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Abstract

Social robots can be used to assist in various social environments such as customer services,
education, caring facilities and more. Physical interaction with humans is a crucial part
of all of those possible scenarios. With a vast field of application and possible contact to
many people with varying social habits, a generalized system that can differentiate and
react to a set of different interactions would be required. All of this should feel natural to
human participants and should happen in a timely manner. In this work, we propose the
Interaction Recognition and Generation (ReGen) Pipeline, a three-step pipeline composed
of a Multi-task learning (MTL) Neural Network (NN) for classification and dimensionality
reduction, whose output is used to gate and to efficiently and timely condition a set
of Interaction Movement Primitives (MPs). We argue that MTL is a useful addition for
improving the quality of both tasks as they are closely related and thus can profit from
shared information. Additionally, we explore the applicability of segmenting complex
movements into simple segments that can be reused in novel interactions, to ensure
modularity. We evaluate this approach in a generalized scenario for humanoid robots that
can be teleoperated using human joints.
Our results show that segmenting is a useful preprocessing step on modular movements.
Furthermore, we re-establish the timely benefits of using a lower number of degrees of
freedom (DOFs) for conditioning Bayesian Interaction Primitives (BIPs) and discuss draw-
backs to keep and mind and points that can still be improved when encoding movements
for MPs.



Zusammenfassung

Soziale Roboter können als Assistenz im Kundenservice, in Bildungs- und Pflegeeinrich-
tungen und vielen mehr verwendet werden. Die physikalische Interaktion mit Menschen
ist ein wichtiger Bestandteil in allen diesen Szenarios. Mit einem breitem Anwendungs-
gebiet und der Möglichkeit zum Kontakt mit vielen Menschen mit variierenden sozialen
Gewohnheiten, wäre ein generalisierbares System nötig, das in der Lage ist, verschiedene
Interaktionen zu erkennen und entsprechend zu reagieren. All das sollte sich für die
betreffenden Personen natürlich anfühlen und in Echtzeit umgesetzt werden. In dieser
Arbeit schlagen wir die Anwendung der Interaction Recognition and Generation (ReGen)
Pipeline; einer drei-stufigen Pipeline bestehend aus einem Multi-task learning (MTL)
Neural Network (NN) zur Klassifizierung und zur Reduzierung der Dimensionalität der
Eingabe, dessen Ausgabe genutzt wird, um ein Set aus Interaction Movement Primiti-
ves (MPs) zu steuern und zeitlich effizient zu konditionieren. Wir argumentieren, dass
MTL eine sinnvolle Ergänzung ist, um die Qualität beider Aufgaben zu steigern, da diese
eng miteinander verbunden sind und so von geteilten Informationen profitieren können.
Zusätzlich untersuchen wir die Anwendbarkeit davon, komplexe Bewegungsabläufe in
einfachere Segmente zu unterteilen, die in neuen Interaktionen wiederverwendet werden
können und so Modularität gewähren sollen. Wir evaluieren diesen Ansatz in einem
allgemeinen Szenario für humanoide Roboter, die anhand von menschlichen Gelenken
ferngesteuert werden können.
Unsere Ergebnisse zeigen, dass Segmentierung ein sinnvoller Vorverarbeitungsschritt
für modulare Bewegungen ist. Darüber hinaus zeigen wir noch einmal die zeitlichen
Vorteile von eine reduzierten Menge an degrees of freedom (DOFs) für die Konditionie-
rung von Bayesian Interaction Primitives (BIPs) und diskutieren Nachteile die bei der
Anwendung von Kodierungstaktiken beachtet werden sollten und Punkte die dabei immer
noch verbesserungswürdig sind.
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1. Introduction

1.1. Motivation

While every interaction between two or more social actors is bound to entail some form
of communication – a lot of which is influenced by nonverbal cues such as gestures, body
language or physical touch [24] – the social factor of interactions can vary strongly. There
are interactions that are goal-oriented and practical in nature and on the flip-side there are
interactions, such as greeting customs (e.g. handshakes) or celebratory actions (e.g. high
fives) that are purely social. Such social rituals are suspected to serve multiple functions
including: signifying group affiliation, demonstrating commitment to a group – which
can increase trust in cooperative scenarios – and increasing group cohesion [26, 30].
These can be crucial factors in establishing trust and in making the experience of a social
exchange feel good and natural to people and therefore is something to pay attention
to when designing social robots for assisting in social roles such as customer services,
education or caring facilities (See Figure 1.1a). However, adapting these social customs in
Human-Robot-Interaction (HRI)-scenarios can be hard for several reasons.

Firstly, robot movements can amplify a feeling of uncanniness in comparison with static
robots [20], which is undesirable and a reason why their performance is especially im-
portant here. This performance is affected by several aspects, such as adaptability to the
partners’ movements and timely reactions, which we focus on in this work.
Secondly, there is not just one go-to interaction that can be used in every social sce-
nario, as social rituals are highly dependent on context and culture [27]. Furthermore
every human interaction is subject to change as time goes by. Therefore, having a li-
brary of interactions to choose from, which can be adapted to the need of the current
situation, is crucial for robots that are used in different situations over long periods of time.

All of this should be applicable in realistic scenarios, so the robot has to recognize the
initiated interaction only from observing its partner, without further knowledge about its
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Figure 1.1.: (a) shows an exemplary image 1 of a PEPPER Robot interacting with an elderly
person. (b) shows the rough pipeline of our proposed framework. We first
learn to encode and to classify the observations of the human using a RWAE
and then use this information to choose the correct BIP which is in turn
conditioned with the encoded observation, resulting in the controls for the
robot.

surroundings. Additionally, it should be possible to make the aforementioned observations
easily and without extensive preparation by the interacting human.

With these preliminaries in mind, we propose the Interaction Recognition and Genera-
tion (ReGen) Pipeline (as outlined in Figure 1.1b); a pipelined approach that is composed
of an MTL Neural Network (NN), for classification and dimensionality reduction whose
output is used to gate and to condition a set of Interaction MPs. Additionally, we explore a
modular view of interactions, where each interaction is a sequence of simple segments that
can be used in multiple interactions. This is done to ensure stable behavior in variations
of known interactions and to be able to react to novel interactions that are composed of
known parts.

1Image taken from https://uebermorgen.haz.de/2020/03/roboter-im-pflegeeinsatz/.
Last accessed on October 31, 2021
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1.2. Outline

In Chapter 2 we first summarize the main concepts used in this work – namely Long
Short-Term Memory (LSTM), Variational Auto-Encoders (VAEs), Variational Recurrent
Neural Networks (VRNNs) and Bayesian Interaction Primitives (BIPs) – and discuss some
approaches used in previous works.
We then provide a formal problem statement and elaborate on the structure of our proposed
Interaction ReGen Pipeline in Chapter 3. Specifically, we will elaborate on design choices
and adaptations of the classification and encoding done by the MTL NN, the gating unit
and the BIPs.
In Chapter 4 we outline the experimental setups the ReGen Pipeline is tested on and
present the associated results.
Finally, in Chapter 5, we discuss those results and outline possible starting points for
future work.
The Appendix A contains additional detail on the hyper-parameter optimization process
that was done in preparation to the experimental evaluation.
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2. Foundations and Related Work

In the following chapter, we briefly introduce and formalize the main concepts used in this
work and we further discuss related work regarding the different points that this work
focuses on.

2.1. Foundations

We now introduce and formalize the concepts of LSTMs [13], probabilistic latent models
[14, 28], sequential modeling of latent space [8, 12], and Bayesian Interaction Primitives
(BIPs) [4].

2.1.1. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) [13] networks are special forms of Recurrent Neural
Networks (RNNs) that can learn long time dependencies on temporal data. They extend
the standard RNN-structure – where a state vector ht that encodes information of previous
timesteps is an additional input to a NN that iteratively computes ht and other task
specific outputs for each timestep t using the according input xt. In LSTMs additional
state vectors and gating units that control how much of the new information xt and the
previous information ht−1 gets carried through the network are introduced. They include
a cell state ct, an input gate it, which manages how much of the new information c̃t flows
into ct, an output gate ot, which controls the extent of which the cell state ct influences
the state ht, and a forget gate f t, which controls how much of the previous information
ct−1 flows into ct. They are computed using the following equations:
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f t = sig(W fxt +U fht−1 + bf ) ∈ (0, 1)h,

it = sig(W ixt +U iht−1 + bi) ∈ (0, 1)h,

ot = sig(W oxt +U oht−1 + bo) ∈ (0, 1)h,

c̃t = tanh(W cxt +U cht−1 + bcc) ∈ (−1, 1)h,

ct = f t ◦ ct−1 + it ◦ c̃t ∈ Rh,

ht = ot ◦ tanh(ct) ∈ (−1, 1)h,

with c0 = 0,h0 = 0 and ◦ denoting the element-wise product. The Structure of a
LSTM-module is shown in a step-by-step view in Figure 2.1 [21].

(a) forget gate f t (b) input gate it

(c) cell state ct (d) output gate ot and state ht

Figure 2.1.: Step-by-step view1 of an LSTM: (a) computation of the forget gate; (b) com-
putation of the input gate; (c) computation of the cell state (d) computation
and usage of the output gate.

1Image taken from https://colah.github.io/posts/2015-08-Understanding-LSTMs/. Last
accessed on November 3, 2021
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2.1.2. Probabilistic Latent Models

Probabilistic Latent Models are a family of generative models derived from Auto-encoder
(AE)-models, which are encoder-decoder models that aim to reconstruct their input x
from an encoded lower-dimensional representation. Instead of directly computing the
latent vector z, the encoder in a Probabilistic Latent Model computes the parameters
µ and σ of a normal-distribution from which a latent vector can be sampled (e.g. z ∼
N(µ,σ2) = qϕ(z|x)). As stochastic nodes cannot be optimized trough back-propagation,
a reparameterization trick is used to generate samples. A valid reparameterization for z
is z = gϕ(x, ϵ) = µ + σϵ with ϵ ∼ N (0,1) [14]. Since µ and σ are now deterministic
nodes, back-propagation can be applied to them as usual.
The loss-function of probabilistic latent models is typically composed of a reconstruction
term and a regularization term. The former ensures that the results resemble the inputs
and the latter aims to make the latent space continuous and complete by forcing the latent
distribution qϕ(z|x) to be close to a fixed prior pθ(z) which is typically chosen to be the
standard normal distribution pθ(z) ∼ N (0,1).

Variational Auto-Encoders (VAEs)

The original VAE [14] achieves this by using the Kullback-Leibler divergence (KL-divergence)
in order to reward qϕ(z|x) being close to the prior pθ(z). This results in the following
definition of the loss-function for a single input xi:

LVAE(θ,ϕ;xi) = −DKL(qϕ(z|xi)||pθ(z))⏞ ⏟⏟ ⏞
regularization term

+
1

L

L∑︂
l=1

(log pθ(xi|zi;l))⏞ ⏟⏟ ⏞
reconstruction loss

.

Here zi,l are reparameterized samples zi;l = gϕ(x, ϵi;l), ϵi;l ∼ N (0,1) [14]. Without a
regularization term, latent representations could be arbitrarily far apart. Thus, when
decoding a random point that is not close to any latent point seen during training, the
results would not be meaningful. As the regularization term condenses the latent space
around the prior pθ(z), one can sample a latent vector from pθ(z) and yield good results.
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Wasserstein Autoencoders (WAEs)

In addition to the original VAEs probabilistic latent models encompass other variations such
as Wasserstein Autoencoders (WAEs) [28], which suggests the usage of the Wasserstein-
distance to construct the loss-function. One of the two proposed regularizers utilizes
empirical Maximum Mean Discrepancy (MMD) between M samples ẑi of the prior pθ(ẑi)
and the encoded zi which doesn’t force each qϕ(z|x) to be close to pθ but instead forces
the continuous mixture qz :=

∫︁
qϕ(z|x) dpθ to be close to pθ. This allows the different

examples to stay somewhat far away from another while still being gathered around the
prior and thus reducing overlap between the latent representation by that and improving
the reconstruction [28]. This results in the following loss function for an input batch
X ∈ RN×Dx:

LWAE(θ,ϕ;X) =

reconstruction loss⏟ ⏞⏞ ⏟
1

N

N∑︂
i=1

c(xi,Dec(zi))+

regularization term⏟ ⏞⏞ ⏟
λ · ˆ︂MMD(Qz, Pz)

=
1

N

n∑︂
i=1

c(xi,Dec(zi)) +
λ

N2

N∑︂
i=1

N∑︂
j=1

k(zi, zj) +
λ

M2

M∑︂
i=1

M∑︂
j=1

k(ẑi, ẑj)

+
λ

N ·M

N∑︂
i=1

M∑︂
j=1

k(zi, ẑj),

where c is the 2-Wasserstein distance c(x,y) = ∥x− y∥22, k is a kernel (e.g. the IMQ-kernel
k(x,y) = C/(C + ∥x− y∥22)) or a mixture of kernels, λ > 0 is a hyper-parameter and
Dec is the decoder function [28]. The difference between VAEs and WAEs is illustrated in
Figure 2.2 [28].

2.1.3. Sequential Modeling of Latent Space

Probabilistic latent models themselves are not fit for sequential data, as they lack a way
to include the context from previous inputs. Combining them with recurrent units and
modifying the prior in such a way that it is no longer fixed but flexible with respect to the
input data has shown promising results on structured sequences [8, 12]. We’ll further
explore two approaches on doing so.

2Figure excerpted from Ilya Tolstikhin et al. “Wasserstein Auto-encoders” (2019).
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Figure 2.2.: Examplary depiction2of the difference between VAEs and WAEs. Both min-
imize the reconstruction loss in combination with the regularization term.
The regularization term of the VAE’s loss function forces the each qϕ(z|x)
(depicted as the red areas in picture (a)) to be close to pθ (depicted as the
white areas in both pictures). The red areas are intersecting which can lead
to problems when reconstructing. The regularization term of the WAE’s loss
function on the other hand forces the continuousmixture qz :=

∫︁
qϕ(z|x) dpθ

(depicted as the green areas in picture (b)) to be close to pθ. Here the la-
tent vectors have a better chance of staying away from each other and thus
reducing overlap.
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Variational Recurrent Neural Networks (VRNNs)

Variational Recurrent Neural Networks (VRNNs) [8] are a combination of RNNs and VAEs.
The input data xt passes through a VAE at each timestep, however, in order to take the
temporal structure of the input into account, the input of both the encoder Enc and the
decoder Dec will be concatenated with the state variable ht−1 of a recurrent unit which
can be an RNN like in the original proposition of Chung et al. 2016, but it can also be a
more complex recurrent unit like a Gated Recurrent Unit (GRU) or an LSTM[8].

Enc : RDh+Dx → RDz , Dec : RDh+Dz → RDx ,

ht ∈ RDh , xt ∈ RDx , zt ∈ RDz .

The hidden state ht of the RNN is updated in dependence on the previous hidden state
ht−1, current input xt and its latent representation zt.

RNN : RDh+Dx+Dz → RDh ,

Additionally, the prior pθ is no longer a static distribution, instead it is parameterized by an-
other function – e.g. another neural network – withht−1 as its input: [µt,σt] = Prior(ht−a)
[8]. This moving prior allows z to adapt as needed while still being constrained to ensure
continuity in the latent space.

The respective loss function for a single input x = [xt]t=1..T is composed of the timestep-
wise losses of all xt:

LVRNN(θ,ϕ;x) =
1

T

T∑︂
t=1

[︄
−DKL(qϕ(zt|x<t)||pθ(zt|x<t, z<t)) +

1

L

L∑︂
l=1

(log pθ(xt|x≤tz≤t;l))

]︄
,

with, again, z≤t;l being reparameterized samples z≤t;l = gϕ(x≤t, ϵ≤t;l), ϵ≤t;l ∼ N (0,1)
[8]. A schematic visualization of the proposed VRNN is shown in figure 2.3 [8].

3Figure excerpted from Junyoung Chung et al. “A Recurrent Latent Variable Model for Sequential Data”
(2016).
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Figure 2.3.: Schematic view3 of each segment of the VRNN: (a) computation of the
moving Prior function; (b) decoding function Dec; (c) RNN state update (d)
encoding function Enc; (e) complete scheme of the VRNN.

Recurrent Wasserstein Autoencoders (RWAEs)

Note that in the following we will describe a simplified version of the RWAE [12] that
omits the originally proposed disentanglement of zt into a static part zc and a dynamic
part zm and the proposed weak supervision.
Another proposal for probabilistic latent models are Recurrent Wasserstein Autoencoders
(RWAEs) [12] which adapt WAEs to sequential data. Like in the aforementioned VRNNs,
in RWAEs the data passes through a WAE at each time-step. Again, the information of
all previous timesteps is forwarded via a recurrent unit, however, instead of having a
separated recurrent state variable ht the latent vector zt is used as the recurrent state.

Enc : RDz+Dx → RDz , Dec : R2·Dz → RDx , Prior : RDz → RDx

Like above the respective loss for an input batchX ∈ RN×T×Dx containingN sequences is
composed of the timestep-wise losses, assuming that all sequences have the same length:

LRWAE(θ,ϕ;X) =

T∑︂
t=1

[︄
1

N

N∑︂
i=1

c(xit, Dec(zit)) + λ · ˆ︂MMD(Qzit , Pzit)

]︄
(2.1)

For the computation of the Prior we use the batches encodings as the input for the Prior
function. A schematic visualization of the proposed RWAE is shown in Figure 2.4.
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xt

zt−1 zt

(a) Prior

xt

zt−1 zt

(b) Generation

xt

zt−1 zt

(c) Inference

Figure 2.4.: Schematic view of each segment of a simplified RWAE [12] (a) computation of
the moving Prior function; (b) decoding function Dec; (c) recurrent encoding
function Enc

2.1.4. Bayesian Interaction Primitives (BIPs)

Bayesian Interaction Primitives (BIPs) [4] are a framework for learning probability dis-
tributions over sets of interactive trajectories. The main difference between BIPs and
other MPs is that BIPs perform inference and phase estimation in a single combined step
by combining the concept of interaction primitives with Extended Kalman Filter (EKF)
Simultaneous Localization and Mapping (SLAM) [4].
A single trajectory is a sequence τ = [yt]t=0..T of T observations yt = [ya1

t , . . . ,yam
t ]T ∈

RD ofD joint positions, angles, velocities, etc. for allM involved agents (D =
∑︁

i=0..M Dai).
When working with two agents we’ll refer to them as either the controlled agent c or the
observed agent o which results in yt being yt = [yo1,t, . . . , y

o
Do,t

, yc1,t, . . . , y
c
Dc,t

].
BIPs are learned from demonstrations and model the time-varying mean and variance of
trajectories. This is achieved by representing each observation as a linear combination of
B time-dependent basis functions. Therefore yai,t – the ith degree of freedom of agent a at
timestep t – is represented as:

yai,t = ΦT
t w

a
i + ϵy, wa

i ∈ RB×1, Φt ∈ RB×1, ϵy ∼ N (0, σy) .

Let Ψ ∈ RB×D·B be a block-diagonal matrix with ΦT
t along the diagonal, Σy be a

diagonal matrix of σy and w be a weight vector, which is the concatenation of all wa
i :

w = [wo
1
T , . . . ,wo

B
T ,wc

1
T , . . . ,wc

B
T ]T ∈ RD·B×1. The likelihood of observation yt given
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the underlying weight vector w is thus given as:

p(yt|w) = p(yt|w) = N (yt|ΨT
t w,Σy)

= N

⎛⎜⎝yt|

⎛⎜⎝ΦT
t . . . 0
... . . . ...
0 . . . ΦT

t

⎞⎟⎠w,Σy

⎞⎟⎠ .

Assuming that the weight vector w is drawn from a Gaussian distribution with w ∼
N (w|µw,Σw), µw and Σw can be computed using Maximum Likelihood Estimation
(MLE) for a set of training trajectories [4].

In order to adapt to different execution speeds, a phase variable δ ∈ [0, 1] is introduced. At
the beginning of the trajectory, it is set to zero δ0 = 0 and at the end, it is set to one δT = 1,
with everything in between being a monotonic function such as n linear interpolation
of δ0 and δt. It replaces t, so that the basis functions Φ are now no longer dependent
on absolute time but on the progress of the trajectory instead [4]. When considering
incomplete trajectories τ ∗ = [yt]t=0..K ,K ≤ T an approximation of the length of the
complete trajectory is required to estimate the phase. This would usually be accomplished
by using time alignment algorithms such as Dynamic Time Warping (DTW), however BIPs
use EKF SLAM in coupling with the concept of interaction primitives in order to perform
inference and phase estimation in the same step [4].

In interaction MPs, a common use case scenario is observing the partial trajectory τ ∗ of
one agent and to use this information to infer the associated movement for the controlled
agent. This is done by conditioning w to τ ∗ and generating a response trajectory from
the conditioned w.

p(w|y∗) ∝ p(y∗|w)p(w)

In this case, all controlled agents degrees of freedom (DOFs) are replaced with zero while
keeping the DOFs of the observed agent, resulting in the observation z. Additionally, the
measurement noise values in Σy are replaced with an arbitrary but suitably high value
resulting in the new matrix Σz [4].

When combining those prerequisites with SLAM, the phase δ, its velocity δ̇ and the
weight vector w get concatenated into the state vector st = [δ, δ̇,wT ]T ∈ RD·B+2×1 which
is conditioned instead of w alone. This changes the goal from determining p(w|y∗) to
determining p(st|z1:t) = N (st|µt,Σt), which has time dependent parameters. That can
be determined iteratively:
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µ0 = [0, β,µw
T ]T ,

µt = µt−1 + F T [1, 1]T +N (0,F TQF ),

F =

[︃
1 ∆t . . . 0
0 1 . . . 0

]︃
, Qt =

[︄
σδ,δ σδ,δ̇
σδ̇,δ σδ̇,δ̇

]︄
,

Σ0 =

[︃
Σδ,δ Σδ,δ

Σδ,δ Σδ,δ

]︃
,

Σt = GtΣt−1G
T
t +Rt, Gt =

[︃
0
0

]︃
.

Similar to the standard interaction primitives, the conditioning of st for τ ∗ is done via
Bayesian filtering on µt and Σt:

Ht =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Φδ
Two

1
∂δ 0 Φδ

T . . . 0 0 . . . 0
...

...
... . . . ...

... . . . ...
∂Φδ

Two
Do

∂δ 0 0 . . . Φδ
T 0 . . . 0

∂Φδ
Twc

1
∂δ 0 0 . . . 0 0 . . . 0
...

...
... . . . ...

... . . . ...
∂Φδ

Twc
Dc

∂δ 0 0 . . . 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RD·B×B+2,

K = ΣtH
T
t (HtΣtH

T
t +Qt)

−1,

µ
[new]
t = µt +Kt(zt − h(µt)),

Σ
[new]
t = (I −KtHt)Σt (2.2)

With the conditioned µ
[new]
t and Σ

[new]
t for all t, a suitable trajectory can be sampled from

the associated normal distributions N (µ
[new]
t ,Σ

[new]
t ) [4].
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2.2. Related Work

We will now discuss related work regarding the generation of movement in response to
the human agent, interaction classification and HHI-supported robot control.

2.2.1. Responsive Movement Generation

HRI has been the focus of many works in robotics and thus there are many approaches
regarding responsive movement generation that have already been explored. In the fol-
lowing, we will discuss some of those approaches in detail.

For movements that revolve around hand reaching, such as handshakes or fist bumps, for
example, some works suggest predicting the final location of the hand continuously using
an LSTM[29, 25]. The robot is then made to reach for a location which is a time-depended
non-linear combination of the predicted location and current hand position, that favors
the actual hand position more as time passes. This can be achieved by linear interpola-
tions [29] or by employing MPs conditioned on the predicted position [25] to give some
examples. While this approach yields high accuracy, it has its limitation as not every form
of HRIs requires reaching in the same ways or sometimes at all. For example, in times of
the COVID-19 Pandemic, many people have opted for an elbow bump or waving instead of
the usually more common hand-shake. Including other interactions that are not centered
around reaching, requires a lot of task-wise adaptation and does not allow for effortless
online learning especially for more involved interactions, while some types of interactions
are simply not realizable.

Common strategies also include the usage of Machine Learning (ML) that are trained to
predict the whole-body movements of an agent [2] given its own and the other agent’s
previous movements. This prediction in turn can be used to control the robot later on. The
ML can for example be done through a recurrent AE such as an VRNN [2] or a Deep Rein-
forcement Learning (DRL) algorithm [8]. This approach builds on top of non-collaborative
human motion prediction strategies [16, 3]. An advantage of this approach is that the
model can be extended to include multiple types of interactions.

Interaction MPs of different sorts have been proposed [1, 19, 4] and explored [10, 5, 15]
in many recent works regarding HRI, where they have shown promising results. Unfor-
tunately, the conditioning of MPs is heavily reliant on matrix multiplication. Since the
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sizes of these matrices are dependent on how many DOFs are involved, the conditioning
becomes computationally inefficient with a growing number of DOFs. This inefficiency can
be problematic when expecting the robot to react in time, but Dermy et al. have shown,
that it can be addressed by replacing the actual input joints with a lower-dimensional
encoding of it [9].

2.2.2. Interaction Classification

Determining the the ongoing interaction can be helpful in the previously mentioned ML-
based approaches by affecting the reward function in DRL [7] or as additional information
available in a Neural Network (NN) [2]. It can even be necessary, for example, when
choosing the right MP from a set of possible options.

Predicting the category in a MTL-setting while also predicting future movement has
shown to improve the accuracy of the movement prediction in a non-collaborative scenario
[16]. Additionally, the classification itself seems to be able to keep up with models that
direct all of their resources towards classification [3]. Thus MTL could be a reasonable
extension to NN-based approaches in HRI.

On the other hand approaches that rely in MPs, specifically those that represent tra-
jectories in a probabilistic manner (namely Probabilistic Movement Primitives (ProMPs)
[22, 23] and BIPs [4]), can quite simply make use of probabilistic classification [19]
and/or clustering with Gaussian Mixture Models (GMMs) [10, 18, 15]. This can also
be done with adaptive GMMs which in turn allows for online-learning [15]. The works
utilizing this assume that the entire trajectory can be observed before the robot needs to
react.

2.2.3. HHI-supported Robot Control

One hurdle in controlling robots is that different robots need to be controlled differently.
Consequently, each robot needs a separately trained model with according training data.
The procedure of collecting HRI-data can be cumbersome thus, doing so for every variation
of robots is not feasible. As a result, many works have addressed this problem and tried
to alleviate the need for robot-specific data with HHI-data [25, 2]. One approach is to
treat a humanoid robot as if it were a person when inferring its trajectory and to control
it as if it were teleoperated [11, 25]. Others suggest learning an encoding for human
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motions and robot motions. In either scenario – HHI or HRI – the encoding is affected
by a task dynamic among the participating agents. With that, the training done on the
HHI-data lays the foundation from which each robot can be trained [2]. This approach
still requires robot-specific data but should reduce the amount of data needed to properly
learn interactions.
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3. Interaction Recognition and
Generation (ReGen) Pipeline

In this chapter, we’ll firstly formalize the problem statement for this work. Secondly, we’ll
explain the structure of our proposed Interaction Recognition and Generation (ReGen)
Pipeline and discuss the properties and design choices of its different parts in detail.

3.1. Problem Statement

The goal of this work is to learn a library of interactions such that social robots can
recognize the type of interaction that is being initiated by an observed human agent and
that they are able to perform the associated counter movement in real-time. Formally,
the robot observes a partial trajectory τ ∗ = [xo

t ]t=0..T ∗ of observations xo
t of human joint

positions at time-step T ∗. The robot should be able to classify the current interaction C∗
t

from a set C = {Ci}i=0..K of K possible interactions and to generate a corresponding
observation x̂c

T ∗ in response, which can be used to control the robot accordingly. This
should happen in a timely manner, i.e. the computation time ccomputation should not exceed
1
f , with f being the observation frequency.

3.2. Proposed Approach

This section describes the structure of the approach of this work and explains the modeling
choices. Mainly, there are two separate processes at play; The training-data pre-processing
and the pipeline that generates the robot’s motion.

For the pre-processing of the training data (Section 3.2.1) we focused on segmenting an
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interaction into less complex sub-interactions to improve distinguishability and recon-
struction of different interactions.

The movement generation pipeline is inspired by AE-ProMPs proposed by Dermy et
al. [9]. They employ AEs in order to reduce the dimensionality of the MP’s input. This
is done because the inference of trajectories is computationally inefficient with higher
dimensional inputs. Since we also want to perform action recognition, we extend the
AE with a classification task and add a gating unit (Section 3.2.3) that manages which
MPs to use. Unlike AE-ProMPs, we chose to encode and decode each timestep with the
previous ones in mind and opted to use variational auto-encoding techniques, (Section
3.2.2) instead of standard AEs as they tend to perform better. Specifically we used a MTL
RWAE. Moreover, we chose BIPs (Section 3.2.4) over ProMPs as they are more efficient
because they don’t need additional DTW and thus allows either for a higher computation
frequency or for a higher dimensional latent space at the same frequency. This results in
the pipeline depicted in Figure 3.1.

3.2.1. Interaction Segmenting

Segmenting complex movements can be beneficial when trying to classify a movement
from a set of possible movements when these have similarities at some points of the tra-
jectory. Especially, when the classification is done without observing the whole trajectory.
We argue that – at least when looking at common western social interactions – many of
them do have such similarities. A lot of them are centered around hand movement and
thus many start with a reaching movement. While humans are mostly able to infer what
interaction another person is initiating, robots may lack some information, for example
when their observations do not include positioning of fingers or they lack the necessary
context to correctly classify the interaction.

Additionally, the responses could be much more stable when dealing with variations,
whether that entails reacting to different numbers of repetitions in cyclical parts of inter-
actions or even the creation of new interactions that are sequenced from the set of known
segments.

We propose segmenting the training trajectories in such a way that similarities across
interactions will be mapped to the same primitive. This could be achieved in different
ways but one common way to do so is by applying heuristics. We propose to create a
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Figure 3.1.: Graphical depiction of the proposed Interaction ReGen Pipleline. At each
timestep, we compute a latent representation zo

t of the observed agents joints
xo
t and use this to classify the current action. Both the classification and

the latent representation are used to infer the response x̂c
t of the controlled

agent using BIPs.

segment every time a velocity of zero for all joints can be observed (Zero Crossing ve-
locity (ZCV)) or in other words every time a moment stops or changes direction. Since
we are working with discrete observations we need to approximate the velocity at each
timestep by observing how much the joint positions differ from timestep t to t+ 1. It is
unlikely to observe velocities with an exact value of zero under these circumstances, thus
we leverage the constraint by introducing a threshold that the absolute velocity be beneath
of, to create a segment. More precisely, to avoid over-segmentation in periods of little
movement a segment is only created when the absolute velocity exceeds the threshold
after previously undershooting it. The segmentation of a synthetic trajectory with one
degree of freedom is shown in Figure 3.2. In order to gain meaningful information from
these automatically generated segments, they need to be reviewed, over-segmentation
needs to be resolved and the segments need to be labeled with respect to what part of the
interactions they represent. We also suggest labeling the resulting segments on whether
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they are cyclical or not.
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Figure 3.2.: Possible segmentation of a synthetic trajectory with a single DOF. The posi-
tion of the DOF is plotted in blue in the upper graph. Below, the respective
approximate velocity is plotted in red. The timesteps at which the absolute
value of the approximate velocity enters and exits the range encompassed
by the threshold are marked in both graphs.

3.2.2. Motion Auto-Encoding and Classification using an RWAE

The RWAE part of the pipeline is – as previously mentioned – responsible for two sub-tasks;
Dimensionality Reduction and Interaction Classification. As the input data is sequential,
each task will be continuously performed, taking the representations of earlier time-steps
into account. In the following, we’ll describe and formalize the two tasks and elaborate
on how they are combined using MTL.
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Dimensionality Reduction

One of the main tasks of the network is to act as a mean of dimensionality reduction. This
is done to counter BIPs’ computational inefficiency on high dimensional data. As seen in
Equation 2.1.4, the conditioning of MPs is heavily reliant on matrix multiplication. Since
the sizes of these matrices depend on the number of DOFs, the conditioning becomes
computationally inefficient the higher that number.
The dimensionality of the data could be reduced by manually choosing a subset of joints
that are deemed important for a specific interaction. For example, one might reduce
the input’s dimensionality by specifically observing the joints of the upper body (See e.g.
[25]) or even only the joints of the right arm, as they are the main actors in performing
many hand-centered interactions such as a handshake. However, the important joints for
different interactions may vary. For instance, a handshake uses different joints as bowing
does. This results in an overhead of manual labor for identifying and implementing the
best choice for said subsets, in order to include a multitude of tasks. The optimal subset
might also not always be clear without extensive cross-validation, especially for more
involved interactions. Furthermore, it might be hard to actually choose a sufficiently small
subset of joints while still fully representing the important parts of an interaction when
many joints play a significant role in performing it.
AE-models could offer a way to automate this process across multiple interactions. The
learned encoding might even be more efficient than the ones done by hand since the
movement of multiple joints could be represented in a single degree of freedom. Variational
versions of AEs, such as VAEs [8] and WAE [12], typically perform better in interpolating
the latent space as they enforce continuity and cover more of the latent space during
training because of the sampling step during encoding. Because we’re using sequential
data it seems reasonable to employ some form of RNN to represent time-dependencies.
For this, we used a simplified RWAE as described in Section 2.1.3 of the RWAE proposed
by Han et al. [12]. The major simplification is that we don’t disentangle the encoding
into a static and a dynamic encoding because this would require observing the whole
movement before performing the associated robot motion, which contradicts this work’s
goal of interacting in real-time.

Interaction Classification

The NN’s second task is to classify the interaction that is currently being performed to
choose the matching BIP for the robot to perform further down the pipeline. The output
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of This task is a vector o ∈ RK with K being the number of known interactions. The sum
of all values is normalized to 1 by applying the softmax-function to o:

ŷi = softmax(o)i =
eoi∑︁K
j=1 e

oj
.

That way ŷ = [ŷi]i=1..K represents the probability of each interaction. The loss function is
chosen to be the categorical Cross-Entropy-Loss (CEL)

Lclassification(y, ŷ) = −
K∑︂
i=1

yi · log ŷi, (3.1)

where y is the target classification as a one-hot vector. Alternatively, one could use
weighted CEL

Lweighted classification;w(y, ŷ) = −
K∑︂
i=1

wi · yi · log ŷi, (3.2)

in order to counter class imbalances. Here w should be a weight vector whose elements
are in inverse proportion to the according classes’ portions in the training set. With w = 1
Lweighted classification;w becomes equivalent to Lclassification.

Multi-task learning (MTL)

Previous work has already shown that including an additional classification class improves
the quality of movement prediction [16] with the classification’s quality staying at the
same level [3]. While movement prediction is not the same as auto-encoding, we argue
that the tasks are nevertheless related enough to potentially perform similarly. So, since
the classification is a needed step anyway, doing so in a MTL-setting seems like a sound
decision.
Similarly to a semi-supervised variation of the originally proposed RWAE [12] we extend
our structure with the classification of the given sequence. This classification uses the
encoded representation z of the data as its input (CL : RDz → RK , ŷ = CL(z)). The
classification is also used as an additional input to the decoder. Unlike Han et al. [12]
we don’t compute one classification for the entire input sequence as this, again, would
require observing the whole human trajectory. Instead, we classify the interaction at each
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observed timestep. This results in the final structure shown within the dotted rectangle
shown in Figure 3.1.

In order to compute the combined loss of these tasks we add the tasks losses with respect
to a batch of sequences X ∈ RN×T×Dx and target classifications Y ∈ RN×T×K as defined
in Equation 2.1 and Equation 3.2.

LMTL RWAE(θ,ϕ;X,Y ) = LRWAE(θ,ϕ;X)

+
T∑︂
t=1

[︄
1

N

N∑︂
i=1

Lweighted classification;w(yit,CL(xit))

]︄
.

Here we use of weighted CEL, but by simply choosing w = 1 this equation becomes
equivalent to non-weighted CEL. This composition of the loss function requires same-
length trajectories, however, the NN should be able to deal with trajectories of varying
length. Therefore, we suggest padding each sequence Xi and its target classification Y i

to the same length with fixed vectors xpadding,ypadding that are distinct from the actual data
and to introduce a function

δ(x) =

{︄
0, if x = xpadding

1, otherwise

that is used to exclude the padded values from affecting the loss in an altered loss function.

L̂MTL RWAE(θ,ϕ;X,Y ) =
1

N

N∑︂
i=1

T∑︂
t=1

δ(xit) ·
[︂
c(xit, Dec(zit)) + λ · ˆ︂MMD(Qzit , Pzit)

+Lweighted classification;w(yit,CL(xit)))] .

This MTL approach could also potentially allow to initially train the model on unlabeled
data by only optimizing the WAE’s loss, alleviating the need for labeled training data
slightly.
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3.2.3. Gating Unit

Since the interaction classifications’ certainty may vary, it may not always be optimal
to begin moving the controlled agent. Because of that, we introduce a gating unit that
decides if and how the respective movement primitives should be initiated.

To do so, we inspect the classifications’ probabilities ŷit, i = 1..K of the current timestep
t. In case the likelihood of the top interaction mt = argmaxi ŷi is sufficiently high
(ŷm ≥ ythreshold), the controlled agent’s trajectory will be inferred from the associated
primitive and executed. Otherwise, we check whether we inferred a trajectory during the
last timestep t− 1. If we did and either the segment used during the previous inference is
marked as cyclical or the estimated phase has not passed a certain threshold close to 1
yet (δ < δthreshold), we keep inferring using the last certain MP. If none of this holds, we
don’t do anything for the current timestep t. The resulting gating unit is described by
Algorithm 1.

Algorithm 1 Gating Unit
1: Input: Classification ŷ
2: Find the most likely interaction mt := argmaxi ŷi
3: if ŷm ≥ ythreshold then
4: Infer the controlled agents trajectory from primitive mt

5: Execute the inferred trajectory
6: else if an inference was performed during the last timestep and (interaction mt−1 is

cyclical or phase δ < δthreshold) then
7: Infer the controlled agents trajectory from primitive mt−1

8: Execute the inferred trajectory
9: mt := mt−1

10: end if

3.2.4. Motion Generation using BIPs

We propose using a set of BIPs for the movement generation, one for each unique segment
identified during the segmentation process. We train them on the the training trajectories,
with one trajectory τ = [xt]t=0..T being composed of observations xt that are formed
from the concatenations of the encoded joint angles zo

t of the observed agent and an
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representation of the controlled agent’s joints1 xc
t . When inferring a trajectory the corre-

sponding trajectory chosen by the gating unit is conditioned in the same way as proposed
by Campbell and Amor et al. [4]. Furthermore, we suggest using cyclical filtering in a
similar fashion as done with the Intprim2 library to allow the phase to roll back to 0
once it reaches 1 and thus to allow for any number of repetitions for segments that were
marked as cyclical during the segmenting pre-processing without explicitly resetting the
phase.

1The representation can either be the robot’s joints angles in specialized scenarios or the encoding of human
joint angles for generalized teleoperation scenarios.

2Available at https://github.com/ir-lab/intprim
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4. Experimental Evaluation

In our experiments we tested the Interaction ReGen Pipeline on HHI data. We trained the
pipeline on the HHI-part of the dataset constructed for Bütepage et al. [2]. The predicted
human movements can be transfered to robot movement by teleoperaing a humanoid
robot [11]. In the following chapter, we’ll describe the experimental setups as well as the
employed training procedures.

4.1. Dataset

In our experiments, we used the dataset that was constructed for the Bütepage et al.
paper [2]. It contains high-frequency motion capture data of both human-robot and
human-human interaction. This data was captured using Rokoko1 motion capture suits
that record the 3D positions of the human joints in Cartesian space at 40 Hz, which we
sampled further down to 5Hz in order to have a less harsh time constraint.

The dataset contains four different types of interactions: hand wave, handshake, parachute
fist-bump, and rocket fist-bump. Each interaction follows a similar structure of: initiating,
n repetitions of the main movement, and returning to the starting position. This structure
was considered during the segmenting resulting in seven different types of segments, each
marked on whether they are cyclical or not. While the act of returning to the starting
position is considered to be universal across all interactions, the segments in the initi-
ation are partially shared and the main action phase is unique for all four interactions.
The possible sequencing of these is depicted in Figure 4.1 and some frames of a sample
recordings of the interactions alongside corresponding extracted joint angles are depicted
in Figure 4.3, 4.4, 4.5 and 4.6. Additionally a description of each segment can be found

1https://www.rokoko.com/
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raise wave

shake

parachute

rocket

reach
return

Figure 4.1.: A flowchart depicting the possible interaction transitions based on themanual
segmenting done on the Bütepage et al. dataset [2]. Since the dataset
doesn’t contain hand posture, the reaching can be considered to be the same
movement for the handshake and both fistbumps. For data including hand
posture, it might be necessary to split this segment further.

in Table 4.1 and the supplementary material 2 of Bütepage et al. [2] provides a video
containing all different base types of interactions. It needs to be noted that the dataset
included variations in the segment transitions. So the waving, for example, would not
always start with moving the arm to the leading actors left and it would not always end
with moving the arm to the leading actors right, in contrast to the segment description
found in Table 4.1. Those segments were marked as incomplete.

The distribution of the interactions and the segments in the dataset are shown in Figure
4.2. While the interactions themselves encompass roughly the same share of timesteps,
the class imbalances are much more prominent in the segmented data and may thus be
something to address further down the line.

Since all of the interactions happen to be based around movement of the upper body we
excluded all joints that are below the hips, to alleviate computation times slightly.

The four interactions can be categorized into symmetrical and asymmetrical interactions.
In symmetrical interactions, both agents do roughly the same thing while in asymmetrical
interactions both actors have different roles. By that definition, the handshake and the
hand wave fall under symmetrical interactions and both fist-bumps fall under asymmetrical
interactions because both have a leading and a following agent. Since the robot should
2https://www.frontiersin.org/articles/10.3389/frobt.2020.00047/full#
supplementary-material
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Segment name Segment description

raise Starting from an idle position, the actors raise their right arms above
their heads.

reach Starting from an idle position, both actors stretch their arms forward
to meet each other’s hands between both of them. The height of the
meeting point may vary.

wave With their arms raised above their heads, the actors swing their arms
from left to right in an oscillatory motion, starting the movement
towards the left of the leading agent.

shake With their handsmeeting between them, the actors grasp each other’s
hands and shake them up and down in an oscillatory motion.

parachute With their hands meeting between the two actors, the leading actor
moves their hand above the following actor’s hand. Both start moving
their hands downwards while simultaneously swinging their hand
from side to side, starting the movement towards the left of the
leading agent. The following actor keeps their hand sightly below
the leading actor’s hand following their oscillatory motion. The
movement stops when the hands are approximately at hip height.

rocket With their hands meeting between the two actors, the leading actor
moves their hand above the following actor’s hand. Both and start
moving their hands upwards. The following actor keeps their hand
sightly below the leading actor’s hand following the upwards motion.
The movement stops when the hands are approximately at shoulder
height.

return The actors return to an idle position.

Table 4.1.: A table describing the manually identified segments for the dataset created
by Bütepage et al. [2].
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Figure 4.2.: The class distribution of the interactions (first row) and the corresponding
segments (second row) with regards to the number of timesteps associated
with them.

always react to the human, we determined that the robot should always fill the role of the
following agent and the human should always fill the role of the leading agent.

4.2. Experimental Setups

For our experiments, we only use the human-human part of the Bütepage et al. dataset [2]
because the human-robot data is specific to the robot used and because the human-human
dataset itself is more extensive. In order to present the results of the experiments on an
actual robot we teleoperation techniques can be employed using the generated human
data [11]. To assess the success of the pipeline and to differentiate the contribution of the
different parts we perform an ablation study using the configuration outlined in Table 4.2.

Each configuration was trained on 80% of the Bütepage et al. dataset [2] using the
processes described in Section 4.2.1 and Section 4.2.2 and evaluated in the way described
in Section 4.3 on the remaining 20% of the dataset and on the self recorded dataset.
The thresholds of the gating unit were chosen to allow fairly uncertain classifications with
ythreshold = 0.6 and δthreshold = 0.95.

4.2.1. Implementation and Training of the RWAE

All Neural Networks were implemented using Python and PyTorch3. For each con-
figuration mentioned above, we performed k-fold cross-validation with random hyper-
parameters. The specific hyper-parameters that were optimized that way and the final

3https://pytorch.org/
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Configuration name Configuration description

MTL RWAE (Seg) Employing MTL and dimensionality reduction on segmented
interactions.

MTL RWAE (SegW) Employing MTL and dimensionality reduction on segmented
interactions using weighted CEL.

MTL RWAE (No Seg) Employing MTL and dimensionality reduction on unsegmented
interactions.

RWAE + CL (Seg) Using two separate NNs for the classification and the dimen-
sionality reduction on segmented interactions.

RWAE + CL (SegW) Using two separate NNs for the classification and the dimen-
sionality reduction on segmented interactions using weighted
CEL.

RWAE + CL (No Seg) Using two separate NNs for the classification and the dimen-
sionality reduction on unsegmented interactions.

CL (Seg) Using only classification on segmented interactions.

CL (SegW) Using only classification on segmented interactions using
weighted CEL.

CL (No Seg) Using only classification on unsegmented interactions.

Table 4.2.: A table naming and describing all evaluated configurations.

choices for them are listed in Appendix A. Moreover the specific architecture of each
components is listed in Figure B.1 in Appendix B. We kept the NNs relatively shallow
because of the relatively small dataset used.

The computation of the loss of the RWAE, seen in equation 2.1, requires the use of a kernel.
The proposal of the original RWAE [12] suggests the usage of a mixture of RBF-kernels
k : σ(x,y) = exp(∥x− y∥22 /σ2

k), however the proposal of the original WAE argues that
inverse multiquadratics (IMQ) kernels kC(x,y) = C/(C + ∥x− y∥22) are a better choice
[28], which is why we also opted to use a mixture of IMQ kernels
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k(x,y) =
∑︂
Ci∈C

Ci

(Ci + ∥x− y∥22
,

with C = {0.1, 0.2, 0.5, 1, 2, 5, 10}.

The training of the RWAE configurations was done on the data of both agents. This was
done to ensure proper en- and decoding for both agents, which would not be needed
when reconstructing robot specific joints for the second agent. We normalized the data
using the standard score x̃ = x−µ

σ for each DOF, as this yielded better results in some
sample runs done before the final cross-validation and training.
To counter overfitting the model to the training data, we also introduced dropout layers
in all of the components. The dropout probability pdropout was the same across all dropout
layers in a model and was determined during the hyper-parameter-optimization mentioned
above.

4.2.2. Implementation and Training of the Bayesian Interaction Primitives

The BIPs were implemented using the Intprim library4 [4, 6]. The basis spaces were
optimized separately for each BIP by performing grid-search over a set of basis functions.
The basis space was chosen based on the Bayesian Information Criterion. Since the
incomplete cyclical segments were always missing one half of the cycle we adjusted their
phase in such a way that either the phase of the first frame was 0.5 in case the first half was
missing or the phase of the last frame was 0.5 in cast the second half was missing, before
using them for training. With that adjustment, we were able to utilize these segments
during the training of the BIPs despite their incompleteness.

4.3. Evaluation

We evaluated all configurations using multiple metrics. The RWAE component itself was
evaluated on the average non-weighted CEL and the average accuracy of its classification
per timestep and on the Mean-Squared-Error (MSE) loss of its reconstruction (See Table
4.3). Since accuracy is not always a good metric when dealing with unbalanced classes
we also created confusion matrices for the RWAE’s classification (See Figure 4.7). The BIP

4Available at https://github.com/ir-lab/intprim
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were tested an optimal scenario – using the target classification instead of the RWAE’s –
and in the context of the full ReGen Pipeline. Furthermore we animated and inspected
the testing interactions. We now further discuss the observations we made while doing so
in relation to the metric evaluation.

CEL Accuracy MSE

MTL RWAE
Seg 1.23716 0.67665 0.68161
SegW 1.37827 0.85184 0.67447
No Seg 0.78304 0.97063 0.99362

Non-MTL RWAE
Seg 0.52788 0.85067 0.55059
SegW 0.47736 0.86280 0.55059
No Seg 1.64068 0.75380 0.55059

Table 4.3.: This table shows the NN-specific metrics for all NN configurations. The
CL-only configurations use the same classification NNs as the RWAE + CL
ones and thus the performance of both is encompassed by Non-MTL RWAE
performances listed above. Since the different configurations in these models
don’t affect the encoding part, the MSE is the same across all of them. The
best result of each metric is printed boldly, each metric is rounded to five
decimal places. CEL denotes the average non-weighted CEL per timestep, the
accuracy denotes the average accuracy per timestep, and the MSE denotes
the mean squared error.

In contrast to our assumptions the MSE of the reconstruction does not improve by in-
corporation MTL in comparison with the non-MTL models, as portrayed in Table 4.3.
However, it is not significantly worse either. When comparing the MTL models with each
other we can see a slight improvement when incorporating segmenting, suggesting that
it benefits the encoding. When inspecting the confusion-matrices (See Figure 4.7) it is
notable that all models trained on the segmented data mainly miss-classify the initiating
movements and the return movement of the interactions. Some models seem to struggle
with differentiating the two initiating movements, which may be due to them beginning
in a similar way. Furthermore, the initiating movements and the return movement seem
to get confused with the main actions and vice versa. This most likely happens when the
segments transition from one to another which may not necessarily impact the movement
prediction as severely as other forms of miss-classification.

When inspecting animations of the generated trajectories, the difference in errors shown
in Table 4.3 is reflected in the quality of the animations. The trajectories that were inferred
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optimal classification NN classification
Avg. time [sec] MSE Avg. time [sec] MSE

MTL RWAE
Seg 0.32656 4.20235 0.33674 4.37260
SegW 0.28471 3.49618 0.29840 3.49618
No Seg 0.37678 3.53024 0.36201 3.75011

RWAE + CL
Seg 0.23800 4.39630 0.24174 4.35912
SegW 0.21480 4.23854 0.22030 5.22607
No Seg 0.15540 3.64157 0.15879 3.82488

CL
Seg 0.45979 2.35523 0.512701 2.82804
SegW 0.45979 2.35523 0.463222 2.54350
No Seg 0.45170 2.46183 0.41619 2.89722

Table 4.4.: MSE for the inference and manual scoring of each model using the target
classification and the NN classification, respectively. The best results of
each metric among a group are printed boldly, each metric is rounded to five
decimal places. The MSE denotes the mean squared error of the controlled
agent as compared to the training data, the avg. time denotes the average
computation time of the reconditioning of the BIPs in seconds.

using encoded inputs all more or less have a bias towards keeping the hand in a strechted
out position, without visibly adapting much to the observed agent’s movements. As this
is not the case with the BIPs trained on the original data, we conclude that the current
RWAE-setup is not able to properly encode time-dependent variations in the movement.

The loss is the lowest when employing segmenting in combination with unencoded
inputs. This low loss is, again, reflected by the animations inspected. While the initiating
and the returning segments are always pretty reliable with and without segmenting, the
main movements, specifically those that contain arbitrary numbers of repetitions, are not
predicted properly without segmentation. This is not the case for the segmented BIPs.

In terms of timeliness, only the unsegmented non-MTL model was able to perform the
average conditioning faster than the 0.2 seconds that would be the maximum required
for real-time application using a conditioning frequency of 5 Hz. Nonetheless, we are
always able to lower the computation time below 0.4 seconds with encoded trajectories.
Final models for application should be adapted to match their possible conditioning rate
determined during previous experimentation but in the scope of this study we don’t alter
the models any further.
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Figure 4.3.: Frames excerpted from a recording of the rocket-fist-pump (above) and
corresponding joint angles (below).

Figure 4.4.: Frames excerpted from a recording of the parachute-fist-pump (above) and
corresponding joint angles (below).

Figure 4.5.: Frames excerpted from a recording of the handshake (above) and corre-
sponding joint angles (below).

Figure 4.6.: Frames excerpted from a recording of the waving (above) and corresponding
joint angles (below).
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(a) MTL RWAE (Seg)
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(b) Non-MTL RWAE (Seg)
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(c) MTL RWAE (SegW)
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(d) Non-MTL RWAE (SegW)
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(e) MTL RWAE (No Seg)
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(f) Non-MTL RWAE (No Seg)
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Figure 4.7.: Confusion matrices for each configuration with the rows (true labels) normal-
ized.
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5. Discussion

In this chapter, we summarize this thesis’ contributions and discuss the results of chapter
4 with regards to the different pipeline stages outlined. Furthermore, we acknowledge
any conscious shortcomings and explore possible space for further work.

5.1. Summary

In this thesis, we proposed the Interaction ReGen Pipeline for learning a library of physical
interactions for social robots in combination with interaction sequencing. The pipeline
encompasses an MTL NN for classification and dimensionality reduction of the input data,
which is used to gate and to condition a set of BIP with a lower computation time than
BIPs trained on the original input data. We discussed all parts of the proposed pipeline in
detail and tested it’s using HHI-data. Our experiments show that segmenting improves the
inference of complex movements notably. Furthermore, we establish that BIPs are not able
to infer movements based on large numbers of DOFs in a timely manner. Our proposed
way of encoding input data in order to offset this improved the temporal behavior of the
BIPs but is still lacking the in the ability to properly encode the time-varying aspects of
movements.

5.2. Shortcomings and Future Work

While we hoped the segmenting would improve the accuracy of both the prediction and
the inference it did only partially achieve that goal. The classifications slightly worsened
after introducing the segmentation with MTL and only slightly improve without MTL.
Some reason for the superior accuracy may be the increased amount of possible classes
which makes the training process harder. In the long run, they could thus still perform
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better when given more resources but this should be done in the scope of a more specified
study as done in this thesis. Furthermore, the confusion matrices shown in Figure 4.7
suggest that a lot of miss-classifications happen when the types of segments change, which
may not be as problematic as other kinds of miss-classification. Lastly, the lower accuracy
may also be at least partially due to the class imbalance that the segmentation introduced.
Unfortunately, this problem cannot be solved easily, as interactions are oftentimes just
naturally imbalanced when some parts of them are either repeated more often than others
or they are just longer, to begin with.
While weighing the classes in the MTL setting improved the classifications’ accuracy again,
the accuracy of the models employing weighted segmenting is still lower than the accuracy
of the associated models that are trained on unsegmented data.
An untapped approach for countering the imbalance could be to treat each segment
as a separate trajectory and to under- or oversample the dataset. We did not consider
this method as this would firstly decrease the amount of training data at hand when
undersampling large classes and secondly would deprive the RWAE of possibly important
context that could be gained from knowledge of the previous segments.
It needs to be acknowledged that the Bütepage dataset [2] is optimal in several ways and
does not reflect real-world circumstances perfectly. First of all, the actors wore motion
tracking suits, which eliminates any problems that would occur with data generated
by computer vision as it’s more precise and there are no challenges such as occlusion.
Furthermore, motions were executed at moderate speed with slight pauses between the
different segments of the motion. In this scenario ZCV can be considered a good fit for
segmenting. However in other cases, whenever movements flow into each other more
seamlessly, ZCV may not be able to properly segment the trajectories. Exploring other
heuristics to apply instead of or in combination with ZCV might therefore be necessary
when working with different data.
Another shortcoming in that part of the pipeline is the need for manually labeling the
segments. Because of that, much manual work is needed in order to extend the dataset.
Further work could experiment with using unsupervised segmenting, e.g. implementing
the approach proposed by Lioutikov et al.[17], to offset this workload. This could poten-
tially get rid of any need for manual labeling.

The proposed setup of the pipeline employs normalization of the input data. This is
beneficial in the sense that the data can be collected using different methods without
needing to adapt the Pipeline. One downside of this, however, is that the position of
the human relative to the robot is not taken into account when generating the robot’s
trajectory. Since the relative position alter movements where physical touch is required
the lack if that information could lead to problems when the interacting person stands
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in a different spot than during training. Avoiding these would require the interacting
humans to stand in the same spot relative to the robot every time they want to interact
with the robot, which is not feasible in uncontrolled environments. Subsequently, this
problem needs to be addressed in the future.

During the training of the RWAE we opted to not differentiate both agents. This can
be feasible when all interactions in the library are symmetrical or as long as the asym-
metrical actions are similar enough, which we determined to be the case for the four
interactions of the used dataset. However, when the acts of both agents differ strongly
this needs to be acknowledged.

In any scenario, extending the library requires complete retraining so exploring online
learning techniques might also be an improvement that could be considered in future work.

With our conclusion that the RWAE does not properly encode time-varying factors of
the movement, but that some sort of dimensionality reduction is necessary to deal with
growing amounts of DOFs, we suggest doing further work on improving the encoding
with respect to the aforementioned time-variations. We assume that having the NN learn
to predict the phase value or including the phase in the computation of the prior may
already be simple additions that could improve the encoding and thus might be worth
exploring in the future.
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A. Hyper-Parameter Optimization

For each configuration, we performed 3-fold cross-validation on 5 models with randomly
selected hyper-parameters. Each model was trained for 750 epochs and a fixed batch size
of 40. The set of randomly chosen hyper-parameters was the same for all configurations.
For the non-MTL configurations, hyperparameters affecting the RWAE could be chosen
from different runs as hyperparameters affecting the classification. Subsequently, we
allowed two choices for hyperparameters affecting both of them. We always chose the
models with the lowest combined loss. In Table A.1 you find a list of all hyper-parameters
including the possible range they could be selected from and the final selection for each
configuration.

domain MTL RWAE RWAE Non-MTL Classification
SegW Seg No Seg SegW Seg No Seg∗

Dz {5, 6..., 20} 19 16 16 16 - - -
λ [0, 10] 5.4558 7.9778 7.9778 7.9778 - - -
α [10−4, 10−1] 0.0352 0.0467 0.0467 0.0467 0.0467 0.0680 0.0680
pdropout [0, 0.75] 0.1383 0.2937 0.2937 0.2937 0.2937 0.0595 0.0595

Table A.1.: A tabular view of all hyper-parameters that were subject to hyper-parameter
optimization including their possible range and the final choices for them.
Hereα denotes the learning rate,Dz denotes the dimesionality of the encoding
z ∈ RDz , λ denotes the influence of the regularization termas seen in Equation
2.1 and pdropout denotes the dropout probability. The hyperparameters for non-
MTL are split into hyperparameters for RWAE model and hyperparameters for
the classification model. Models marked with ∗ have stopped their training
early at the 500 epochmark due to performance drops in-between checkpoints
for the final models.
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B. Model Structure

In the following, we describe the specific structure of the models’ components used for
our experiments. Figure B.1 illustrates the structure of the different components visually.
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Figure B.1.: Structure of the different components of the RWAE in both the MTL and
non-MTL setting. Each rectangle represents a corresponding layer with the in-
and output dimensions marked in the upper corners. The ϵ-labeled diamond
represents the sampling of zt using reparameterization.
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List of Abbreviations

AE Auto-encoder
BIP Bayesian Interaction Primitive
CEL Cross-Entropy-Loss
DOF degree of freedom
DRL Deep Reinforcement Learning
DTW Dynamic Time Warping
EKF Extended Kalman Filter
GMM Gaussian Mixture Model
GRU Gated Recurrent Unit
HHI Human-Human-Interaction
HRI Human-Robot-Interaction
IMQ inverse multiquadratics
KL-divergence Kullback-Leibler divergence
LSTM Long Short-Term Memory
MP Movement Primitive
ML Machine Learning
MLE Maximum Likelihood Estimation
MMD Maximum Mean Discrepancy
MSE Mean-Squared-Error
MTL Multi-task learning
NN Neural Network
ProMP Probabilistic Movement Primitive
SLAM Simultaneous Localization and Mapping
VAE Variational Auto-Encoder
VRNN Variational Recurrent Neural Network
ReGen Recognition and Generation
RNN Recurrent Neural Network
RWAE Recurrent Wasserstein Autoencoder
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WAE Wasserstein Autoencoder
ZCV Zero Crossing velocity
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