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Abstract

Robots, especially humanoid robots, will become more and more present in our everyday
life. A crucial factor for them to be accepted by society is their overall social behavior,
which mainly includes the ability to properly interact with humans in collaborative Human-
Robot Interactions (HRI) like handshaking or hand waving. To raise the social acceptance
even more, such interactions should appear as natural and human-like as possible.
Learning from Demonstration (LfD) methods from Human-Human Interactions (HHI) are
effective in learning interaction dynamics for generating robot trajectories in a responsive
and timely manner, which is of significant importance for the interaction to appear natural.
To enhance a better generalization, these interactions can naturally be broken down
into multiple more primitive segments that can be learned individually. A great way to
implement such an approach is through Hidden semi-Markov Models (HSMMs), which
are capable of performing such kind of segmentation in an unsupervised and modular
manner.

In the proposed framework we are using HSMMs for jointly learning the interaction
dynamics between a human and a robot as multiple sequential segments. We represent the
observations of each segment as a Multivariate Normal Distribution (MVN) to sufficiently
encode the joint probabilities of the human-human demonstrations. The performance
of our framework is tested in simulation as well as in real scenarios. For the latter, we
conduct a user study showing the importance of an algorithm being able to properly react
and adapt to human users to be well perceived.




Zusammenfassung

Roboter, insbesondere humanoide Roboter, werden in unserem Alltag immer présenter.
Ein entscheidender Faktor fiir ihre Akzeptanz in der Gesellschaft ist ihr allgemeines sozia-
les Verhalten, welches vor allem die Fahigkeit umfasst mit Menschen in kollaborativen
Mensch-Roboter Interaktionen, wie Handeschiitteln oder Winken, zu interagieren. Um
die soziale Akzeptanz noch weiter zu erhohen, sollten solche Interaktionen so natiirlich
und menschendhnlich wie moglich erscheinen.

Learning from Demonstration Methoden von Mensch-Mensch Interaktionen sind effektiv
beim Erlernen von Interaktionsdynamiken zur Generierung von Robotertrajektorien in
einer reaktionsschnellen und zeitnahen Art und Weise, was von grof3er Bedeutung ist,
damit die Interaktion natiirlich erscheint. Um eine bessere Generalisierung zu erreichen,
konnen diese Interaktionen auf natiirliche Art und Weise in mehrere primitivere Segmente
unterteilt werden, welche einzeln erlernt werden konnen. Ein hervorragender Weg zur
Umsetzung eines solchen Ansatzes sind verdeckte semi-Makrov Modelle (HSMMs), die
in der Lage sind, eine solche Segmentierung auf uniiberwachte und modulare Weise
vorzunehmen.

In dem vorgestellten Framework verwenden wir HSMMs fiir das gemeinsame Lernen
von Interaktionsdynamiken zwischen einem Menschen und einem Roboter als mehrere
aufeinander folgende Segmente. Wir stellen die Beobachtungen jedes Segments als eine
mehrdimensionale Normalverteilung (MVN) dar, um die gemeinsamen Wahrscheinlich-
keiten der Mensch-Mensch Demonstrationen hinreichend zu kodieren. Die Performanz
unseres Frameworks wird sowohl in einer Simulation als auch in realen Szenarien getestet.
Fiir letzteres fithren wir eine Nutzerstudie durch, die zeigt, wie wichtig es ist, dass ein
Algorithmus in der Lage ist, richtig auf den menschlichen Nutzer zu reagieren und sich
entsprechend anpassen, um positiv wahrgenommen zu werden.
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1. Introduction

The following introduces the idea of this thesis and in Section 1.1, this Chapter motivates
the concepts used for implementation. Our main contributions are listed out in Section
1.2. Finally, in Section 1.3, the remainder of this thesis is outlined.

Social interactions in the context of Human-Human Interaction (HHI) refers to all kinds of
gestures used to carry out social conventions which, among other things, includes greeting
someone with a handshake or celebrating something by giving a high five. Such kinds of
social rituals are of great importance in our society [1]. They help with establishing trust
among others and can incorporate the belonging to a group. Thus, when it comes to the
interactions between humans and robots, non-verbal communication is a key feature for a
(social) robot to be accepted by society. So in order for robots to get integrated into our
everyday life, they should be capable of knowing and performing social interactions.
Another crucial fact in raising the social affiliation for robots is the way the robot moves
when executing the gestures. It needs to be as natural and human-like as possible to not
appear uncanny to the interaction partners [2].

Having a robot learn social interactions is not an easy task. Every human is individual and
therefore will perform interactions slightly different [3]. Even the same human will not
always perform an interaction in the same manner. Furthermore, the robot needs to adapt
to different body heights or shapes, which also results in interactions being performed
slightly differently. In addition, social rituals vary between different cultures [4]. Hence
all that can not be pre-programmed, it is of great importance for the robot to be able to
adapt and generalize to these different situations on its own.

All that should be employable in realistic scenarios by just observing the interaction partner
and not having any additional knowledge about the context. Within real-time, the robot
needs to classify the observation and respond to it appropriately.

These preliminaries bring us to the Human-Robot Interaction (HRI) approach proposed in
this thesis. We rely on an imitation learning method based on HHIs captured by motion




Figure 1.1.: This figure gives a general overview of the approach proposed in this thesis.
It shows the joint distributions over the segments of the learnt interaction of
both the human (red) and the robot (blue), which are represented as Gaus-
sian’s. The arrows along with their numbering symbolize the sequential order
of the segments.

tracking systems. We learn the joint probabilities of both human actors with Hidden
semi-Markov Models (HSMMs) consisting of Multivariate Normal Distributions (MVN)
as the underlying state distributions for encoding the observation probabilities. While
learning, the demonstrated trajectories of an action first get segmented into more primitive
motions like the reaching of the hands during a handshake or fist bump. Each segment
then corresponds to one of the states of the HSMM, which further learns the temporal
sequencing of those. While reproduction, the learned model gets conditioned on the




observed trajectory and emits the corresponding observations. An overview of the proposed
framework can be seen in Figure 1.1, which shows an exemplary interaction between a
human and a robot with the corresponding learned joint distributions encoded as MVNs,
along with their sequential order.

1.1. Motivation

In Imitation Learning - also referred to as Learning from Demonstration (LfD) [5, 6, 7, 8] -
the goal of the agent is to extract information from a (human) teacher and learn a mapping
between the situation and the demonstrated behavior. In contrast to direct programming,
the agent does not deterministically learn to perform a task or a skill. With that, the robot
learns ways to circumvent unknown scenarios on its own and therefore does not need to
be explicitly pre-programmed to every possible scenario.

Moreover, the robot also learns a skill in the way the teacher demonstrates it, including
the way the single body parts move, which prevents the robot from finding his “own” - for
example more efficient - solution. That results in the skill looking natural and human-like
when being reproduced and accordingly encounters the aforementioned problem of robots
quickly causing a feeling of uncanniness to humans [2].

Another advantage of Imitation Learning is the fact that it is accessible to non-expert
users. Once an algorithm is provided, the teacher simply needs to perform the task and
does not need to come up with a method to express the situation in a way that the agent
understands it.

HSMMs [9, 10] are a great way for learning such data. They allow for segmenting the
demonstrated trajectories into smaller more primitive motions, like the reaching phase of
a handshake or fist bump, which brings a few beneficial features along. Firstly, it makes it
easy to generalize between the points where the primitives connect, amplifying the ability
to adapt to unseen movements. Secondly, the single segments can be reused within the
same action (e.g. for repeated movements like the “waving part” in a hand wave), but
also along actions that have related sub-actions, like the reaching phase of a handshake or
fist bump.

The HSMMs themselves learn to properly sequence those primitives. In contrast to
regular HMMs [11, 12], they bring the advantage of not only modeling spacial but also
temporal dependencies. The MVNs as the underlying distributions allow for modeling the
observations in a probabilistic way.




1.2. Contributions

The general idea of utilizing HSMMs in Human-Robot Interaction (HRI) scenarios has
already been explored quite a bit [13, 14, 15]. Most of these approaches however vary from
our one by relying on different underlying architectures. Also, a lot of these approaches
are not evaluated in real scenarios, and even if tested on real robots, they mostly rely on
kinesthetic teaching for training the model, which is tedious and only works on the robot
that the model is trained on.

The approach proposed in this thesis has the power of learning a sufficient model just
from Human-Human Interaction (HHI) data, which can easily be recorded. Moreover,
once a model is learned on such data, the framework can even be applied to all different
kinds of humanoid robots.

1.3. Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 provides detailed insights
into HMMs and HSMMs and also discusses related works. The actual approach is described
in Chapter 3. In Chapter 4, we are evaluating the proposed framework by first giving
insights into the datasets we used. Further, the performance of the approach is evaluated in
a more theoretical and general way, after which testing in simulation and real scenarios is
discussed. The latter also includes the conducted user study along with its results. Finally,
in Chapter 5, we are first concluding the results achieved in this thesis and secondly, we
are discussing the shortcomings and giving an outlook for future work.

Moreover, Appendix A provides further details into the theory of Hidden Markov Models
(HMMs) and Hidden semi-Markov Models (HSMMs). Appendix B is discussing the
differences between HMMs and HSMMs more thoroughly in terms of their performance
regarding our use case.




2. Foundations and Related Work

The following chapter provides a broad overview of the technologies and basic concepts we
use for our approach. Section 2.1 introduces Hidden Markov Models (HMMs) [11, 12] and
Hidden semi-Markov Models (HSMMs) [9, 10], which are fundamental to the approach
proposed in this thesis. Section 2.2 discusses related works that inspired and motivated
this thesis.

2.1. Hidden (semi-)Markov Models

Hidden semi-Markov Models (HSMMs) [9, 10] are a special class of Hidden Markov
Models (HMMs) [11, 12], where the probability of changing a (hidden) state does not
only depend on the previous state, but also on the duration for which the systems stays
in that state. Thus, in contrast to HMMs, this duration can be variable in HSMMs. The
duration is associated with the number of observations produced while in the state.

A HMM/HSMM is a common mathematical stochastic model that developed a broad field of
applications not only in computer science but also in natural sciences, physiology, economy,
and so on [16, 9]. The most popular usage however lies within pattern recognition such
as speech or optical characters, but also gesture recognition for Human-Robot Interaction
(HRI) which is the topic of this thesis.

In general, a HMM is a stochastic process based on a Markov-Chain with unobservable
states - hence the term hidden. It is defined by a 5-tuple A = (S, O, D, A, «), where




S = {s1, 82, ..., s} is the set of all possible states

OcCcR™ is the set of observations (sometimes also referred to as emis-
sions)

D = {d1,ds, ...,dy} is the set of the underlying distributions, which characterize
the emission probabilities of each state. Each state s; is asso-
ciated with a distribution d; with i € {1,2,...,n}

A €0,1]™" defines the probabilities of the state transitions

we[0,1]" is the initial state distribution

Some additional definitions are:

1. A sequence of states is defined as s;.7 £ s1, 59, ..., s7 where s; € S describes the
state at time step ¢t with ¢ € {1,2,...,T'}.

2. A sequence of observations is defined as 0,.7 £ 01, 09, ..., o7 where o; € O describes
the observation at time step ¢ with ¢ € {1,2,...,T'}.

3. The probability p(s|s¢+1) to transition from a state s; at time step ¢ to a state s; at
time step ¢ + 1 is denoted as a; ;1 or equivalently a; ; with a;;41,a;; € A.

4. HSMMs have the additional feature of having a variable duration of staying in a
state. For that a variable d € {1, 2, ..., D} that specifies this duration, is introduced.
ps(d) defines a distribution that is fitted over the state s € S, which describes the
duration of staying in a certain state s.

With that, in a HMM, a sequence of observations o;.7 is modeled as a sequence of hidden
latent states s1.7 that emit observations O with probabilities according to the underlying
distributions D. For the first time step, the hidden latent states are distributed according
to the initial probability distribution w. The following transitions between the states
emerge from the matrix A.

In the case of this thesis the underlying distribution d; of a state s; is a Multivariate Normal
Distribution (MVN) with mean p,; and covariance 3; with i € 1,2, ..., n. It characterizes
the emission probabilities of the observations NV (o] u;, X;). That, in essence, can be seen
as learning a Gaussian Mixture Model (GMM) over the observations and learning the
temporal sequencing between the Gaussian components. More on that in Chapter 3.

HMMs are based on Markov chains with the states being unobservable. Thus it fulfills the
(first order) Markov property, which states that the probability of getting into an arbitrary




state s, 1 only depends on the current state s;, but not on previous ones.

As already mentioned, HSMMs bring the addition of each state having a duration distribu-
tion p,(d) that defines the time the model stays in that particular state s. Along with that,
the length of time spent in a state also determines the number of observations produced
in that state.

With those preliminaries set, there are three standard problems to be solved for HMMs/
HSMMs to make use of them in real-world applications:

1. The Evaluation Problem
The evaluation problem asks for the probability of observing a (partial) observation
sequence o1, given a model ), i.e. p(01.|\). In other words, how likely is it that
the observation sequence o1 .; is produced by a given model .
This problem is solved by the Forward-Backward algorithm specified in Appendix
A.l.

2. The Decoding Problem
The decoding problem asks for the most probable sequence of states s;.,, emitting
an observation sequence o1.;, given a model ), i.e. p(s1.4/, 01.¢|\). In other words,
giving an observation sequence o;.; and a model A\, which sequence of states s;.;/
best explains the given observation sequence o1.;.
This problem is solved by the Viterbi algorithm specified in Appendix A.2.

3. The Learning Problem

The learning problem asks for a procedure that adjusts the parameters of a given
model \ to maximize the probability of observing a given observation sequence (or
a set of observation sequences) o;.; with that model, i.e. maximizing p(0;|\). In
other words, given an observation sequence (or a set of observation sequences) o1,
how to learn and optimize the model probabilities of a given model \ that would
generate them.

This problem is solved by the Baum-Welch algorithm specified in Appendix A.3.

A solution to each of the three problems stated above can be found in Appendix A. The
evaluation problem can be efficiently solved by the Forward-Backward algorithm (Appendix
A.1). The Viterbi algorithm (Appendix A.2) solves the decoding problem. To solve the
learning problem, the Baum-Welch algorithm (Appendix A.3) is used.




2.2. Related Work

In the following some related works are discussed. An overview of the usage of Hidden
Markov Models (HMMs) and Hidden semi-Markov Models (HSMMs) in Human-Robot
Interaction (HRI) scenarios is provided in Section 2.2.1. Section 2.2.2 gives some insights
into imitation learning and the methods it brings along. In Section 2.2.3, the idea and
concepts of segmenting trajectories are discussed.

2.2.1. HMMs in HRI

HMMs in their basic form and variations of it, like the HSMMs, are very well studied. They
can be used not only for HRI but in all different kinds of applications. A great overview of
that is provided by Mor et. al [16] regarding HMMs and by Shun-Zheng Yu [9] regarding
HSMMs. Hence the topic of this thesis is a HRI setup, we are primarily going to focus on
that, which excludes many approaches that consider scenarios with only one actor like
Koppula and Saxena did in [17]. Those cases are not modeling any temporal correlations,
which is a crucial factor when dealing with two (or more) actors that need to interact
with each other.

The goal of this thesis is to investigate the use of HSMMs in such an application. In the
following, we are going to discuss the use of HMMs and HSMMs in general and in HRI
scenarios with a focus on interaction learning.

The contribution of Calinon et al. [18] is pretty similar to the work in this thesis. In this
paper, however, they only introduce the use of normal HMMs in HRI scenarios. An example
of them using HSMMs in a HRI setup is discussed in paper [13], where a robot is taught to
assist in dressing. Asfour et al. [14] use HMMs to effectively detect a set of characteristic
points that can be used to represent and reconstruct the trajectory. They are as well
considering two actors and the temporal dependencies between them. Nevertheless, they
are again only relying on HMMs instead of HSMMs, and their results have not been tested
on real robots.

Regarding the use of HSMMs, Oshikawa et al. [15] proposed an approach to interaction
segmentation and learning. The difference to our approach is the use of a Gaussian Process
(GP) as the underlying distribution of the HSMM. Also, they look at the interactions in a
more general fashion and do not do any skill learning or reproduction from a robotic stand-
point. Very similar work is provided by Nakamura et al. [19], who was also a contributor
to the paper cited previously ([15]). It shows very good results regarding the unsupervised




trajectory segmentation, but again it uses a GP as the underlying distribution of the HSMM
and has not been specifically applied to robots. Another paper relying on HSMMs has
been proposed by Oliveira et al. [20], addressing the unsupervised segmentation of heart
sounds. Although having nothing to do with robotics at all, heart sounds are continuous
time series data just like trajectories from interactions. The approach in this work is quite
interesting as they rely on MVNs as the emission distribution of the HSMM, just like we
are doing in our work.

2.2.2. Imitation Learning

Imitation learning, also referred to as Learning from Demonstration (LfD) [5, 6] or Pro-
gramming by Demonstration (PbD) [7], is a learning method mainly used in robotics that
became more and more important over the last years. Hence it is the core thought on
what this thesis and the proposed approach is based on, in this subsection, we want to
provide an overview of its idea and the concepts behind it.

The basic idea of imitation learning arises from the natural way human beings and a
lot of animal species learn tasks and skills [7]. They study movements by observing
others performing the task or the skill and then trying to reproduce it as best as possible.
Generally speaking, Imitation learning aims to mimic the behaviors of expert teachers
performing a certain task or skill. Due to this analogy of the way human beings naturally
learn skills, the most common fields of application lie within robotics which, above all,
includes Human-Robot Interaction (HRI), but also all other kinds of robot interaction or
assistance up to autonomous vehicle driving or flying [8].

In imitation learning, the goal of the agent (i.e. the learning machine) is to extract
information from the teacher and the surroundings (e.g. interaction with objects), and
learn a mapping between the situation and the demonstrated behavior [5, 6, 7, 8]. To
gain the needed information many different methods exist.

Hence we want to learn the interactions from just observing the human actors, methods
like teleoperation [21, 22, 23] or shadowing [24] are not relevant to us. We are rather
interested in works involving motion tracking cameras and/or motion tracking suits. While
using a combination of motion tracking cameras and suits is more accurate, using just
cameras is more desirable since it is impractical to wear a suit, especially when it comes
to the robot learning new skills on the fly at some point [5].

An approach based on RGBD videos is proposed by Prasad et al. [25], where they are
learning the motions of a handshake via a Long Short Term Memory (LSTM) and a
Probabilistic Movement Primitive (ProMP) distribution. Other approaches relying on
RGBD videos are proposed by Shu et al. [26, 27], where they are learning multiple social
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interactions between humans and robots. Vogt et al. [28] use motion capture data to
learn an interaction model consisting of Interaction Meshes (IMs) to represent position
pairs.

2.2.3. (Unsupervised) Trajectory Segmentation

Before explaining what it means to segment continuous time-series data (e.g. a trajectory),
we want to discuss why it is even usefully to segment trajectories in the first place and
also why we are doing it in an unsupervised manner.

Human beings recognize perceived continuous information, like speech or movements, by
dividing it into smaller segments called primitives, like single words or unit motions. That
is not only how humans learn, for example, new words or motions, but also how they
speak or move in general. They concatenate those primitives to formulate sentences or to
perform more complex movements, which is the reason why we believe that such kind of
segmentation is a skill robots should also be capable of. In the following, we will only rely
on the segmentation of movements, particularly interactions (like in [29]), since that is
the topic of this thesis.

Figure 2.1 visualizes how a possible segmentation for a trajectory could look like. It
also shows the feature of single primitives being reused at multiple different points. This
feature, of course, does not only hold within the same trajectory but also for independent
ones.

Onto the different approaches to segment such continuous time-series data like the ones
we are dealing with in this thesis (e.g. [29]).

The most simple way for training a model would be to already have the segments in the
training data properly labeled, like Varadarajan et al. did in [30]. This supervised approach
however implies a lot of prior work to manually label all the segments. Nevertheless, for a
surgical application, like the one proposed in [30], that might be worth the effort, as it is
a very critical application for which the segmentation points are clearly clinically defined.
In most cases though, including the one we tackle in this thesis, an unsupervised approach
is desirable, which again is also more representative for the way human beings perform
segmentation. It is happening more or less unconsciously, and first and foremost it is
happening without the help of any particular segmentation points. Nevertheless, training
a model in a way that it comes up with useful segmentation is not an easy task. There
have been a few different approaches developed over time.

Two works that highly inspired the idea of this thesis in terms of segmenting and learning
social interactions in HRI scenarios are contributed by Shu et al. [26, 27]. They are using

1



Figure 2.1.: This depiction’ illustrates a possible segmentation on a dummy trajectory.
It is to see that the whole trajectory is spitted into five different segments.
Nevertheless only three different primitives are actually learned, as some of
them occur multiple times within the trajectory.

RGBD videos to learn multiple social interactions between humans and robots. However,
the way of representing and modeling the demonstration data differs from our approach.
They use a Markov Chain Monte Carlo (MCMC) based algorithm to learn sub-events and
sub-goals and their relations in the manner of a hierarchical graph.

The approach tackled in this thesis, however, is mostly based on the work by Pignat and
Calinon [13] and works by first creating a Hidden Markov Model (HMM), more specifically
a Hidden semi-Markov Model (HSMM), with K number of states and Multivariate Normal
Distributions (MVNSs) as the underlying distributions, which will represent the single
segments. The model then gets initialized with the given training data by splitting each
demonstration trajectory into K bins along the time, where each of the K bins corresponds
to one of the K states of the HSMM. With that, each state represents one segment. Finally,
the model gets optimized through an Expectation-Maximization (EM) algorithm.
Nakamura et al. [19] did something similar by using Gaussian Processes (GP) instead of
MVNs as the emission distributions of the HSMM. Also, instead of an EM algorithm, they

!Figure taken from [19]
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are using a Blocked Gibbs Sampler optimized by forward filtering-backward sampling to
estimate the model parameters. However, they only consider skills performed by a single
actor and do not apply their approach to social interactions between two (or more) actors.
Other methods like in [31] or [32] are based on motion based heuristics like velocity peaks
or zero-velocity crossing (ZVC) to segment the demonstrations. Heuristics though, are
quite task dependent and therefore the quality of the results can vary a lot. For example,
a model based on a heuristic that relies on contact points (like in a handshake) would not
necessarily work in an interaction not involving any contact (like a hand wave).

Some approaches, however, apply heuristics to get a first abrasive segmentation that
will then be fine tuned in further steps. Lioutikov et al. [33] proposed a probabilistic
approach that segments demonstrations while learning a library containing probabilistic
representations of the primitives. They start with an empty library and a segmentation
based on heuristics that can then be further optimized.

Transition State Clustering (TSC) [34] is a two-step hierarchical segmentation algorithm.
In the first step, they generate a sliding window over all demonstrations and then fit a
Gaussian Mixture Model (GMM) to all the windows, assigning each state (transition state)
to its most likely component. In a second step, they refine those states by clustering the
transition states in terms of kinematic, sensory, and temporal features. Although achieving
great results, their work only considers segmenting the trajectories and reproducing them.
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3. Segmenting and Learning Interactions

This chapter provides theoretical insights into the approach proposed in this thesis. First, in
Section 3.1, the problem of this work is stated. In Section 3.2, we formalize the framework
used to overcome the stated problems.

3.1. Problem Statement

The goal of this work is to learn social interactions from Human-Human demonstration
data. With that, a robot observing a human agent performing an interaction should be able
to first, detect the intended type of interaction and second, respond to it appropriately.

More detailed, for each type of action ¢, from a set C = {¢1,ca, ...,cx} of K possible
actions, a separate Hidden semi-Markov Model (HSMM) A\, from aset A = {A1, A2, ..., Ak }
is trained in terms of the spatial and temporal dependencies between both actors. Hence,
an action classifier is needed to decide which model to use for reproduction.

The robot’s task is to observe a partial trajectory o1.; of a human agent performing a
social interaction c;. With these observations, the robot should first classify the current
interaction ¢; and secondly, come up with a corresponding joint angle g,(c;) for response.

A graphical overview of the whole framework is depicted in Figure 3.1

3.2. Proposed Approach

The following three sections describe the overall structure of our proposed approach as
well as the single components it consists of. Our framework can mainly be split into three
key procedures.

The first one (Section 3.2.1) deals with the initialization and the training of the HSMMs,
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Figure 3.1.: This graphical depiction summarizes the overall framework proposed in
this thesis. The content of the dashed box illustrates the training phase,
where a set of models A is trained for each interaction from Human-Human
demonstrations. The dotted box shows the reconstruction part consisting
of a classifier that predicts the observed interaction, and the reconstruction
procedure that eventually generates the output for the robot’s response.
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which also goes into the details of the trajectory segmentation discussed earlier in Section
2.2.3. The action classification is described in Section 3.2.2 and finally in Section 3.2.3,
the reconstruction of trajectories is explained.

The mathematical formulations in the following three sections - regarding HSMMs - are
mainly based on the notations introduced in Section 2.1. This section also explains why
we are relying on HSMMs instead of HMMs, which is basically due to the fact of a more
precise encoding of the durations of states.

3.2.1. Initializing and Training the Model

As discussed earlier in Section 2.2.3, segmenting a trajectory into more primitive move-
ments can be beneficial, especially in terms of the re-usability of those segments and the
better generalization to unseen scenarios while reproduction later on. A way to formulate
such segmentation is through H(S)MMs (Section 2.1), where each state corresponds to a
segment. Due to a better temporal encoding, we rely on HSMMs in this work.

HSMMs consist of multiple different (n) states. In the case of this thesis, the underlying
distribution of each state s; € S is characterized by a Multivariate Normal Distribution
(MVN) with mean p; and covariance ¥; with i € {1,2,...,n}. It represents the emission
probabilities of the observations N (o¢|u;, 2;) with o; € o1.7. In essence, that can be seen
as learning a Gaussian Mixture Model (GMM) over the observations and learning the

Algorithm 1 Initialize and Train Model

input:
1. training trajectories o1.1
2. number of states n
output:
1. trained HSMM A

1: segment training trajectories o;.7 into n equally sized segments along the time ¢

2: initialize \ by representing the observations of each segment : € {1,2,...,n} as a MVN

1 11 12
DI ¥

with p,; = ‘ DX = o1 ;2 (Equation (3.1))
5 X X

3: train A according to the Baum-Welch EM algorithm described in Appendix A.3
4: return )\
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Figure 3.2.: This figure illustrates the geometric similarities between the degrees of
freedom of a human’s upper body and the humanoid robot Pepper. As can be
seen, the shoulder roll (column 1), pitch (column 2), and the yaw and elbow
angle (column 3) of a tracked human skeleton can be directly mapped to
Pepper’s joint angles.
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temporal sequencing between the Gaussian components.
To encode the joint distribution between the interacting agents, the observations of both
of them are concatenated, resulting in

1 »il iz

PR Ll A e 3.1)
! 2 21 22
; DIED I

This decomposition becomes helpful for predicting the trajectories of agent two later on
(Section 3.2.3).

As stated before, for each interaction, an individual model is trained. The following
explains the general procedure, which can universally be applied.

Before training a model, it first needs to be initialized. That happens with an arbitrary
number of training demonstrations and a manually defined number of states n. The
training demonstrations are the concatenated trajectories from both human actors. For
actor one, those are the Cartesian positions and velocities of all relevant body joints.
Although the position itself is already sufficient to track the movements, the velocity is
very helpful for detecting and reconstructing repetitive movements like the “waving part”
in a hand wave. It adds the feature of knowing at any particular time step, whether the
arm is about to move left or right. For actor two, the joint angles and their velocities
are given as input, which is because actor two is the one representing the robot in later
reproduction scenarios, and since controlling a robot works by passing joint angles to it, it
is useful to directly learn those.

The joint angle extraction works by utilizing the similarities between the joint spaces of a
Humanoid robot and a Human [35], namely the shoulder angles (yaw, pitch, and roll)
and the bending of the elbow by using the geometry of the skeleton of the demonstrations.
Figure 3.2 exemplary shows that for the PEPPER robot [36] from Aldebaran Robotics!
that is later on used for the testing in simulation (Section 4.3) and on a real robot (Section
4.4).

The initial segmentation is done by splitting the training data up into n equally sized
segments along the time ¢. For each segment, all the observations that fall into that
segment are represented by a MVN, as described above. The segments are then assigned
to the states of the model with a linear sequencing of the segments along time ¢.

Training the model refers to the learning problem (3) stated in Section 2.1, which is
solved by the Baum-Welch algorithm specified in Appendix A.3. Basically, it is a modified

'https://www.aldebaran.com/en/pepper
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Expectation-Maximization (EM) algorithm that iteratively takes a model, re-estimates
the parameters «, 3,7, and £ from it, and then again uses those parameters to maximize
the expectation of the model by recalculating it. This procedure continues until either
a defined maximum number of iterations is reached, or until a certain threshold that
describes the shift of the model is no more exceeded. In our case, the threshold is defined
as the log-likelihood probability of the model given the training data.

The result is a new model X = (S, O, D, A, 7) with a modified set of underlying distribu-
tions, stochastic matrix, and initial state distribution. The modification of the stochastic
matrix is mainly what allows the learning of repetitive movements like the “waving part”
in a hand wave.

The whole process is sketched in Algorithm 1.

3.2.2. Action Classification

Hence we are representing each action ¢, € C with a separate model \;, € A, a method to
decide what model to use for reproduction is needed.
For that, we propose a classifier that predicts the intended interaction from a given (partial)
demonstration trajectory. Ruffly speaking, that is done by looking for the model that best
describes the observations of the given trajectory. The action that corresponds to the
model that fits the best becomes the predicted action.

Formally, the classifier works by taking a (partial) observation trajectory of the leading
actor (actor 1) o%:t and a set of models A = A1, Ao, ..., A\ as arguments. For every state

Algorithm 2 Action Classifier

input:

1. set of models A = {A\1, A, ..., Ap }

2. (partial) observation trajectory of actor 1 o1,
output:

1. predicted type of action

initialize Ist; > type of action with highest conditional probability for every observation o
Isto «—conditional probabilities (Algorithm 3)
for o}, € o}, do

append type of action of A\, with highest conditional probability in sty to Isty
end for
return type of action with highest occurrence in /st;

AN L R Ca S v
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Algorithm 3 Conditional Probabilities

input:
1. set of models A = {\1, Ao, ..., A\ }
2. (partial) observation trajectory of actor 1 o1 ,
output:
1. conditional probabilities of every observation o for each model )\

1: initialize sty > conditional probabilities of every observation o}, for each model Ay,
2: for A\, € A do

3: initialize [sto > conditional probabilities of every observation o}, for each state s; of Ay,
4: for s; € S do

5: initialize [st3 > conditional probabilities of every observation o}, for s;
6: for o}, € o}, do

7: f=exp(—3(o} — pp)"(=}) " (o} — p})) (Equation (3.2))

8: hi(o}) = %Otl’)l (Equation (3.3))

k=1 Ok Ot/)

9: append conditional probability f - h;(o},) to Ists
10: end for

11: append [st3 to [sto

12: end for

13: append sum over all states of /st to Istq

14: end for

15: return lst;

s; € S of all models )\ € A, the algorithm iterates through the the given observations o},,.
At each iteration o}, € o},,, it considers the observation sequence o}, until the time step
t', and computes the element wise product of the Probability Density Function (PDF) f

1
F=exp (= (0h ~ b (=) o0 - b)) (3.2
and the Forward Variable h;(o},)

3.3)
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where

ai(o}) 2 p(st, 01.4|N)
S| |7 (3.4)
= N(op|p, =)D (o )akpi(d)

k=1d=1

with ai(o% = 7Ti).

This conditional probability is further summed over every state of all models A\, resulting
in one representative value for each observation og,. Then, for each model A, those values
are compared, and the model with the greatest value at each time step ¢’ is noted. Finally,
the model with the most occurrences of “greatest value” corresponds to the predicted
action.

The whole procedure is shown in Algorithm 2 and 3. More details about the forward
variable and its definition can be found in Appendix A.1.

3.2.3. Conditioning based on Human Observation

Given a (partial) trajectory of a human performing a social interaction, the overall goal is
to infer a trajectory to appropriately respond to the intended interaction of the human
actor.

As mentioned in Section 3.2.1, the robot will always take the place of actor two in a
Human-Human Interaction (HHI) scenario. With that, the goal becomes inferring the
joint angles of actor two g2, from the positions and velocities of the joints of actor one

Algorithm 4 Conditioning based on Human Observation

input:
1. (partial) observation trajectory o},
2. model A

output:
1. predicted joint trajectory g3,

1: condition A using o1,
2: use the conditioned ) to generate g3, according to Equation (3.5)
S| 21 (y11) !
ate = XL i (o) (i + 22 (1) 7" (uh - oly))
3: return g2,
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o1, given a trained model.

Assuming the type of interaction got correctly predicted by the action classifier (Section
3.2.2), the trajectory prediction works by conditioning the learnt joint distribution of
the given action, using the observations of ,. The conditioned HSMM is then used to
reproduce the trajectories of the second agent g3, as

IS|

q%:t = Z hk (O%:t) (p’% + Zil (Ellcl)_l (p’i‘ - O%:t)) (35)
k=1

which is utilizing the aforementioned decomposition in Equation (3.1).
The procedure is illustrated in Algorithm 4.

22



4. Experimental Evaluation

The following chapter is discussing the overall result we achieved with the proposed
approach. Section 4.1 provides some general information about the datasets we used
and also the modifications we made to them to fit our needs. Section 4.2 is dealing with
the setup and the evaluation of the proposed framework in general, without any robot
participation. The testing on robots, in simulation and real scenarios, is finally covered in
Section 4.3 and Section 4.4.

4.1. Dataset and Data Setup

This section deals with the two datasets used throughout the evaluation. The first one is
proposed in Section 4.1.1 and is used for generally evaluating the framework discussed in
Section 4.2, as well as for the testing in the simulation (Section 4.3). The other dataset,
proposed in Section 4.1.2, is collected by ourselves and used for the testing on the real
robot (Section 4.4).

4.1.1. Bitepage Interaction Dataset

For the evaluation of the proposed framework we rely on the dataset compiled by Biitepage
etal. [29] . It contains high frequency motion capture data of Human-Human Interactions
(HHI) and Human-Robot Interactions (HRI), captured by Roxoko? motion capture suits.
The data was recorded at a Frequency of 40Hz and consists of the 3D Cartesian joint
positions of the actors.

'https://github.com/jbutepage/human_robot_interaction_data
2https://www.rokoko.com/
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Action Description

Hand Wave Typical hand wave, where both interacting partners raise
their hands at about head level, and perform an oscillatory
left-and-right motion for three to four cycles. Finally, the
hands go back to the neutral position.

Handshake Typical handshake, where both interacting partners reach

out, grasp each other’s hand, and perform an oscillatory up-
and-down motion for three to four cycles. Finally, the hands
go back to the neutral position.

Rocket Fist Bump

Modified version of a fist bump, where both interacting part-
ners reach out their fists towards each other at about waist
level to bump it. Then the fists are moved upwards in a syn-
chronized manner with the hand of the following actor being
slightly below the one of the leading actors. After reaching a
suitable, comfortable height, the hands go back to the neutral
position.

Parachute Fist Bump

Modified version of a fist bump, where both interacting part-
ners reach out their fists towards each other at a higher level
about head to bump it. Then they bring it down in a synchro-
nized oscillating left-and-right motion with the hand of the
following actor being slightly below the one of the leading
actors. After reaching about waist level, the hands go back
to the neutral position.

Table 4.1.: Descriptions of the different types of interactions
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(b) Handshake collected by Biitepage at al.

(a) Fist bump collected by NuiSI [29]

Figure 4.1.: Examples of two interactions from the used datasets.

The dataset includes four different social interactions: hand wave, handshake, rocket fist
bump, and parachute fist bump. All actions follow a similar structure by starting in a
neutral standing posture, then executing the action, and finally going back to the initial
neutral posture. A more detailed description of each interaction can be found in Table 4.1.
Figure 4.1a additionally provides an example image of the data collection of a handshake.
Regarding the two agents, a differentiation between a “leading” and a “following” actor
can be made. The leading actor determines the modality of the execution, to which the
following actor needs to react and adapt. In the case of the dataset by Biitepage et al.
[29], actor one always fills in the role of the leading agent, and actor two represents the
following agent. For the idea of this thesis, the robot should always be the following agent,
hence the robot is supposed to react to a human. With that, the data of the leading agent
will also be referenced as the input data, and the data of the following agent as the output
data. This differentiation is relevant since not all interactions are equal for both actors.
Actions can be categorized into “symmetrical” and “asymmetrical” ones. In symmetrical
movements, like the hand wave and handshake, both actors perform pretty much the
same motion. For both of the fist bumps, the movements of both actors differ from each
other, thus being asymmetrical.

Furthermore, the demonstrations within the same interaction are not equal in terms of
the motion sequencing. That, for example, means a handshake does not always start with
the arm moving to the leader’s actor right and end on the left or something similar.

More details about the dataset can be found in the paper by Biitepage et al. [29]. The
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supplementary material on the publisher’s website® additionally provides videos of all
four interactions being performed in the setup of capturing them.

In the case of this thesis, we only made use of the HHI part of the dataset. On the one
hand, the reason for that emerges from the general idea of this thesis, which is the learning
of social interactions based on human demonstrations. On the other hand, training the
following agents part from robot demonstrations is insufficient, as the data is specific only
to the robot the data was captured on.

Also, we have split the data into training and test demonstrations, where the training set
makes up 80%, and the test set 20%.

In the following, we are explaining further modifications we made to the dataset to better
fit our needs, which however needs to be considered separately for two different evaluation
stages with individual requirements.

The first stage can be seen as the process of finding optimal models by evaluating and
tweaking the parameters. In that stage, no robot is involved. All the training, testing,
and evaluation is purely based on error estimators and graphical depictions. The detailed
process, along with its results, is described in Section 4.2.

Hence this stage involves a lot of computational expensive model training, we sampled
the dataset down to constant 250 time steps per demonstration, to get rid of some
computational overhead. The 250 time steps are about a quarter of the original 40Hz
sampling rate and do not affect the evaluation of the models, while noticeable saving
time and energy. Another sanction to encounter unnecessary computational overhead
is the limitation to only the wrist joint of the actor’s right arm, which also brings the
advantage of the input and output data only being three-dimensional, which can still be
nicely graphical depicted and evaluated. We decided on the wrist joint since it is the joint
that encounters the highest spatial movement.

Nonetheless, we derived and added the joint velocities to the dataset, by computing the
difference between the two consecutive position values at each time step. The idea is
to get a better sequential understanding, especially for repetitive movements like the
handshake or hand wave. Including the velocity makes it is easy to determine whether an
arm is currently moving up or down in a handshake - or left or right in a hand wave.

The second stage deals with the testing on the robot in simulation, which is covered in
Section 4.3.
In that case, we are using the dataset with its original sampling rate. For the leading actor,

*https://www.frontiersin.org/articles/10.3389/frobt.2020.00047/full#
supplementary-material

26


https://www.frontiersin.org/articles/10.3389/frobt.2020.00047/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2020.00047/full#supplementary-material

we again add the velocities for a better sequential understanding, and also reduce the
data to only the wrist joint to circumvent unnecessary computational overhead. Hence
the wrist joint is by far the most meaningful, using only this one is totally sufficient for
the input data and therefore for detecting the intended movements. For the following
actor, however, that would be insufficient, as the dimension of the output data correlates
with the dimensions needed for the reconstruction. Hence the movements of the proposed
interactions are pretty much based on the upper body anyway, especially the right arm,
we decided on curtailing to the shoulder and elbow joint of the following actor’s right arm.
The wrist joint can be neglected since a robot is operating in joint space and therefore
needs joint angles to move. While the wrist joint is experiencing a lot of movement in the
Cartesian space, it is pretty much doing nothing in joint space - at least for the interactions
we are dealing with. All the movements primarily arise from the shoulder (roll and pitch
angles) and elbow joints (roll and yaw angles).

Since the robot relies on joint angle data, the proposed framework needs to output such
data, which we derive from the Cartesian coordinates of the following actor as stated in
Section 3.2.1 and Figure 3.2. Further, we again compute and then add the velocities of
the joint rotations for a better sequential understanding.

4.1.2. Nuitrack Skeleton Interaction Dataset (NuiSI)

During testing, we observed the human actor using an INTEL REALSENSE D435% RGB-D
camera [37]. Using RGB-D cameras for recording data is way less accurate than motion
capture suits [5], like the Rokoko suit used by Biitepage et al. [29].

The observations of the human actor during our trials were therefore differing to much
from the data by Biitepage et al. [29] that we initially used for training the models. Hence,
we ended up training the HSMMs on a dataset recorded by the same Intel Realsense D435
RGB-D camera that we used for recording the human actor during testing.

The used NuiSI dataset was collected on our own and consists of two interactions between
human partners. A usual handshake and a rocket fist bump similar to the ones by Biitepage
et al. [29] that are further described in Table 4.1. In Figure 4.1b, an example of the data
collection of a fist bump can be seen.

We track the upper body joints (waist, spine, neck, head, and arms) of both human
partners, using the NUrTRACK® skeleton tracking software. The skeletons are then rotated
within the frame of the body such that the x-axis is going forward, the y-axis goes from

*https://www.intelrealsense.com/depth-camera-d435/
*https://nuitrack.com/
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the right to the left, and the z-axis is upwards, with the origin at the shoulder. In this
frame, the 3D positions of the right hand of the first partner, along with their 3D velocities
represent the human Degrees of Freedom (DoFs). The robot joint angles and velocities
are again extracted from the skeleton of the second partner and are used as the robot
DoFs as stated in Section 3.2.1 and Figure 3.2.

4.2. Experimental Setup and Evaluation

This Section deals with the setup and the evaluation of the proposed framework in general
and without any robots, which includes finding the optimal parameters based on error
estimators and graphical depictions (Section 4.2.1). A comparison to three different
approaches is given in Section 4.2.2 and the action classifier is evaluated in Section 4.2.3

All models were trained using the python version of the PBDLIB® [13] and the dataset
proposed in Section 4.1.1.

Due to numerical stability, we always trained all our models with only 15 demonstrations
per action, which brings up the problem that the performance of a model is highly
dependent on the training data batch that the model was trained on. This behavior can be
seen in Figure 4.4 and 4.5, where each model has been trained 100 times on a randomly
sampled set of 15 trajectories. The framework proposed in this thesis is illustrated in
green. Relevant are the caps of each bar, which represent the minimum and maximum
Mean Squared Error (MSE) of all 100 runs. For each run, all the test trajectories of the
dataset are considered. It is to see that the maximum value is up to three times higher
than the minimum value for the proposed framework, and even up to four times higher
for the other approaches.

To overcome this problem while evaluating, we either did exactly what we were doing
for Figure 4.4 and 4.5, where we processed the results of multiple runs with different
random training batches. Or, if the model needed to be consistent - like for Figure 4.2, we
used a fixed batch of demonstrations.

4.2.1. Evaluation of Human-Human Interactions

As stated before, in this section, we are first evaluating the performance of our approach
only on the 3D Cartesian wrist trajectories of both human actors and not yet on a robot.

®https://gitlab.idiap.ch/rli/pbdlib-python
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Action Number of states Regularization factor
Hand wave 4 1x1072
Handshake 4 1x 1072
Rocket Fist Bump 8 1x1072
Parachute Fist Bump 3 1x1072

Table 4.2.: For each type of interaction, this table shows the parameters we used for
training the individual models

This proceeding allows for plotting the trajectories and also for easier error calculations.
Moreover, the basic framework itself can be evaluated, hence it is not affected by potential
misbehavior arising from the robot.

For the Expectation-Maximization (EM) algorithm that we used for training, the maximum
number of iterations was set to a fixed number of 40 iterations. The change of the model
within each iteration is defined by the maximum log-likelihood increase. As soon as
this value is no more exceeding 1 x 10~*, the algorithm pertains as converged and stops
prematurely.

To initialize and train the models, two decisive parameters are required. The first one is
simply the number of states of the HSMM. The second one is a so-called regularization
factor that gets internally added to some of the intermediate variables to prevent numerical
instabilities, especially when dealing with matrix calculations. Hence, it should be kept
as low as possible. To find out the optimal parameters for the interactions, we used
the average MSE considering all test demonstrations, as the performance criterion. For
each demonstration, the MSE is calculated between the predicted and the ground truth
trajectory at each time step after observing the leading agent. Further, we always verified
the results by plotting both trajectories against each other. The resulting parameters, for
each type of interaction, are shown in Table 4.2.

The constant regularization factor of 1 x 1072 is because the reconstructed trajectory
gets jagged for lower values. This behavior can be seen in Figure 4.2, which shows the
influence of different regularization factors by the example of the wrist trajectory of a
rocket fist bump interaction. Each of the graphs displays the ground truth trajectory
against the one reconstructed by the HSMM trained with eight states and the respective
regularization factor. Figure 4.2a is the reference with a regularization factor of 1 x 1072.
With a slightly lower value of 1 x 10~3 (Figure 4.2b) it is to see that the trajectory already
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(a) regularization =1 x 102 (b) regularization =1 x 103

(c) regularization =1 x 10~¢

Figure 4.2.: Those three graphs show the influence of different regularization factors by
the example of the wrist trajectory of a rocket fist bump interaction. Each
graph displays the ground truth trajectory against the one reconstructed by
the HSMM trained with eight states and the respective regularization factor.
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Figure 4.3.: This figure gives two examples of trained HSMMs. The upper one is for the
rocket fist bump and the other one is for the handshake interaction. On the
left of each subgraph, the 15 training trajectories of the following agent’s
right arm wrist joint, are plotted. On top of that, the trained MVNs along with
their sequential order are displayed. On the right side, the transition matrix
of each model is shown.
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gets jagged, which just gets worse for even lower values (Figure 4.2c).

With the optimal parameters for training figured out, we can take a closer look at the
trained models. For the handshake and the rocket fist bump, Figure 4.3 displays, on the
left side, the position trajectories of the following agent’s right arm wrist joint, of each
demonstration used for training. In addition to that, the trained Multivariate Normal
Distributions (MVNSs) of the HSMM, along with their sequential order, are plotted. The
right sight of each subgraph shows the transition matrix of the corresponding model,
which illustrates the state transition probabilities. While the rocket fist bump trajectories
are pretty much straightforward, the handshake is representative for interactions with
a repetitive part. For better visualization and since it is the more relevant part, we only
display the trajectories of the following agent.

In the left graph of the rocket fist bump, it can be seen that all demonstrations start from
a certain point, conduct a quite straight motion, and end up in about the same location
where they started. Along those demonstrations, the MVNs that describe the trajectory
distributions can be seen. They are labeled from 0 to 7 in a timely order. This behavior is
pretty much the same for the handshake, but with multiple repetitions of the conducted
movement (i.e. the shaking part) and only four MVNs.

The main difference between having a straight motion versus a repetitive one also reflects
to the transition matrices of the models. Those illustrate the state transition probabilities
of the HSMM:s. The field (2, 3) for example represents the probability of getting into state
3, being in state 2. The shades go from purple (zero probability), over blue, turquoise,
and green, up until yellow (100% probability). For both of the matrices, the highest
probabilities are along the diagonal, i.e. the self transitions, which makes sense as each
state emits multiple observations. Other than that, for the rocket fist bump, the other
significant probabilities describe the transitions to the next state, which is fully in order
from state 0 to state 7. In contrast to that, for the handshake, loops that describe the
repetitive part of the motion can be identified. The most significant one is (1,3) and (3, 1),
which shows the advantage of trajectory segmentation and the use of HSMM along with
it, where segments/states can be re-used multiple times.

4.2.2. Model Comparison

In this subsection, we evaluate the performance of the framework used in this thesis. As
described, the proposed framework consists of a set of HSMMs of all four interactions.
Each of those models is trained using the positions and the velocities.

We compare this approach against three other ones. The first one also consists of a set of
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HSMMs of all four interactions. The only difference here is that the models are trained
using only the positions. The second approach consists of only one single HSMM that is
trained on all four interactions at the same time. Though, it considers the positions as
well as the velocities. The setup of the last approach is the same as the one we are using
in this thesis, but instead of HSMMs, it relies on normal HMMs.

To compare the different approaches, all of the models are trained using the same pa-
rameters as in Table 4.2. Also, all setups consider the use of only the wrist joint. To
overcome the problem of the varying performance depending on the demonstrations used
for training, we computed each setup 100 times, always using a random batch of 15
trajectories, which provides a broad distribution of samples for each of the approaches.
For each of the 100 runs, all the test trajectories of the dataset are considered. As the
performance measurement, the MSE and t-Test are used. Regarding the approaches
consisting of multiple HSMMs, the MSE refers to the average of all individual models.
The t-Test is a statistical hypothesis test that estimates how similar two distributions are
by comparing samples of each distribution against each other. If the resulting so-called
p-Value is lower than 0.05, the underlying distributions of the samples are considered
significantly different. In the case of this evaluation, the t-Test helps to estimate how
similar two different approaches perform.

The results of the comparison can be found in Figure 4.4 for each action individually
and in Figure 4.5, the overall results are illustrated by taking the average over all four
interactions.

On the x-axis of each graph, the different approaches are displayed. The green one
represents the basis we are comparing against, which is the framework proposed in this
thesis. The other approaches are colored blue, with - from left to right - the set of HSMMs
only using the positions, the single HSMM consisting of all interactions, and the one using
HMMs. The y-axis represents the MSE, which, for a better comparison, is scaled the same
throughout all interactions in Figure 4.4. For each approach, all 100 samples are plotted,
where the black circles illustrate the mean and the wider part of the bar the standard
deviation. The caps at each end of the bars show the minimum and maximum MSE of the
sample. An asterisk on top of a bar denotes the underlying distribution of the samples
being significantly different from the reference (i.e. the framework used in this thesis)
according to the p-Value of the t-Test. The dashed line that connects all the black circles is
simply for easier comparing the different means.

Figure 4.4 considers the results for each interaction individually. According to the mean,
for all the interactions apart from the handshake, the single HSMM performs the worst,
followed by the one using only the positions. The best performance is provided by the
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Figure 4.4.: Those plots compare, for each type of action, the proposed method against
three other ones displayed on the x-axis. The y-axis shows the average MSE
of 100 runs on all test trajectories in the dataset. For each run, the models
are trained on a random batch of 15 demonstrations. The circles display the
mean of the samples, the wider part of the bar the standard deviation, and
the caps at the end of each bar the minimum and maximum MSE. An asterisk
on top of a bar shows the result of the t-Test being less than 0.05, and thus
the sample being significantly different from the proposed method.
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Figure 4.5.: This plot compares the method proposed in this thesis against three other
ones displayed on the x-axis. The y-axis shows the average MSE of 100 runs
on all test trajectories in the dataset. For each run, the models are trained
on a random batch of 15 demonstrations. The circles display the mean of
the samples, the wider part of the bar illustrates the standard deviation, and
the caps at the end of each bar show the minimum and maximum MSE. An
asterisk on top of a bar represents the result of the t-Test being less than
0.05 and therefore the sample being significantly different from the proposed
method.

reference approach and the one using HMMs, which are both performing about the
same. This finding is also reflected by the t-Test that considers the results of both of
these approaches as similar. Nonetheless, this behavior does not hold for the handshake
interaction, albeit the difference in the setups is minor.

Comparing the variance of all frameworks, they all show about the same width, which
also holds when looking at the minimum and maximum outliers. In that case, however,
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it is the rocket fist bump interaction that stands out. Here the HSMMs only using the
positions and the HMM setup, exhibit a significantly larger variance and range of the
maximum MSE.

Looking at the overall results in Table 4.5, it can be seen that the reference approach
performs the best along with the one using HMMs, although they were the worst for the
handshake interaction. According to the mean, the HMM approach even performs slightly
better than the one used in this thesis. Compared to the other approaches though, this
difference is kind of negligible. The difference in the standard deviation and maximum
outliers of the HSMMs only using the positions and the HMM framework arise mainly
from the results of the rocket fist bump. According to the t-Test, all of the setups differ
significantly from the reference. However, the HMM approach is still quite close, as seen
for the individual interactions.

An explanation of why the HSMM and the HMM approach are performing about the same
can be found in Appendix B.

4.2.3. Action Classification

To evaluate the proposed action classifier, we took a set of trained models of each interac-
tion and tested it against the whole set of test demonstrations. We did so for different
numbers of observed time steps, while always noting down the number of correct predic-
tions for each interaction. Since the performance of a model is quite dependent on the
set of demonstrations it got trained on, we ran the analysis 100 times with a randomly
sampled set of 15 training trajectories each run. The average results of all 100 runs are
presented in Table 4.3, where for each run, all the test trajectories of the dataset are
considered.

It can be seen that for 25 out of 250 observed time steps, the classifier does not perform
well, especially for the hand wave and the parachute fist bump. For the hand wave that
already gets significantly better, when having observed 50 time steps. At 75 observed time
steps, the hand wave, handshake, and rocket fist bump get predicted pretty much perfect
already, while the parachute fist bump still lacks behind. That however changes when
having observed 100 time steps, which is 40% of the whole trajectory. At this point, the
classifier is almost perfect for all the interactions with a total accuracy of 97.44%. From
there on, the performance increase kinda stagnates. Between 125 and 150 observations,
the overall score even decreases a little bit, but that can be seen as measurement tolerance.
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average number of correct predictions for each action within 100 runs
(in each run, each of the models is trained on 15 randomly sampled
training trajectories)
qbserved hand wave handshake ‘rocket pgrachute overall
time steps fist bump fist bump
(total 250) (total 7) (total 8) (total 14) (total 10) (total 39)
25 0.65 5.82 11.87 0.89 19.23
(10%) (~49.31%)
>0 5.63 6.54 13.72 1.82 27.71
(20%) (~71.05%)
75 7.0 7.65 13.78 5.8 34.23
(30%) (~87.77%)
100 7.0 8.0 13.68 9.32 38.0
(40%) (~97.44%)
125 7.0 8.0 13.54 9.96 38.5
(50%) (~98.72%)
150 7.0 8.0 13.42 10.0 38.42
(60%) (~98.51%)

Table 4.3.: This table shows the classifier's performance on the test data for having

observed a certain number of time steps. The results are listed in terms of the
different actions and also the overall score regarding all actions. The “total”
value corresponds to the total number of test trajectories. The values within
the table show how many of those test trajectories the classifier managed to
predict correctly, regarding the number of observed time steps.

The results are evaluated on 100 runs for each number of observed time steps.
In each of the 100 runs, the models for each action are trained on a randomly
sampled set of 15 trajectories from the set of all training trajectories. For
evaluating each run, all test trajectories of the dataset are considered.
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4.3. Testing in Simulation

Before testing on a real robot, we wanted to make sure that the proposed framework itself
is working properly, by running it in simulation. For the real robot, the goal is to have the
algorithm running on a PEPPER robot [36] from Aldebaran Robotics” (Figure 4.6a). For
the simulation we are therefore relying on QiBuLLET® [38], which is a simulator for the
Pepper robot based on the python Bullet engine (Figure 4.6b). Pepper has six Degrees of
Freedom (DoFs) in each arm (three for the shoulder, and one for the elbow, wrist, and
hand closure), of which we control the shoulder and the elbow joints using qgiBullet.

For the testing we are directly passing the joint angles to the robot, which are reconstructed
by the HSMM conditioned on the observed trajectory of a human’s right hand wrist joint
3D coordinates (Section 3.2.3). In addition to that, we also simulate the skeleton of the
observed humans right arm (red boxes) in front of Pepper. This way, we can not only see
the way Pepper executes the predicted trajectory, but also how responsive it is towards
the human. An example of a rocket fist bump can be seen in Figure 4.7, which yields
promising results.

(a) Real scenario (b) qgiBullet simulation

Figure 4.6.: Pepper the Humanoid Social Robot

"https://www.aldebaran.com/en/pepper
8https://github.com/softbankrobotics-research/qibullet
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Figure 4.7.: This image sequence shows an example of a rocket fist bump in simulation
using the approach proposed in this thesis. The joint trajectories of the
Pepper robot are generated by conditioning the corresponding HSMMs with
3D coordinates of the right hand’s wrist joint of a human. The red boxes
represent the entire right arm (including the shoulder) of the human, which is
placed a bit lower than the average body height of a human to compensate
for the small size of Pepper.
It can be seen, that the robot is able to react and adapt to the human’s motion.
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4.4. Performance on a real Robot

For evaluating the performance of the proposed framework on a real robot, we were
conducting a user study to see how the approach is perceived by different users, which is
a key component of Human-Robot Interaction (HRI) algorithms. To have a baseline for us
and the participants to compare against, we additionally introduced a rigid non-interactive
and non-adaptive hard-coded algorithm.

As described in section 4.1.2, we were facing issues with the dataset proposed by Biitepage
et al. [29] when executing our approach in a real scenario. Hence we decided to use a
dataset collected by ourselves using the same INTEL REALSENSE D435° RGB-D camera
[37] that we used for observing the users. The use of a different dataset also requires
different hyper-parameters to be considered optimal. For that, we decided on the ones
that qualitatively worked the best, by testing the interactions themselves.

The remainder of this section is structured as follows. Section 4.4.1 defines the implemen-
tational details and the general setup of the user study. Section 4.4.2 then explains the
structure of the study, as well as evaluates the results.

4.4.1. Setup

For implementation, the python version of the PEDL1B!? [13] and the dataset proposed in
Section 4.1.2 is used. The HSMMs for the proposed approach are initialized and trained
with six Multivariate Normal Distributions (MVNs) for each interaction, according to
Section 3.2.1.

For the skeleton tracking, to track the human partner, we were using NUurTRAck!! running
with an Intel Realsense D435 RGB-D camera [37]. The external calibration between
the robot and the camera is done manually. The robot used is a PEPPER!? robot [36]
from Aldebaran Robotics, which is a 120cm tall Humanoid robot (Figure 4.6a). It has six
Degrees of Freedom (DoFs) in each arm (three for the shoulder, and one for the elbow,
wrist, and hand closure), of which we control the shoulder and the elbow joints using
ROS'3 [39]. Translating the human motions into robot DoFs works the same as for

’https://www.intelrealsense.com/depth-camera-d435/
Ohttps://gitlab.idiap.ch/rli/pbdlib-python
"https://nuitrack.com/
2https://www.aldebaran.com/en/pepper
Bhttps://github.com/ros-naoqi
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Figure 4.8.: This picture shows the whole setup of the user story for interacting with the
Pepper robot from the perspective of the participants, taken from the point
of view of the participants when they first enter the setting. The camera on
the right is for tracking the skeleton of the human, which is visualized on the
monitor on the table behind the robot. The camera on the left is for recording
the video of the interaction.

training the models described in Section 3.2.1, by adapting the work in [35] following
the conventions of the Pepper robot!#,

4.4.2. User Study

For evaluation, we conduct a user study where participants interact with the robot con-
trolled by two different algorithms, namely the approach proposed in this thesis, and
a hard-coded interaction that goes to fixed joint angle goals over the duration of the
interaction.

“http://doc.aldebaran.com/2-0/family/juliette_technical/joints_juliette.html
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4.4.2.1. Methodology

The study followed a within subject design where participants interact with a Pepper robot
controlled by each of the aforementioned algorithms twice in a randomized order, leading
to four HRIs per participant. Each interaction was evaluated with seven different items,
each rated on a 7-Point scale (ranging from 1: not at all, to 7: very much): pleasantness,
naturalness/human-likeness, friendliness/comfortableness, how fun the interaction was,
interactiveness, user satisfaction, and the level of connection felt with the robot. Moreover,
at the end of each trial, we additionally asked the participants whether they would like
to have the interaction again. Each participant had to either perform a handshake or
a rocket fist bump, not both. Additionally, the focus of the study is on understanding
how the different approaches are perceived by the users, therefore we do not focus on
the difference between the groups or interaction types. Rather we evaluate how each
participant perceived the algorithms that they interacted with.

4.4.2.2. Procedure

The study took place in a laboratory setting as shown in Figure 4.8. Participants were
initially guided to a desk where they sat down to fill out and sign consent forms to take
part in the study. After giving consent, they had to fill out a questionnaire that included
demographic information, prior experiences with robots, their attitude towards humanoid
robots, their attitude towards physical interactions, and some personality questions to
gauge their extraversion [40]. After filling that out, participants were guided to a standing
table where they were shown a training video of two humans performing an interaction
(either a handshake or a fist bump) with one human leading the interaction and the other
following the leader. Participants were then instructed that they had to perform the same
interaction that they just saw with a robot four times in the role of the leader. They
were then guided behind a barrier where they would see the robot for the first time. The
sequence of each trial was as follows:

1. Before the start of each trial, the participants would see a video stream of the
skeleton tracker so that they could see their tracked skeleton and position themselves
accordingly in front of the robot, such that the skeleton tracking would not have a
heavy occlusion or they would not be out of the frame of the camera.

2. Once the position was set and the tracking was stable, the experiment operator
would signal them to start the trial.
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3. The participant would then perform the interaction whereby the robot would respond
according to the selected algorithm.

4. Apart from the hard-coded approach that always follows the same procedure, the
trial would terminate when the participant goes back to a neutral position with their
hands by their side.

5. After each trial, the participants were asked questions relating to their perception
of the interaction on a 7-Point scale of pleasantness, naturalness/human-likeness,
friendliness, interactiveness, how fun the interaction was, and how connected they
felt to the robot. Further, they were asked if they would like to have the interaction
again.

This process from adjusting the skeleton tracking to answering the questions was repeated
four times, wherein the robot was controlled by each of the two aforementioned algorithms
twice in random order. The participants were neither informed of the randomization nor
the algorithm they were interacting with. Moreover, they did not even know that there
were different algorithms.

4.4.2.3. Participant Sample

A total of 15 users participated in our study. We excluded the data of one participant
who did not perform the interaction as was shown in the training video, which caused
abnormal behaviors in the robot. Out of the 14 remaining participants, the mean age
was 24.29 years with a standard deviation of 2.76, 3 were female and 11 were male. In
terms of educational background, 7 participants were pursuing their Bachelor’s degree, 4
were pursuing their Master’s degree, 2 were pursuing their Ph.D., and 1 was pursuing a
teaching degree. Participants had an overall low level of experience with robots on a scale
from 1 (no experience at all) to 7 (a lot of experience) with a mean of 2.07 and a standard
deviation of 2.02. Despite that, they had a relatively positive attitude towards humanoid
robots on a scale from 1 (very negative) to 7 (very positive) with a mean of 5.36 and
a standard deviation of 1.01. The participants had a neutral outlook towards physical
interactions in general on a scale from 1 (distant) to 7 (open) with a mean of 4.86 and a
standard deviation of 1.70. This statistic was also confirmed with the Big 5 extraversion
scale [40] with a mean extraversion of 3.33 and standard deviation of 0.9 out of 5. 11
participants were from an engineering background and one each from pharmaceutical,
medicinal, and teaching profession.
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Figure 4.9.: This image sequence shows an example of a rocket fist bump in a real
scenario using the approach proposed in this thesis. As it can be seen, the
robot is able to react to the human’s motion. However, compared to the
results of the simulation shown in Figure 4.7 where the human’s right arm
was put lower than the one of an average sized human would be, it is further
off from staying close to the human'’s hand.
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Figure 4.10.: This graphic illustrates the willingness of the participants to interact with
the two different algorithms again. On the x-axis, the algorithms are plotted,
and on the y-axis, the number of participants who replied yes (green) or no
(blue) on the corresponding algorithm. It can be seen that both algorithms
perform about the same.

4.4.2.4. Study Results

Starting with Figure 4.10, which displays the willingness of the participants to interact
with each algorithm again, we can see that both algorithms are rated about the same and
that more than half of the participants would like to interact with each algorithm again.
However, with 16 out of 28> trials answered with a yes, the proposed approach is rated
slightly worse than the hard-coded one.

This difference though increases when looking at the comparison items, where we take
the mean of both the trials of each algorithm and compare them across both algorithms
that the participants interacted with on the items in the survey, namely: pleasantness,
naturalness/human-likeness, friendliness, interactiveness, how fun the interaction was
and how connected they felt to the robot. We calculate the descriptive statistics (mean
and standard deviation) to find the pairwise differences for each of the items, which are

1514 participants x 2 trials of an algorithm
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Figure 4.11.: This graphic provides a comparison of the two different approaches regard-
ing the evaluation items, namely: pleasantness, naturalness/human-likeness,
friendliness/comfortableness, how fun the interaction was, interactiveness,
user satisfaction, and the level of connection felt with the robot. The y-axis
displays the perception of the participants on a 7-Point scale. The colored
bars illustrate the mean, and the black lines within the bar the standard
deviation. An asterisk shows the two corresponding approaches differing
significantly from each other according to the t-Tests p-Value (significantly
different, if lower than 0.05). It can be seen that the proposed approach is
throughout significantly worse than the hard-coded algorithms.

plotted in Figure 4.11. To compare the response that the different algorithms received,
we ran a Repeated Measures ANOVA. It can be seen that the approach proposed in this
thesis is throughout rated significantly worse than the hard-coded one. The fact of being
significantly different arises from the p-Value of the t-Test being lower than 0.05, which is
marked by an asterisk in the plot.

The reason for the proposed interactive framework performing worse than the hard-coded
one could stem from two major facts. Firstly, it is the fact, that the executed joint motions
of the robot are directly learned from the humans in the collected dataset. Since Pepper is
fairly small (120cm) compared to an average human, it keeps its hands much lower than
the human during an interaction. Hence, it does not enforce the contact-based nature of
the interactions, resulting in the interactions not being perceived that well. In contrast,
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for the hard-coded algorithm, the height of the interactions was adapted to be executed
at a higher level. The small height of Pepper in general was even remarked on by some
of the participants after the study. Secondly, the reason for the hard-coded algorithm
performing better could stem from the fact that the trajectory is smoother than the one
of the proposed approach due to the re-planning happening at every time step in that
approach, resulting in the overall interaction appearing unnatural.

An example of a rocket fist bump interaction using the proposed framework is shown in
Figure 4.9. It can be seen that the robot is indeed reacting to the human’s motion. However,
compared to the results of the simulation shown in Figure 4.7, where the human’s right
arm was put lower than the one of an average sized human would be, it is further off
from staying close to the human’s hand, due to the mentioned reasons.
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5. Discussion

In this final chapter, in Section 5.1, we first summarize the idea and the results proposed
in this thesis. In Section 5.2, we are finally discussing the shortcomings of this thesis and
present potential future work.

5.1. Conclusion

In this thesis, we proposed a Human-Robot-Interaction (HRI) framework for segmenting
and learning social interactions with the use of Hidden semi-Markov Models (HSMMs).
Unlike most Learning from Demonstration (LfD) approaches that need kinesthetic teaching,
our approach directly learns from Human-Human Interactions by making use of the
similarity in the Degrees of Freedom (DoFs) between a human and a humanoid robot.
We discussed the importance of humanoid social robots appearing as natural and human-
like as possible, which includes the ability to automatically react and adapt to the motion of
the human interaction partner. HSMMs provide a great way for such kind of generalization
by segmenting the demonstration trajectories and learning the joint distribution between
both human actors for each segment. In combination with the learned sequencing of the
segments, trajectories can be predicted by conditioning the HSMM on human observations.
We show that our approach achieves great results in theory as well as in simulation.
Nevertheless, a user study (N = 14) on a real robot reveals the importance of adapting
to the user’s hand position. Although the proposed framework correctly reacts to the
human participant, it was rated worse than a hard-coded algorithm due to not being able
to follow the actual hand position.
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5.2. Outlook

The main shortcoming of the proposed framework is the lack of the robot Pepper being able
to adapt to the actual hand position of human users in real scenarios, mainly due to the
fact of its small size of 120cm. The most straightforward solution to that would be to just
execute the framework on a robot with a taller size. Although it would be interesting to see
how much of a difference that would make to the perception of the algorithm, this solution
would not be the most desirable since we want the approach to be able to generalize to all
kinds of humanoid robots. Hence, to overcome this issue in general, an adaption technique
like Inverse Kinematics (IK) could be introduced, which aims to find an optimal joint angle
configuration for the robot that reaches the desired goal position of the human’s hand,
while not straying too much from the robots initial joint configuration. The IK adaption
would first require classifying the underlying Multivariate Normal Distributions (MVNs) of
the Hidden semi-Markov Model (HSMM) into contact-based and none contact-based ones.
Secondly, for the contact-based Gaussian’s, the IK optimization problem would need to be
solved [41]. To test this procedure, categorizing the Gaussian’s could be done manually.
In the long term, however, an automatic categorization would be desirable.

Another desirable feature would be to automatically determine the optimal number of
Gaussian’s for a HSMM. A solution to that could be the G-Means algorithms proposed by
Lioutikov et al. [33]. However, applying this approach directly does not bring sufficient
results, as we ascertained. Hence some adaptation would need to be done which exceeded
the scope of this thesis.

Furthermore, in the user study, we selected the corresponding model by hand. Hence, it
remains to evaluate the performance of having a set of models in combination with the
action classifier, in real scenarios. Also, we only tested the classifier with the four different
types of interactions from the dataset by Biitepage et al. [29]. It remains unknown how
the classifier scales to the differentiation between more interaction types. A method to
improve the classifier anyways could be by including a gesture recognition explicit for the
hand, like implemented here!. With that, the differentiation between, for example fist
bumps and handshakes or hand waves, could potentially be done much faster and easier,
by determining whether the human’s hand is opened or closed.

Combining the idea of automatically determining the number of Gaussian’s for a HSMM
and also automatically classifying them into contact-based and none contact-based ones
could lead to an online learning framework, where known skills could be continuously
optimized and new skills could be automatically learned.

'https://github.com/Kazuhito@@/hand-gesture-recognition-using-mediapipe
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A. HMM/HSMM - Algorithms

This chapter provides a mathematical and detailed description of the techniques used to
solve the three standard problems for HMMs and HSMMs defined in Section 2.1. The
evaluation problem can be efficiently solved by the Forward-Backward algorithm. The
Viterbi algorithm solves the decoding problem, and to solve the learning problem, the
Baum-Welch algorithm is used.

For simplicity, and since it is the more general definition, the set of underlying distributions
D is redefined by the observation matrix B, which defines the probabilities of getting
a certain emission in a certain state. Along with that, we are introducing two more
definitions to better express the algorithms and formulas:

5. The probability p(o;|s;) for getting observation o; in a state s; is denoted as by, s,
with by, s, € B.

6. m; defines the probability for state s; being the initial state.

with definitions 1-4 being determined in Section 2.1.

A.1. Forward-Backward Algorithm

This algorithm solves the evaluation problem (Problem 1) by computing the probability of
observing a (partial) observation sequence o, given a model ), i.e. p(014|\). In other
words, it computes how likely it is that an (partial) observation sequence o;.; is produced
by a given model A\, which mathematically denotes as p(0;.¢|\). To be precise, to solve
this problem, we only need the “Forward” part of the algorithm, as you will see in the
following. Nevertheless, the “Backward” part will be used to solve the learning problem
(Problem 3) and therefore will be introduced in this section as well.

However, since all the model parameters are known, a straightforward way of solving
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the evaluation problem is by simply adding up all the probabilities of all combinations
of sequences the model ) can take - denoted as R - in order to produce the observation
sequence o;.;. For a HMM that can be defined as

IR|

p(o1:|A) = Z boy,s1 H sy, ot/ Sy (A1)

As this procedure is computationally 1nfea51ble, the actual Forward-Backward algorithm
leverages the computational overhead by working recursively with the use of a so-called
forward variable a;(o;). It describes the probability of observing the (partial) observation
sequence o1.; and ending up in state s; at time step ¢, given a model A\ (Equation (A.2)).

ai(or) £ p(si, 0142
S|

= boy s; Z ap(0i—1)ag; (A.2)

with 011'(01) =T

It recursively goes through the observation sequence o;., and for each observation within
the sequence o1, it adds up the forward variable for each state s; € S at time step t.

In the case of HSMMs, the distribution p;(d) that is fitted over the number of steps
d € {1,2,..., D} that the model stays in a given state s; needs to be added, which results
in the following Equation (A.3)

ai(or) £ p(si, 014N
|S| |D|

= boy,s; Z Z ag(oi—1)ag,ipi(d) (A.3)

k=1d=1

with Oéi(Ol) = T;

Now, in order to gain the desired probability p(o1..|A) that the evaluation problem asks
for, we have to once again take sum over the forward variables «;(o;) for all states in S
(Equation (A.4))

S|

p(o1:|A) = Zak 0t) (A.4)

As stated before, the evaluation problem is already solved by only using the “Forward”
part of the Forward-Backward algorithm. Nonetheless, the “Backward” part will still be
introduced in the following, as it is used to solve the learning problem (Problem 3).
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The “Backward” part introduces a backward variable 3;(o;) that is defined as the probability
of observing an (partial) observation sequence o;.7, starting in a given a state s; at time
step t and given a model \. In other words, it computes the probability of an observation
sequence o7 that will occur when starting in a given state s; at time step ¢, which again
can be computed recursively, but instead of going forward in time, as for the forward
variable, it works the other way around by going backward in time. The following Equation
(A.5) defines this procedure for HMMIs.

Bi(or) £ plorr]si, N)
S|
= Z ai,kbot-u,skﬁk(oﬂrl) (A.5)
k=1
with ,Bi(OT) =1

In the case of HSMMs, again the distribution p;(d) that is fitted over the number of steps
d € {1,2,..., D} that the model stays in a given state s; needs to be added. The following
Equation (A.6)

Bi(ot) = p(o1.r|si, )
IS| |D]

=Y aikboy s 8k(0r1)pi(d) (A.6)

k=1d=1
with ﬁz‘(OT) =1

shows the final result.

A.2. Viterbi Algorithm

This algorithm solves the decoding problem (Problem 2) by computing the most prob-
able sequence of states s1.; emitting an observation sequence o1.;, given a model ), i.e.
p(s1:4,01:4|\). In other words, giving an observation sequence o;.; and a model ), it
computes which sequence of states s;.; best “explains” the given observation sequence
O1:¢.

The solution to the Viterbi algorithm is kinda similar to the “Forward” step of the Forward-
Backward algorithm (Equation (A.2) and (A.3) in Section A.1). Comparable to the forward

57



variable «;(0y), it introduces a recursively defined variable §;(o;) which describes the state
sequence s1.; with the highest probability that accounts for the first ¢ observations and
ends at a given state s;. Simply spoken, it is doing so by replacing the summing procedure
in the definition of «;(0;) by a maximization procedure and storing the resulting state
in an extra variable 1;(o;). To be precise, v;(o;) describes the state s; that lead to state
s; and the observation o;. By replacing the summing procedure with the maximization
procedure, the algorithm is no longer considering all the states leading to the observation
oy, but rather only considering the most likely one, which is mathematically defined in
Equation (A.7) for regular HMMs.

5’i(0t) £ SIPtaBi p(51:t7 01:t|)\)

= bo,,s; Max [6;(0;—1)an,i
nes

A.7)

Yi(oy) = argmax [§;(0¢—1)an i
nes

with 51'(01) = 7Tib01,s1 and 1/)1'(01) =0

with 6;(01) = m;bo, s, and 1;(01) = 0. For HSMMs, again the distribution p;(d) that is
fitted over the number of steps d € {1,2,..., D} that the model stays in a given state s;
needs to be added. The following Equation (A.8)

Si(or) = max P(S1:t, 01:¢|A)

= boy,s; max {gle%c [5i(0t—1)an,ipi(d)]}
(A.8)
i(0;) = argmax [0;(0;—1)an, ]
nes
with 51'(01) = 7Tib01751 and 1/12'(01) =0

shows the final results.

A.3. Baum-Welch Algorithm

The Baum-Welch algorithm is a special case of the Expectation-Maximization (EM) algo-
rithm that solves the learning problem (Problem 3). The goal is to learn and optimize
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the model parameters of a given model \ in a way that it maximizes the probability of
observing a given observation sequence (or a set of observation sequences) o;.¢, i.e. maxi-
mizing p(o1.|A). It is doing so by iteratively re-estimating the parameters of the model
A and then maximizing the expectation of the model by re-calculating the parameters
of the model. This procedure continues in a loop until a local optimum or a specified
convergence threshold is reached. The parameters that will be changed are the stochastic
matrix A, the observation matrix B, and the initial state distribution =. The set of all
possible states and the set of all possible observations will stay the same. The notation for
the updated model will be \ = (S, 0, A, B, 7).

In addition to the «;(0;) and the §;(o;) variables defined for the Forward-Backward algo-
rithm in Equations (A.2), (A.3) and (A.5), (A.6) of Section A.1, two more variables ;(o;)
and ¢; j(o;) need to be defined in order to make solving the problem easier.

vi(o¢) can be thought of as the fusion of the «;(0;) and the j;(o;) variables. It describes
the probability of being in state s; at time step ¢, given a whole observation sequence o1.7
and a model A. This probability can completely be defined with the use of the «;(0;) and
the 3;(o;) variables (Equation (A.9)).

vi(or) = p(silor.r, A)
_a;(or)Bi(or)
~ plonr|N)

ai(ot)Bi(or)

S|
>~ ax(oy)Br(or)
k=1

(A.9)

The denominator in this Equation (A.9) is used to normalize the likelihood value to obtain
a probability value between 0 and 1.

& j (o) describes the probability of being in state s; at time step ¢ and in state s; at time
step t + 1, given a whole observation sequence 0.7 and a model \. In other words, it asks
for the probability of transitioning from s; to s; at time t. With that it is kind of similar to
the variable v;(o;), but considering two states and the transition probability a; ; between

them as well as the observation probability b o,.,, which again can be defined using the
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a;(o;) and the f;(o;) variables as shown in the following Equation (A.10)

&ij(0r) = p(si, sjlorr, A)
. ai(ot)ai,jbsj-m“ﬁj(0t+1)
a p(o1.7|A)
ai(ot)ai»jb5j70t+1 BJ(OtJrl)
S| S|

> > ap(or)ak s o, Bi(0i41)

k=11=1

(A.10)

where the denominator again is used for normalizing to a probability value between 0
and 1.

Having defined the variables v;(o;) and &; ;(o;), two more useful properties can be ex-
tracted. First, if we take «;(o;) and sum over all ¢, we get a quantity that can be seen
as the expected number of times s; is ever visited. Second, if we take ¢; ;(o;) and sum
over all ¢, we get a quantity that can be seen as the expected number of times s; ever
transitions to s;, which denotes as

~

-1
~i(o¢) = expected number of transitions from s; (A1D)
1

‘(‘#
=l

T
& j(0;) = expected number of transitions from s; to s; (A.12)

t=1

Finally, having all these preliminaries defined, we can move on to describe how to use these
to improve a model \ given an observation sequence o;.7. As three different parameters
need to be optimized (A, B, w), we are going to look at each of them individually. Starting
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with the most intuitive one .

7; = expected frequency in state s; at time (¢t = 1)
= 7i(01) (A.13)

expected number of transitions from s; to s;

I expected number of transitions from s;
T—1
> &ijlor)
_i=1
=0 (A.14)
> vi(or)
=1
5 _ expected number of times in state j and observing a particular emission vy,
55,0k —

expected number of times in state j

T
t; v5(0t)

S.t. ot=vg

— = (A.15)
> 7j(0t)
t=1

With that the updated model A\ = (S,0, A, B,7) is defined. Now we can iteratively
use this new updated model ) to again compute the variables «;(o;), 3;(0:),7:(0:) and
&.;(or), which again can be used to update the model A and so on until convergence. The
convergence of this procedure to a local optimum is proven by Baum et al. [42].
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B. HSMM vs. HMM

This Appendix refers to Section 4.2.2, where the framework proposed in this thesis is
compared to other methods. In particular, we are examining the reason for the Hidden
semi-Markov Model (HSMM) and the Hidden Markov Model (HMM) methods performing
about the same.

The reason we decided on using HSMM instead of HMM is due to their better temporal
encoding, as described in Section 2.1. The obvious conclusion of that would be that
HSMMs are performing better than HMMs.

In the scenarios of this thesis, we are learning Human-Human-Interactions (HHI) by
representing not only the joint distributions of each agent but also the dependencies
between the time series of both actors. This dependency is very strong in the sense that,
while reconstruction (Section 3.2.3), the state sequence of the following actor (i.e. the
robot), along with its timing, can be precisely determined by the input sequence of the
leading actor. In other words, the timing of a gesture does not need to be exactly known by
the robot since it is given by the leading actor. Hence, the robot only needs to synchronize,
and the advantage of the HSMM becomes irrelevant.

To support this statement, we constructed a scenario where the timing should be more
precisely known, which, for example, is the case when the robot should follow a complex
sequence with precise timing, while the leading actor does not move. Such a behavior
can be simulated when training and conditioning the models with pure random Gaussian
noise as the input data for the leading actor (i.e. the human).

Figure B.1 shows the results exemplary for the rocket fist bump, where Subplot B.1a
illustrates the average MSE of 100 runs on all 14 test trajectories, along with the standard
deviation and the minimum and maximum values. For each run, the models are trained on
a random batch of 15 demonstrations. It can be seen that the HSMM clearly outperforms
the HMM.

The much better performance of the HSMM in such a scenario, which is more dependent
on the encoding of precise timing, can also be seen in Subplot B.1b, where the predictions
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of both models are plotted against the ground truth. The HSMM, as well as the HMM, are
trained on the same data.

—— Ground truth
=== HMM
-== HSMM

0.4

77777

(b)

Figure B.1.: This figure shows the performance difference between HSMMs and HMMs
trained and conditioned on Gaussian noise, based on the rocket fist bump
interaction. The figure to the left (a) displays the average MSE of 100 runs on
all 14 test trajectories. For each run, the models are trained on a random batch
of 15 demonstrations. The black circles illustrate the mean of all 100 runs and
the asterisk on top of the HMM bar denotes the sample being significantly
different from the HSMM one, according to the t-Test (i.e. p-Value being lower
than 0.05). The wider part of the bar displays the standard deviation and the
caps at each end the minimum and the maximum value. The figure to the
right (b) illustrates an exemplary prediction of the HSMM and the HMM along
with the ground truth. In general, it can be seen that the HSMM outperforms
the HMM in such a scenario, which is more dependent on the encoding of
precise timing.
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