
Decoupling Behavior, Control, and Perception in
Affordance-Based Manipulation

Tucker Hermans James M. Rehg Aaron F. Bobick

Abstract— A novel mechanism is introduced by which a robot
can connect the general notion of an affordance of an object to
specific behaviors by which the robot can achieve the desired
action. We achieve this by decomposing an affordance-drive
behavior into three components. We first define controllers
that specify how to achieve a desired change in object state
through changes in the agent’s state. For each controller we
develop at least one behavior primitive that determines how
the controller outputs translate to specific movements of the
agent. Additionally we provide at least one perceptual proxy
that defines the representation of the object that is to be
computed as input to the controller during execution. A variety
of proxies may be selected for a given controller and a given
proxy may provide input more than one controller. Decoupling
these components allows the systematic exploration of a variety
of strategies when evaluating the affordances of novel objects.
We demonstrate the approach using a PR2 robot that executes
different combinations of controller, behavior primitive, and
proxy to perform a push positioning behavior on a selection of
household objects.

I. INTRODUCTION

As the goal of having robots operate in uncontrolled environ-
ments becomes more critical to the advancement of robotics,
there has been much research on the notion of affordances of
objects with respect to a robot agent [1]. Within the context
of robotics affordances describe the possible actions an agent
can take acting upon an object and the resulting outcome
[2]. Specific examples might include graspable (e.g. [3]) or
pushable [4] that indicate a particular object can be grasped
or pushed, respectively. Because one can cast affordances as
state-action pairs that will transform the object state in some
way, there has been further work in considering affordance as
a basis of planning [5]. If the robot has a goal of clearing the
path to an object being fetched, it might first push interfering
objects to the side assuming they can be pushed, i.e. have
the affordance pushable.

However, while a planner may be able to leverage an
abstracted description of the affordance as being true or
not of an object, or even of having some probability of
being true in the case of a probabilistic planner, such a
high level description is not sufficient to actually execute the
action required for the affordance. And, indeed the method
of performing the action may vary by object or object state:
pushing a round cereal bowl might be quite different than
pushing a TV remote control that has rubber buttons that
occasionally stick to a table surface.

Tucker Hermans, James M. Rehg, and Aaron F. Bobick are with the
Center for Robotics and Intelligent Machines and The School of Interactive
Computing, Georgia Institute of Technology, Atlanta, GA. {thermans,
rehg, afb}@cc.gatech.edu

Fig. 1: Example of the robot performing pushing using
feedback from visual tracking. The red line represents the
dominant orientation of the object computed from the purple
ellipse fit to the object’s 3D point cloud.

The goal of this paper is to introduce a mechanism by
which a robot can attach the general notion of an affordance
to a specific method by which the robot can achieve it. We do
this by decomposing an affordance-driven behavior into three
components. We first define controllers that specify how to
achieve a desired change in object state through changes in
the agent’s state. For each controller we develop at least one
behavior primitive that determines how the controller outputs
translate to specific movements of the agent. Additionally
we provide at least one perceptual proxy that defines the
representation of the object that is to be computed as input
to the controller during execution. Obviously, the proxy must
be sufficiently rich to support estimation of the variables
required by the controller. The novelty here is that multiple
proxies may support the same controller and a given proxy
representation may be selected for use with more than one
controller. Additionally, a single behavior primitive may
be compatible with multiple controllers. Decoupling these
components allows the systematic exploration of a variety of
strategies when evaluating the affordances of novel objects.

In this paper we use as an example affordance push-
positionable where the goal is to move the object to a
specified location. We develop two feedback controllers to
implement this action using the overhead push behavior
primitive. Each of these controllers has its own perceptual
proxy. These methods require no prior knowledge of the
object being pushed and make no estimates of underlying
model parameters. We show how a particular controller may
succeed or fail on the basis of the proxy computed. Finally,
we show how one of these controller-proxy pairs can be
utilized by a second behavior primitive, a sweep push.



We organize the remainder of our paper as follows.
Section II describes relevant past work on the topic of
affordance learning and affordance-based planning; we also
briefly mention prior methods of controller-based pushing.
In Section III we formally define the affordance assertion
problem and the push-positioning task. Then in Section IV
we present two proposed feedback controllers each based
upon a different perceptual proxy and each better suited to
different object types. We give details of our implemented
proxies in Section V followed by the implemented behavior
primitives in Section VI. Section VII presents results of ex-
periments performed on a robot using our proposed system.
We conclude with directions for future work in Section VIII.

II. RELATED WORK

In early work on affordance prediction described in [6, 7],
a humanoid robot learns to segment objects through actions
such as poking and prodding. After interaction with a set of
objects, the system could learn the rollable affordance for
the objects and predict the result of hand-object interactions.
The goal was to learn parameters such as initial location of
the hand with respect to the orientation of an object that best
induce the desired motion. The actions were atomic in the
sense that they were applied in their entirety and the results
measured. In [8], a classification method is applied to high-
level image features to learn the affordance of liftable. Using
decision tree classifiers with SIFT and patch features, they
demonstrate the ability to learn liftable vs nonliftable objects.

A series of works [9–11] address the task of recognizing
the graspable and tappable affordances, based upon exper-
imentation through self-observation of actions. Learning in
a Bayesian network is employed to learn cuing rules for
actions. The network models the relationship between object
appearance and motion, end-effector motion, and action.
In [12], a functional approach to affordance learning is
developed in which subcategories of the graspable affor-
dance (such as handle-graspable and sidewall-graspable) are
learned by observation of human-object interactions. Inter-
action with specific object parts leads to the development
of detectors for specific affordance cues (such as handles).
The focus of that work was to learn a mapping from object
features to grasp locations without unduly worrying about
what method of grasping would work at that location.

Related, Stoytchev [13] describes a method for learning
the functionality of a tool through observation of the effects
of exploratory behaviors, a process that he termed behavioral
babbling. In experiments with a mobile manipulator, the
system demonstrated the ability to learn the affordances of
a set of tools that could be identified by their color.

With respect to planning, affordance-based modeling of
robot-object interaction would allow a planning system to
systematically select from a set of actions to achieve desired
subgoals. An example of such an approach is given in [5]
where the robot arrange plates and bowls on a table. In that
work, however, there is an assumption of a priori knowledge
as to which behaviors can successfully operate on which
objects and what the resulting state of the action will be. The

approach presented here would both permit experimental ex-
ploration on the part of the robot of the different methods by
which an affordance could be realized for a given object and
a method for monitoring the effectiveness of the behaviors.

The concept of Instantiated State Transition Fragment
(ISTF) is introduced in [14]. It encodes the pairing between
an object and an action in the context of the state transition
function for a domain-specific planner. The authors describe
a process of learning Object Action Complexes (OACs)
through generalization over ISTF’s. Montesano et. al. [11]
present a Bayesian network model that implicitly represents
affordances as mappings from action to effect, which are
mediated by the visual features of objects. A model for
grasping, tapping, and touching actions is learned from both
self-observation and imitation of a human teacher. The goal
is to leverage such OACs in planning and executing a multi-
step task.

Effective pushing behaviors offers a number of benefits in
robotics domains which complement standard pick-and-place
operations. For example pushing can be used to move objects
too large for the robot to grasp, to more quickly move objects
to new locations, or to move an object while another object is
already grasped. As such there has been considerable work
at developing such capability. Early work that analyzed a
complete model of the dynamics of pushing was developed
by Mason who describes the qualitative rotational changes
of sliding rigid objects being pushed by either a single point
or single line contact [15]; representative examples of some
more recent applications of pushing are available in [4, 16–
20].

Notably, Ruiz-Ugalde et al. execute a pushing behavior
by determining the static and kinetic friction coefficients for
multiple objects with rectangular footprints, both between the
robot hand and object and between the object and table [20].
Additionally they present a robust controller using a cart
model for the object being pushed. The control takes object
velocity as input to control the system to a desired 2D
pose, as such the mapping from applied force to velocity
is believed known from the estimation and is separate from
the control of the object. Their control is the closest approach
we have found to the pushing controllers presented in this
work. However, their overall approach presumes the ability
to predict the resulting action based upon known or learned
parameters that characterize the physics of the object.

To address the inherent difficulty in estimating model
parameters, there are data-driven methods that use an em-
pirically derived characterization of the outcomes of specific
actions applied to the object. For example, Narasimhan uses
vision to determine the pose of polygonal objects of known
shape in the plane [21]. Three methods were proposed to be
able to push objects into the desired location and orientation:
a hand coded heuristic that assumes known center of mass
(and uniform friction properties), a feedback controller to
explicitly rotate and translate an object, and finally a data-
driven, learning approach that stores the results of different
pushes and uses nearest neighbor to select the action that
generates a result closest to the desired outcome. where the

2



Fig. 2: Initial pose of the food box. The green circle
represents the desired position and the green line is the
current vector between the object origin and the goal.

states and results of different methods are examined.
Similarly, Salganicoff et al. present a method for learning

and controlling the position in image space of a planar object
pushed with a single point contact [22]. Slip of the object
is avoided by pushing at a notch in the object. Scholz and
Stilman learn object specific dynamics models for a set of
object through experience [23]. Each object is pushed at a
number of predefined points on the perimeter and the robot
learns Gaussian models of displacement in (x, y, θ) at each
location. These learned models are then used to select the
input push location given a desired object pose.

III. PROBLEM STATEMENT

We define an affordance to exist between a robot and an
object, if the robot can select a specific behavior primitive,
controller, and perceptual proxy by which it can successfully
perform the desired action. We take as an example action that
of push positioning, where the robot must position an object
at an arbitrary location by pushing with its arm. We assume
that the object is being pushed over a plane and thus the
object state X = (x, y) defines the location of the origin of
the object in a 2D space.1 We denote the goal pose as X∗ =
(x∗, y∗). This state representation is sufficient at the level
of a task level planner, however, a specific controller may
require more state variables to be estimated by the relevant
perceptual proxy.

The (unknown) dynamics of the pushing system are gov-
erned by the nonlinear relation Ẋ = h(X,Q,U) which
defines the interaction dynamics between the object state,
the robot configuration Q, and the input to the robot U .
Importantly, we make no attempt model h. In developing
our visual feedback controllers to achieve the above defined
task, we presume we do not have an exact measurement of
the object state. Instead we will operate on the estimated
state X̂ that will be computed at each timestep based upon
properties of a perceptual proxy. In this work we control the
arm through Cartesian control, both position and velocity, in
the robot’s task frame. We denote the specific forms of U
and X used in our controllers in detail below. Our task thus
becomes defining a feedback control law U = g(X̂,X∗)
which drives the position error Xerr = X∗ − X̂ to zero.

1We wish to make clear, that we do not assume objects are flat.

IV. TWO PUSH-POSITIONING CONTROLLERS

In this section we define two visual feedback controller
for the robot to push an object to a desired location. Each
controller has a necessary set of state variables to be esti-
mated from the perceptual representation that is continuously
updated. These representations serve as the proxies for the
object with respect to the defined controllers.

A. Spin-Correction Control

Our first method of defining a push-positioning controller
relies on the fact that the direction of an object’s rotation
while being pushed depends on which side of the center
of rotation the applied force intersects. This fact is well
described by the limit surface formulation [15, 24]. Mason
derived the velocity direction of a sliding object as a function
of the forces applied by the pushing robot as well as the
support locations and mass distribution of the object [15].
These parameters are difficult to know or estimate well for
a given object and even when they are known, the exact
resulting behavior is often indeterminate [15]. However, we
make use of Mason’s realization that the resulting rotation of
the object abruptly changes direction when the input force
passes directly through the center of rotation of the object.
As such we can use the direction of the observed rotation
of the object to infer which side of the center of rotation
the applied forces are currently acting through. We can then
correct the direction of our applied forces to compensate for
any unwanted rotation of the object.

Since objects tend to rotate less when the input forces as
directed near the center of the object our controller attempts
to push the object through its center in the direction of the
goal position. This gives a simple procedure for determining
the initial hand position. We cast a ray from the goal location
through the centroid of the object and find its intersection
with the far side of the object. This location defines the initial
position for the hand. We further orient the hand so that its
gripper is facing in the direction of the goal from the initial
position. An example image of the initial hand placement can
be seen in Figure 2. Once positioned our feedback control
process is initiated. The controller is defined in equations 1
and 2 which operates on state X = (x, y, θ, θ̇) and computes
input U of x and y velocity of the end effector in the robot’s
workspace.

uẋ = kgvgoalx − sin(φg)(vrot) (1)
uẏ = kgvgoaly + cos(φg)(vrot) (2)

Our control is comprised of two terms. The first pushes
through the object driving it to the desired goal, while the
second displaces the contact location between the robot and
object to compensate for changes in object orientation. The
input control defined in equations 3 and 4 commands the
robot to push in the direction of the goal. The overall effect
of this component is controlled by the positive gain kg . Since
the object lies between the end effector and the goal this

3



causes the object to translate towards the goal.

vgoalx = (x∗ − x̂) (3)
vgoaly = (y∗ − ŷ) (4)

However, since the forces applied by the robot on the object
are not pushing directly through the center of rotation, the
object will undoubtedly spin. To compensate for this we
apply additional input velocities proportional to the observed
rotational velocity of the object. We desire not only that
the object not rotate, but also that it maintains its initial
orientation θ0. We combine these terms to generate vrot.

vrot = ksd
˙̂
θ − ksp(θ0 − θ̂). (5)

We desire to displace the end effector perpendicular to the
current direction of the object’s translational motion. Since
our estimate of the instantaneous velocity is somewhat noisy,
we instead rotate the velocity vector about the angle defined
between the center of the object and the goal φg .

φg = atan2(y∗ − ŷ, x∗ − x̂) (6)

Our pushing controllers halt once xerr < εx and yerr < εy .
For the purpose of developing this method as well as the
controller in Section IV-B, the gains are manually adjusted,
but remain fixed for all objects.

B. Centroid Alignment Control

Our second push-positioning controller replaces the mon-
itoring of object orientation with a strategy based upon
the relative locations of the object’s centroid, the assumed
location of the contact point on the end effector, and the
goal position. The simple intuition is that pushing the object
can be achieved by positioning the end effector at a location
on the object boundary that intersects a line between the goal
location and the object centroid.

The robot achieves this behavior by using a control law
that includes a velocity term to move toward the goal and
one that moves the end effector to the line defined through
the goal centroid locations:

uẋ = kgcvgoalx + kcvcentroidx
(7)

uẏ = kgcvgoaly + kcvcentroidy
(8)

where vgoalx and vgoaly are as before. The second term pro-
vides the additional velocity term toward the goal-centroid
line; vcentroidx and vcentroidy are components of perpendic-
ular vector from the presumed end effector contact point to
the goal-centroid line. The robot then pushes in the direction
of the goal attempting to maintain this collinearity relation.
This controller has the state X = (x, y) and computes the
same U as in Section IV-A. Additionally, the end effector is
initially positioned relative to the object as above.

V. OBJECT PROXIES

The two above controllers have modest perceptual re-
quirements. The orientation-velocity controller requires both
the location of the object and its orientation whereas the
centroid-driven one only requires position as defined by the

Fig. 3: The first image shows the overhead push behavior
primitive pushing the television remote. The second image
show the sweep push behavior primitive pushing the dinner
bowl. Both objects have the estimated centroid location and
ellipse overlayed.

object centroid. Here we describe the perceptual computa-
tions performed and the proxies that satisfy the requirements.

We begin with a simple depth-based segmentation and
tracking method that currently assumes only a single object
resting on the sliding surface (a table) is in the scene. The
input is the RGBD image of a Microsoft Kinect though in
this simple implementation only the depth channel is used.
We initialize the tracker by moving the robot’s arms out of
the view of the camera, capture the depth image and then
use RANSAC [25] to find the dominant plane in the scene
parallel to the ground plane. We then remove all points below
the estimated table plane and cluster the remaining points.
We filter out clusters with very few points and, because we’re
assuming only one object is on the table, we accept the
cluster with most points as the object.2 We compute the 3D
centroid of the points in the cluster and use the x and y
components as the object’s location on the table.

Once initialized we track by performing the same proce-
dure with the added step of removing points belonging to the
robot from the scene. We project the robot model into the
image frame using the forward kinematics of the robot and
remove points from the point cloud coincident with the robot
arm mask. Because of noise in measurements and other cal-
ibration issues points belonging to the robot can sometimes
remain. To prevent the tracker from selecting any of these
points as the current object we perform nearest neighbor
matching between current cluster centroids and the previous
object state, selecting the closest as the current object. We
then estimate the object velocity using the previous estimate
of the object state.

Computing the perceptual proxies needed for each of the
controllers is straightforward given the tracker described
above. For the centroid based control where the proxy is
only the centroid of the object, we can immediately return
the x and y values. For the orientation-velocity control we
need a proxy that includes an estimate of object orientation,
as well as its rotational velocity, with respect to the global
robot frame. We fit a 2D ellipse [27] to the x and y values
of all points in the object point cloud and use the orientation
of the major axis of the ellipse as the objects orientation
θ. The change in θ from one frame to the next is the

2We note that we [19] and others (e.g. [26]) have previously developed
methods for singulating objects form each other by pushing actions.

4



Fig. 4: The first image shows the tracked box pose trajectory. The red error shows the initial pose. The green arrow is the
goal pose. The second image is error in the food box position and the third shows change in orientation from the initial
orientation.

estimated orientation velocity θ̇. An example of the computed
ellipsoidal proxy is shown in Figure 1.

Note that these two simple proxies — the first merely
a centroid, the other the 2D ellipse — are intended to
be available for any controller for which these inputs are
sufficient. And, indeed a robot may have a variety of proxies
that can yield a set of controller input variables. Later, when
we discuss future work of learning the affordances of objects,
we will return to this point.

VI. PUSHING BEHAVIOR PRIMITIVES

We performed pushing with two behavior primitives: an
overhead push and a sweep push. The overhead push has the
robot place its hand such that the fingertips are in contact
with the table with the wrist directly above. The sweep push
places the length of the hand on the table with the flat of
the hand facing the object. As our controllers operate only
within the 2D pose of the hand (x, y, θ), the configuration
of the end effector with respect to the arm and object remain
fixed during operation. Specifically that means that the wrist
remains above the hand throughout pushing for the overhead
push. Likewise the sweep push keeps the long side of the
robot hand along the table with the broad side of the hand
perpendicular to the surface during pushing. Images of the
robot operating with these behavior primitives can be seen
in Figure 3.

For both primitives the arm is moved to the initial pushing
pose using Cartesian position control. The arm is first moved
to a position directly above the table at the desired pushing
pose and desired orientation. The hand is then lowered in a
straight line to the initial pushing pose. We use a Jacobian
inverse controller to control the Cartesian velocity of the end
effector during feedback control. We push objects with the
robots right arm when the angle towards the goal pose move
left in the workspace and use the left arm in the opposite
case.

VII. EXPERIMENTAL VALIDATION

We implemented our system on a Willow Garage PR2 robot
augmented with a Microsoft Kinect for visual input. We
experiment with different combinations of proxies, control
laws, and behavior primitives in pushing a television remote,

(a) (b)

Fig. 5: The top and bottom of the television remote. The
support distribution of the remote is much more complex
than a simple polygon. Additionally the narrow end is
significantly more massive than the wider end owing to the
batteries inside.

a food box, and a dinner bowl. In all experiments εx = εy =
0.05 meters.

A. Goal Position Controller Evaluation

We first show an example of pushing a television remote
using the overhead push controlled by the spin correction
controller. The perceptual proxy used is the ellipse model.
The TV remote has a rather complicated set of support
points and far from uniform mass or friction distributions.
We show an up close picture of the remote in Figure 5.
The tracked trajectory of the TV remote as well as the
pose errors are shown in Figure 6. Midway through the
pushing trajectory the remote becomes partially occluded
by the robot arm which causes a jump in the estimated
position. Figure 7 shows the controller compensating for
this change which induces a larger velocity in the object,
including its rotation. We show the velocities for the remote
in Figure 8. Note that after the increased rotational velocity
the controller most apply larger input velocities to maintain
the initial orientation and continue pushing towards the goal.
Regardless, the remote control converges within the desired
bounds of the goal pose and the execution is successful.

We now show that this same affordance instantiation of
overhead push, ellipse proxy, and spin correction controller

5



Fig. 6: The first image shows the tracked TV remote pose trajectory. The red error shows the initial pose. The green arrow
is the goal pose. The large jump in error near time 40 is a result of the TV remote becoming partially occluded by the robot
arm, which results in poor visual tracking performance.

Fig. 7: Plot of the input velocities to the arm controller
commanded by our feedback controller during pushing of
the TV remote.

can be used for a different object of a simple food box.
The robot successfully pushed this box using the same
components as with the television remote. The results for
a trial with this setting are shown in Figure 4. The box can
be seen in Figure 2.

We investigate the same manipulation settings of overhead
push, ellipse proxy, and spin correction controller to a simple,
white dinner bowl. We show the robot pushing this bowl
in Figure 3. The position error for the bowl and the input
velocities during control are shown in Figure 9. We show
the tracker output and rotational velocity estimates of the
bowl in Figure 10. Applying this method to the bowl fails
to push the bowl to the desired location. This failure can be
attributed to the symmetric appearance of the bowl, which
causes instability in estimating the object’s orientation by the
ellipse perceptual proxy. However, by pushing the bowl with
the overhead push controlled by the centroid controller the
robot can correctly position the object. We show error results
and input velocities for these settings in Figure 11.

Following the success of the centroid controller in pushing
the bowl, we investigate its use with the overhead pushing
behavior primitive to push the television remote. Unsur-
prisingly, the centroid controller quickly loses contact with
the remote since the visually estimated centroid is not the
center of rotation and trying to push in line with it fails
to compensate for the object’s rotation. Figure 12 shows
position errors and input velocities from the experiments.

Fig. 8: Plot of the tracked object velocities of the TV remote.

B. Behavior Primitive Evaluation

We now examine using the sweep push behavior primitive
with the controller proxy pairs. Following the success of
positioning the TV remote with the spin correction con-
troller and overhead push, we tried the same setup with the
sweep push behavior primitive. This performed quite poorly.
Partially at fault was the occlusion of the remote by the
arm causing unstable state estimates. Additionally the spin
compensating control input, vrot caused somewhat volatile
control of the sweeping end effector, that was much smoother
with the overhead push. This could have perhaps been fixed
by changing controller gains, however, we did not investigate
this.

We also examined pushing the bowl using the centroid
controller and the sweep push. This method successfully
positioned the bowl. We show the position error and input
velocities in Figure 13. The error results and control veloc-
ities were quite similar to those seen in pushing with the

6



Fig. 9: Position error and input velocities for pushing the
bowl using the spin correction controller with the overhead
push.

overhead push.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a novel mechanism by which a robot
can connect the general notion of the affordances of an
object to specific methods by which the robot can perform
the necessary actions. We decompose affordance actions into
behavior primitives, controllers, and perceptual proxies. This
not only simplifies developing these capabilities but also
allows a robot to systematically explore the affordances of
objects. In the near future we will incorporate this approach
into a learning paradigm where a robot not only learns
the affordance of novel objects but also attempts to learn
perceptual markers that will permit transfer of affordance
knowledge between objects.

REFERENCES

[1] J. J. Gibson, “The theory of affordances,” in Perceiving, Acting, and
Knowing: Toward an Ecological Psychology, R. Shaw and J. Brans-
ford, Eds. Hillsdale, NJ: Lawrence Erlbaum, 1977, pp. 67–82.

[2] F. Iida, R. Pfeifer, and L. Steels, Embodied Artificial Intelligence
International Seminar, Dagstuhl Castle, Germany, July 7-11, 2003,
Revised Papers, ser. Lecture Notes in Computer Science. Springer,
2004, vol. 3139.

[3] A. N. Erkan, O. Kroemer, R. Detry, Y. Altun, J. Piater, and J. Peters,
“Learning probabilistic discriminative models of grasp affordances
under limited supervision,” 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1586–1591, Oct. 2010.

[4] D. Katz, Y. Pyuro, and O. Brock, “Learning to Manipulate Articulated
Objects in Unstructured Environments Using a Grounded Relational
Representation,” in Proceedings of Robotics: Science and Systems IV,
Zurich, Switzerland, June 2008, pp. 254–261.

[5] J. Barry, K. Hsiao, L. P. Kaelbling, and T. Lozano-Perez, “Manip-
ulation with multiple action types,” in International Symposium on
Experimental Robotics, no. 1122374, 2012, pp. 1–15.

Fig. 10: Position and orientation estimates as well as
rotational velocities estimates for pushing the bowl using the
spin correction controller with the overhead push.

Fig. 11: Position error and input velocities for pushing the
bowl using the centroid controller with the overhead push.

7



Fig. 12: Position error and input velocities for pushing
the television remote using the centroid controller with the
overhead push.

Fig. 13: Position error and input velocities for pushing the
bowl using the centroid controller with the sweep push.

[6] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini, “Learning
about objects through action - initial steps towards artificial cognition,”
in IEEE Intl. Conf. on Robotics and Automation (ICRA), vol. 3, Sept
2003, pp. 3140–3145.

[7] G. Metta and P. Fitzpatrick, “Early integration of vision and manipu-
lation,” Adaptive Behavior, vol. 11, no. 2, pp. 109–128, 2003, special
Issue on Epigenetic Robotics.

[8] G. Fritz, L. Paletta, R. Breithaupt, E. Rome, and G. Dorffner, “Learn-
ing predictive features in affordance based robotic perception systems,”
in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
Beijing, China, Oct 2006, pp. 3642–3647.

[9] M. Lopes, F. S. Melo, and L. Montesano, “Affordance-based imitation
learning in robots,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), San Diego, CA, 2007, pp. 1015–1021.

[10] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Mod-
eling object affordances using bayesian networks,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2007.

[11] ——, “Learning object affordances: From sensory-motor coordination
to imitation,” IEEE Trans. on Robotics, vol. 24, no. 1, pp. 15–26, Feb
2008.

[12] M. Stark, P. Lies, M. Zillich, J. Wyatt, and B. Schiele, “Functional
object class detection based on learned affordance cues,” in Sixth Intl.
Conf. on Computer Vision Systems (ICVS 08), Santorini, Greece, May
2008, pp. 435–444.

[13] A. Stoytchev, “Behavior-grounded representation of tool affordances,”
in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2005.

[14] C. Geib, K. Mourao, R. Petrick, N. Pugeault, M. Steedman,
N. Krueger, and F. W org otter, “Object Action Complexes as an
Interface for Planning and Robot Control,” in IEEE/RAS International
Conference on Humanoid Robots (Humanoids), Genova, Italy, Dec 4-6
2006.

[15] M. T. Mason, “Mechanics and Planning of Manipulator Pushing
Operations,” The International Journal of Robotics Research (IJRR),
vol. 5, pp. 53–71, September 1986.

[16] D. Omrc̆en, C. Böge, T. Asfour, A. Ude, and R. Dillmann, “Au-
tonomous Acquisition of Pushing Actions to Support Object Grasping
with a Humanoid Robot,” in IEEE/RAS International Conference on
Humanoid Robots (Humanoids), Paris, France, 2009.

[17] M. Dogar and S. Srinivasa, “Push-Grasping with Dexterous Hands:
Mechanics and a Method,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robotics and Systems (IROS), 2010.

[18] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push Planning
for Object Placement on Cluttered Table Surfaces,” in Proc. of
the IEEE/RSJ International Conference on Intelligent Robotics and
Systems (IROS), 2011.

[19] T. Hermans, J. M. Rehg, and A. Bobick, “Guided Pushing for Object
Singulation,” in Proc. of the IEEE/RSJ International Conference on
Intelligent Robotics and Systems (IROS), 2012.

[20] F. Ruiz-Ugalde, G. Cheng, and M. Beetz, “Fast Adaptation for Effect-
aware Pushing,” in IEEE/RAS International Conference on Humanoid
Robots (Humanoids), 2011.

[21] S. Narasimhan, “Task Level Strategies for Robots,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1994.

[22] M. Salganicoff, G. Metta, A. Oddera, and G. Sandini, “A vision-based
learning method for pushing manipulation,” in AAAI Fall Symposium
on Machine Learning in Computer Vision, 1993.

[23] J. Scholz and M. Stilman, “Combining Motion Planning and Opti-
mization for Flexible Robot Manipulation,” in IEEE/RAS International
Conference on Humanoid Robots (Humanoids), 2010.

[24] S. Goyal, A. Ruina, and J. Papadopoulos, “Limit Surface and Mo-
ment Function Descriptions of Planar Sliding,” in Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 1989.

[25] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, pp. 381–395, June
1981.

[26] L. Y. Chang, J. R. Smith, and D. Fox, “Interactive Singulation of
Objects from a Pile,” in Proc. of the IEEE International Conference
on Robotics and Automation (ICRA), 2012.

[27] A. W. Fitzgibbon and R.B.Fisher, “A Buyers Guide to Conic Fitting,”
in British Machine Vision Conference, 1995, pp. 513–522.

8


