the first checkpoint, the success rate is low at 20%, but then immediately
goes up to more than 90%, where it generally stays for the subsequent checkpoints. The
last checkpoint at 100k steps can even achieve a success rate of 100%.

Figure 5.3: Octo success rate by training steps for the instruction "Pick up the cube".

Since the success rate already plateaus after 10k training steps, another experiment is
conducted, where checkpoints are evaluated in 2k step intervals, and training is stopped
after 20k steps. In addition, a second training run is conducted where the original
axes definition from Unity is used, i.e., the axes are not converted before fine-tuning
and converted back during inference. The results are shown in figure 5.4. Again, the
success rate increases quickly, reaching more than 90% at the 6k checkpoint. There is no
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considerable disadvantage of fine-tuning Octo to the Unity axes definition. However, in all
following experiments the axis conversion is applied.

Figure 5.4: Octo success rate by training steps for the instruction "Pick up the cube" and
comparison of two training runs, where one uses the Unity axes, and one with
converted axis.

5.2.2 Multiple Colors

This experiment aims to check whether a model can distinguish between colors. The
instruction is "Pick up the <blue, green, red, yellow> cube". In addition to the target
cube, 1-3 distractor cubes of different colors are spawned. An example setup is shown in
figure 5.5. A dataset of 400 episodes is collected, where each color is represented equally
with 100 episodes. Then, Octo is fine-tuned with this dataset for 10k steps. Instead of
relying on a single training run, the training is repeated for 5 seeds.
For the evaluation, we plot the mean success rate across seeds by checkpoints in figure
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Figure 5.5: An example setup of the multiple colors experiment.

5.6. Each checkpoint is evaluated with 20 rollouts per seed. An episode is only considered
successful if the cube with the correct color is picked up. The result is similar to the
previous experiment in the sense that after 6k training steps the success rate does not
improve by much. The best mean success rate is reached at the 9k checkpoint with 94%.
This checkpoint is then used to compare performance by color. For each seed, we evaluate
20 episodes per color and show the results in figure 5.7. The success rate for all colors is
approximately the same. We conclude that Octo is able to learn to differentiate between
colors. Next, we will check the same for various objects.
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Figure 5.6: Mean success rate and confidence by training steps for picking up a cube in
one of four colors.

Figure 5.7: Mean success rate and standard deviation by color of the cube.
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5.2.3 Multiple Objects

Figure 5.8: The objects used in the multiple objects experiment.

The general setup remains mostly the same as in previous experiments. We still only
use the pick up skill, but instead of just cubes, the object to be picked up is one of the
six objects depicted in figure 5.8. This object pool consists of a cube, an apple [13], a
coke can [24], an onion [1], a cucumber [1], and a knife [54]. The objects were chosen
to form a diverse set of shapes and colors. The cube is included because we already
know from previous experiments that Octo can successfully pick it up. In addition to the
target object, 1-3 distractor objects are spawned. For each object 100 demonstrations are
generated, resulting in a dataset of 600 episodes total. The fine-tuning and evaluation is
done similarly to the multiple colors experiment (see 5.2.2). However, since the overall
complexity with multiple objects in various shapes increased, we fine-tune for 100k steps
instead of 10k steps.
A checkpoint is evaluated with 20 episodes per seed looping through the object pool. The
success rates for a number of checkpoints are shown in figure 5.9. Compared to previous
experiments, the average success rate is lower at around 40%, and no substantial benefit
can be observed for training longer than 10k steps. The 40k checkpoint achieves the
best performance with 47%. To analyze the lower success rate, we break it down per
object. The 40k checkpoint is used to evaluate each object with 20 episodes for the five
seeds and the results are reported in figure 5.10. Significant deviations in success rate
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can be observed between different objects. The cube performs best with 70% followed
by the cucumber with 57%. The other objects only attain a success rate of around 30%.
Qualitatively, we observe that Octo always attempts to grasp the correct object. The
difference in success rate is therefore not due to object detection or a lack of language
grounding. Rather, it is caused by the different physical colliders of the objects. Especially
spherical objects, i.e., the apple and the onion, must be gripped precisely in the center
or they roll away. The cucumber and handle of the knife are approximated with a box
collider that is easier to grasp. However, compared to the cube, the handle of the knife is
very flat. Additionally, due to their length, the knife and cucumber can only be grasped
on their long sides, meaning that an inaccuracy in the orientation of the gripper is less
forgiving than in the case of the cube. The coke can is often knocked over by the end
effector, and Octo is usually unable to grasp it from this state.

Figure 5.9: Mean success rate and confidence by training steps for picking up various
objects.
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Figure 5.10: Mean success rate and standard deviation by object.

5.2.4 Multiple Skills

Figure 5.11: Examples of episodes for "Place the cube on the plate" (left), "Push the
button" (middle), and "Open the top drawer" (right).

In this experiment, we want to find out how good Octo is at performing various skills.
The following five instructions are used in this experiment: (1) "Pick up the cube", (2)
"Place the cube on the plate", (3) "Rotate the cube clockwise by 90 degrees", (4) "Push the
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button", and (5) "Open the top drawer". A few examples of the Panda robot performing
these skills are shown in figure 5.11. In addition to the task relevant objects, there is
always one distractor object in the scene that belongs to another tasks. For example, when
the instruction is "Open the top drawer", we may also spawn a cube. For each skill, we
generate 100 demonstrations. Octo is then fine-tuned with five seeds for 100k steps and
the per checkpoint evaluation is shown in figure 5.12. As in previous experiments, we
conduct 20 rollouts per checkpoint and per seed. However, the maximum number of steps
to complete an episode is increased to 200 because some tasks take longer to complete.
For example, to place a cube on a plate, first the cube has to be picked up, then moved
to the plate, and finally placed down. The mean success rate for checkpoints is between
approximately 60%-70% and no substantial benefit can be observer for training longer
than 10k steps.

Figure 5.12: Mean success rate and confidence by training steps for performing various
skills.

We use the best performing checkpoint saved after 80k training steps to evaluate the
success rate of each skill. The skills are evaluated with 20 episodes each for every seed and
the results are shown in figure 5.13. The pick up, place, and push button skills achieve a
similar success rate of about 80%. Episodes in which the model is instructed to rotate the
cube are failed more often. We consider such an episode successful if the cube is rotated
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by at least 75 degrees. However, we can observe that the cube is sometimes placed down
before that. The open drawer skill performs by far the worst. Only an average success rate
of 11% is reached. Here, we observe that after grasping the handle of the drawer, the end
effector often does not execute the movement required to open the drawer but instead
moves down towards the drawer below. Across all skills, we find that generally the model
attempts to perform the skill that was asked for in the instruction. Only in a few rare cases
was the wrong object targeted, e.g., one instance was seen where the model tried to push
the plate instead of the button.

Figure 5.13: Mean success rate and standard deviation by skill.

5.3 Cross-Domain Generalization

After establishing in section 5.2 that models can be fine-tuned to our simulation environ-
ment, we now want to explore the question if these fine-tuned models can then transfer
knowledge from their original training into our environment. In essence we want to find
out if it is enough to just condition a model to the new visuals and action space, for it to
access the abilities that it was trained for initially.
First, we use the Octo model from section 5.2.1 that is fine-tuned to pick up a cube. We
replace the cube with a coke can and instruct it to pick it up. Usually, the end effector
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is not moved towards the coke can and either ends up outside of the workspace or does
a pick up motion without an object. When we add the cube as a distractor, Octo always
picks up the cube even though it was instructed to pick up the coke can. In fact, the
language instruction can be left empty or changed arbitrarily. Octo always picks up the
cube regardless.

We suspect that Octo is overfitted on the pick up cube task. Therefore, we conduct a
second experiment similar to the multiple objects experiment described in section 5.2.3.
Instead of all six objects, we only include four objects in the training data. The apple
and coke can are left out because these objects also exist in the pre-training data. We
train Octo twice. For the first training run, we use the same config as usual and fully
fine-tune Octo. In the second run, we only fine-tune the action head. The fully fine-tuned
Octo model can still only pick up the objects seen in the fine-tuning. When instructed to
pick the apple or coke can, usually one of the other objects is picked up. The Octo model
where only the head was fine-tuned is not able to pick up any object, including the seen
objects. The end effector movement is too inaccurate, meaning that no object is grasped.
We therefore can not observe any cross-domain generalization with Octo.

5.4 Out-of-Domain Generalization

In this section we analyze the out-of-domain generalization across various dimensions and
explore how models can transfer knowledge to unseen tasks. In the first two experiments
we select a single dimension, specifically the interaction position (section 5.4.1) and the
camera pose (section 5.4.2), to leave out certain configurations. For the following three
experiments, two dimensions per experiment are selected. Then we leave out certain
combinations across these dimensions. The selected dimensions are skills, objects, and
camera pose. The resulting combinations are described in section 5.4.3 (skill/object),
5.4.4 (camera/object), and 5.4.5 (camera/skill).

5.4.1 Interaction Position

For this experiment the table is elongated to fit five interaction areas next to each other
as shown in figure 5.14. The instruction is to pick up the cube. The cube is randomly
spawned within one of the areas, but in the training data a single area is left out. The left
out area is placed between seen areas. We conduct training runs for five seeds with Octo
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Figure 5.14: Screenshot of the generalize interaction position experiment. In the training
data the cube can spawn within the blue areas but not in the red area.

and report the per checkpoint success rate for the seen interaction areas in figure 5.15.
We evaluate 20 episodes per checkpoint, but only for a single seed. We then use the last
checkpoint to compare the success rates for the seen areas with the unseen area. Here, all
five seeds are evaluated with 50 episodes each, and the result is presented in figure 5.16.
Surprisingly, the success rate for the unseen area is slightly higher than for the unseen
areas. To investigate, the success rate for each individual area is plotted in figure 5.17. It
turns out that there is one outlier in the seen areas, namely the rightmost position, which
decreases the average of the seen areas. The reason for this remains unknown, but we can
conclude that the success rate for the unseen area is very similar to the other areas.
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Figure 5.15: Octo success rate by training steps for seen interaction areas.

Figure 5.16: Comparison of mean success rate between seen and unseen interaction
areas.
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Figure 5.17: Mean success rate for each interaction area.

5.4.2 Camera Pose

Figure 5.18: Views of the workspace camera at different poses. The view marked in red
is not seen in the training data.

This experiment is analogous to the experiment described in the previous section 5.4.1,
but instead of an interaction area, a camera pose is left out from the training data. The
different camera poses are illustrated in figure 5.18. Octo is trained with five seeds for
a maximum of 10k steps. We evaluate with a single seed and report the per checkpoint
success rates in figure 5.19. Then, we use the last checkpoint to compare the success rate
for seen and unseen camera poses. We conducted 50 rollouts per seed for both seen and
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unseen poses, and show the results in figure 5.20. The success rates are practically the
same and reach about 80%.

Figure 5.19: Octo success rate by training steps.
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Figure 5.20: Comparison of mean success rate between seen and unseen camera poses.

5.4.3 Skill and Object

In this experiment we leave out certain combinations of skills and objects to evaluate if
models can transfer knowledge across these dimensions. We select the pick up, place, and
rotate skill. Furthermore, six objects are included, namely a cube, an apple, a coke can,
an onion, a cucumber, and a knife. In the training, each skill is only performed with four
objects. For the pick up skill, the cube and apple are not used. The coke can and onion are
not used for placing, and the cucumber and knife are not rotated. In the evaluation we
can then find out if the model can perform the skills with the respective left out objects.
Additionally, we conduct a second training in which all objects are seen with each skill to
act as a baseline. We aim for an equal distribution of skills and objects in the data. In the
first dataset each skill is performed with four objects, and in the baseline dataset each
skill sees all six objects. Therefore, we record 108 episodes per skill, since 108 is divisible
by four and six. We end up with 27 episode per skill and object combinations in the first
dataset, and 18 episodes per combination in the baseline dataset. Both datasets contain a
total of 324 demonstrations.

Octo is fine-tuned separately with both datasets for five seeds and 10k steps. Then, we
compare the success rates for seen and unseen combinations for both the skill dimension
and object dimension. All skill and object combinations are evaluated with 20 episodes
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per seed. First, a comparison for each skill is shown in figure 5.21. For each skill, only
objects that were left out in the training data are considered, e.g., the "Unseen" bar for
the pick up skill is the mean success rate of the instructions "Pick up the cube" and "Pick
up the apple". The "Seen" bar on the other hand uses exactly the same two instructions,
but the episodes are executed with the baseline model, i.e., the respective skill and object
combinations were seen in training. For the pick up and place skill the success rate drops
slightly if the objects were not seen in training. While the success rate for the rotate skill
is very low in general, it is almost never completed successfully when the objects were not
seen in training. Only a single episode out of the 100 evaluated was successful.

Next, we plot the same evaluation but broken down by objects in figure 5.22. For most
objects the success rate drops when the respective combination of object and skill was
not seen in training. The only exception is the cube, where surprisingly the success rate
is slightly higher when the instruction "Pick up the cube" was not seen in training. In
figure 5.23 we compare the mean success rate of all unseen combinations with the success
rate of the same combinations when seen in training. The mean success rate of episodes
where combinations of skills and objects were not seen in training reaches 72% of the
baseline, i.e., the same combinations, but seen in training. This value of 0.72 is used in
our generalization benchmark and is attributed to both the skill dimension and the object
dimension.
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Figure 5.21: Octo success rates for seen and unseen combinations broken down by skills.
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Figure 5.22: Octo success rates for seen and unseen combinations broken down by
objects.

Figure 5.23: Mean success rates across all unseen skill/object combinations compared
to the same combinations when seen in training.
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5.4.4 Camera Pose and Object

Figure 5.24: Camera views in the camera pose and object experiment with the objects
that are seen in combination with the respective camera angle.

For this experiment we select the two dimensions camera pose and object. The methodology
is the same as in the previous experiment (see section 5.4.3). We select three camera poses
to combine with six objects. The camera poses and combinations with the seen objects for
each camera pose are shown in figure 5.24. In episodes viewed from the right camera
pose, the cube and apple are not seen. For the camera pose in the middle, the coke can
and onion are left out. The cucumber and knife are not seen from the left camera angle.
The training datasets in total contain 324 episodes with 108 episodes per camera pose
and 54 episodes per object. Each combination is seen 18 times in the leave out dataset
and 27 times in the baseline dataset.

After we fine-tune Octo with 5 seeds for 10k steps, we evaluate each unseen combination
with 20 rollouts per seed. The same combinations are also evaluated with the baseline
model where these combinations were seen in training. The results are reported broken
down by camera pose in figure 5.25 and for each object in figure 5.26. For all camera
poses the success rate is slightly lower when the combination of camera pose and object
was not seen in training. The same is true for each object except for the cube. Figure 5.27
shows that across all unseen combinations the average success rate is 0.23 which is 80%
of the average success rate for the same combinations when seen during fine-tuning.
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Figure 5.25: Octo success rates broken down by camera poses for unseen camera/object
combinations compared to the same combinations when seen in training.

50



Figure 5.26: Octo success rates broken down by objects for unseen camera/object com-
binations compared to the same combinations when seen in training.

Figure 5.27: Mean success rates across all unseen camera/object combinations com-
pared to the same combinations when seen in training.
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5.4.5 Camera Pose and Skill

This experiment is very similar to the experiment in section 5.4.4, but instead of objects
we select skills to combine with the camera poses. The camera poses are the same as in
the previous experiment and shown in figure 5.24. Instead of six objects, we only select
three skills. Those skills are the pick up, place, and rotate skills. In all skills we use a blue
cube as the only object. The exact instructions are "Pick up the cube", "Place the cube on
the plate", and "Rotate the cube clockwise by 90 degrees". For each camera pose one skill
is not seen. The pick up skill is not seen from the right camera pose, the place skill remains
unseen from the front, and the rotate skill is not seen in combination with the left camera
angle. Since we have two skills per camera pose in the leave out dataset and all three skills
in the baseline dataset, the number of episodes per camera pose must be divisible by two
and three to ensure equal distribution of data. We choose 102 episodes per camera pose.
Therefore, in the baseline dataset we end up with 34 episodes for each camera pose and
skill combination. The leave out dataset contains 51 episodes per combination.

Figure 5.28: Octo success rates for unseen camera/object combinations compared to
the same combinations when seen in training.
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As in previous experiments, Octo is fine-tuned with five seeds for 10k steps. Each unseen
combination of camera pose and skill is evaluated with 20 rollouts per seed. The results for
both the unseen combinations and the respective baselines are shown in figure 5.28. Since
there are only three unseen combinations, a single figure is sufficient for both dimensions.
The success rates of the unseen combinations and their baselines are very similar. In the
case of the left/Rotate and Front/Place combinations the success rate is even slightly higher
than for their baselines. The average difference in success rates across all combinations is
shown in figure 5.29. Interestingly, the unseen success rate is even slightly higher than
the baseline.

Figure 5.29: Mean success rates across all unseen camera/skill combinations compared
to the same combinations when seen in training.
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6 Discussion

In this chapter the results from the experiments in chapter 5 are discussed. We start
with the zero shot and cross-domain experiments in section 6.1 before continuing with
an examination of the fine-tuning in section 6.2. Finally, we present the results for our
benchmark in section 6.3.

6.1 Zero Shot and Cross-Domain Generalization

According to our experiments, both the zero shot and cross-domain generalization do not
work with the tested models. In the following sections, we discuss possible reasons for
this.

6.1.1 Action Normalization

We note that especially with respect to zero shot generalization, the original authors do
not expect their model to work in an unseen environment without fine-tuning [28]. Zero
shot generalization is only reported for environments that were part of the training data.
The models always work with normalized actions, and the normalization function depends
on the environment. During inference actions are unnormalized with a key specific to
the environment that is used for the evaluation. Since we introduce a completely new
environment, such a key does not exist. In our simulation, we try different values to scale
the actions. This can prevent end effector poses being immediately out of bounds, but it
does not lead to meaningful behavior.
A related issue is that we do not know how to define the axes. Unity uses a left-handed
coordinate system, while in robotics a right-handed coordinate system is often used,
including in some of the X-embodiment datasets [9]. When we map the actions accordingly
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to the axes in Unity we observe in some cases that the end effector stays within the
workspace bounds for longer.

6.1.2 Data Quality

Another problem may be the overall quality of the X-embodiment data that is used to train
the generalist models. As an example, we investigate a large dataset featuring the Panda
robot and find a number of issues. The dataset contains more than 3000 episodes with
similar tasks used in our experiments and is called taco_play [39, 26]. We report some
issues that we found below.

Issue 1: Episode Continues After Task is Done

This issue is present in many episodes and is here demonstrated for the instruction "push
right the yellow block". Some images of the episode are shown in figure 6.1. First, the
robot pushes the cube to the right as instructed, but then it moves in the opposite direction
and up. This introduces contradictory training data because for the same instruction, in
one instance the gripper moves towards the cube and in another instance the gripper
moves away which is essentially an incorrect action.

Figure 6.1: Sample images from an episode with the instruction "push right the yellow
block" [39, 26]. The episode continues after the task is finished.

Issue 2: Inaccurate Control

This issues is related to the previous issue. Figure 6.2 shows an episode for the instruction
"turn off the blue led light". The human teleoperator first misses the button before
correcting the mistake and hitting the button. As in the previous issue, this introduces
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contradictory data, i.e., for the same instruction, the gripper moves away from the button
and also towards the button.

Figure 6.2: Sample images from an episode with the instruction "turn off the blue led
light" [39, 26]. The gripper misses the button at first.

Issue 3: Camera Placement

Figure 6.3 shows the workspace camera in an episode with the instruction "go push the
pink block into the drawer". The problem is that the pink block is nowhere to be seen
because it is occluded by the robot.

Figure 6.3: Workspace camera view in an episode with the instruction "go push the pink
block into the drawer" [39, 26]. The robot occludes the manipulation object.
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Issue 4: Wrong Language Instruction

We discover some episodes where the task performed in the episode does not match the
language instruction at all. For example, in one episode with instruction "place the yellow
object in the drawer" the robot just moves towards a button.

Issue 5: Indistinguishable Visuals

Figure 6.4 shows an image of an episode with the instruction "push the green button to
turn off the green light". There are two buttons in the view. One is blue, while the other
button is supposed to be green. However, the buttons appear almost identical, making it
difficult for a model to properly learn the task.

Figure 6.4: Image of an episode with the instruction "push the green button to turn off
the green light" [39, 26]. However, there are two buttons that appear almost
identical.

Issue 6: Action Representation of Rotations

In figure 6.5 we plot the actions of a rotation axis for all steps in an arbitrary episode.
Presumably, these are absolute rotations in radians. The action value jumps between +π
and −π. While +π and −π may actually represent the same rotation, this introduces
ambiguity in the training data, since there are two very different actions for the same
desired rotation.
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Figure 6.5: Actions of the rotation x-axis for all steps in an arbitrary episode.

6.1.3 Other Domain Gaps

In addition to the poor data quality, there may be more reasons that contribute to models
not generalizing to our environment. We use the Franka Panda robot and in the original
release of the X-embodiment data, the share of trajectories using this robot is relatively
small, as shown in figure 6.6 [9].

Figure 6.6: Trajectories per embodiment in the Open X-Embodiment data [9].

The majority of the X-embodiment data is recorded from real-world setups and not in
simulators. Although Unity is able to render realistic graphics, there is a visual gap that
possibly prevents the generalization to our simulated environment.
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6.2 Fine-Tuning

In our experiments, we find that fine-tuning generally works. Therefore, we show that
our simulation environment can be used both for the collection of demonstrations and
the evaluation of generalist robot policies. We extensively analyzed the Octo model for
in-domain and out-of-domain generalization. Here, we find that we can achieve a high
success rate for a single task such as "Pick up the cube". However, the performance can
vary widely for different objects and skills. Especially spherical objects that can roll away
are hard to grasp by the model because a high accuracy of positioning the gripper is
required. For the same reason, the success rate also drops for objects that are smaller or
have less tolerance for grasping mistakes, such as the knife with a small handle.

For the out-of-domain generalization, we find that there is often no substantial difference
between seen and unseen tasks. In the case of the experiment with the unseen interaction
position (section 5.4.1) we placed the unseen position between the other positions. The
same is true for the unseen camera pose in section 5.4.2. Perhaps this methodology is too
easy and other experiments should be conducted where the interaction position is further
away or the camera pose is on the opposite site. In the experiments where we leave out
combinations of two dimensions, the difficulty may be increased by incorporating more
dimensions, e.g., test an unseen task "Pick up the cube" with an unseen camera angle
where the cube was not seen in the pick up skill and both the cube and the pick up skill
were not seen from the camera angle.

Across almost all experiments, we notice a high standard deviation. Qualitatively, we
observe that in some evaluation runs there may be five unsuccessful episodes followed by,
e.g., four successful episodes. Therefore, we believe that 10 rollouts as in some evaluations
in STAR-Gen [15] or other models presented in chapter 4 are insufficient for accurate
results. While real-world evaluations are time consuming, we can utilize our simulation
platform to scale the number of evaluation rollouts with minimal effort.

6.3 Benchmark

We use the results obtained from the experiments in sections 5.4.3, 5.4.4, and 5.4.5 to
calculate scores for the Octo model in our benchmark. The benchmark for Octo is shown
in figure 6.7. We report scores for the three dimensions skill, object, and camera. In section
4.1.4 we describe the methodology for calculating these scores. The score denoted as
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Figure 6.7: Benchmark scores for the Octo model.

"Absolute Unseen" is the average success rate for unseen tasks. In order to calculate this
score, we first collect the success rates for unseen tasks from all experiments that included
the respective dimension. For example, for the object dimension we collect the success
rate 0.19 from the skill/object experiment (section 5.4.3) and the success rate 0.23 from
the cam/object experiment (section 5.4.4). For simplicity, we then take the mean of these
values to end up with a single score per dimension, e.g., 0.21 for the object dimension.
This score may be used to compare different models with each other in terms of their
performance for unseen tasks.

We are also interested in a model’s ability to combine and transfer knowledge from seen
tasks to a new unseen task. Therefore, we put the success rate of an unseen task in relation
to the baseline success rate of the same seen task. This is useful because it highlights the
knowledge transfer and eliminates other factors. For example, handling some objects
may be harder than handling other objects, leading to an overall low success rate in the
object dimension, as shown in figure 6.7. However, this does not necessarily mean that
the model can not transfer knowledge well across the object dimension. In figure 5.26
we see that for most objects, the unseen success rate is similar to the baseline where the
objects were seen. We can therefore conclude that the model actually learns to recognize
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objects and identifies them correctly even if they were not seen from the particular camera
perspective. For this reason, we introduce the score denoted as "Relative Unseen/Seen"
which represents the percentage ratio of the success rate for unseen tasks to the success
rate for the same seen tasks. For each experiment we calculate this ratio and attribute it
to the dimensions involved. The final score for a dimension is calculated by taking the
mean across the attributed values. For example, in the skill/object experiment (section
5.4.3) the success rate for unseen combinations reaches 72% of the seen baseline. In the
cam/object experiment (section 5.4.4), the success rate for unseen combinations reaches
80%. Therefore, we report the average of 76% as the score for the object dimension in
figure 6.7.

Overall, the benchmark in figure 6.7 shows that Octo achieves a high relative score across
all dimensions. The absolute score, on the other hand, is low especially with the object
dimension only achieving a score of 0.21. The reason why the score of the other two
dimensions is higher at approximately 0.5 can be traced back to the cam/skill experiment
(section 5.4.5) that yields a high success rate and only affects these two dimensions.
The high success rate is partly due to the fact that the only manipulation object in this
experiment is the cube that is easier to grasp. To compensate for such effects, it may be
required to conduct the cam/skill experiment with multiple objects (but all objects are
seen). Similarly, the skill/object experiment may be conducted with multiple camera poses
that are all seen. To conclude, we can derive two major takeaways from the benchmark.
First, when we want to fine-tune Octo to a new setting with generalization across multiple
dimensions, we do not have to train on every task combination. Instead, it is enough to
include objects, skills, etc. in a subset of combinations because Octo is good at transferring
knowledge. However, the second insight is that Octo’s overall success rate is low when a
single model is used for diverse tasks. Especially multiple objects cause Octo’s performance
to drop because grasping some of them requires greater accuracy.
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7 Outlook

In this work, we have introduced our simulation platform RoboXim that is specifically
designed to evaluate generalist robot policies. We have demonstrated that this platform
can be used for the generation of demonstrations as well as for the evaluation of models.
However, the platform can be considered to be work in progress as some aspects can be
improved. One issues is that the trajectory planning service implemented with Moveit
[41] is not perfect. Sometimes, the trajectory planning fails and the episode has to be
discarded, costing time and compute resources. In the future, we would also like to
incorporate sophisticated collision avoidance in the trajectory planning to support more
complex tasks, e.g., tasks where a path is blocked by distractor objects. In general, we
would like to see more skills and robots implemented in RoboXim. We kept this in mind
when designing the architecture, and therefore adding new skills and robots should be
a straightforward process. Another point of interest is parallelization in our simulation.
Currently, we support containerization of our application, making it viable to run multiple
instances at once. Other platforms such as Maniskill [44] and IsaacLab [27] simulate
multiple environments in a single instance of the application. This can be implemented in
Unity as well, but it should be investigated whether this brings any benefits in terms of
simulation speed or VRAM usage over just running multiple containers.

In chapter 5 we conducted a wide range of experiments for an in-depth analysis of
generalist robot policies. We focused on the Octo model [28] and found that fine-tuning
works as intended by the original authors, but performance generally drops when the
range of skills and objects to generalize over increases. The next step would be to evaluate
other models with the same experiments to compare them with Octo and each other.
Some of the experiments may also be repeated with higher complexity, e.g., more colors
in the multiple colors experiment (section 5.2.2), or more objects in the multiple objects
experiment (section 5.2.3).

The benchmark described in section 6.3 provided us with some key insights. For example,
we found that Octo can effectively transfer knowledge across dimensions. Such findings
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can, for example, help us to decide what data to include when we fine-tune a model
because it follows that we do not need all task combinations when adapting the model to
a new setting. However, this benchmark is mostly a demonstration of our method and
can be scaled up in a future work. This includes evaluating the generalization across
more dimensions, but also conducting more experiments per dimension to increase the
reliability of the results. It would make sense to introduce some experiments with a higher
difficulty. For example, instead of combining just two dimensions, we can combine three
or four dimensions as mentioned in section 6.3. Finally, we would like to evaluate more
generalist models with our benchmark to compare them with each other. We hope that
RoboXim and our benchmark can help to uncover issues in generalist robot policies, e.g., a
lack of generalization in a certain dimension, and help to improve these generalist models.
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